JP2015165521A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2015165521A
JP2015165521A JP2012222193A JP2012222193A JP2015165521A JP 2015165521 A JP2015165521 A JP 2015165521A JP 2012222193 A JP2012222193 A JP 2012222193A JP 2012222193 A JP2012222193 A JP 2012222193A JP 2015165521 A JP2015165521 A JP 2015165521A
Authority
JP
Japan
Prior art keywords
element isolation
insulating film
semiconductor device
forming
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012222193A
Other languages
English (en)
Inventor
寛生 西
Hiroo Nishi
寛生 西
弘充 大嶋
Hiromitsu Oshima
弘充 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS4 Luxco SARL
Original Assignee
PS4 Luxco SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS4 Luxco SARL filed Critical PS4 Luxco SARL
Priority to JP2012222193A priority Critical patent/JP2015165521A/ja
Priority to PCT/JP2013/076505 priority patent/WO2014054567A1/ja
Publication of JP2015165521A publication Critical patent/JP2015165521A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/053Making the transistor the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/34DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/488Word lines

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】内壁酸化膜を確実に除去し、過剰な掘り込みを回避して素子分離絶縁膜の厚さを確保し、リーク電流の発生を防止できる半導体装置の製造方法を提供する。【解決手段】シリコン基板1に、第1方向に延在して第2方向に繰り返し配置される複数の素子分離溝23及び活性領域を形成する工程と、活性領域の側面に内壁酸化膜24を形成する工程と、素子分離溝23を埋め込む素子分離絶縁膜25を形成して素子分離領域2を形成する工程と、第2方向に延在する複数のマスク膜パターンを形成し、マスク膜パターンの開口部に活性領域と素子分離領域2とを露出させる工程と、素子分離領域2に露出した素子分離絶縁膜25をエッチバックするとともに、活性領域の両側面をサイドエッチして内壁酸化膜24を除去する工程と、活性領域に露出したシリコン基板1をエッチバックしてサドル型フィン部11を形成する工程とを備える。【選択図】図6C

Description

本発明は、半導体装置の製造方法に関する。
一般に、コンピュータや電気機器の主要部分には、多数のMOSトランジスタや抵抗等を一つのチップ上に集積化する大規模集積回路(LSI)が採用されている。特に、LSIの中でも、DRAM(Dynamic Random Access Memory)又はPRAM(Parameter Random Access Memory)等の半導体装置の分野においては、使用される機器の高機能化等により、さらなる急速な微細化、高集積化が進められている。
また、上述のような半導体装置における素子分離構造として、STI(Shallow Trench Isolation:シャロー・トレンチ・アイソレーション)と呼ばれる方法・構造が知られている。このSTIとは、例えば、シリコン基板上にシャロートレンチと呼ばれる浅い溝を形成し、これを酸化膜等の絶縁材料からなる素子分離絶縁膜で充填することにより、シリコン基板上に設けられる活性領域を区画する素子分離領域が設けられてなる構造である。このようなこのSTIは、プロセスが簡便なLOCOS(Local Oxidation of Silicon)に比べ、横方向への広がりが無く、微細化が可能となるというメリットがある。
上述したSTIによるラインアンドスペースタイプのフィールドパターンを用いたトランジスタ構造においては、ゲート電極を構成するワード線に加え、さらに、素子を分離するためのダミーワード線を設けることが必要となる。このように、シリコン基板上のSTI構造に対して基板埋め込み型のワード線を設けるにあたり、トランジスタのチャネル部の形成にサドル型フィン構造を用いた場合、STI上にワードラインに沿った溝を形成する必要がある(例えば、特許文献1、2を参照)。
ここで、STI構造にワード線及びダミーワード線を形成した場合、内壁酸化膜と埋設膜との間にエッチレート差が生じるとともに、シリコン基板上の溝開口部の断面が矩形であること等から、その側面に位置するSTIの内壁酸化膜がエッチングされ難くなり、フィンの側面に内壁酸化膜が残存しやすいという問題が生じ、これは、内壁酸化膜が厚い場合ほど顕著となる。このように、フィンの側壁に内壁酸化膜が残存している箇所においては、チャネル領域としての効果が発現し難くなることから、チャネル領域は、フィンの側壁に残存した内壁酸化膜の頂部より上方に形成されるシリコン基板の高さに依存する。このため、フィンの高さを所定以上としてチャネル領域を確保するためには、その分だけ、シリコン基板上のSTI構造を深く掘り込んでワード溝を形成する必要がある。しかしながら、この場合にはSTIの残膜、即ち、隣接活性領域を素子分離する埋設膜の膜厚が薄くなることから、寄生MOS効果によって、その下に位置するシリコン基板の表面を通って電流がリークしやすくなるという問題がある。また、ダミーワードラインにおいて、フィンの側壁に残存している内壁酸化膜が薄い場合、その部分もチャネル領域となることから、このフィンを介して電流がリークしやすくなるという問題がある。
特開2008−016842号公報 特表2008−091871号公報
以下に、図9A〜図9C及び図10A〜図10Dを参照して、本発明者等が実験を行った、トランジスタのチャネル領域の形成にフィン構造を用いた基板埋め込み型のワード線の形成方法を説明する。図9A及び図10Aは、従来の半導体装置を示す平面図であり、図9B及び図10Bは、それぞれ、図9A及び図10A中に示すA−A断面図、図9C及び図10C、図10Dは、それぞれ、図9A及び図10A中に示すB−B断面図である。
図9A〜図10Cに示すように、まず、素子分離絶縁膜102eが表層に埋め込まれることでSTIのラインアンドスペースパターンとされた素子分離領域102が形成されたシリコン基板101に対し、埋め込み型ワード線の溝加工を行う。図9Aに示すように、STIのラインアンドスペースパターンはX’方向に延在し、埋め込み型ワード線の溝はX’方向に交差するY方向に延在する。この際、まず、STI上に窒化シリコン膜103aを成膜した後、その上に、リソグラフィ技術を用いて、ワード線予定ラインに沿ったラインアンドスペースパターンのレジストマスクRを形成する。次いで、レジストマスクRをマスクとしてドライエッチングを行い、窒化シリコン膜103aをワード溝103bのパターンにエッチングする。これにより、ワード溝103b内には、素子分離領域102の上面と、シリコン基板101からなる活性領域101aの上面とが、Y方向に交互に露出する。そして、窒化シリコン膜103aをマスクとして、上面が露出している素子分離領域102と活性領域101aとをエッチングすることにより、シリコン基板101に所定の深さのワード溝103bを形成する。この際、図9Bに示すように、まず、素子分離領域102における素子分離絶縁膜102eが選択的にエッチングされ、活性領域101aのSi(シリコン基板)がエッチングされにくい条件として、可能な限りSiを削らないようにエッチングを行う。これにより、図示例のように、ワード溝103bのエッチング形状が、ほぼ矩形状になる。この時、図9Cに示すB−B断面の位置においては、素子分離領域2における内壁酸化膜102dが、Si基板112aの側壁に取り残されがちになる。そして、図10A〜図10Cに示すように、活性領域101aのSiが選択的にエッチングされる条件で、ワード溝103bをさらに所定の深さまでエッチングすることにより、図10Cに示すように、活性領域101aのシリコン基板の上面が素子分離絶縁膜102eの上面よりも高い位置まで突出して構成されるサドル型フィン部112を形成する。
上記ワード溝103bを形成する工程においては、素子分離絶縁膜102eのエッチング速度がシリコン基板1のエッチング速度よりも速くなる条件としてエッチングを行う。このとき、STIの内壁酸化膜102dと素子分離絶縁膜102eとの間にエッチレート差が生じるとともに、Siが矩形状となっていることから、内壁酸化膜102dがエッチングされ難くなる。このため、図10Cに示すように、エッチングの際にSiの側面の内壁酸化膜102dを除去しきれず、サドル型フィン部112の側面に内壁酸化膜の残部102fが生じた状態となる。このような内壁酸化膜の残部102fが残存する量は、内壁酸化膜102dの膜厚に比例し、膜厚が厚いほど残存量も多くなる。
上述のように、Siの側面に内壁酸化膜の残部102fが生じた状態になると、この箇所におけるチャネル領域としての効果が発現し難くなり、トランジスタのチャネルとして機能しないという問題があった。このため、図10Dに示すように、チャネル領域の確保を目的として、素子分離領域102におけるワード溝103bをさらに深く掘り込み、フィンの高さを高くする必要が生じる。しかしながら、このような場合には、素子分離領域102の底部に残存する素子分離絶縁膜102eの残膜が薄くなり、寄生MOS効果により、その下に位置するシリコン基板101の表面においてリーク電流が発生しやすくなるという問題があった。また、ダミーワード線近傍で残存した内壁酸化膜102dが薄い場合には、その部分がチャネル領域として働くことから、リーク電流が発生する可能性が高くなるという問題があった。
本発明者等は上記問題を解決するために鋭意研究を行い、3次元構造を有する半導体装置を製造する工程において、STI構造が形成されたシリコン基板に対し、サドル型フィン部や埋め込みワード線を形成するためのワード溝を形成するにあたり、このワード溝部
の形成途中に露出する活性領域の側面をサイドエッチングすることにより、活性領域の側面に形成されている内壁酸化膜を確実に除去できることを知見した。これにより、STI構造(素子分離絶縁膜)を大きく掘り込まなくても、各フィン部の高さが確保でき、素子分離溝底部に残存する素子分離絶縁膜の厚さも確保できることから、素子分離溝の底面直下のシリコン基板表面におけるリーク電流の発生を防止できることを見出し、本発明を完成させた。
即ち、本発明の半導体装置の製造方法は、シリコン基板の表層に、第1方向に延在し、該第1方向に交差する第2方向に繰り返し配置される複数の素子分離溝と、該素子分離溝で区画される活性領域を形成する工程と、前記活性領域の側面に内壁酸化膜を形成する工程と、前記素子分離溝を埋め込む素子分離絶縁膜を形成して素子分離領域を形成する工程と、前記活性領域と前記素子分離領域とに跨がって前記第2方向に延在する複数のマスク膜パターンを形成し、該マスク膜パターンの開口部に前記活性領域の上面と前記素子分離領域の上面とを露出させる工程と、前記素子分離領域に上面が露出している前記素子分離絶縁膜を鉛直方向にエッチバックするとともに、前記活性領域の両側面をサイドエッチングすることで前記活性領域の両側面に形成されている前記内壁酸化膜を除去する工程と、前記活性領域に上面が露出している前記シリコン基板をエッチバックすることで、前記素子分離絶縁膜の上面より上方に突出したサドル型フィン部を形成する工程と、を順次備えることを特徴とする。
係る構成の半導体装置の製造方法によれば、サドル型フィン部側面の内壁酸化膜を確実に除去できるので、STI構造を大きく掘り込むことなく各フィン部の高さが確保できる。また、素子分離絶縁膜の過剰な掘り込みを回避することで、素子分離溝の底部に残存する素子分離絶縁膜の厚さを確保できるので、素子分離溝の底面直下に位置するシリコン基板表面を流れるリーク電流の発生を防止することができる。
本発明の実施形態である半導体装置の製造方法及び半導体装置を示す断面模式図であり、本発明に係る製造方法で得られる半導体装置を上面側から見た平面図である。 本発明の実施形態である半導体装置の製造方法及び半導体装置を示す断面模式図であり、図1中に示すA−A’断面図である。 本発明の実施形態である半導体装置の製造方法を示す工程図であり、ウェーハを上面から見た平面図である。 本発明の実施形態である半導体装置の製造方法を示す工程図であり、図3A中に示すA−A’断面図である。 本発明の実施形態である半導体装置の製造方法を示す工程図であり、図3A中に示すB−B’断面図である。 本発明の実施形態である半導体装置の製造方法を示す工程図であり、ウェーハを上面から見た平面図である。 本発明の実施形態である半導体装置の製造方法を示す工程図であり、図4A中に示すA−A’断面図である。 本発明の実施形態である半導体装置の製造方法を示す工程図であり、図4A中に示すB−B’断面図である。 本発明の実施形態である半導体装置の製造方法を示す工程図であり、ウェーハを上面から見た平面図である。 本発明の実施形態である半導体装置の製造方法を示す工程図であり、図5A中に示すA−A’断面図である。 本発明の実施形態である半導体装置の製造方法を示す工程図であり、図5A中に示すB−B’断面図である。 本発明の実施形態である半導体装置の製造方法を示す工程図であり、ウェーハを上面から見た平面図である。 本発明の実施形態である半導体装置の製造方法を示す工程図であり、図6A中に示すA−A’断面図である。 本発明の実施形態である半導体装置の製造方法を示す工程図であり、図6A中に示すB−B’断面図である。 本発明の実施形態である半導体装置の製造方法を示す工程図であり、ウェーハを上面から見た平面図である。 本発明の実施形態である半導体装置の製造方法を示す工程図であり、図7A中に示すA−A’断面図である。 本発明の実施形態である半導体装置の製造方法を示す工程図であり、ウェーハを上面から見た平面図である。 本発明の実施形態である半導体装置の製造方法を示す工程図であり、図8A中に示すA−A’断面図である。 従来の半導体装置の製造方法を示す工程図である。 従来の半導体装置の製造方法を示す工程図である。 従来の半導体装置の製造方法を示す工程図である。 従来の半導体装置の製造方法を示す工程図である。 従来の半導体装置の製造方法を示す工程図である。 従来の半導体装置の製造方法を示す工程図である。 従来の半導体装置の製造方法を示す工程図である。
以下に、本発明の実施形態である半導体装置の製造方法について、図面を適宜参照しながら説明する。なお、以下の説明において参照する図面は、本実施形態の半導体装置の製造方法を説明する図面であって、図示される各部の大きさや厚さや寸法等は、実際の半導体装置等の寸法関係とは異なっている。
図1は、本発明を適用した実施形態である半導体装置Aを模式的に示す平面図であり、図中に示すX方向はビット線延在方向(第3方向)、X方向に傾斜するX’方向は活性領域および素子分離領域延在方向(第1方向)、Y方向はワード線延在方向(第2方向)、Z方向は半導体積層方向である。また、図2は、図1の平面図におけるA−A線の断面図である。また、図3〜図8は、本実施形態の半導体装置の製造方法の主要な工程を模式的に示す工程図である。
「半導体装置の構成」
まず、本実施形態の半導体装置の構成について、DRAM(Dynamic Random Access Memory)のメモリセルを例に挙げて、以下に説明する。
図1及び図2に示すように、本実施形態の半導体装置Aは、素子分離溝23の内面に内壁酸化膜24が形成されるとともに、素子分離溝23内に素子分離絶縁膜25が形成されることで、X’方向(第1方向)に延在する活性領域1aをY方向(第2方向)に区画する素子分離領域2が設けられたシャロー・トレンチ・アイソレーション(STI)構造を含むシリコン基板1を備えている。また、活性領域1aは、複数のシリコンピラー部12、及び、該シリコンピラー部12よりも低い高さとされるとともに、Y方向の幅が活性領域1aパターンのY方向の幅よりも狭く形成されることで内壁酸化膜24が除去された複数のサドル型フィン部11を備えている。即ち、半導体装置Aにおいては、シリコンピラー部12とサドル型フィン部11とが、活性領域1a内において、X’方向に交互に繰り返し配置されることによって接続されている。また、半導体装置Aは、複数のピラー型フィン部12の各々の間に設けられ、ダミー電極を構成する第1埋め込みワード線31と、複数のサドル型フィン部11の上面に設けられ、ゲート電極を構成する第2埋め込みワード線32と、少なくともシリコン基板1上のSTI構造を覆うように形成される第1層間絶縁膜4上に設けられ、活性領域1aとビットコンタクトプラグ(ビットコンタクト層)54を介して接続されるビット線55とを備え、ビットラインゲート5が構成されている。そして、半導体装置Aは、ビットラインゲート(ビット線)5及び第1層間絶縁膜4を覆うように形成された第2層間絶縁膜6上に設けられ、活性領域1aと容量コンタクト層7を介して接続されるキャパシタ8を備え、概略構成されている。本実施形態の半導体装置Aは、上記構成により、シリコン基板1に含まれるSTI構造上において、埋め込みゲート型構造のトランジスタが構成されるものである。
図1に示す例においては、メモリセル領域において、X方向(ビット線方向)に傾きを有してX’方向に直線で延在する素子分離領域2と、素子分離領域2に隣接してX’方向に直線で延在する活性領域1aとが、等ピッチ間隔でY方向(ワード線方向)に繰り返し配置されている。活性領域1aは、素子分離領域2によってY方向で電気的に分離されている。ここで、素子分離領域2と活性領域1aのY方向の上面幅は同じであっても良いし、あるいは、素子分離領域2の上面幅が活性領域1aの上面幅よりも小さく構成されていても良い。
また、複数の素子分離領域2および複数の活性領域1aに跨って、Y方向に直線で延在し、ゲート電極をなす第2埋め込みワード線32(以下、単にワード線と略称することがある)が設けられ、さらに、ダミー電極をなす第1埋め込みワード線(以下、ダミーワード線と称することがある)31が配置されている。図1中においては、一部の構成が省略されているが、隣接する二つのダミーワード線31の間に2本のワード線32が均等間隔で配置されている。即ち、各々のダミーワード線31及びワード線32は、同一の幅及び間隔で配置されている。
本実施形態の半導体装置Aは、各々のワード線の直下に位置するシリコン基板1の表面にサドル型フィン部11が形成され、各々のワード線の間にシリコンピラー部12が配置される構成とされている。
ダミーワード線31は、ワード線32と同じ材料で構成されるが、各々のワード線32は対応するトランジスタのゲート電極として機能するのに対し、ダミーワード線31は、該ダミーワード線31の両側に隣接するトランジスタを電気的に分離する素子分離機能を有する。これにより、活性領域1aは、Y方向(ワード線方向)に素子分離領域2で絶縁分離され、延在するX’方向(略ビット線方向)にダミーワード線31で絶縁分離されることで、独立した島状活性領域を構成する。ここで、本実施形態においては、説明を容易にするため、隣接するダミーワード線31をX方向(ビット線方向)に向かって31A、31B、31C、 ワード線32をX方向に向かって32A、32B、32Cと称する。
X’方向に延在する一つの島状活性領域は、ダミーワード線31Aとダミーワード線31Bで挟まれる構成とされる。さらに、ダミーワード線31Aとワード線32Aに隣接する容量コンタクト接続領域1dと、ワード線32Aとワード線32Bに隣接するビットコンタクト接続領域1eと、ワード線32Bとダミーワード線31Bに隣接する他方の容量コンタクト接続領域1dとで構成されている。これにより、ダミーワード線31Aに隣接する一方の容量コンタクト接続領域1dと、一方のワード線32Aと、ビットコンタクト接続領域1eとで一つのトランジスタTr1が構成される。また、ビットコンタクト接続領域1eと、他方のワード線32Bと、ダミーワード線31Bに隣接する他方の容量コンタクト接続領域1dとで他の一つのトランジスタTr1が構成される。従って、ビットコンタクト接続領域1eは、二つのトランジスタTr1で共有される構成とされている。また、上記の容量コンタクト接続領域1d及びビットコンタクト接続領域1eは、シリコンピラー部12で構成される。
また、各々のビットコンタクト接続領域1e上にはビットコンタクトプラグ53が設けられ、各々のビットコンタクトプラグ(ビットコンタクト層)54に接続してX方向に延在するビット線55が配置されることで、ビットラインゲート5が構成されている。また、各々の容量コンタクト接続領域1d上には容量コンタクト7が設けられ、各々の容量コンタクト7上にはキャパシタ(図1中では図示せず)が設けられている。
次に、図2の断面図に示すように、シリコン基板1の表面には、同じ幅及び間隔で形成された複数のワード溝3内に、ゲート絶縁膜を介してゲート電極を兼ねるワード線が各々埋設されている。より具体的には、同じ幅及び間隔で形成された第1ワード溝3A及び第2ワード溝3Bの各々の内部に、シリコン酸化膜からなるゲート絶縁膜3cを介してメタルからなるワード線3dが各々埋設されている。そして、ワード線3dの上面を覆うようにキャップ絶縁膜3eが埋設されている。また、第1ワード溝3A内にはダミーワード線31が配置され、第2ワード溝3B内にワード線32が配置される。
上記のダミーワード線31及びワード線32の材料としては、例えば、窒化チタン膜、チタン膜、窒化タングステン膜、タングステン膜等の高融点金属膜等を用いることができ、これらの材料を単層あるいは積層膜として、適宜選択することが可能である。
また、図2に示す例では、キャップ絶縁膜3eを覆うように、第1層間絶縁膜4が設けられている。隣接する二つのワード線32A、32B間に位置する活性領域1aからなるビットコンタクト接続領域1eの上面には、第1層間絶縁膜4を貫通するビットコンタクトプラグ(ビットコンタクト層)54が配置される。さらに、その上面に接続され、X方向に延在するビット線55が積層配置され、配線を構成している。ビット線55の上面及び側壁には、シリコン窒化膜からなるサイドウォール絶縁膜56が設けられ、ビットコンタクトプラグ54とビット線55及びサイドウォール絶縁膜56でメモリセル領域のビットラインゲート5を構成している。
ビット線55を構成する各部材の材料としては、例えば、窒化チタン膜、チタン膜、窒化タングステン膜、タングステンシリサイド膜、タングステン膜等の高融点金属膜等を用いることができ、これらの材料を単層あるいは積層膜として、適宜選択することが可能である。
また、半導体装置Aは、ビットラインゲート5を覆うように、シリコン基板1上の全面にシリコン酸化膜からなる第2層間絶縁膜6が設けられている。また、容量コンタクト接続領域1dとなる活性領域1aの上面には、第2層間絶縁膜6及び第1層間絶縁膜4を貫通して容量コンタクトプラグ(容量コンタクト層)7が接続されている。また、容量コンタクトプラグ7の上面を含む全面には、シリコン窒化膜からなるストッパー膜9とシリコン酸化膜からなる第3層間絶縁膜13が設けられている。
さらに、容量コンタクトプラグ7の上面に到達するように、第3層間絶縁膜13とストッパー膜9を貫通するシリンダーホール8aが開口しており、シリンダーホール8aの内壁と底部を覆うように下部電極8bが設けられている。これにより、下部電極8bが、容量コンタクトプラグ7の上面に接続している。また、下部電極表面8bを覆うように、容量絶縁膜8c及び上部電極8dが設けられ、下部電極8b、容量絶縁膜8c及び上部電極8dにより、キャパシタ8を構成している。
また、半導体装置Aは、キャパシタ8を覆うように第4層間絶縁膜14が設けられており、さらに、第4層間絶縁膜14を貫通して配線コンタクト15が設けられ、配線コンタクト15上面には配線層16が接続されている。
そして、配線層16及び第4層間絶縁膜14を覆うように、保護絶縁膜17が全面に設けられている。
上述したように、本実施形態の半導体装置Aは、素子分離溝23に内壁酸化膜24が形成され、且つ、素子分離溝23に素子分離絶縁膜25が形成されることで素子分離領域2が設けられたSTI構造を有するシリコン基板1上に、複数のピラー型フィン部12、及び、該ピラー型フィン部12よりも低い高さとされるとともに、Y方向の幅を狭く形成することで内壁酸化膜24が除去された複数のサドル型フィン部11を有する構成とされている。半導体装置Aによれば、上記構成により、素子分離溝23の底面直下に位置するシリコン基板1の表面を流れるリーク電流の発生が防止され、優れた素子特性が得られる。
「半導体装置の製造方法」
次に、本実施形態の半導体装置Aの製造方法について、図3〜図8(必要に応じて図1、2も参照)を用いて以下に説明する。なお、図3〜図6の各々におけるB図(図3B、図4B、図5B、図6B)は、説明を容易にするため、各々の平面図を示すA図(図3A、図4A、図5A、図6A)におけるA−A’断面図を示している。ここで、これら図3〜図6におけるA−A’断面図は、図2のA−A’断面図とは方向が異なっているので、注意が必要である。
また、本実施形態で用いるシリコン基板1は、p型の単結晶基板とする。
本実施形態の半導体装置Aの製造方法は、シリコン基板1の表層に、X’方向(第1方向)に延在し、このX’方向に交差するY方向(第2方向)に繰り返し配置される複数の素子分離溝23と、この素子分離溝23で区画される活性領域1aを形成する工程と、この活性領域1aの側面に内壁酸化膜24を形成する工程と、素子分離溝23を埋め込む素子分離絶縁膜25を形成して素子分離領域2を形成する工程と、活性領域1aと素子分離領域2とに跨がってY方向(第2方向)に延在する複数のマスク膜パターンを形成し、このマスク膜パターンの開口部に活性領域1aの上面と素子分離領域2の上面とを露出させる工程と、素子分離領域2に上面が露出している素子分離絶縁膜25を鉛直方向にエッチバックするとともに、活性領域1aの両側面をサイドエッチングすることで活性領域1aの両側面に形成されている内壁酸化膜24を除去する工程と、活性領域1aに上面が露出しているシリコン基板1をエッチバックすることで、素子分離絶縁膜25の上面より上方に突出したサドル型フィン部11を形成する工程と、を順次備える方法とされている。
また、本実施形態の製造方法は、より具体的には、以下に示す各工程(1)〜(5)を順次備えた方法とすることができる。
(1)シリコン基板1上に図示略のマスク絶縁膜及び第1レジストマスクを順次形成し、この第1レジストマスクを用いてシリコン基板1及びマスク絶縁膜をエッチングすることで、X’方向(第1方向)に延在する素子分離領域2の形成予定領域に沿ったラインアンドスペースパターンで素子分離溝23を形成した後、この素子分離溝23の内面に内壁酸化膜24を形成するとともに、素子分離溝23に絶縁材料を充填して素子分離絶縁膜25を形成することによって活性領域1aを区画するための素子分離領域2を形成し、シャロー・トレンチ・アイソレーション(STI)構造を形成するSTI工程。
(2)シリコン基板1上にマスク窒化膜3a及び第2レジストマスクRを順次形成した後、この第2レジストマスクRを用いてシリコン基板1上における素子分離領域2及び活性領域1aをエッチング除去することにより、X’方向(第1方向)と交差してY方向(第2方向)に延在する複数のワード溝3を同時に形成する際、素子分離領域2に上面が露出する素子分離絶縁膜25を鉛直下方に掘り下げるとともに、活性領域1aの両側面をサイドエッチしてY方向(第2方向)の幅を縮退させることで、活性領域1aの側壁に形成された内壁酸化膜24を除去し、掘り下げられた素子分離絶縁膜25の上面よりも上方にシリコン基板1を突出させてサドル型フィン部11を形成するフィン部形成工程。
(3)さらに、ワード溝3内に露出するサドル型フィン部11の上面を選択的にエッチングして掘り下げることにより、サドル型フィン部11の高さを制御する掘り込み工程。
(4)複数のワード溝3の底面上に導電材料を堆積させた後、この導電材料の一部をエッチング除去し、複数のワード溝3の底面に前記導電材料を残存させることにより、第1埋め込みワード線31及び第2埋め込みワード線32を形成する埋め込みワード線形成工程。
(5)第1ワード溝3A及び第2ワード溝3Bに絶縁材料を充填して、第1埋め込みワード線31及び第2埋め込みワード線32を埋め込むことにより、埋め込みキャップ絶縁膜3eを形成するキャップ形成工程。
さらに、本実施形態の製造方法では、上記(1)〜(5)の工程に加え、ビット線を形成する工程や、キャパシタを形成する工程、配線層を形成する工程等を備えた方法とすることができる。
本実施形態では、特に、上記のフィン部形成工程において、素子分離絶縁膜25を鉛直下方に掘り下げるとともに、活性領域1aの側面をサイドエッチングすることによって内壁酸化膜24を除去する方法を採用することで、内壁酸化膜24を残存させることなく、サドル型フィン部11を形成することが可能になる。
以下、本実施形態の製造方法に備えられる上記(1)〜(5)の各工程、及び、これに引き続いて行われる各工程について具体的に説明する。
<(1)STI工程>
本実施形態のSTI工程について、図3A〜図3Cを参照しながら説明する。
STI工程では、まず、シリコン基板1上に厚さ2nmのパッドシリコン酸化膜と厚さ50nmのシリコン窒化膜を積層形成する。
次に、リソグラフィ技術を用いて、シリコン窒化膜上に、X’方向(第1方向)に延在する複数のホトレジストパターンを形成する。このホトレジストパターンは、例えば、Y方向の幅が40nm、間隔が40nmとなるラインパターンで形成する。
次に、ホトレジストパターンをマスクとして、下層のシリコン窒化膜及びパッドシリコン酸化膜を異方性ドライエッチングし、パターンを転写する。これにより、シリコン基板1の上面が露出する。
次に、ホトレジストパターンを除去し、シリコン窒化膜をマスクとして、上面が露出している部分のシリコン基板1を異方性ドライエッチングし、素子分離溝23を形成する。この素子分離溝23のシリコン基板1の上面からの深さは、例えば250nmとする。また、この際の異方性ドライエッチングには、例えば、臭化水素(HBr)と塩素(Cl)と酸素(O)との混合ガスプラズマを用いる。
上記工程により、図3Cに示すように、素子分離溝23の形成によって活性領域1aがY方向(第2方向)に区画され、素子分離溝23の側面、すなわち活性領域1aを構成する第1側面1b及び第2側面1cが形成される。この第1側面1b及び第2側面1cは、第2の方向に対向し、活性領域1aを挟んで第1方向に延在するように形成される。
なお、第1側面1b及び第2側面1cは、後の工程で活性領域1aに形成されるトランジスタの特性を悪化させないために、シリコン基板1からなる活性領域1a側にわずかに傾斜するように形成される。即ち、対向する第1側面1b及び第2側面1cの上方の幅は下方の幅よりも狭く形成されている。この傾斜角は、85°以上で90°より小さい範囲とする。
次いで、マスクとして用いたシリコン窒化膜を残した状態で第1側面1b及び第2側面1cを含む素子分離溝23の内面を、従来公知の方法で熱酸化することにより、例えば、厚さが2nmのシリコン酸化膜からなる内壁酸化膜24を形成する。そして、素子分離溝23内を埋め込むように、シリコン基板1上の全面に、CVD法によってシリコン窒化膜からなる埋設絶縁材料の膜を形成する。この埋設絶縁材料としては、シリコン窒化膜に限らず、CVD法や回転塗布法で形成するシリコン酸化膜を用いることができる。また、シリコン窒化膜と上記シリコン酸化膜の積層膜で形成しても良い。
次に、上記の埋設絶縁材料として用いたシリコン窒化膜と、マスクとして用いたシリコン窒化膜を同時にエッチバックして除去する。この際、埋設絶縁材料にシリコン酸化膜を用いた場合でも同じ手法で除去することができる。これにより、素子分離溝23内には、シリコン基板1の上面と面一となる上面を有する素子分離絶縁膜25が充填される。このような素子分離絶縁膜25を充填することにより、第1方向に延在する複数の素子分離領域2が形成される。また、素子分離領域2によってY方向に区画されるとともに、Y方向に対向する第1側面1b及び第2側面1cを有して第1方向に延在する複数の活性領域1aが形成される。これにより、活性領域1aの上面におけるY方向の幅(上面幅)W1は、例えば、40nm程度となる。また、素子分離領域2は、STI構造で構成され、Y方向の上面幅は40nmとなり、活性領域1aの上面幅と等しくなる。なお、ここでは、ホトレジストパターンのY方向の幅及び間隔を、何れも40nmとして形成しているが、これに限るものではなく、間隔を40nmよりも小さくしても良い。即ち、素子分離領域2のY方向の上面幅が活性領域1aのY方向の上面幅より小さくなるように形成しても良い。これにより、メモリセルの平面面積を縮小化できる利点がある。
上述したように、本実施形態における素子分離領域2は、シリコン基板1からなる活性領域1aとの境界、すなわち第1側面1b及び第2側面1cに熱酸化法で形成されるシリコン酸化膜からなる内壁酸化膜24を備え、さらに、内壁酸化膜24を覆う素子分離絶縁膜25を備える構造を有する。
<(2)フィン部形成工程>
次に、図4A〜図4Cを参照してフィン部形成工程について説明する。
フィン部形成工程では、まず、シリコン基板1上に、マスク膜3aを形成した後、この上に、リソグラフィ技術を用いて第2ホトレジストマスクRを形成する。なお、マスク膜3aは、非晶質カーボン膜とシリコン酸化膜等の材料で構成することができる。第2ホトレジストマスクRは、第1方向(X’方向)に交差する第2の方向(Y方向)に延在し、複数の活性領域1aと複数の素子分離領域2に跨る複数のラインパターンで形成される。第2ホトレジストマスクRの、Y方向に垂直なX方向(第3方向)の幅および間隔は、例えば、各々40nmとする。
次に、第2ホトレジストマスクRをマスクとした異方性ドライエッチング法により、下層のマスク膜3aをエッチングしてマスクパターンを転写する。これにより、第2の方向(Y方向)に延在する複数のマスク膜3aの間(開口部3b)には、Y方向に繰り返し配置された活性領域1aの上面と素子分離領域2の上面(内壁酸化膜24の上面と素子分離絶縁膜25の上面)が露出する。
その後、第2ホトレジストマスクRを除去する。
次いで、マスク膜3aをマスクとして、上面が露出している活性領域1a及び素子分離領域2を異方性ドライエッチングし、第1ワード溝3Aと第2ワード溝3Bを同時に形成する。ここでは、最初に素子分離領域2を異方性ドライエッチングし、その後、活性領域1aを異方性ドライエッチングする方法を用いる。一方、活性領域1aをエッチングした後、素子分離領域2をエッチングする方法は好ましくない。その理由としては、上述のように、活性領域1aを構成する第1側面1b及び第2側面1cが、活性領域1a側にわずかに傾斜するように形成されているため、活性領域1aを先に異方性ドライエッチングすると、第1側面1b及び第2側面1cのZ方向に沿って形成されている素子分離絶縁膜25がエッチングのマスクとなり、結果的に、第1方向に延在する第1側面1b及び第2側面1cに沿ってシリコン基板1のエッチング残りが発生してしまうからである。これを回避するために、本実施形態においては、素子分離領域2を先に異方性ドライエッチングする必要がある。
まず、図5A〜図5Cに示すように、マスク膜3aをマスクとして、上面が露出している素子分離領域2を選択的に異方性ドライエッチングする。上述のように、素子分離領域2の上面は、第1側面1b及び第2側面1cに形成されている内壁酸化膜24の上面と、素子分離溝23に埋設されている素子分離絶縁膜25の上面とから構成されている。内壁酸化膜24は、熱酸化法で形成されたシリコン酸化膜からなり、素子分離絶縁膜25は、CVD法で形成されたシリコン窒化膜で構成されている。一般に、この状態で、素子分離絶縁膜25を構成するシリコン窒化膜のエッチング速度(ER)が活性領域1a(シリコン基板1)のERよりも速くなる条件で異方性ドライエッチングすると、第1側面1b及び第2側面1cに形成されている内壁酸化膜24が十分にエッチングされず、残存しやすくなってしまう。このような内壁酸化膜24の残存は、上述した如く(発明が解決しようとする課題の欄を参照)、種々の不都合を生じる。なお、素子分離絶縁膜を、CVD法や回転塗布法で形成したシリコン酸化膜で構成した場合にも、同様の問題が生じる。
従って、本実施形態では、シリコン窒化膜(素子分離絶縁膜25)を異方性ドライエッチングして掘り下げると同時に、第1側面1b及び第2側面1cをサイドエッチングして活性領域1aのY方向の幅を縮退させる。ここでは、片側の側面における縮退幅W2は、例えば、5nmとする。この場合、活性領域1a全体では10nm縮退することとなる。この縮退には、第1側面1b及び第2側面1cに露出する内壁酸化膜24を横方向にエッチングする等方性エッチングを同時に行うことができるエッチング条件を用いる。もしくは、素子分離絶縁膜25を異方性ドライエッチングして所定の位置まで掘り下げた後、第1側面1b及び第2側面1cに露出している内壁酸化膜24を、シリコン酸化膜の等方性エッチング条件を用いて段階的にドライエッチングする方法を用いても良い。これにより、図5Cに示すように、活性領域1aの上面が、Y方向に隣接する素子分離領域2の上面より高くなっている第1サドル型フィン部(サドル型フィン部)11aが形成される。なお、ここでは、掘り下げた後の素子分離領域2の上面の位置は、例えば、シリコン基板1の上面から150nm下方の位置とする。
上記のようなエッチング条件で素子分離領域2をエッチングすることにより、複数の第1サドル型フィン部11aの、上端部側のY方向の幅W3は30nmとなり、活性領域1aのY方向の上面幅W1(40nm)よりも10nm狭くなっている。これにより、第1サドル型フィン部11aの側面に相当する位置において、活性領域1aの側面1b、1cに形成されていた内壁酸化膜24を確実に除去することができる。また、内壁酸化膜24を横方向にエッチングするとともに、活性領域1aの側面1b、1cをサイドエッチングすることにより、第1サドル型フィン部11aの側面も新たに形成されることとなる。即ち、活性領域1aの第1側面1bは第1サドル型フィン部11aにおいて新たな第1側面1bbとなり、同じく第2側面1cは新たな第2側面1ccとなる。新たな第1の側面1bbは、縮退幅W2の段差D1を介して元の第1側面1bと接続され、新たな第2の側面1ccは、縮退幅W2の段差D2を介して元の第2側面1cと接続されるように形成される。
以下に、本実施形態のフィン部形成工程(2)について、図4及び図5を参照しながら、より具体的な例を説明する。
まず、STI構造を含むシリコン基板1の全面に、例えば、CVD法によって非晶質カーボン膜及びシリコン酸化膜からなるマスク膜3aを成膜する。次いで、マスク膜3a上にBARC膜を塗布し、さらにホトレジストを積層塗布する。その後、リソグラフィ法及びBARCエッチングを用いて、ワード溝3(第1ワード溝3A、第2ワード溝3B)の繰り返しパターンを持つ第2ホトレジストマスクRを形成する。そして、図4A〜図4Cに示すように、第2レジストマスクRを用いたエッチングにより、マスク膜3aをワード溝3の繰り返しパターンに形成する。
その後、ホトレジストおよびBARC膜を除去する。
次に、図5A〜図5Cに示すように、マスク膜3aをマスクとして、上面が露出している素子分離領域2を選択的に異方性ドライエッチングする。この際、まず、素子分離領域2の素子分離絶縁膜25が選択的にエッチングされ、活性領域1aのSiが上方からはエッチングされ難く、且つ、内壁酸化膜24が横方向にエッチングされるとともにシリコン基板1がサイドエッチされる条件、例えば、トリフロロメタン(CHF)と、オクタフロロシクロブタン(C)と、酸素(O)とArの混合ガスプラズマ雰囲気で、10〜20Paのチャンバー圧力とし、700〜1200WのRFパワーを印加する条件でエッチングを行う。ここで、チャンバー圧力が高圧側になるとサイドエッチ量が多くなり、低圧側になるとサイドエッチ量が少なくなるが、チャンバー圧力を上記範囲とすることで、適正なサイドエッチ量が得られ、内壁酸化膜24を確実に除去しながらサドル型フィン部11を形成することが可能となる。また、上述したように、素子分離領域2の内壁酸化膜24の厚さの変化に対しては、Oの流量変更による調整を行うことで、内壁酸化膜24の厚さに依存せず、内壁酸化膜24を確実に除去しながらサドル型フィン部11を形成することが可能となる。
このように、各エッチング条件を調整することで、図5Cに示すように、サイドエッチを適正とし、素子分離領域2の内壁酸化膜24がサドル型フィン部11に残らないようにエッチングする。
なお、本実施形態においては、次の掘り込み工程におけるシリコンエッチング時のチャンバー圧力を高圧側に変更することでサイドエッチを入れられる条件とすることにより、内壁酸化膜24を除去しながら、サドル型フィン部11を薄く形成することも可能である。
<(3)掘り込み工程>
掘り込み工程では、上記手順及び条件のフィン部形成工程において素子分離領域2の上面をシリコン基板1の上面から150nm掘り下げた後、さらに、活性領域1aに露出している第1サドル型フィン部11aの上面を選択的にエッチングして掘り下げることにより、第2サドル型フィン部(サドル型フィン部)11を形成する。
以下に、本実施形態の掘り込み工程(3)について、図6を参照しながら、より具体的な例を説明する。
掘り込み工程では、図6A〜図6Cに示すように、上記フィン部形成工程で形成された第1サドル型フィン部11aの上面を所望の深さまでエッチングする。このエッチングは、フィン部形成工程で使用した装置内で条件を変えて連続的に実施することが好ましい。この際の所望の深さは、掘り下げられた素子分離領域2の上面よりも40〜45nm高い位置とし、この場合、シリコン基板1の上面から105〜110nm低い位置となる。この際、素子分離領域2に対して選択比の高い条件でエッチングを行う、即ち、シリコンのERがシリコン窒化膜やシリコン酸化膜のERよりも早くなる条件で異方性ドライエッチングを実施する。しかしながら、第1サドル型フィン部11aのエッチングでは、幅が狭いほど、予想した以上に第1サドル型フィン部11aのERが早くなる可能性もあり、通常のシリコンエッチング条件を用いると、第1サドル型フィン部11aが消滅してしまう場合がある。従って、第1サドル型フィン部11aのエッチングには、シリコンのERが低くなる条件を採用する。このような条件としては、塩素(Cl)と、テトラフロロカーボン(CF)と、SFと、Heとの混合ガスプラズマ雰囲気で、3〜10Paのチャンバー圧力とし、100〜300WのRFパワーを印加してエッチングを行う。この際、SiシリコンのERはSFの流量で制御することができ、例えば、SFの流量を減らすことで、シリコンのエッチレートを低く抑えることができる。これにより、第1サドル型フィン部11aの高さを制御しつつ、Y方向の幅を狭くして第2サドル型フィン部(サドル型フィン部)11を形成することができる。
このように、本実施形態では、素子分離領域2の内壁酸化膜24が第1側面1b及び第2側面1cに取り残されることが無いため、素子分離領域2をより深くエッチングする必要が無い。従って、掘り下げた後の素子分離絶縁膜25の厚みを十分に確保でき、寄生MOS効果によって直下のシリコン基板表面を流れる電流リークが生じる問題を回避することが可能となる。
上述のように、フィン部形成工程及び掘り込み工程を経る工程を採用することにより、掘り下げられた素子分離領域2とサドル型フィン部11とが第2方向に交互に繰り返して配置される、第1ワード溝3Aと第2ワード溝3Bが同時に形成される。即ち、図6Aに示すように、第2方向に延在する2本の第1ワード溝3Aの間に、同じくY方向に延在する2本の第2ワード溝3Bが配置される構成とされている。このように、1本の第1ワード線3Aと2本の第2ワード線3Bとを基本構成として、これらがX方向に繰り返し配置されることにより、メモリセル領域が構成される。また、第1方向に延在する活性領域1aは、第1方向の素子分離領域となる2本の第1ワード溝3Aによって島状の小活性領域1aaに分断されている。
<(4)埋め込みワード線形成工程>
埋め込みワード線形成工程では、複数のワード溝3(第1ワード溝3A及び第2ワード溝3B)の底面上に導電材料を堆積させた後、この導電材料の一部をエッチング除去し、複数の第1ワード溝3A及び第2ワード溝3Bの底面に導電材料を残存させる。これにより、ダミー電極を構成するダミーワード線(第1埋め込みワード線)31を形成するとともに、ゲート電極を構成するワード線(第2埋め込みワード線)32を形成する。
以下に、本実施形態の埋め込みワード線形成工程(4)について、図7を参照しながら、より具体的な例を説明する。なお、図7B(図8B)の断面図は、図2と同様、X’方向(第1方向)の断面図となっている。
まず、図7A、図7Bに示すように、ISSG(In−Situ Steam Generation)酸化法により、ワード溝3(第1ワード溝3A、第2ワード溝3B)内の側面と底面にシリコン酸化膜からなるゲート絶縁膜3cを形成する。このゲート絶縁膜3cの厚さは、5nm程度とすることが好ましい。
次いで、CVD法を用いて、第1ワード溝3A及び第2ワード溝3Bを埋め込むように、ウェーハの全面にTiN膜及びW膜を成膜した後、各々の上面の位置がシリコン基板1の上面から70〜80nm下方の位置となるようにエッチバックすることで、ワード線3dを形成する。
上記工程により、埋め込みワード線であるダミーワード線31、及び、ワード線32を形成する。
<(5)キャップ形成工程>
キャップ形成工程では、上記工程でダミーワード線31及びワード線32を形成した後、さらに、第1ワード溝3A及び第2ワード溝3Bに絶縁材料を充填して、第1埋め込みワード線31及び第2埋め込みワード線32を埋め込むことにより、埋め込みキャップ絶縁膜3eを形成するキャップ形成工程を備えている。
具体的には、ウェーハ上の全面に、CVD法を用いてシリコン窒化膜であるキャップ絶縁膜3eを成膜し、CMP法を用いて、マスク膜3aをストップ膜として平坦化する。この際、平坦化の時点でマスク膜3aを除去しても良い。
<ビット線形成工程>
本実施形態の製造方法では、さらに、上記のキャップ形成工程(5)に引き続き、ビット線形成工程が備えられている。図7A、図7Bに示すように、ビット線形成工程においては、まず、シリコン基板1上のSTI構造及び埋め込みキャップ絶縁膜3eを覆うように絶縁材料を堆積させて第1層間絶縁膜4を形成する。次いで、第1層間絶縁膜4の一部をエッチング除去してビットコンタクトホール(コンタクトホール)53を形成した後、このビットコンタクトホール53に導電材料を充填することで、第1層間絶縁膜4を貫通して活性領域1aに接続されるビットコンタクトプラグ(ビットコンタクト層)54を形成する。次いで、第1層間絶縁膜4上に導電材料をパターニングすることで、ビットコンタクトプラグ54に接続されるビットラインゲート上層膜(ビット線)55を形成するビット線形成工程が備えられている。
<キャパシタ形成工程>
本実施形態の製造方法では、さらに、上記のビット線形成工程の後、以下に説明するようなキャパシタ形成工程を備えた方法とすることができる。このキャパシタ形成工程は、図7〜図8に示すように、まず、ビットラインゲート5及び第1層間絶縁膜4を覆うように絶縁材料を堆積させて第2層間絶縁膜6を形成し、次いで、この第2層間絶縁膜6の一部をエッチング除去してコンタクトホールを形成する。次いで、このコンタクトホールに導電材料を充填することで、第2層間絶縁膜6を貫通して活性領域1aに接続される容量コンタクト(容量コンタクト層)7を形成する。
次いで、第2層間絶縁膜6及び容量コンタクト7を覆うようにストッパー膜9及び第3層間絶縁膜13をこの順次で積層し、次いで、これらストッパー膜9及び第3層間絶縁膜13における容量コンタクト7に対応する位置をエッチング除去することでシリンダーホール8aを形成する。具体的には、まず、CVD法を用いて、ウェーハ上の全面にシリコン窒化膜からなるストッパー膜9と、シリコン酸化膜からなる第3層間絶縁膜13を成膜し、リソグラフィ法及びドライエッチングによってシリンダーホール8aを開口させる。
次いで、ウェーハ上の全面、即ち、シリンダーホール8aの底面及び側壁を覆うとともに、第3層間絶縁膜13の上面を覆うように、薄くTiN膜を形成した後、エッチングによってシリンダーホール8aの底面及び側壁のみにTiN膜を残存させることにより、下部電極(下部電極層)8bを形成する。
次いで、下部電極8bの内側を含むウェーハ上の全面に、容量絶縁膜8c及び上部電極(上部電極層)8dをこの順で積層する。そして、リソグラフィ法及びドライエッチングにより、メモリセル領域MCA上の容量絶縁膜8c及び上部電極8dのみを残存させ、その他の部分が除去されるようにエッチングを行う。これにより、下部電極8b、容量絶縁膜8c及び上部電極8dから構成されるキャパシタ8が形成される。
<配線層形成工程>
本実施形態の製造方法では、さらに、上記のキャパシタ形成工程の後、以下に説明するような配線層形成工程を備えた方法とすることができる。
この配線層形成工程においては、図8A、図8Bに示すように、まず、シリンダーホール8aを埋め込むとともに、上部電極8d上を覆うように第4層間絶縁膜14を形成する。次いで、第4層間絶縁膜14の一部をエッチング除去してコンタクトホールを形成した後、このコンタクトホールに導電材料を充填することで、第4層間絶縁膜14を貫通して上部電極8dに接続される配線コンタクト15を形成する。次いで、第4層間絶縁膜14上に導電材料をパターニングすることで、配線コンタクト15に接続する配線層16を形成する。その後、配線層形成工程においては、配線層16及び第4層間絶縁膜14を覆うように保護絶縁膜17を形成する。
本実施形態においては、上記各工程により、図1及び図2に示すような、縦型構造のトランジスタとして構成される半導体装置Aが得られる。
以上説明したような、本発明の半導体装置の製造方法によれば、上記方法を採用することにより、活性領域1aの側面に形成された内壁酸化膜24を確実に除去できるので、素子分離領域2を大きく掘り込むことを必要とせずに、各フィン部の高さが確保できる。また、素子分離領域2に対する過剰な掘り込みを回避することで、素子分離溝23の底部に残存する素子分離絶縁膜25の厚さを確保できるので、寄生MOS効果によって素子分離溝23の底面直下のシリコン基板1の表面を流れるリーク電流の発生を防止することが可能となる。
また、STI構造の素子分離溝23内の内壁酸化膜24の厚さを変更した場合であっても、エッチングガスの流量変更によるエッチレートの調整のみで、確実に内壁酸化膜24を除去することができるので、内壁酸化膜24の厚さに依存せず、生産性に優れた工程を実現することができる。
A…半導体装置、
1…シリコン基板、
11…サドル型フィン部、
11a…第1サドル型フィン部、
11b…第2サドル型フィン部、
12…ピラー型フィン部
1a…活性領域、
1aa…小活性領域、
1b、1bb…第1側面、
1c、1cc…第2側面、
1d…容量コンタクト接続領域、
1e…ビットコンタクト接続領域、
2…素子分離領域(STI)、
23…素子分離溝、
24…内壁酸化膜、
25…素子分離絶縁膜、
3…ワード溝、
3A…第1ワード溝、
3B…第2ワード溝、
31、31A、31B、31C…ダミーワード線(第1埋め込みワード線)、
32、32A、32B、32C…ワード線(第2埋め込みワード線)、
3a…マスク膜、
3b…開口部、
3c…ゲート絶縁膜、
3d…ワード線、
3e…キャップ絶縁膜、
4…第1層間絶縁膜、
5…ビットラインゲート(BLG:ビット線)、
53…ビットコンタクトホール、
54…ビットコンタクトプラグ(ビットコンタクト層)、
55…ビット線、
56…サイドウォール絶縁膜、
6…第2層間絶縁膜、
7…容量コンタクト(容量コンタクト層)、
8…キャパシタ、
8a…シリンダーホール、
8b…下部電極(下部電極層)、
8c…容量絶縁膜、
8d…上部電極(上部電極層)、
9…ストッパー膜、
13…第3層間絶縁膜、
14…第4層間絶縁膜、
15…配線コンタクト、
16…配線層、
17…保護絶縁膜、
R…レジストマスク(第2レジストマスク)、
Tr1…セルトランジスタ、

Claims (17)

  1. シリコン基板の表層に、第1方向に延在し、該第1方向に交差する第2方向に繰り返し配置される複数の素子分離溝と、該素子分離溝で区画される活性領域を形成する工程と、
    前記活性領域の側面に内壁酸化膜を形成する工程と、
    前記素子分離溝を埋め込む素子分離絶縁膜を形成して素子分離領域を形成する工程と、
    前記活性領域と前記素子分離領域とに跨がって前記第2方向に延在する複数のマスク膜パターンを形成し、該マスク膜パターンの開口部に前記活性領域の上面と前記素子分離領域の上面とを露出させる工程と、
    前記素子分離領域に上面が露出している前記素子分離絶縁膜を鉛直方向にエッチバックするとともに、前記活性領域の両側面をサイドエッチングすることで前記活性領域の両側面に形成されている前記内壁酸化膜を除去する工程と、
    前記活性領域に上面が露出している前記シリコン基板をエッチバックすることで、前記素子分離絶縁膜の上面より上方に突出したサドル型フィン部を形成する工程と、
    を順次備えることを特徴とする半導体装置の製造方法。
  2. 前記内壁酸化膜を除去する工程は、前記素子分離絶縁膜を異方性ドライエッチングによって選択的に除去すると同時に、前記内壁酸化膜を等方性ドライエッチングによって除去することで、前記サドル型フィン部を形成することを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記内壁酸化膜を除去する工程は、前記素子分離絶縁膜を異方性ドライエッチングによって選択的に除去した後、前記内壁酸化膜を等方性ドライエッチングによって除去する段階的なエッチングにより、前記サドル型フィン部を形成することを特徴とする請求項1に記載の半導体装置の製造方法。
  4. 前記サドル型フィン部を形成する工程は、前記内壁酸化膜を除去する工程で形成された前記サドル型フィン部の上面を異方性ドライエッチングによって選択的に除去することで、前記サドル型フィン部の高さを制御することを特徴とする請求項1〜請求項3の何れか1項に記載の半導体装置の製造方法。
  5. 前記サドル型フィン部を形成する工程は、前記内壁酸化膜を除去する工程に引き続き、エッチング条件を変化させて前記サドル型フィン部の上面を異方性ドライエッチングすることで、前記サドル型フィン部の高さを制御することを特徴とする請求項1〜請求項3の何れか1項に記載の半導体装置の製造方法。
  6. 前記活性領域の側面は、対向する二つの側面を有しており、前記内壁酸化膜を除去する工程は、前記二つの側面を、該二つの側面の上方の幅が下方の幅よりも狭くなるように傾斜させながら形成することを特徴とする請求項1に記載の半導体装置の製造方法。
  7. 前記素子分離領域の第2方向の上面幅と、前記素子分離領域に隣接する前記活性領域の第2方向の上面幅とを同じ寸法で形成することを特徴とする請求項1に記載の半導体装置の製造方法。
  8. 前記素子分離領域の第2方向の上面幅を、前記素子分離領域に隣接する前記活性領域の第2方向の上面幅よりも小さい寸法で形成することを特徴とする請求項1に記載の半導体装置の製造方法。
  9. シリコン基板上にマスク絶縁膜及び第1レジストマスクを順次形成し、該第1レジストマスクを用いて前記シリコン基板及び前記マスク絶縁膜をエッチングすることで、前記第1方向に延在する素子分離領域の形成予定領域に沿ったラインアンドスペースパターンで素子分離溝を形成した後、該素子分離溝の内面に内壁酸化膜を形成するとともに、前記素子分離溝に絶縁材料を充填して素子分離絶縁膜を形成することによって活性領域を区画するための素子分離領域を形成し、シャロー・トレンチ・アイソレーション(STI)構造を形成するSTI工程と、
    前記シリコン基板上にマスク窒化膜及び第2レジストマスクを順次形成した後、該第2レジストマスクを用いて前記シリコン基板上における前記素子分離領域及び前記活性領域をエッチング除去することにより、第1方向と交差して第2方向に延在する複数のワード溝を同時に形成する際、前記素子分離領域に上面が露出する前記素子分離絶縁膜を鉛直下方に掘り下げるとともに、前記活性領域の両側面をサイドエッチして前記第2方向の幅を縮退させることで、前記活性領域の側壁に形成された前記内壁酸化膜を除去し、掘り下げられた前記素子分離絶縁膜の上面よりも上方に前記シリコン基板を突出させてサドル型フィン部を形成するフィン部形成工程と、
    さらに、前記ワード溝内に露出する前記サドル型フィン部の上面を選択的にエッチングして掘り下げることにより、前記サドル型フィン部の高さを制御する掘り込み工程と、
    前記複数のワード溝の底面上に導電材料を堆積させた後、該導電材料の一部をエッチング除去し、前記複数のワード溝の底面に前記導電材料を残存させることにより、第1埋め込みワード線及び第2埋め込みワード線を形成する埋め込みワード線形成工程と、
    前記第1ワード溝及び第2ワード溝に絶縁材料を充填して、前記第1埋め込みワード線及び第2埋め込みワード線を埋め込むことにより、埋め込みキャップ絶縁膜を形成するキャップ形成工程と、
    を順次備えることを特徴とする半導体装置の製造方法。
  10. 前記フィン部形成工程は、前記素子分離絶縁膜を異方性ドライエッチングによって選択的に除去すると同時に、前記内壁酸化膜を等方性ドライエッチングによって除去することで前記サドル型フィン部を形成することを特徴とする請求項9に記載の半導体装置の製造方法。
  11. 前記フィン部形成工程は、前記素子分離絶縁膜を異方性ドライエッチングによって選択的に除去した後、前記内壁酸化膜を等方性ドライエッチングによって除去する段階的なエッチングにより、前記サドル型フィン部を形成することを特徴とする請求項9に記載の半導体装置の製造方法。
  12. 前記掘り込み工程は、前記サドル型フィン部の上面を異方性ドライエッチングによって選択的に除去することで、前記サドル型フィン部の高さを制御することを特徴とする請求項9〜請求項11の何れか1項に記載の半導体装置の製造方法。
  13. 前記掘り込み工程は、前記フィン部形成工程に引き続き、エッチング条件を変化させて前記サドル型フィン部の上面を異方性ドライエッチングすることで、前記サドル型フィン部の高さを制御することを特徴とする請求項9〜請求項12の何れか1項に記載の半導体装置の製造方法。
  14. さらに、前記キャップ形成工程の後、前記シリコン基板上のSTI構造及び前記キャップ絶縁膜を覆うように絶縁材料を堆積させて第1層間絶縁膜を形成し、次いで、該第1層間絶縁膜の一部をエッチング除去してコンタクトホールを形成した後、該コンタクトホールに導電材料を充填することで、前記第1層間絶縁膜を貫通して前記活性領域に接続されるビットコンタクト層を形成し、次いで、前記第1層間絶縁膜上に導電材料をパターニングすることで、前記ビットコンタクト層に接続されるビット線を形成するビット線形成工程が備えられていることを特徴とする請求項9〜請求項13の何れか1項に記載の半導体装置の製造方法。
  15. さらに、前記ビット線形成工程の後、前記ビット線及び前記第1層間絶縁膜を覆うように絶縁材料を堆積させて第2層間絶縁膜を形成し、次いで、該第2層間絶縁膜の一部をエッチング除去してコンタクトホールを形成した後、該コンタクトホールに導電材料を充填することで、前記第2層間絶縁膜を貫通して前記活性領域に接続される容量コンタクト層を形成し、次いで、該容量コンタクト層上にキャパシタを形成するキャパシタ形成工程が備えられていることを特徴とする請求項14に記載の半導体装置の製造方法。
  16. 前記キャパシタ形成工程は、前記容量コンタクト層を形成した後、前記第2層間絶縁膜及び前記容量コンタクト層を覆うようにストッパー膜及び第3層間絶縁膜をこの順次で積層し、次いで、該ストッパー膜及び第3層間絶縁膜における前記容量コンタクト層に対応する位置をエッチング除去することでシリンダーホールを形成した後、該シリンダーホールの底面及び側壁を覆うとともに、前記第3層間絶縁膜の上面を覆うように、下部電極層、容量絶縁膜及び上部電極層をこの順で積層することを特徴とする請求項15に記載の半導体装置の製造方法。
  17. さらに、前記キャパシタ形成工程の後、前記シリンダーホールを埋め込むとともに、前記上部電極層上を覆うように第4層間絶縁膜を形成し、次いで、該第4層間絶縁膜の一部をエッチング除去してコンタクトホールを形成した後、該コンタクトホールに導電材料を充填することで、前記第4層間絶縁膜を貫通して前記上部電極層に接続される配線コンタクトを形成し、次いで、前記第4層間絶縁膜上に導電材料をパターニングすることで、前記配線コンタクトに接続する配線層を形成した後、該配線層及び前記第4層間絶縁膜を覆うように保護絶縁膜を形成する配線層形成工程が備えられていることを特徴とする請求項16に記載の半導体装置の製造方法。
JP2012222193A 2012-10-04 2012-10-04 半導体装置の製造方法 Pending JP2015165521A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012222193A JP2015165521A (ja) 2012-10-04 2012-10-04 半導体装置の製造方法
PCT/JP2013/076505 WO2014054567A1 (ja) 2012-10-04 2013-09-30 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012222193A JP2015165521A (ja) 2012-10-04 2012-10-04 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2015165521A true JP2015165521A (ja) 2015-09-17

Family

ID=50434894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012222193A Pending JP2015165521A (ja) 2012-10-04 2012-10-04 半導体装置の製造方法

Country Status (2)

Country Link
JP (1) JP2015165521A (ja)
WO (1) WO2014054567A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018022893A (ja) * 2016-08-01 2018-02-08 ドシリコン カンパニー,リミテッド レイアウト面積を低減させるディーラムセルおよびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102352154B1 (ko) * 2015-03-03 2022-01-17 삼성전자주식회사 집적회로 소자
US20200176452A1 (en) * 2018-12-04 2020-06-04 Nanya Technology Corporation Memory device and method of forming the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212369A (ja) * 2008-03-05 2009-09-17 Elpida Memory Inc 半導体装置及び半導体装置の製造方法並びにデータ処理システム
JP2011159760A (ja) * 2010-01-29 2011-08-18 Elpida Memory Inc 半導体装置の製造方法及び半導体装置
JP5729806B2 (ja) * 2010-10-07 2015-06-03 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体装置および半導体装置の製造方法
JP2013183154A (ja) * 2012-03-05 2013-09-12 Elpida Memory Inc 半導体装置およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018022893A (ja) * 2016-08-01 2018-02-08 ドシリコン カンパニー,リミテッド レイアウト面積を低減させるディーラムセルおよびその製造方法

Also Published As

Publication number Publication date
WO2014054567A1 (ja) 2014-04-10

Similar Documents

Publication Publication Date Title
JP5348372B2 (ja) 半導体素子及びその製造方法並びにdramの製造方法
US8022457B2 (en) Semiconductor memory device having vertical channel transistor and method for fabricating the same
JP5693809B2 (ja) 半導体装置及びその製造方法
KR100618819B1 (ko) 오버레이 마진이 개선된 반도체 소자 및 그 제조방법
US10439048B2 (en) Photomask layout, methods of forming fine patterns and method of manufacturing semiconductor devices
US11800702B2 (en) Method of forming a memory device
JP5748195B2 (ja) 半導体装置及びその製造方法
KR20190056905A (ko) 반도체 소자
US20150371895A1 (en) Method for manufacturing smeiconductor device
WO2014123170A1 (ja) 半導体装置及びその製造方法
KR20120063756A (ko) 측벽콘택을 구비한 반도체장치 제조 방법
TWI839019B (zh) 使用增強圖案化技術製造半導體裝置的方法
KR100924007B1 (ko) 반도체 소자의 수직 채널 트랜지스터 형성 방법
JP2004080029A (ja) ダマシン配線を利用した半導体素子の製造方法
US8999827B2 (en) Semiconductor device manufacturing method
WO2014054567A1 (ja) 半導体装置の製造方法
US7749846B2 (en) Method of forming contact structure and method of fabricating semiconductor device using the same
JP2014216409A (ja) 半導体装置の製造方法
WO2014123176A1 (ja) 半導体装置及びその製造方法
JP2013235889A (ja) 半導体装置の製造方法
KR101172310B1 (ko) 반도체 장치 제조 방법
KR20060104033A (ko) 리세스된 활성영역을 갖는 반도체소자 및 그의 제조 방법
KR101016956B1 (ko) 반도체 소자의 수직 채널 트랜지스터 형성 방법
JP2013074040A (ja) 半導体装置およびその製造方法
KR20230046783A (ko) 반도체 장치 및 그 제조 방법