JP2015154316A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2015154316A
JP2015154316A JP2014027370A JP2014027370A JP2015154316A JP 2015154316 A JP2015154316 A JP 2015154316A JP 2014027370 A JP2014027370 A JP 2014027370A JP 2014027370 A JP2014027370 A JP 2014027370A JP 2015154316 A JP2015154316 A JP 2015154316A
Authority
JP
Japan
Prior art keywords
terminal
circuit
replica
calibration
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014027370A
Other languages
English (en)
Inventor
裕正 武田
Hiromasa Takeda
裕正 武田
藤澤 宏樹
Hiroki Fujisawa
宏樹 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to JP2014027370A priority Critical patent/JP2015154316A/ja
Priority to US14/622,520 priority patent/US9627013B2/en
Publication of JP2015154316A publication Critical patent/JP2015154316A/ja
Priority to US15/460,206 priority patent/US9881665B2/en
Priority to US15/729,345 priority patent/US9892780B1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4093Input/output [I/O] data interface arrangements, e.g. data buffers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4074Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4094Bit-line management or control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/022Detection or location of defective auxiliary circuits, e.g. defective refresh counters in I/O circuitry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/028Detection or location of defective auxiliary circuits, e.g. defective refresh counters with adaption or trimming of parameters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/04Arrangements for writing information into, or reading information out from, a digital store with means for avoiding disturbances due to temperature effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
    • G11C7/1057Data output buffers, e.g. comprising level conversion circuits, circuits for adapting load
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/22Control and timing of internal memory operations
    • G11C2207/2254Calibration
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Logic Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Dram (AREA)

Abstract

【課題】キャリブレーション性能の低下を回避しつつ、パッド配置の自由度を向上する。【解決手段】データ用高位側電源端子21、データ用低位側電源端子22、データ入出力端子20、キャリブレーション端子25、及び高位側電源端子26を含む複数の端子が第1の方向に沿って一列に並べて配置された端子列を構成し、端子21,22はそれぞれ端子列内において端子20に隣接して配置され、端子26は端子列内において端子20に隣接しない位置に配置され、P側レプリカ回路15r1は、プルアップ回路における端子21との接続端に相当する端部が端子26に接続された構成を有し、レプリカ出力回路15rは、出力回路における端子21との接続端に相当する端部が端子21に接続され、出力回路における端子22との接続端に相当する端部が端子22に接続された構成を有する。【選択図】図1

Description

本発明は半導体装置に関し、特に、出力バッファのインピーダンスを調整する機能を有する半導体装置に関する。
DRAM(Dynamic Random Access Memory)などの半導体装置には、メモリセルに記憶されるデータの入出力を行うために、複数のデータ入出力端子が設けられる。そしてこれら複数のデータ入出力端子のそれぞれには、メモリセルから読み出されたデータ(リードデータ)に応じた電位を出力する出力バッファが付設される。
出力バッファは、リードデータに応じた制御信号を出力する前段回路と、この制御信号に応じて電源電位VDDQ及び接地電位VSSQのいずれか一方を対応するデータ入出力端子に出力する出力回路とによって構成される回路である。出力回路は、電源電位VDDQの出力を担うプルアップ回路と、接地電位VSSQの出力を担うプルダウン回路とによって構成される。プルアップ回路は、一端に電源電位VDDQが供給され、他端が対応するデータ入出力端子に接続された複数のpチャンネル型トランジスタを含んで構成される。一方、プルダウン回路は、一端に接地電位VSSQが供給され、他端が対応するデータ入出力端子に接続された複数のnチャンネル型トランジスタを含んで構成される。
プルアップ回路及びプルダウン回路はそれぞれ、トランジスタのオン抵抗に起因するインピーダンスを有している。これらのインピーダンスは、高速なリードデータ出力を実現する観点から、常に出力バッファのインピーダンスの規定値(DRAMの場合、通常は240Ω)に等しくなっていることが好ましい。しかし現実のインピーダンスは、周辺温度の変化や電源電位の変動によって変動する。プルアップ回路及びプルダウン回路がそれぞれ複数のトランジスタを有しているのは、リードデータ出力時にオンにするトランジスタの数を調整することで、インピーダンスを調整可能とするためである。
特許文献1は、リードデータ出力時に実際にオンにするトランジスタの数が、キャリブレーション回路が行うキャリブレーション動作によって決定されることを例示する。以下、キャリブレーション回路及びその動作について、概要を説明する。
キャリブレーション回路は、出力回路のレプリカであるレプリカ出力回路と、これとは別に設けられた、プルアップ回路のレプリカである第1のレプリカ回路とを有して構成される。出力回路におけるデータ入出力端子との接続端に相当するレプリカ出力回路の端部(以下、「第1のノード」と称する)は、プルアップ回路のレプリカ(以下、「第2のレプリカ回路」という)とプルダウン回路のレプリカ(以下、「第3のレプリカ回路」という)とが相互に接続されるだけで、特に外部端子には接続されない。一方、プルアップ回路におけるデータ入出力端子との接続端に相当する第1のレプリカ回路の端部は、キャリブレーション端子に接続される。キャリブレーション端子は、上記規定値に等しい抵抗値を有するキャリブレーション抵抗が接続される端子である。
キャリブレーション回路には、他に、電源電位VDDの半分の電位VDD/2を生成する電位生成回路と、電位VDD/2とキャリブレーション端子の電位を比較する第1のコンパレータと、電位VDD/2と第1のノードの電位を比較する第2のコンパレータと、第1及び第2のコンパレータそれぞれの出力を参照しつつ、キャリブレーション端子及び第1のノードそれぞれの電位が電位VDD/2に等しくなるように、第1のレプリカ回路及びレプリカ出力回路それぞれに含まれる複数のトランジスタのオンオフを制御する制御回路とが設けられる。
制御回路は、外部からキャリブレーションの実行を指示するコマンドが供給されると、まず第1のコンパレータの出力を参照して、キャリブレーション端子の電位が電位VDD/2に等しくなるように、第1のレプリカ回路に含まれる複数のトランジスタのオンオフを制御する。この際、制御回路は、第2のレプリカ回路に含まれる複数のトランジスタについても、第1のレプリカ回路内の各トランジスタと同じオンオフ制御を行う。これにより、第1及び第2のレプリカ回路それぞれのインピーダンスがともに上記規定値に等しくなる。
続いて制御回路は、第2のコンパレータの出力を参照して、第1のノードの電位が電位VDD/2に等しくなるように、第3のレプリカ回路に含まれる複数のトランジスタのオンオフを制御する。この時点で、第2のレプリカ回路のインピーダンスは上述したように上記規定値に等しくなっているので、ここでの制御により、第3のレプリカ回路のインピーダンスも上記規定値に等しくなる。
制御回路は、以上のようにして、プルアップ回路及びプルダウン回路それぞれのインピーダンスがともに上記規定値に等しくなる各トランジスタのオンオフ状態を得る。そして、その結果を、出力回路内の各トランジスタに反映させる。これにより、プルアップ回路及びプルダウン回路それぞれのインピーダンスを上記規定値に等しくすることが実現される。
特開2008−048361号公報
ところで、半導体装置を構成するパッケージの下面には、1列に並べて配置された複数のパッドからなるパッド列と、このパッド列の両側に複数列に並べて配置された複数の半田ボールとが設けられる。各パッドはそれぞれ半導体装置の外部端子を構成するもので、パッケージの表面に形成されたプリント配線によって、対応する半田ボールと接続される。
パッドの例として具体的には、データ入出力端子を構成するDQパッド、キャリブレーション端子を構成するZQパッド、電源電位VDDQの供給を受けるためのVDDQパッド、電源電位VDDQと同電位である電源電位VDDの供給を電源電位VDDQとは別系統で受けるためのVDDパッド、接地電位VSSQの供給を受けるためのVSSQパッド、接地電位VSSQと同電位である接地電位VSSの供給を接地電位VSSQとは別系統で受けるためのVSSパッドなどがある。
DQパッドは、特にレイアウト上の問題などがない限り、対応するプルアップ回路に電源電位VDDQを供給するためのVDDQパッドと、対応するプルダウン回路に接地電位VSSQを供給するためのVSSQパッドとによって挟まれた位置に配置される。このような配置を採用するのは、出力バッファの電源抵抗(電源端子に接続される寄生抵抗)を均一化かつ低抵抗化することにより、リードデータ出力時のデータ入出力端子の電位を安定させるためである。
ここで、ZQパッドは、DQパッドと同様に、第1及び第2のレプリカ回路に電源電位VDDを供給するためのVDDパッドと、第3のレプリカ回路に接地電位VSSを供給するためのVDDパッドとによって挟まれた位置に配置される。こうすることにより、第1のレプリカ回路及びレプリカ出力回路の構成を、電源抵抗まで含めてそれぞれプルアップ回路及び出力回路の構成に近づけ、もってキャリブレーション性能を向上させることが可能になる。
しかしながら、このようにVDDパッド及びVSSパッドに挟まれる位置にZQパッドを配置するということは、ZQパッドの隣に他の種類のパッドを配置できないことを意味し、これはパッド配置の自由度の低下につながる。したがって、キャリブレーション性能の低下を回避しつつ、パッド配置の自由度を向上できる技術が必要とされている。
本発明の一側面による半導体装置は、第1の電位の供給を受ける第1の端子、前記第1の電位より低い第2の電位の供給を受ける第2の端子、第3の端子、及びキャリブレーション端子を含む複数の端子と、前記第1の端子を介して前記第1の電位の供給を受けるとともに、前記第2の端子を介して前記第2の電位の供給を受け、かつ、前記第3の端子にアクセスするよう構成されたアクセス回路と、第1乃至第3のレプリカ回路を有するキャリブレーション回路とを備え、前記第1のレプリカ回路は、それぞれ第1の導電型であり、かつ前記キャリブレーション端子に接続される複数の第1のトランジスタを含んで構成され、前記第2のレプリカ回路は、それぞれ前記第1の導電型であり、かつ前記キャリブレーション端子に接続されない複数の第2のトランジスタを含んで構成され、前記第3のレプリカ回路は、それぞれ前記第1の導電型とは異なる第2の導電型であり、かつ前記キャリブレーション端子に接続されない複数の第3のトランジスタを含んで構成され、前記複数の端子は、第1の方向に並べて配置され、前記第1及び第2の端子はともに、前記キャリブレーション端子に隣接しない位置に配置され、前記第2のレプリカ回路は、前記第1の端子を介して前記第1の電位の供給を受けるよう構成され、前記第3のレプリカ回路は、前記第2の端子を介して前記第2の電位の供給を受けるよう構成されることを特徴とする。
本発明の他の一側面による半導体装置は、それぞれ第1の電位の供給を受ける第1及び第4の端子、前記第1の電位より低い第2の電位の供給を受ける第2の端子、第3の端子、及びキャリブレーション端子を含む複数の端子と、前記第1の端子を介して前記第1の電位の供給を受ける第1の回路、及び、前記第2の端子を介して前記第2の電位の供給を受ける第2の回路を含み、該第1及び第2の回路によって前記第3の端子にアクセスするよう構成されたアクセス回路と、前記第1の回路のレプリカであり、前記第1の回路における前記第3の端子との接続端に相当する端部が前記キャリブレーション端子に接続される第1のレプリカ回路と、前記アクセス回路のレプリカであり、前記アクセス回路における前記第3の端子との接続端に相当する端部が前記キャリブレーション端子に接続されないレプリカアクセス回路とを有するキャリブレーション回路とを備え、前記複数の端子は、一列に並べて配置された端子列を構成し、前記第1及び第2の端子はそれぞれ、前記端子列内において前記第3の端子に隣接して配置され、前記第4の端子は、前記端子列内において前記キャリブレーション端子に隣接して配置され、前記第1のレプリカ回路は、前記第1の回路における前記第1の端子との接続端に相当する端部が前記第4の端子に接続された構成を有し、前記レプリカアクセス回路は、前記アクセス回路における前記第1の端子との接続端に相当する端部が前記第1の端子に接続され、前記アクセス回路における前記第2の端子との接続端に相当する端部が前記第2の端子に接続された構成を有することを特徴とする。
本発明のさらに他の一側面による半導体装置は、第1の端子を介して第1の電位の供給を受ける第1の回路、及び、第2の端子を介して第2の電位の供給を受ける第2の回路を含み、該第1及び第2の回路によって前記第3の端子にアクセスするよう構成されたアクセス回路と、第1の導電型の第1及び第2のレプリカ回路と、前記第1の導電型と異なる第2の導電型の第3のレプリカ回路と、を有するキャリブレーション回路とを備え、前記第1の回路、並びに前記第1及び前記第2のレプリカ回路は、共通に供給される第1の制御信号に基づいて、インピーダンスが調整される構成であり、前記第2の回路及び前記第3のレプリカ回路は、共通に供給され、前記第1の制御信号と異なる第2の制御信号に基づいて、インピーダンスが調整される構成であることを特徴とする。
本発明によれば、キャリブレーション端子に接続されず、したがって特にキャリブレーション端子の近傍に配置する必要のないレプリカアクセス回路(第2及び第3のレプリカ回路)に対して、アクセス回路と同じ第1及び第2の端子から、第1及び第2の電位を供給するようにしている。したがって、第2の電位の供給を受ける端子をキャリブレーション端子に隣接する位置に配置しなくともよい。パッド配置の自由度を向上できる。また、第2の電位の供給を受ける端子をキャリブレーション端子に隣接する位置に配置しなくてもよいため、レプリカアクセス回路の構成を電源抵抗まで含めてアクセス回路の構成に近づけることが可能になる。また、キャリブレーション性能の低下を招かないようにすることができる。しかるに、キャリブレーション性能の低下を回避しつつ、パッド配置の自由度を向上することが可能になる。
本発明の好ましい第1の実施の形態による半導体装置10aの構成を示すブロック図である。 図1に示したP側出力バッファ11p及びN側出力バッファ11nそれぞれの内部構成を示す図である。 図1に示したP側レプリカ回路15r1の内部構成を示す図である。 図1に示したP側レプリカ回路15r2及びN側レプリカ回路15r3それぞれの内部構成を示す図である。 図1に示した制御回路15cの内部構成を示す図である。 図1に示した半導体装置10aに関係する各信号のタイミング図である。 本発明の好ましい第2の実施の形態による半導体装置10bの構成を示すブロック図である。 図7に示した半導体装置10bのパッケージ表面の状態を示す模式図である。 本発明の好ましい第2の実施の形態の変形例による半導体装置10b'の構成を示すブロック図である。 本発明の好ましい第3の実施の形態による半導体装置10cの構成を示すブロック図である。 図10に示した制御回路15cの内部構成を示す図である。 図10に示した半導体装置10cに関係する各信号のタイミング図である。 本発明の好ましい第3の実施の形態の変形例による半導体装置10c'の構成を示すブロック図である。 本発明の好ましい第4の実施の形態による半導体装置10dの構成を示すブロック図である。 本発明の好ましい第5の実施の形態による半導体装置10eの構成を示すブロック図である。
以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
<第1の実施の形態>
図1は、本発明の好ましい第1の実施の形態による半導体装置10aの構成を示す。
本発明の第1の実施の形態による半導体装置10aは、図1に示すように、それぞれP側バッファ11p及びN側バッファ11nを有する複数の出力バッファ11と、キャリブレーション回路15と、複数のデータ入出力端子20と、複数のデータ用高位側電源端子21と、複数のデータ用低位側電源端子22と、少なくとも1つのキャリブレーション端子25と、少なくとも1つの高位側電源端子26と、少なくとも1つのその他の外部端子29とを備えて構成される。
半導体装置10aは、DDR3 SDRAM(Double-Data-Rate 3 Synchronous Dynamic Random Access Memory)又はDDR4 SDRAM(Double-Data-Rate 4 Synchronous Dynamic Random Access Memory)であり、図示していないが、DDR3 SDRAM又はDDR4 SDRAMとしての各種回路、すなわち、メモリセルアレイ、カラム系制御回路、ロウ系制御回路、コマンドデコーダ、アドレス入力回路、クロック生成回路などを備えている。
データ入出力端子20、データ用高位側電源端子21、データ用低位側電源端子22、キャリブレーション端子25、高位側電源端子26、及び外部端子29は、それぞれパッドの形状で、後に図8に例示するように、半導体装置10aを構成するパッケージの下面に1列に並べて配置される。これにより、パッケージの下面には、1列に並ぶ複数のパッドからなるパッド列(端子列)が形成される(後述する図8参照)。
データ入出力端子20(第3の端子)は、メモリセルアレイに記憶されるデータの入出力を行うための端子(DQパッド)である。各データ入出力端子20には、データ(リードデータ)の出力に関して、1つの出力バッファ11が接続される。出力バッファ11は、P側バッファ11p及びN側バッファ11nによって対応するデータ入出力端子20にアクセスする回路であり、対応するデータ入出力端子20に対してリードデータを反映した電位レベルを供給する役割を果たす。なお、図1には、リードデータは図示していない。また、図1には、データ(ライトデータ)の入力に関する回路も図示していない。
データ用高位側電源端子21(第1の端子)は、外部から電源電位VDDQ(第1の電位)の供給を受けるための端子(VDDQパッド)である。また、データ用低位側電源端子22(第2の端子)は、外部から接地電位VSSQ(第2の電位)の供給を受けるための端子(VSSQパッド)である。図1に示すように、データ入出力端子20は、端子列内においてデータ用高位側電源端子21及びデータ用低位側電源端子22の両方と隣接するように配置される。あるデータ入出力端子20に対応するP側バッファ11pには、そのデータ入出力端子20に隣接するデータ用高位側電源端子21を介して電源電位VDDQが供給される。同様に、あるデータ入出力端子20に対応するN側バッファ11nには、そのデータ入出力端子20に隣接するデータ用低位側電源端子22を介して接地電位VSSQが供給される。
図2は、図1に示される出力バッファ11の内部構成を示す。
出力バッファ11は、図2に示すように、リードデータに応じた制御信号を出力する前段回路12と、この制御信号に応じて電源電位VDDQ及び接地電位VSSQのいずれか一方を対応するデータ入出力端子20に出力する出力回路13(アクセス回路)とによって構成される。
出力回路13は、データ用高位側電源端子21とデータ入出力端子20の間に接続されるプルアップ回路13p(第1の回路)と、データ用低位側電源端子22とデータ入出力端子20の間に接続されるプルダウン回路13n(第2の回路)とによって構成される。また、前段回路12は、プルアップ回路13pに対応するP側前段回路12pと、プルダウン回路13nに対応するN側前段回路12nとによって構成される。上述したP側バッファ11pは、図2に示すように、P側前段回路12p及びプルアップ回路13pによって構成される。同様に、N側バッファ11nは、N側前段回路12n及びプルダウン回路13nによって構成される。
プルアップ回路13pは、図2に示すように、データ用高位側電源端子21とデータ入出力端子20の間に並列に接続された複数のpチャンネル型(第1の導電型)トランジスタT4<6:0>(第4のトランジスタ)と、これら複数のトランジスタT4<6:0>とデータ入出力端子20の間に接続された抵抗素子R4とを含んで構成される。なお、本明細書において符号末尾に<m:n>という記号を付す場合、その構成が<n>番目から<m>番目までのm−n+1個あることを示す。
複数のトランジスタT4<6:0>それぞれのW/L比(ゲート幅/ゲート長比)は、互いに異なるように設定することが好適である。具体的には、トランジスタT4<k>(kは0〜6の整数)のW/L比が相対値で「2」となるように、トランジスタT4<6:0>を形成することが好適である。こうすることで、プルアップ回路13pのインピーダンスを微細かつ広範囲に調整することが可能になる。なお、ここではトランジスタT4の個数を7個としているが、インピーダンスを調整可能とする観点からは、少なくとも複数個であればよい。この点は、後述するトランジスタT5<6:0>についても同様である。
抵抗素子R4の抵抗値は、出力バッファのインピーダンスの規定値(通常は240Ω)の半分の値、すなわち120Ωとすることが好適である。この点も、後述する抵抗素子R5の抵抗値について同様である。
P側前段回路12pは、トランジスタT4<6:0>と同数のオア回路O<6:0>を含んで構成される。トランジスタT4<k>のゲート電極は、オア回路O<k>の出力端に接続される。
P側前段回路12pには、制御信号CODE_P<6:0>と、選択信号DATA_Pとが供給される。制御信号CODE_P<6:0>は、図1に示したキャリブレーション回路15から供給されるもので、詳しくは後述するが、トランジスタT4<6:0>のうちの一部又は全部を選択するための信号である。制御信号CODE_P<6:0>それぞれの電位は、後述する制御回路15cによって、ハイレベル又はローレベルに制御される。一方、選択信号DATA_Pは、図示しない出力制御回路が、リードデータの内容に基づいて出力する信号である。選択信号DATA_Pの電位は、リードデータがハイレベルである場合にローレベルとされ、リードデータがローレベルである場合にハイレベルとされる。
オア回路O<k>には、制御信号CODE_P<k>と選択信号DATA_Pとが供給される。したがって、トランジスタT4<k>のゲート電極には、制御信号CODE_P<k>と選択信号DATA_Pの論理和信号が供給されることになる。これを受けたトランジスタT4<k>は、制御信号CODE_P<k>と選択信号DATA_Pがともにローレベルである場合に接続状態となり、それ以外の場合に切断状態となる。トランジスタT4<6:0>のうちのいずれか1つでも接続状態となれば、データ入出力端子20がプルアップ回路13pを介してデータ用高位側電源端子21に接続され、したがって、データ入出力端子20からハイレベルが出力されることになる。
この場合の出力バッファ11のインピーダンスは、プルアップ回路13pのインピーダンスによって表される。そして、プルアップ回路13pのインピーダンスは、トランジスタT4<6:0>のうち接続状態であるもののオン抵抗と、抵抗素子R4の抵抗値の合成抵抗によって表される。したがって、半導体装置10aでは、制御信号CODE_P<6:0>の電位レベルを制御することによって、ハイレベル出力時の出力バッファ11のインピーダンスを制御することが可能となっている。詳しくは後述するが、図1に示した制御回路15cは、後述するキャリブレーション動作の結果、プルアップ回路13pのインピーダンスが上記規定値(例えば240Ω)となるような制御信号CODE_P<6:0>を出力するように設定される。これにより半導体装置10aでは、ハイレベル出力時の出力バッファ11のインピーダンスが上記規定値に維持されている。
プルダウン回路13nは、図2に示すように、データ用低位側電源端子22とデータ入出力端子20の間に並列に接続された複数のnチャンネル型(第2の導電型)トランジスタT5<6:0>(第5のトランジスタ)と、これら複数のトランジスタT5<6:0>とデータ入出力端子20の間に接続された抵抗素子R5とを含んで構成される。
複数のトランジスタT5<6:0>それぞれのW/L比は、互いに異なるように設定することが好適である。具体的には、トランジスタT5<k>のW/L比が相対値で「2」となるように、トランジスタT5<6:0>を形成することが好適である。こうすることで、プルダウン回路13nのインピーダンスについても、プルアップ回路13pと同様、を微細かつ広範囲に調整することが可能になる。
N側前段回路12nは、トランジスタT5<6:0>と同数のアンド回路A<6:0>を含んで構成される。トランジスタT5<k>のゲート電極は、アンド回路A<k>の出力端に接続される。
N側前段回路12nには、制御信号CODE_N<6:0>と、選択信号DATA_Nとが供給される。制御信号CODE_N<6:0>は、図1に示したキャリブレーション回路15から供給されるもので、詳しくは後述するが、トランジスタT5<6:0>のうちの一部又は全部を選択するための信号である。制御信号CODE_N<6:0>それぞれの電位は、後述する制御回路15cによって、ハイレベル又はローレベルに制御される。一方、選択信号DATA_Nは、図示しない出力制御回路が、リードデータの内容に基づいて出力する信号である。選択信号DATA_Nの電位は、選択信号DATA_Pと同様、リードデータがハイレベルである場合にローレベルとされ、リードデータがローレベルである場合にハイレベルとされる。
アンド回路A<k>には、制御信号CODE_N<k>と選択信号DATA_Nとが供給される。したがって、トランジスタT5<k>のゲート電極には、制御信号CODE_N<k>と選択信号DATA_Nの論理積信号が供給されることになる。これを受けたトランジスタT5<k>は、制御信号CODE_N<k>と選択信号DATA_Nがともにハイレベルである場合に接続状態となり、それ以外の場合に切断状態となる。トランジスタT5<6:0>のうちのいずれか1つでも接続状態となれば、データ入出力端子20がプルダウン回路13nを介してデータ用低位側電源端子22に接続され、したがって、データ入出力端子20からローレベルが出力されることになる。
この場合の出力バッファ11のインピーダンスは、プルダウン回路13nのインピーダンスによって表される。そして、プルダウン回路13nのインピーダンスは、トランジスタT5<6:0>のうち接続状態であるもののオン抵抗と、抵抗素子R5の抵抗値の合成抵抗によって表される。したがって、半導体装置10aでは、制御信号CODE_N<6:0>の電位レベルを制御することによって、ローレベル出力時の出力バッファ11のインピーダンスを制御することが可能となっている。詳しくは後述するが、図1に示した制御回路15cは、後述するキャリブレーション動作の結果、プルダウン回路13nのインピーダンスが上記規定値(例えば240Ω)となるような制御信号CODE_N<6:0>を出力するように設定される。これにより半導体装置10aでは、ローレベル出力時の出力バッファ11のインピーダンスが上記規定値に維持されている。
図1に戻る。キャリブレーション端子25は、キャリブレーション抵抗ZQR(図3参照)が接続される端子(ZQパッド)である。キャリブレーション抵抗ZQRは、出力バッファ11のインピーダンスの規定値(例えば240Ω)に等しい抵抗値の抵抗であり、キャリブレーション回路15が後述するキャリブレーション動作を行う際に接続される。
高位側電源端子26(第4の端子)は、外部から電源電位VDDの供給を受けるための端子(VDDパッド)である。電源電位VDDは、データ用高位側電源端子21に供給される電源電位VDDQと同レベルの電位(第1の電位)である。同じレベルの電位を別々に供給しているのは、互いの間で干渉が発生しないようにするため、及び、将来的に電源電位VDDと電源電位VDDQを異なる電位とすることを可能にしておくためである。高位側電源端子26は、図1に示すように、端子列内においてキャリブレーション端子25と隣接するように配置される。
なお、図1には示していないが、半導体装置10aには、外部から接地電位VSSの供給を受けるための低位側電源端子(後述する図14に示す低位側電源端子27。VSSパッド)も設けられる。接地電位VSSは、データ用低位側電源端子22に供給される接地電位VSSQと同レベルの電位(第2の電位)である。これらについても、電源電位VDD及び電源電位VDDQと同様の理由により、別々に供給されている。
従来の半導体装置では、キャリブレーション端子25は端子列内において、高位側電源端子26だけでなく、低位側電源端子27とも隣接するように配置されていた。これに対して半導体装置10aでは、図1に示すように、低位側電源端子27に代えてその他の外部端子29がキャリブレーション端子25と隣接するように配置されている。本発明の主たる目的は、このような外部端子(パッド)の配置を、キャリブレーション性能の低下を回避しつつ実現することにある。
キャリブレーション端子25及び高位側電源端子26には、キャリブレーション回路15が接続される。以下、キャリブレーション回路15の構成及び動作について、図3〜図6も参照しながら詳しく説明する。
キャリブレーション回路15は、図1に示すように、P側レプリカ回路15r1(第1のレプリカ回路)、レプリカ出力回路15r(レプリカアクセス回路)、コンパレータ15a1,15a2、電位生成回路15b1,15b2、及び制御回路15cを有して構成される。
図3は、図1に示されるP側レプリカ回路15r1の内部構成を示す。
P側レプリカ回路15r1は、図2に示したプルアップ回路13pのレプリカである。なお、本発明でいう「レプリカ」とは、対象の回路と同一の内部回路構成を有する回路を指す。
P側レプリカ回路15r1は、図3に示すように、プルアップ回路13pと同様、高位側電源端子26とキャリブレーション端子25の間に並列に接続された複数のpチャンネル型トランジスタT1<6:0>(第1のトランジスタ)と、これら複数のトランジスタT1<6:0>とデータ入出力端子20の間に接続された抵抗素子R1とを含んで構成される。トランジスタT1<k>は、トランジスタT4<k>と同じW/L比を有するように形成される。また、抵抗素子R1は、抵抗素子R4と同じ抵抗値を有するように形成される。トランジスタT1<6:0>のゲート電極には、制御回路15cからそれぞれ制御信号CODE_P_REP<6:0>が供給される。
図4は、図1に示されるP側レプリカ回路15r2及びN側レプリカ回路15r3の内部構成を示す。
レプリカ出力回路15rは、図2に示した出力回路13のレプリカである。
レプリカ出力回路15rは、図4に示すように、図2に示したプルアップ回路13pのレプリカであるP側レプリカ回路15r2(第2のレプリカ回路)と、図2に示したプルダウン回路13nのレプリカであるN側レプリカ回路15r3(第3のレプリカ回路)とが、ノードn(第1のノード)で互いに接続された構成を有して構成される。ノードnは出力回路13におけるデータ入出力端子20との接続端に相当するが、外部端子には接続されていない。
P側レプリカ回路15r2(第2のレプリカ回路)は、図4に示すように、プルアップ回路13pと同様、データ用高位側電源端子21とノードnの間に並列に接続された複数のpチャンネル型トランジスタT2<6:0>(第2のトランジスタ)と、これら複数のトランジスタT2<6:0>とノードnの間に接続された抵抗素子R2とを含んで構成される。トランジスタT2<k>は、トランジスタT4<k>と同じW/L比を有するように形成される。また、抵抗素子R2は、抵抗素子R4と同じ抵抗値を有するように形成される。トランジスタT2<6:0>のゲート電極には、制御回路15cからそれぞれ制御信号CODE_P_REP<6:0>が供給される。
N側レプリカ回路15r3(第3のレプリカ回路)は、図4に示すように、プルダウン回路13nと同様、データ用低位側電源端子22とノードnの間に並列に接続された複数のnチャンネル型トランジスタT3<6:0>(第3のトランジスタ)と、これら複数のトランジスタT3<6:0>とノードnの間に接続された抵抗素子R3とを含んで構成される。トランジスタT3<k>は、トランジスタT5<k>と同じW/L比を有するように形成される。また、抵抗素子R3は、抵抗素子R5と同じ抵抗値を有するように形成される。トランジスタT3<6:0>のゲート電極には、制御回路15cからそれぞれ制御信号CODE_N_REP<6:0>が供給される。
図1に示される電位生成回路15b1,15b2はそれぞれ、例えば抵抗分割によって、電源電位VDD(=電源電位VDDQ)の1/2の電位VDD/2を生成する回路である。
図1に示されるコンパレータ15a1は、キャリブレーション端子25の電位と、電位生成回路15b1が生成する電位VDD/2とを比較し、その結果を結果信号ZQ_result_Pとして制御回路15cに供給する回路である。また、コンパレータ15a2は、ノードnの電位と、電位生成回路15b2が生成する電位VDD/2とを比較し、その結果を結果信号ZQ_result_Nとして制御回路15cに供給する回路である。なお、コンパレータ15a1,15a2に対して、同じ電位生成回路から電位VDD/2を供給するように構成してもよい。図1に示される制御回路15cは、コンパレータ15a1及び15a2の各出力を受ける。
図5は、図1に示される制御回路15cの内部構成を示す。
制御回路15cは、結果信号ZQ_result_P,ZQ_result_Nを参照することによって、キャリブレーション端子25及びノードnそれぞれの電位が電位VDD/2に等しくなるように制御信号CODE_P_REP<6:0>,CODE_N_REP<6:0>の電位レベルを調整し、さらに、この調整が完了した後、制御信号CODE_P_REP<6:0>,CODE_N_REP<6:0>の電位レベルをそれぞれ制御信号CODE_P<6:0>,CODE_N<6:0>の電位レベルに反映させることによって出力バッファ11のインピーダンスを制御する、という一連の動作(キャリブレーション動作)を行う回路である。
具体的に説明すると、制御回路15cは図5に示すように、カウンタ30p,30nと、D型フリップフロップ回路31p,31nとを有して構成される。カウンタ30pは、結果信号ZQ_result_Pを受けて制御信号CODE_P_REP<6:0>を生成する回路であり、カウンタ30nは、結果信号ZQ_result_Nを受けて制御信号CODE_N_REP<6:0>を生成する回路である。D型フリップフロップ回路31p,31nは、制御信号CODE_N_REP<6:0>の生成が完了したことを受けて図示しない制御回路が活性化するラッチ信号LATの活性化タイミングで、それぞれ制御信号CODE_P_REP<6:0>,CODE_N_REP<6:0>をラッチするよう構成される。D型フリップフロップ回路31p,31nの出力信号はそれぞれ制御信号CODE_P<6:0>,CODE_N<6:0>である。したがって、制御信号CODE_P<6:0>,CODE_N<6:0>の内容は、ラッチ信号LATが活性化したタイミングでそれぞれ最新の制御信号CODE_P_REP<6:0>,CODE_N_REP<6:0>の内容に切り替わる。
その他、図示していないが、制御回路15cは、外部からキャリブレーションの実行を指示するコマンド(図6に示すキャリブレーションコマンドZQCS)が供給されると、カウンタ30p,30nを活性化するように構成される。以下、図6のタイミング図を参照しながら、制御回路15cの動作について詳しく説明する。
図6は、制御回路15cの動作を示すタイミング図を示す。
図6の初期状態では、制御信号CODE_P_REP<6:0>,CODE_P<6:0>それぞれの内容がともに「P0」であったとし、制御信号CODE_N_REP<6:0>,CODE_N<6:0>それぞれの内容がともに「N0」であったとしている。
次に、キャリブレーションコマンドZQCSが供給される。なお、半導体装置10aにキャリブレーション動作を開始させる場合、キャリブレーション端子25にキャリブレーション抵抗ZQRが接続された状態で、外部のコントローラは、半導体装置10aに対してキャリブレーションコマンドZQCSを供給する。
キャリブレーションコマンドZQCSが供給されると、制御回路15cは、こうしてキャリブレーションコマンドZQCSが供給されると、カウンタ30pを活性化する。カウンタ30pは、活性化されている間、図示しないクロック信号のアクティブエッジが到来する都度、結果信号ZQ_result_Pに応じてカウントアップ又はカウントダウンを行うよう構成される。
具体的に説明すると、カウンタ30pは、クロック信号のアクティブエッジが到来したタイミングで結果信号ZQ_result_Pを参照する。そして、参照した結果信号ZQ_result_Pにより、例えばキャリブレーション端子25の電位が電位VDD/2より高いことが示される場合(この場合、P側レプリカ回路15r1のインピーダンスは、キャリブレーション抵抗ZQRの抵抗値より小さい値となっている)、カウンタ30pはカウントダウンを行う。一方、参照した結果信号ZQ_result_Pによりキャリブレーション端子25の電位が電位VDD/2より低いことが示される場合(この場合、P側レプリカ回路15r1のインピーダンスは、キャリブレーション抵抗ZQRの抵抗値より大きい値となっている)には、カウンタ30pはカウントアップを行う。このカウントダウン又はカウントアップの結果は制御信号CODE_P_REP<6:0>の内容に反映され、したがって、P側レプリカ回路15r1のインピーダンスにも反映されることになる。カウンタ30pのカウント制御は、最終的に、キャリブレーション端子25の電位が電位VDD/2に最接近したところで収束する。キャリブレーション端子25の電位が電位VDD/2に最接近しているということは、P側レプリカ回路15r1のインピーダンスがキャリブレーション抵抗ZQRの抵抗値に最接近しているということを意味する。したがって、カウンタ30pの上記処理の結果、P側レプリカ回路15r1のインピーダンスをキャリブレーション抵抗ZQRの抵抗値に最も近づけることのできる制御信号CODE_P_REP<6:0>が得られることになる。
次に、キャリブレーション端子25の電位が電位VDD/2に最接近すると、信号CODE_P_REP<6:0>(図6では、「P1」)が得られる。制御回路15cは、制御信号CODE_P_REP<6:0>の内容が収束した後、カウンタ30pを非活性に戻す。これ以降、制御信号CODE_P_REP<6:0>の内容が「P1」に固定され、P側レプリカ回路15r1,15r2のインピーダンスも、可能な限り上記規定値に近い状態で固定されることになる。
次に、キャリブレーションコマンドZQCSが供給される。なお、外部のコントローラは、制御信号CODE_P_REP<6:0>の内容が収束するために十分な時間が経過した後、図6に示すように、再度半導体装置10aに対してキャリブレーションコマンドZQCSを供給する。
キャリブレーションコマンドZQCSが供給されると、制御回路15cは、次にカウンタ30nを活性化する。カウンタ30nは、活性化されている間、図示しないクロック信号のアクティブエッジが到来する都度、結果信号ZQ_result_Nに応じてカウントアップ又はカウントダウンを行うよう構成される。
具体的に説明すると、カウンタ30nは、クロック信号のアクティブエッジが到来したタイミングで結果信号ZQ_result_Nを参照する。そして、参照した結果信号ZQ_result_Nにより、例えばノードnの電位が電位VDD/2より高いことが示される場合(この場合、N側レプリカ回路15r3のインピーダンスは、上記規定値に可能な限り近い値で固定されたP側レプリカ回路15r2のインピーダンスより大きくなっている)、カウンタ30nはカウントアップを行う。一方、参照した結果信号ZQ_result_Nによりキャリブレーション端子25の電位が電位VDD/2より低いことが示される場合(この場合、N側レプリカ回路15r3のインピーダンスは、上記規定値に可能な限り近い値で固定されたP側レプリカ回路15r2のインピーダンスより小さくなっている))には、カウンタ30nはカウントダウンを行う。このカウントアップ又はカウントダウンの結果は制御信号CODE_N_REP<6:0>の内容に反映され、したがって、N側レプリカ回路15r3のインピーダンスにも反映されることになる。カウンタ30nのカウント制御は、最終的に、ノードnの電位が電位VDD/2に最接近したところで収束する。ノードnの電位が電位VDD/2に最接近しているということは、N側レプリカ回路15r3のインピーダンスがP側レプリカ回路15r2のインピーダンスに最接近しているということを意味する。したがって、カウンタ30nの上記処理の結果、N側レプリカ回路15r3のインピーダンスをキャリブレーション抵抗ZQRの抵抗値に最も近づけることのできる制御信号CODE_N_REP<6:0>が得られることになる。
次に、図1に示されるノードnの電位が電位VDD/2に最接近すると、制御信号CODE_N_REP<6:0>が(図6では、「N1」)が得られる。制御回路15cは、制御信号CODE_N_REP<6:0>の内容が収束した後、カウンタ30nを非活性に戻す。これ以降、制御信号CODE_N_REP<6:0>の内容が「N1」に固定され、N側レプリカ回路15r3のインピーダンスも、可能な限り上記規定値に近い状態で固定されることになる。
次に、制御信号CODE_N_REP<6:0>が収束すると、半導体装置10a内に設けられる図示しない制御回路により、ラッチ信号LATが活性化される。
ラッチ信号LATが活性化されると、図5に示されるD型フリップフロップ回路31p,31nは、それぞれ制御信号CODE_P_REP<6:0>,CODE_N_REP<6:0>をラッチする。したがって、図6に示すように、制御信号CODE_P<6:0>,CODE_N<6:0>の値がそれぞれ「P1」「N1」に切り替わる。その結果、プルアップ回路13p及びプルダウン回路13nそれぞれのインピーダンスが可能な限り上記規定値に近い状態で固定され、一連のキャリブレーション動作が終了する。
半導体装置10aの主たる特徴は、図1に示したように、出力バッファ11(図2に示したプルアップ回路13p)におけるデータ用高位側電源端子21との接続端に相当するP側レプリカ回路15r1の端部を従来どおり高位側電源端子26に接続する一方、出力バッファ11(図2に示した出力回路13)におけるデータ用高位側電源端子21との接続端に相当するレプリカ出力回路15rの端部をデータ用高位側電源端子21に接続し、さらに、出力バッファ11(図2に示した出力回路13)におけるデータ用低位側電源端子22との接続端に相当するレプリカ出力回路15rの端部をデータ用低位側電源端子22に接続した点にある。以下、このような接続を採用している理由及びその効果について、詳しく説明する。
キャリブレーション回路15の設計を行うにあたっては、P側レプリカ回路15r1及びレプリカ出力回路15r構成をそれぞれプルアップ回路13p及び出力回路13の構成にできるだけ近づける必要があり、その中には、外部端子と各回路との距離をプルアップ回路13p及び出力回路13のものにできるだけ近づけることも含まれる。
P側レプリカ回路15r1が接続される外部端子は、キャリブレーション端子25と、電源電位VDDQ又はそれに等しい電位を供給するための電源端子との2つである。半導体装置10aにおいては、図1に示したように、このうちの電源端子をキャリブレーション端子25に隣接して配置された高位側電源端子26としている。これにより、これら2つの端子とP側レプリカ回路15r1との間の距離を、それぞれデータ入出力端子20及びデータ用高位側電源端子21とプルアップ回路13pとの間の距離に近づけることが実現されている。
一方、レプリカ出力回路15rが接続される外部端子は、電源電位VDDQ又はそれに等しい電位を供給するための電源端子と、接地電位VSSQ又はそれに等しい電位を供給するための電源端子との2つである。レプリカ出力回路15rは、キャリブレーション端子25には接続されない。従来の半導体装置においては、キャリブレーション端子25に隣接して高位側電源端子26及び低位側電源端子27を配置し、これらをレプリカ出力回路15rに接続することで、これら2つの端子とレプリカ出力回路15rとの間の距離を、それぞれデータ用高位側電源端子21及びデータ用低位側電源端子22と出力回路13との間の距離に近づけるようにしていた。しかしながら、レプリカ出力回路15rは上述したようにキャリブレーション端子25には接続されないため、必ずしも、レプリカ出力回路15rをキャリブレーション端子25の近傍に配置する必要はない。本発明はこの点に着目したもので、半導体装置10aにおいては、データ入出力端子20に隣接して配置されるデータ用高位側電源端子21及びデータ用低位側電源端子22から、レプリカ出力回路15rに対して電位を供給するようにしている。これにより、半導体装置10aでは、キャリブレーション端子25と隣接する位置に低位側電源端子27を配置する必要がなくなり、パッド配置の自由度が向上している。
上記したように、本実施の形態による半導体装置10aによれば、キャリブレーション端子25に接続されず、したがって特にキャリブレーション端子25の近傍に配置する必要のないレプリカ出力回路15rに対して、出力回路13と同じデータ用高位側電源端子21及びデータ用低位側電源端子22から、電源電位VDDQ及び接地電位VSSQを供給するようにしている。したがって、接地電位VSSQ又はこれに等しい電位の供給を受ける端子をキャリブレーション端子25に隣接する位置に配置しなくとも、レプリカ出力回路15rの構成を電源抵抗まで含めて出力回路13の構成に近づけることが可能になる。つまり、接地電位VSSQの供給を受ける端子をキャリブレーション端子25に隣接する位置に配置しなくとも、キャリブレーション性能の低下を招かないようにすることができるので、キャリブレーション性能の低下を回避しつつ、パッド配置の自由度を向上することが可能になる。
<第2の実施の形態>
図7は、本発明の第2の実施の形態による半導体装置10bを示す。
半導体装置10bは、図7に示すように、キャリブレーション端子25をデータ入出力端子20に隣接して配置されるデータ用高位側電源端子21に隣接して配置している点、及び、プルアップ回路13pにおけるデータ用高位側電源端子21との接続端に相当するP側レプリカ回路15r1の端部をそのデータ用高位側電源端子21に接続している点で、第1の実施の形態による半導体装置10aと異なっている。その他の点では半導体装置10aと同様であるので、同様の構成には同一の符号を付して説明を省略し、以下では相違点に着目して説明する。
半導体装置10bでは、図7に示すように、キャリブレーション端子25をデータ入出力端子20に隣接して配置されるデータ用高位側電源端子21に隣接して配置し、かつ、そのデータ用高位側電源端子21から、P側レプリカ回路15p1に対して電源電位VDDQを供給している。したがって、P側レプリカ回路15r1と、P側レプリカ回路15r1が接続される2つの端子(キャリブレーション端子25及びデータ用高位側電源端子21)との間の距離はそれぞれ、データ入出力端子20及びデータ用高位側電源端子21とプルアップ回路13pとの間の距離に近いものとなっている。また、半導体装置10bにおけるレプリカ出力回路15rに関する構成は、半導体装置10aにおけるそれと同一である。したがって、本実施の形態による半導体装置10aによれば、第1の実施の形態による半導体装置10aと同様、キャリブレーション性能の低下を回避しつつ、パッド配置の自由度を向上することが可能になる。
図8は、図7に示される半導体装置10bのパッケージ表面の状態を示す。
ここで、半導体装置10bにおいて、データ入出力端子20に隣接して配置されるデータ用高位側電源端子21に隣接してキャリブレーション端子25を配置することが可能となっている事情について、図8を参照しながら説明する。
図8に示すように、それぞれ複数の半田ボール51を配置するための半田ボールエリア50a,50bと、パッド列を配置するためのパッド列エリア52とは、半導体装置10bを構成するパッケージの表面に設けられる。半田ボールエリア50a,50b及びパッド列エリア52はそれぞれ互いに同一の方向(図面横方向)に延設されており、半田ボールエリア50a,50bはパッド列エリア52を挟むように配置される。パッド列エリア52内には複数のパッドからなるパッド列が1列分だけ配置される。このパッド列を構成する複数のパッドには、上述したデータ用高位側電源端子21、データ用低位側電源端子22、キャリブレーション端子25、高位側電源端子26、及び外部端子29が含まれる。一方、半田ボールエリア50a,50bには、それぞれ3列分の半田ボール51の列が配置される。各半田ボール51は、図示したようにそれぞれいずれかのパッドに対応しており、対応するパッドと配線53によって接続される。
キャリブレーション端子25に対応する半田ボールは、図8に例示するように、データ入出力端子20に対応する一群の半田ボールから少し離れた位置に配置される。このような半田ボールの配置は半導体装置がマウントされる基板上の電極との関係で決められるもので、半導体装置側で自由に変えられるものではない。したがって、図7に示したようにパッド列内においてデータ入出力端子20の近くにキャリブレーション端子25を配置するためには、図8に示したように、配線53の配線長を長くする必要がある。
半導体装置10bでは、図8にも示すように、そのような長い配線53を敷設することが可能である。その結果、キャリブレーション端子25を、データ入出力端子20に隣接して配置されるデータ用高位側電源端子21に隣接して配置することが可能となっている。これに対し、第1の実施の形態による半導体装置10aでは、キャリブレーション端子25と対応する半田ボールとを結ぶ長い配線53を敷設することが他の配線との関係で不可能である。その結果、半導体装置10aでは、キャリブレーション端子25を図1に示したようにデータ入出力端子20から離れた位置に配置せざるを得ず、データ入出力端子20に隣接して配置されるデータ用高位側電源端子21に隣接してキャリブレーション端子25を配置することが不可能となっている。
図9は、本発明の第2の実施の形態の変形例による半導体装置10b'の構成を示す。
図7の例では、レプリカ出力回路15rは、キャリブレーション端子25に最も近いデータ入出力端子20の近傍に配置され、そのデータ入出力端子20に隣接して配置されるデータ用高位側電源端子21及びデータ用低位側電源端子22をそれぞれ介して電源電位VDDQ及び接地電位VDDQの供給を受けていた。しかし、このような構成とすることは必須ではなく、例えば図9に示した半導体装置10b'のように、キャリブレーション端子25に最も近いデータ入出力端子20以外のデータ入出力端子20の近傍にレプリカ出力回路15rを配置し、そのデータ入出力端子20に隣接して配置されるデータ用高位側電源端子21及びデータ用低位側電源端子22をそれぞれ介して、レプリカ出力回路15rに電源電位VDDQ及び接地電位VDDQを供給することとしてもよい。こうしても、図7に示した半導体装置10bと同様、キャリブレーション性能の低下を回避しつつ、パッド配置の自由度を向上することが可能になる。
<第3の実施の形態>
図10は、本発明の好ましい第3の実施の形態による半導体装置10cの構成を示す。図10〜図12を参照しながら、本発明の第3の実施の形態による半導体装置10cについて説明する。
半導体装置10cは、制御信号CODE_P_REP<6:0>が制御信号CODE_P<6:0>に統合され、かつ、制御信号CODE_N_REP<6:0>が制御信号CODE_N<6:0>に統合されている点、及び、これに伴って制御回路15cの内部構成が変更されている点で、第2の実施の形態による半導体装置10bと異なっている。その他の点では半導体装置10bと同様であるので、同様の構成には同一の符号を付して説明を省略し、以下では相違点に着目して説明する。
図10に示すように、本実施の形態によるP側レプリカ回路15r1,15r2には、制御信号CODE_P_REP<6:0>ではなく制御信号CODE_P<6:0>が供給される。したがって、P側レプリカ回路15r1,15r2内の各トランジスタは、制御信号CODE_P<6:0>(第1のコード信号)によって、プルアップ回路13pの各トランジスタと共通に制御される。また、本実施の形態によるN側レプリカ回路15r3には、制御信号CODE_N_REP<6:0>ではなく制御信号CODE_N<6:0>が供給される。したがって、N側レプリカ回路15r3の各トランジスタは、制御信号CODE_N<6:0>(第2のコード信号)によって、プルダウン回路13nの各トランジスタと共通に制御される。
図11は、図10に示される制御回路15cの内部構成を示す
本実施の形態による制御回路15cは、図11に示すように、カウンタ30p,30nと、D型フリップフロップ回路31pと、マルチプレクサ32とを有して構成される。カウンタ30p,30nの動作は第1の実施の形態で説明したものと同様であるが、それぞれの出力信号は、制御信号CODE_P_REP<6:0>,CODE_N_REP<6:0>ではなく制御信号CODE_P<6:0>,CODE_N<6:0>となる。
D型フリップフロップ回路31pは、図示しない制御回路が活性化するラッチ信号LAT_Pの活性化タイミングで、カウンタ30pの出力信号をラッチする回路である。D型フリップフロップ回路31pの回路単体としての動作は第1の実施の形態で説明したものと同様であるが、役割が異なっている。すなわち、第1の実施の形態では、カウンタ30pが生成した制御信号CODE_P_REP<6:0>を、制御信号CODE_N_REP<6:0>の生成が完了するまでの間、一時的に記憶しておく役割を担っていたが、本実施の形態では、カウンタ30pが制御信号CODE_P<6:0>の生成を行っている間、生成開始直前の制御信号CODE_P<6:0>を記憶しておく役割を担う。詳しくは後述する。
マルチプレクサ32は、図示しない制御回路が活性化する選択信号SEL_Pに応じて、カウンタ30pの出力信号と、D型フリップフロップ回路31pの出力信号(D型フリップフロップ回路31pにラッチされている信号)のいずれか一方を選択し、制御信号CODE_P<6:0>として出力する回路である。以下、図12のタイミング図を参照しながら、本実施の形態による制御回路15cの動作について詳しく説明する。
図12は、本実施の形態による制御回路15cの動作を示すタイミング図を示す。
図12では、図6に示した例と同様、まず初期状態として、制御信号CODE_P<6:0>,CODE_N<6:0>の内容がそれぞれ「P0」「N0」であったとしている。また、選択信号SEL_Pは初期状態でハイレベルとされており、これにより、マルチプレクサ32はカウンタ30pの出力信号を選択した状態とされている。
キャリブレーションコマンドZQCSが供給されると、図示しない制御回路によってラッチ信号LAT_Pが活性化される。これを受け、この時点でのカウンタ30pの出力信号(「P0」を示す信号)がD型フリップフロップ回路31pにラッチされる。続いて、制御回路15cは、カウンタ30pを活性化する。これを受けたカウンタ30pの処理については、第1の実施の形態で説明したものと同様であるので、詳しい説明を省略する。
制御回路15cは、制御回路15cの出力信号の内容が収束した後、カウンタ30pを非活性に戻す。これ以降、カウンタ30pの出力信号の内容は、図12に示すように「P1」に固定される。また、図示しない制御回路は、制御回路15cの出力信号の内容が収束したことを受けて、選択信号SEL_Pをローレベルとする。これにより、マルチプレクサ32がD型フリップフロップ回路31pの出力信号を選択するようになり、一時的に「P1」となっていた制御信号CODE_P<6:0>の内容が「P0」に戻る。なお、この動作によれば、短時間の間に制御信号CODE_P<6:0>が「P0」と「P1」の間を切り替わることになるが、キャリブレーション動作中にリードコマンドやODTコマンドが投入されることはないため、特に問題とはならない。
外部のコントローラは、第1の実施の形態での場合と同様、制御信号CODE_P<6:0>の内容が収束するために十分な時間が経過した後、再度半導体装置10aに対してキャリブレーションコマンドZQCSを供給する。これを受けた図示しない制御回路は、選択信号SEL_Pをハイレベルに戻す。これにより、マルチプレクサ32が制御回路15cの出力信号を選択するようになり、制御信号CODE_P<6:0>の内容が「P1」となる。また、制御回路15cは、カウンタ30nを活性化する。これを受けたカウンタ30nの処理については、第1の実施の形態で説明したものと同様であるので、詳しい説明を省略する。
カウンタ30nの処理によって、最終的に制御信号CODE_N<6:0>の内容が「N1」に収束する。この時点で、制御信号CODE_P<6:0>の内容はすでに「P1」となっているので、これで一連のキャリブレーション動作が終了したことになる。
以上説明したように、本実施の形態による半導体装置10cによれば、制御信号CODE_P_REP<6:0>を制御信号CODE_P<6:0>に統合し、かつ、制御信号CODE_N_REP<6:0>を制御信号CODE_N<6:0>に統合することが可能になる。したがって、制御回路15cと、出力バッファ11、レプリカ出力回路15r、及びP側レプリカ回路15r1との間に敷設する配線の総延長を短縮することができるので、配線領域の面積を低減することが可能になる。また、制御回路15cの設置場所の制約が小さくなり、空き領域を用いて効率的に制御回路15cを配置することが可能になる。
図13は、本発明の第3の実施の形態の変形例による半導体装置10c'の構成を示す。
図10の例では、レプリカ出力回路15rは、キャリブレーション端子25に最も近いデータ入出力端子20の近傍に配置され、そのデータ入出力端子20に隣接して配置されるデータ用高位側電源端子21及びデータ用低位側電源端子22をそれぞれ介して電源電位VDDQ及び接地電位VDDQの供給を受けていた。しかし、このような構成とすることは必須ではなく、例えば図13に示した半導体装置10c'のように、キャリブレーション端子25に最も近いデータ入出力端子20以外のデータ入出力端子20の近傍にレプリカ出力回路15rを配置し、そのデータ入出力端子20に隣接して配置されるデータ用高位側電源端子21及びデータ用低位側電源端子22をそれぞれ介して、レプリカ出力回路15rに電源電位VDDQ及び接地電位VDDQを供給することとしてもよい。こうしても、図10に示した半導体装置10cと同様、配線領域の面積を低減し、また、空き領域を用いて効率的に制御回路15cを配置することが可能になる。
<第4の実施の形態>
図14は、本発明の第4の実施の形態による半導体装置10dを示す。
半導体装置10dは、図1に示した半導体措置10aと同じようにキャリブレーション端子25をデータ入出力端子20から離れた位置に配置し、さらに、このキャリブレーション端子25の両隣に高位側電源端子26及び低位側電源端子27を配置し、P側レプリカ回路15r1をこの高位側電源端子26に接続するとともに、レプリカ出力回路15rをこれら高位側電源端子26及び低位側電源端子27に接続したうえで、図10に示した半導体措置10cと同様、制御信号CODE_P_REP<6:0>を制御信号CODE_P<6:0>に統合し、かつ、制御信号CODE_N_REP<6:0>を制御信号CODE_N<6:0>に統合したものである。制御回路15cの内部構成は、図11に示したものと同様である。
P型バッファ11P、並びにP型レプリカ15r1及びP型レプリカ15r2は、共通の制御信号CODE_P<6:0>に基づいて、インピーダンスが共通に制御される構成である。N型レプリカ15r3及びN型バッファ11nは、共通の制御信号CODE_N<6:0>に基づいて、インピーダンスが共通に制御される構成である。
本実施の形態による半導体装置10dによれば、制御回路から供給される共通の制御信号に基づいて、レプリカ回路及び出力バッファ11が制御され、制御性が向上する。また、図10に示した半導体装置10cと同様、配線領域の面積を低減し、また、空き領域を用いて効率的に制御回路15cを配置することが可能になる。
<第5の実施の形態>
図15は、本発明の第5の実施の形態による半導体装置10eを示す。
半導体装置10dは、図7に示した半導体措置10bと同じようにキャリブレーション端子25をデータ入出力端子20に隣接して配置されるデータ用高位側電源端子21に隣接して配置して、P側レプリカ回路15r1をこのデータ用高位側電源端子21に接続し、さらに、キャリブレーション端子25に隣接してデータ用低位側電源端子22を配置し、レプリカ出力回路15rをこのデータ用低位側電源端子22と上記データ用高位側電源端子21とに接続したうえで、図10に示した半導体措置10cと同様、制御信号CODE_P_REP<6:0>を制御信号CODE_P<6:0>に統合し、かつ、制御信号CODE_N_REP<6:0>を制御信号CODE_N<6:0>に統合したものである。制御回路15cの内部構成は、図11に示したものと同様である。
本実施の形態による半導体装置10eによっても、キャリブレーション性能の低下を回避しつつ、パッド配置の自由度を向上するという効果は得られない一方で、図10に示した半導体装置10cと同様、配線領域の面積を低減し、また、空き領域を用いて効率的に制御回路15cを配置することが可能になる。
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
例えば、上記実施の形態では、リードデータの出力バッファ11に本発明を適用した例を説明したが、本発明は、ある端子にアクセスするように構成され、かつ、その端子の両隣に配置された2つの端子から電位の供給を受けて動作するように構成され、さらに、キャリブレーションの対象となるアクセス回路に広く適用することができる。
10a〜10e,10b',10c' 半導体装置
11 出力バッファ
11n N側バッファ
11p P側バッファ
12 前段回路
12n N側前段回路
12p P側前段回路
13 出力回路
13n プルダウン回路
13p プルアップ回路
15 キャリブレーション回路
15a1,15a2 コンパレータ
15b1,15b2 電位生成回路
15c 制御回路
15r レプリカ出力回路
15r1,15r2 P側レプリカ回路
15r3 N側レプリカ回路
20 データ入出力端子
21 データ用高位側電源端子
22 データ用低位側電源端子
25 キャリブレーション端子
26 高位側電源端子
27 低位側電源端子
29 その他の外部端子
30p,30n カウンタ
31p,31n D型フリップフロップ回路
32 マルチプレクサ
50a,50b 半田ボールエリア
51 半田ボール
52 パッド列エリア
53 配線
A<6:0> アンド回路
CODE_N<6:0>,CODE_N_REP<6:0>,CODE_P<6:0>,CODE_P_REP<6:0> 制御信号
DATA_N,DATA_P,SEL_P 選択信号
LAT,LAT_P ラッチ信号
n ノード
O<6:0> オア回路
R1〜R5 抵抗素子
T1<6:0>,T2<6:0>,T4<6:0> pチャンネル型トランジスタ
T3<6:0>,T5<6:0> nチャンネル型トランジスタ
ZQ_result_P,ZQ_result_N 結果信号
ZQR キャリブレーション抵抗

Claims (11)

  1. 第1の電位の供給を受ける第1の端子、前記第1の電位より低い第2の電位の供給を受ける第2の端子、第3の端子、及びキャリブレーション端子を含む複数の端子と、
    前記第1の端子を介して前記第1の電位の供給を受けるとともに、前記第2の端子を介して前記第2の電位の供給を受け、かつ、前記第3の端子にアクセスするよう構成されたアクセス回路と、
    第1乃至第3のレプリカ回路を有するキャリブレーション回路とを備え、
    前記第1のレプリカ回路は、それぞれ第1の導電型であり、かつ前記キャリブレーション端子に接続される複数の第1のトランジスタを含んで構成され、
    前記第2のレプリカ回路は、それぞれ前記第1の導電型であり、かつ前記キャリブレーション端子に接続されない複数の第2のトランジスタを含んで構成され、
    前記第3のレプリカ回路は、それぞれ前記第1の導電型とは異なる第2の導電型であり、かつ前記キャリブレーション端子に接続されない複数の第3のトランジスタを含んで構成され、
    前記複数の端子は、第1の方向に並べて配置され、
    前記第1及び第2の端子はともに、前記キャリブレーション端子に隣接しない位置に配置され、
    前記第2のレプリカ回路は、前記第1の端子を介して前記第1の電位の供給を受けるよう構成され、
    前記第3のレプリカ回路は、前記第2の端子を介して前記第2の電位の供給を受けるよう構成される
    ことを特徴とする半導体装置。
  2. 前記第1及び第2の端子はそれぞれ、前記第1の方向に並べて配置され、かつ前記第3の端子に隣接して配置される
    ことを特徴とする請求項1記載の半導体装置。
  3. 前記複数の第1のトランジスタと前記複数の第2のトランジスタとは、互いに異なる端子を介して、それぞれ前記第1の電位の供給を受けるよう構成される
    ことを特徴とする請求項1又は2に記載の半導体装置。
  4. 前記アクセス回路は、それぞれ前記第1の導電型であり、かつ前記キャリブレーション端子に接続されない複数の第4のトランジスタを含んで構成され、
    前記複数の第2のトランジスタと前記複数の第4のトランジスタとは、前記第1の端子を介して共通に前記第1の電位の供給を受けるよう構成される
    ことを特徴とする請求項1乃至3のいずれか一項に記載の半導体装置。
  5. 前記アクセス回路は、それぞれ前記第2の導電型であり、かつ前記キャリブレーション端子に接続されない複数の第5のトランジスタを含んで構成され、
    前記複数の第3のトランジスタと前記複数の第5のトランジスタとは、前記第2の端子を介して共通に前記第2の電位の供給を受けるよう構成される
    ことを特徴とする請求項1乃至4のいずれか一項に記載の半導体装置。
  6. 前記アクセス回路は、
    それぞれ前記第1の導電型であり、かつ前記キャリブレーション端子に接続されない複数の第4のトランジスタを含む第1の回路と、
    それぞれ前記第2の導電型であり、かつ前記キャリブレーション端子に接続されない複数の第5のトランジスタを含む第2の回路とを有し、
    前記複数の第1のトランジスタ、前記複数の第2のトランジスタ、及び前記複数の第4のトランジスタは、第1のコード信号に基づいて共通に制御され、
    前記複数の第3のトランジスタ及び前記複数の第5のトランジスタは、前記第1のコード信号とは異なる第2のコード信号に基づいて共通に制御される
    ことを特徴とする請求項1乃至3のいずれか一項に記載の半導体装置。
  7. 前記第3の端子は、データの入出力を行うためのデータ入出力端子である
    ことを特徴とする請求項1乃至6のいずれか一項に記載の半導体装置。
  8. それぞれ第1の電位の供給を受ける第1及び第4の端子、前記第1の電位より低い第2の電位の供給を受ける第2の端子、第3の端子、及びキャリブレーション端子を含む複数の端子と、
    前記第1の端子を介して前記第1の電位の供給を受ける第1の回路、及び、前記第2の端子を介して前記第2の電位の供給を受ける第2の回路を含み、該第1及び第2の回路によって前記第3の端子にアクセスするよう構成されたアクセス回路と、
    前記第1の回路のレプリカであり、前記第1の回路における前記第3の端子との接続端に相当する端部が前記キャリブレーション端子に接続される第1のレプリカ回路と、前記アクセス回路のレプリカであり、前記アクセス回路における前記第3の端子との接続端に相当する端部が前記キャリブレーション端子に接続されないレプリカアクセス回路とを有するキャリブレーション回路とを備え、
    前記複数の端子は、一列に並べて配置された端子列を構成し、
    前記第1及び第2の端子はそれぞれ、前記端子列内において前記第3の端子に隣接して配置され、
    前記第4の端子は、前記端子列内において前記キャリブレーション端子に隣接して配置され、
    前記第1のレプリカ回路は、前記第1の回路における前記第1の端子との接続端に相当する端部が前記第4の端子に接続された構成を有し、
    前記レプリカアクセス回路は、前記アクセス回路における前記第1の端子との接続端に相当する端部が前記第1の端子に接続され、前記アクセス回路における前記第2の端子との接続端に相当する端部が前記第2の端子に接続された構成を有する
    ことを特徴とする半導体装置。
  9. 前記第1の回路は、それぞれ第1の導電型であり、前記第1の端子と前記第3の端子の間に並列に接続された複数の第4のトランジスタを有し、
    前記第2の回路は、それぞれ前記第1の導電型とは異なる第2の導電型であり、前記第2の端子と前記第3の端子の間に並列に接続された複数の第5のトランジスタを有し、
    前記第1のレプリカ回路は、それぞれ前記第1の導電型であり、前記第4の端子と前記キャリブレーション端子の間に並列に接続された、前記第1の回路内の前記第4のトランジスタの数と同数の第1のトランジスタを有し、
    前記第2のレプリカ回路は、それぞれ前記第1の導電型であり、前記第1の端子と、前記アクセス回路における前記第3の端子との接続端に相当する前記レプリカアクセス回路の端部との間に並列に接続された、前記第1の回路内の前記第4のトランジスタの数と同数の第2のトランジスタを有し、
    前記第3のレプリカ回路は、それぞれ前記第2の導電型であり、前記第2の端子と、前記アクセス回路における前記第3の端子との接続端に相当する前記レプリカアクセス回路の端部との間に並列に接続された、前記第2の回路内の前記第5のトランジスタの数と同数の第3のトランジスタを有する
    ことを特徴とする請求項8に記載の半導体装置。
  10. 前記第3の端子は、データの入出力を行うためのデータ入出力端子であり、
    前記アクセス回路は、前記データを前記第3の端子から出力するための出力回路である
    ことを特徴とする請求項8又は9に記載の半導体装置。
  11. 第1の端子を介して第1の電位の供給を受ける第1の回路、及び、第2の端子を介して第2の電位の供給を受ける第2の回路を含み、該第1及び第2の回路によって前記第3の端子にアクセスするよう構成されたアクセス回路と、
    第1の導電型の第1及び第2のレプリカ回路と、前記第1の導電型と異なる第2の導電型の第3のレプリカ回路と、を有するキャリブレーション回路とを備え、
    前記第1の回路、並びに前記第1及び前記第2のレプリカ回路は、共通に供給される第1の制御信号に基づいて、インピーダンスが調整される構成であり、
    前記第2の回路及び前記第3のレプリカ回路は、共通に供給され、前記第1の制御信号と異なる第2の制御信号に基づいて、インピーダンスが調整される構成であることを特徴とする半導体装置。
JP2014027370A 2014-02-17 2014-02-17 半導体装置 Pending JP2015154316A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014027370A JP2015154316A (ja) 2014-02-17 2014-02-17 半導体装置
US14/622,520 US9627013B2 (en) 2014-02-17 2015-02-13 Semiconductor memory device including output buffer
US15/460,206 US9881665B2 (en) 2014-02-17 2017-03-15 Semiconductor memory device including output buffer
US15/729,345 US9892780B1 (en) 2014-02-17 2017-10-10 Semiconductor memory device including output buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014027370A JP2015154316A (ja) 2014-02-17 2014-02-17 半導体装置

Publications (1)

Publication Number Publication Date
JP2015154316A true JP2015154316A (ja) 2015-08-24

Family

ID=53798655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014027370A Pending JP2015154316A (ja) 2014-02-17 2014-02-17 半導体装置

Country Status (2)

Country Link
US (3) US9627013B2 (ja)
JP (1) JP2015154316A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9825613B1 (en) * 2017-05-03 2017-11-21 Novatek Microelectronics Corp. Resistor calibration system
US10236885B1 (en) 2018-04-02 2019-03-19 Honeywell International Inc. Digital output buffer with field status feedback

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000132266A (ja) * 1998-10-23 2000-05-12 Mitsubishi Electric Corp 内部クロック信号発生回路、位相比較器、および内部クロック信号発生回路の試験方法
JP4205741B2 (ja) 2006-08-21 2009-01-07 エルピーダメモリ株式会社 キャリブレーション回路を有する半導体装置及びキャリブレーション方法
JP4920512B2 (ja) * 2007-07-04 2012-04-18 エルピーダメモリ株式会社 キャリブレーション回路及びこれを備える半導体装置、並びに、データ処理システム
JP5642935B2 (ja) * 2009-02-19 2014-12-17 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. インピーダンス調整回路及びこれを備える半導体装置
JP5578820B2 (ja) * 2009-09-11 2014-08-27 ピーエスフォー ルクスコ エスエイアールエル 半導体装置
JP2013085078A (ja) * 2011-10-07 2013-05-09 Elpida Memory Inc 半導体装置及びこれを備える半導体モジュール
JP2015050691A (ja) * 2013-09-03 2015-03-16 マイクロン テクノロジー, インク. 半導体装置

Also Published As

Publication number Publication date
US20150235680A1 (en) 2015-08-20
US9627013B2 (en) 2017-04-18
US20180047438A1 (en) 2018-02-15
US9892780B1 (en) 2018-02-13
US20170186479A1 (en) 2017-06-29
US9881665B2 (en) 2018-01-30

Similar Documents

Publication Publication Date Title
US10200044B2 (en) Semiconductor device having impedance calibration function to data output buffer and semiconductor module having the same
US7834654B2 (en) Dynamic impedance control for input/output buffers
US9368189B2 (en) Semiconductor device including output circuit constituted of plural unit buffer circuits in which impedance thereof are adjustable
US7902858B2 (en) Calibration circuit, semiconductor device including the same, and memory module
KR100744004B1 (ko) 온 다이 터미네이션 회로를 구비하는 반도체메모리소자 및그의 구동방법
JP2015076655A (ja) 半導体装置
JP2011061580A (ja) 半導体装置
KR20130072042A (ko) 터미네이션 회로
KR100937996B1 (ko) 온다이 터미네이션 장치
US8692604B2 (en) Impedance calibration circuit
US9892780B1 (en) Semiconductor memory device including output buffer
KR102517713B1 (ko) 터미네이션 회로, 반도체 장치 및 그의 동작 방법
US8203860B2 (en) Semiconductor memory device having driver for compensating for parasitic resistance of data input-output pads
KR20120099908A (ko) 임피던스 조절회로
US8717795B2 (en) Semiconductor device having plural circuit blocks operating at the same timing
WO2014125938A1 (ja) 半導体装置
JP2015159435A (ja) 半導体装置
JP2014127894A (ja) 半導体装置
KR100942948B1 (ko) 터미네이션 저항 회로, 온 다이 터미네이션 장치 및 반도체메모리 장치
JP2014146910A (ja) 半導体装置
KR20100083310A (ko) 반도체 메모리 장치의 전원 공급 회로