WO2014125938A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2014125938A1
WO2014125938A1 PCT/JP2014/052207 JP2014052207W WO2014125938A1 WO 2014125938 A1 WO2014125938 A1 WO 2014125938A1 JP 2014052207 W JP2014052207 W JP 2014052207W WO 2014125938 A1 WO2014125938 A1 WO 2014125938A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
circuit
signal
data
terminal
Prior art date
Application number
PCT/JP2014/052207
Other languages
English (en)
French (fr)
Inventor
俊二 桑原
藤澤 宏樹
Original Assignee
ピーエスフォー ルクスコ エスエイアールエル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ピーエスフォー ルクスコ エスエイアールエル filed Critical ピーエスフォー ルクスコ エスエイアールエル
Publication of WO2014125938A1 publication Critical patent/WO2014125938A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018585Coupling arrangements; Interface arrangements using field effect transistors only programmable
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018557Coupling arrangements; Impedance matching circuits

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device including an output circuit having a configuration in which a plurality of output units (unit buffers) are connected in parallel to one output terminal.
  • Some semiconductor devices such as DRAM (Dynamic Random Access Memory) include an output circuit having a configuration in which a plurality of output units are connected in parallel to one output terminal (see, for example, Patent Document 1).
  • Such an output circuit is employed to make the impedance variable. For example, when each output unit has an impedance of 240 ⁇ , the impedance of the output circuit is 240 ⁇ , 2 if only one output unit is driven.
  • 240/2 120 ⁇ when driving a unit
  • 240/3 80 ⁇ when driving three units
  • 240/4 60 ⁇ when driving four units
  • 240/5 48 ⁇ when driving five units, etc.
  • the value is determined according to the number of drives. Therefore, it is possible to change the impedance of the output circuit by appropriately changing the number of output units to be driven.
  • the plurality of output units to be driven are driven “simultaneously”. This is because it has been conventionally considered that the output of each output unit changes at the same time, so that the slew rate of the output signal is improved and high signal integrity can be obtained.
  • a semiconductor device generally has a structure in which a semiconductor chip is enclosed in a package.
  • the terminals of the semiconductor chip and the terminals of the package are connected to each other by wiring provided in the package. Since the semiconductor chip has a large number of terminals, a large number of wirings are densely packed in the package at a narrow interval, and a large mutual inductance is generated between adjacent wirings.
  • the output signal When an output signal is output from the output terminal of the semiconductor chip, the output signal passes through the wiring in the package, reaches the output terminal of the package, and is output from there.
  • the output signal passes through the wiring in the package, crosstalk occurs with other adjacent wiring due to the mutual inductance described above. Since the magnitude of the crosstalk is proportional to the mutual inductance and the time change amount (dI / dt) of the current, the larger the time change amount (dI / dt) of the current, the larger the crosstalk, and thus the signal integrity of the output signal. Gets worse.
  • driving a plurality of output units “simultaneously” has a merit that the slew rate is improved, but has a demerit that crosstalk between wirings is increased. This demerit is considered to be the reason that high signal integrity is not always obtained even if a plurality of output units to be driven are driven “simultaneously”.
  • a semiconductor device is connected in parallel between a first power supply terminal, an output terminal, and the first power supply terminal and the output terminal, each corresponding to a first control signal.
  • a control circuit for outputting the first and second control signals corresponding to an internal data signal wherein the control circuit includes the first and second control signals. Are output at different timings.
  • a plurality of first output units constitute one group
  • a plurality of second output units constitute another one group.
  • the drive timings are different among the groups, so that the effect of improving the signal integrity by simultaneously driving the plurality of output units is utilized.
  • the deterioration of signal integrity due to crosstalk between wiring in the package connected to the output terminal can be reduced. Therefore, it is possible to maintain the signal integrity of the output data while being affected by the crosstalk between the wirings in the package.
  • FIG. 1 is a block diagram showing an overall configuration of a semiconductor device 1 according to a preferred embodiment of the present invention.
  • FIG. 2 is a diagram showing a generation circuit for internal power supply voltage VPERI included in internal power generation circuit 43 shown in FIG. 1. It is a figure which shows the detailed structure of the output circuit 41 shown in FIG. 1, and its peripheral circuit. It is a figure which shows the internal circuit of delay circuit 50PA shown in FIG. (A) is a figure which shows the internal structure of each of selection circuit 52P and P output unit 54P1 shown in FIG. (B) is a table
  • A) is a figure which shows the internal structure of each of selection circuit 53PA and P output unit 54P5 shown in FIG.
  • (B) is a table
  • (A) is a figure which shows the internal structure of each of selection circuit 52N and N output unit 54N1 shown in FIG. (B) is a table
  • (A) is a figure which shows the internal structure of each of selection circuit 53NA and N output unit 54N5 shown in FIG. (B) is a table
  • FIG. 1 is a block diagram showing an overall configuration of a semiconductor device 1 according to a preferred embodiment of the present invention.
  • the semiconductor device 1 is a synchronous DRAM semiconductor chip, and as shown in the figure, as external terminals, clock terminals 10 and 11, a command terminal 12, an address terminal 13, a data input / output terminal 14, a calibration terminal 15, and Power supply terminals 16 and 17 are provided.
  • the semiconductor device 1 is enclosed in a package having terminals corresponding to these terminals, and the terminals of the semiconductor device 1 and the terminals of the corresponding package are provided in the package. They are connected to each other by wiring.
  • Clock terminals 10 and 11 are terminals to which external clock signals CK and / CK are supplied, respectively.
  • the supplied external clock signals CK and / CK are supplied to the phase adjustment circuit 22 and the timing generator 23 via the clock input circuit 21.
  • a signal having “/” at the head of a signal name means an inverted signal of the corresponding signal or a low active signal. Therefore, the clock signals CK and / CK are complementary signals.
  • the phase adjustment circuit 22 has a function of receiving the output of the clock input circuit 21 and generating an internal clock signal LCLK, and the generated internal clock signal LCLK is supplied to the output circuit 41.
  • the timing generator 23 is a circuit that generates another internal clock signal based on the output of the clock input circuit 21 and supplies it to another internal circuit.
  • the command terminal 12 includes a plurality of terminals to which a row address strobe signal / RAS, a column address strobe signal / CAS, a write enable signal / WE, an on-die termination signal ODT, and the like are supplied. These command signals are supplied to the command decoder 25 via the command input circuit 24.
  • the command decoder 25 is a circuit that generates various internal commands by holding, decoding, and counting command signals.
  • the internal commands generated by the command decoder 25 include an on-die termination command ODT and a calibration control command ZQ_com. These are supplied to the output circuit 41 and the calibration circuit 44, respectively.
  • the address terminal 13 is composed of a plurality of terminals to which each bit of the address signal ADD composed of a plurality of bits is supplied.
  • the address signal ADD supplied to the address terminal 13 is supplied to the address latch circuit 27 via the address input circuit 26.
  • the address latch circuit 27 is a circuit that latches the address signal ADD.
  • the address signal ADD is usually a signal for specifying one or a plurality of memory cells in the memory cell array 34. Although not shown, in the memory cell array 34, a plurality of word lines and a plurality of bit lines intersect, and memory cells are arranged at the intersections.
  • the address signal ADD includes a row address that specifies a word line and a column address that specifies a bit line. Of the address signal ADD latched by the address latch circuit 27, the row address is supplied to the row decoder 33, and the column address is supplied to the column decoder 32.
  • the address signal ADD in the case of entry into the mode register set mode is supplied to the mode register 30.
  • the information set in the mode register 30 includes information indicating the impedance of the output circuit 41 when the read data is output and information indicating the impedance of the output circuit 41 when the on-die termination is valid.
  • the former is supplied to the output circuit 41 as output data output unit selection signals MRSRon_A, B, and the latter as on-die termination enabling unit selection signals MRSODT_A, B, C.
  • the row decoder 33 is a circuit that selects a word line corresponding to a row address among a plurality of word lines included in the memory cell array 34.
  • the column decoder 32 is a circuit that selects a bit line corresponding to a column address among a plurality of bit lines included in the memory cell array 34.
  • the bit line selected by the column decoder 32 is connected to an RWAMP (read / write amplifier) / FIFO (first-in first-out) 40 via a sense amplifier (not shown).
  • the data input / output terminal 14 includes a plurality of terminals connected to the output circuit 41, respectively.
  • the plurality of terminals are terminals for outputting read data DQ and receiving input of write data DQ, and are also connected to the input circuit, respectively, but the illustration of the input circuit is omitted in FIG.
  • Data input / output terminal 14 also includes a data strobe terminal that receives input of data strobe signals DQS and / DQS for defining input / output timing.
  • the output circuit 41 is connected to the memory cell array 34 via the RWAMP / FIFO 40.
  • a plurality of read data DQ (internal data signal) prefetched from the memory cell array 34 to the RWAMP / FIFO 40 is supplied to the output circuit 41 as a pull-up side data signal DATA_P and a pull-down side data signal DATA_N.
  • the pull-up side data signal DATA_P is a high-active signal that is activated when the read data DQ is at a high level and deactivated in other cases.
  • the pull-down data signal DATA_N is a high-active signal that is activated when the read data DQ is at a low level, and inactive in other cases.
  • the output circuit 41 is a circuit that outputs supplied data to the outside through the data input / output terminal 14.
  • the output circuit 41 includes a plurality of output units (unit buffers) each having an impedance of 240 ⁇ for each data input / output terminal 14. Specifically, focusing on one data input / output terminal 14, seven output units are provided for each of the pull-up side and the pull-down side. In the following, when it is necessary to particularly distinguish, the output unit on the pull-up side may be referred to as a P output unit and the output unit on the pull-down side may be referred to as an N output unit.
  • a total of 14 output units including 7 P output units and 7 N output units are divided into three groups G0 to G2 (FIG. 3) described later in the output circuit 41.
  • the group G0 is composed of four P output units and N output units.
  • the group G1 is composed of two P output units and N output units.
  • the group G2 is composed of one P output unit and N output unit.
  • the groups G1 and G2 of the three groups G0 to G2 are configured such that the active state can be controlled independently of the other groups by the output data output unit selection signals MRSRon_A and B described above.
  • the Only the output units belonging to the group in the active state are used for outputting the read data DQ, whereby the output circuit 41 is variable in impedance.
  • the active state of the group G0 can also be controlled.
  • the impedance required for the Ron / DDT (dynamic ODT) of the output circuit 41 is the group G0, Since all the combinations of G1 and G2 are covered, the above configuration is adopted.
  • the output circuit 41 also has an on-die termination function. Specifically, when the above-described on-die termination command ODT is activated, a signal arriving at the data input / output terminal 14 from the outside is connected to the output circuit 41 by bringing some or all of the output units into a connected state. To prevent noise from being reflected.
  • the output unit to be connected when the on-die termination function is activated is selected by the above-described on-die termination enabling unit selection signals MRSODT_A, B, and C. This point will also be described in detail later.
  • the calibration terminal 15 is a terminal to which an external resistor for calibration (not shown) is connected, and is connected to the calibration circuit 44.
  • the calibration circuit 44 has a replica buffer having the same circuit configuration as the output unit in the output circuit 41 described above.
  • the impedance per output unit is determined to be 240 ⁇ as described above, but may vary slightly depending on the change in chip temperature, power supply voltage, and the like.
  • the calibration circuit 44 has a function of generating a pull-up impedance adjustment code ZQCODE_P and a pull-down impedance adjustment code ZQCODE_N for canceling the fluctuation and supplying them to the output circuit 41.
  • the operation of the output circuit 41 that has received the pull-up impedance adjustment code ZQCODE_P and the pull-down impedance adjustment code ZQCODE_N will be described later.
  • the external resistor (not shown) connected to the calibration terminal 15 is a resistor having the same impedance as the design value (240 ⁇ ) of the impedance of the output unit.
  • the calibration circuit 44 performs pull-up impedance adjustment by performing an operation (calibration operation) for matching the resistance value of the external resistor and the impedance of the replica buffer when the calibration control command ZQ_com is activated.
  • a code ZQCODE_P and a pull-down impedance adjustment code ZQCODE_N are generated.
  • the power supply terminal 16 includes two terminals to which an external power supply voltage VDD and an external power supply voltage VSS are supplied, respectively, and is connected to the internal power supply generation circuit 43.
  • the internal power supply generation circuit 43 is a circuit for generating internal power supply voltages VPP, VOD, VARY, VPERI and other various internal power supply voltages having different voltage values from the external power supply voltage VDD from the external power supply voltage VDD and the external power supply voltage VSS. is there. These internal power supply voltages are supplied to each circuit in the semiconductor device 1 and used as an operation power supply.
  • the internal power supply voltage VPERI has a voltage value lower than the external power supply voltage VDD, and is supplied to the RWAMP / FIFO 40 and the output circuit 41 as shown in FIG.
  • the internal power generation circuit 43 also has a function of generating a calibration reference voltage ZQVREF from the external power supply voltages VDD and VSS.
  • the reference voltage ZQVREF is supplied to the calibration circuit 44 and used for voltage comparison during the calibration operation.
  • FIG. 2 is a diagram showing a generation circuit for the internal power supply voltage VPERI included in the internal power supply generation circuit 43. As shown in the figure, this circuit includes an operational amplifier 43a, P channel type MOS transistors 43b and 43c, and a resistance element 43d. The transistors 43b and 43c are configured such that the on-resistance is the same while the transistor 43c has a larger transistor size than the transistor 43b.
  • the reference voltage VREF is supplied from a reference voltage generation circuit (not shown) to the non-inverting input terminal of the operational amplifier 43a.
  • the reference voltage generation circuit is a circuit configured to be able to generate a constant voltage without depending on external factors such as fluctuations in the external power supply voltages VDD and VSS and temperature changes.
  • a band gap reference circuit or the like is preferably used as the reference voltage generation circuit. Therefore, the reference voltage VREF is a voltage having a constant voltage value that does not depend on external factors such as fluctuations in the external power supply voltages VDD and VSS and temperature changes.
  • the internal power supply generation circuit 43 is configured to generate the internal power supply voltage VPERI based on the reference voltage VREF. Specifically, first, the transistor 43b and the resistance element 43d are connected in series between a power supply wiring to which the external power supply voltage VDD is supplied and a power supply wiring to which the external power supply voltage VSS is supplied. An inverting input terminal of the operational amplifier 43a is connected to a connection point between the transistor 43b and the resistance element 43d. The source of the transistor 43c is connected to a power supply line to which the external power supply voltage VDD is supplied, and the drain is an output terminal of the internal power supply voltage VPERI. The gate electrodes of the transistors 43b and 43c are commonly connected to the output terminal of the operational amplifier 43a.
  • the power supply terminal 17 includes two terminals to which an external power supply voltage VDDQ and an external power supply voltage VSSQ are supplied, respectively, and is connected to the output circuit 41 and an input circuit (not shown).
  • the potentials of the external power supply voltage VDDQ and the external power supply voltage VSSQ are equal to the potentials of the external power supply voltage VDD and the external power supply voltage VSS, respectively.
  • the supply of the external power supply voltage VDDQ and the external power supply voltage VSSQ in addition to the external power supply voltage VDD and the external power supply voltage VSS prevents the power supply noise generated by the operation of the output circuit 41 and the like from propagating to other circuits. It is to do.
  • FIG. 3 is a diagram showing a detailed configuration of the output circuit 41 and its peripheral circuits. Although only the portion related to one data input / output terminal 14 is shown in the figure, the configuration related to other data input / output terminals 14 is also the same.
  • the output circuit 41 includes a pull-up side output circuit 41P having seven P output units 54P1 to 54P7 and a pull-down side output circuit 41N having seven N output units 54N1 to 54N7. Is done.
  • the P output units 54P1 to 54P7 and the N output units 54N1 to 54N7 are connected in parallel to one data input / output terminal 14, as shown in FIG.
  • the pull-up side output circuit 41P and the pull-down side output circuit 41N are configured to have input terminals I1 and I2 (first and second input terminals), respectively.
  • the above-described pull-up side data signal DATA_P and pull-down side data signal DATA_N are supplied to the input terminals I1 and I2 from the RWAMP / FIFO 40, respectively.
  • the RWAMP / FIFO 40 includes a pull-up side partial circuit 40P and a pull-down side partial circuit 40N.
  • the pull-up side data signal DATA_P and the pull-down side data signal DATA_N are generated by the pull-up side partial circuit 40P and the pull-down side partial circuit 40N, respectively.
  • FIG. 3 only the final stage circuit of the read data DQ output is shown for each of the pull-up side partial circuit 40P and the pull-down side partial circuit 40N.
  • the pull-up side partial circuit 40P is a circuit that receives parallel read data (odd data DATA_O and even data DATA_E) from a pre-stage circuit (not shown), converts it into a serial pull-up side data signal DATA_P, and outputs it.
  • the pull-up side partial circuit 40P is configured to have D-type flip-flop circuits 40Pa to 40Pc as shown in FIG. Odd data DATA_O and even data DATA_E are input to the data input terminals D of the flip-flop circuits 40Pa and 40Pb, respectively.
  • the data input terminal D of the flip-flop circuit 40Pc is connected to the data output terminal Q of the flip-flop circuit 40Pa.
  • the data output terminals Q of the flip-flop circuits 40Pb and 40Pc are commonly connected to the output terminal of the pull-up side partial circuit 40P.
  • the internal clock signal LCLK is supplied from the phase adjustment circuit 22 shown in FIG. 1 to the clock input terminals of the flip-flop circuits 40Pa and 40Pb.
  • an inverted signal of the internal clock signal LCLK is supplied to the clock input terminal of the flip-flop circuit 40Pa.
  • Each of the flip-flop circuits 40Pa to 40Pc has a function of holding the data output terminal Q depending on the state of the data input terminal D when the signal supplied to the clock input terminal changes from low to high.
  • the odd data DATA_O and the even data DATA_E are alternately output from the output terminal of the pull-up side partial circuit 40P every half clock cycle of the internal clock signal LCLK.
  • the flip-flop circuits 40Pa to 40Pc have a function of performing parallel-serial conversion, and by this function, the pull-up side partial circuit 40P uses the serial pull-up side from the parallel odd data DATA_O and even data DATA_E.
  • a data signal DATA_P is generated.
  • Each circuit in the pull-up side partial circuit 40P operates by the internal power supply voltage VPERI as shown in FIG. Therefore, the voltage level of the pull-up side data signal DATA_P output from the pull-up side partial circuit 40P is the internal power supply voltage VPERI.
  • the pull-down side partial circuit 40N is a circuit that receives parallel read data (odd data DATA_O and even data DATA_E) from a pre-stage circuit (not shown), converts it into a serial pull-down data signal DATA_N, and outputs it.
  • the pull-down side partial circuit 40N is configured to have D-type flip-flop circuits 40Na to 40Nc as shown in FIG. Since these operations are the same as those of the flip-flop circuits 40Pa to 40Pc in the pull-up side partial circuit 40P, detailed description thereof is omitted.
  • the pull-down side partial circuit 40N generates a serial pull-down side data signal DATA_N from the parallel odd data DATA_O and even data DATA_E.
  • the voltage level of the pull-down side data signal DATA_N is also the internal power supply voltage VPERI, similarly to the pull-up side data signal DATA_P.
  • the pull-down side partial circuit 40N is the same as the pull-up side partial circuit 40P, a circuit configuration in which one of them is deleted and both DATA_P and DATA_N are connected to the remaining circuit is also possible.
  • the P output units 54P1 to 54P7 and the N output units 54N1 to 54N7 are grouped into three groups G0 to G2.
  • the group G0 includes a plurality of and the same number of P output units and N output units.
  • Each of the groups G1 and G2 includes at least one and the same number of P output units and N output units.
  • P output units 54P1 to 54P4 (first output unit) and N output units 54N1 to 54N4 (third output unit) belong to the group G0
  • the P output unit 54P5 belongs to the group G1.
  • 54P6 (second output unit) and N output units 54N5, 54N6 (fourth output unit) belong to group G2
  • P output unit 54P7 and N output unit 54N7 belong to group G2.
  • the P output units 54P1 to 54P4 belonging to the group G0 are commonly connected to the selection circuit 52P (first selection circuit).
  • the selection circuit 52P is supplied with the pull-up side data signal DATA_P from the pull-up side partial circuit 40P via the level shift circuit 51PA (first level shift circuit), and on-die termination is enabled from the activation circuit 56 described later.
  • a unit selection signal MRSODT_A is supplied.
  • the N output units 54N1 to 54N4 belonging to the group G0 are commonly connected to the selection circuit 52N (third selection circuit).
  • the selection circuit 52N is supplied with the pull-down data signal DATA_N from the pull-down side partial circuit 40N via the level shift circuit 51NA, and also with the on-die termination enabling unit selection signal MRSODT_A from the activation circuit 56.
  • the P output units 54P5 and 54P6 belonging to the group G1 are commonly connected to the selection circuit 53PA (second selection circuit).
  • the selection circuit 53PA is supplied with the pull-up side data signal DATA_P from the pull-up side partial circuit 40P through the delay circuit 50PA (first delay circuit) and the level shift circuit 51PB (second level shift circuit).
  • the output data output unit selection signal MRSRon_A and the on-die termination enabling unit selection signal MRSODT_B are supplied.
  • the N output units 54N5 and 54N6 belonging to the group G1 are commonly connected to the selection circuit 53NA (fourth selection circuit).
  • the selection circuit 53NA is supplied with the pull-down side data signal DATA_N from the pull-down side partial circuit 40N via the delay circuit 50NA (second delay circuit) and the level shift circuit 51NB, as well as the output data output unit selection signal MRSRon_A and the on-die.
  • a termination enabling unit selection signal MRSODT_B is supplied.
  • the P output unit 54P7 belonging to the group G2 is connected to the selection circuit 53PB.
  • the selection circuit 53PB is supplied with the pull-up side data signal DATA_P from the pull-up side partial circuit 40P via the delay circuit 50PB and the level shift circuit 51PC, as well as the output data output unit selection signal MRSRon_B and the on-die termination enabling unit selection.
  • a signal MRSODT_C is supplied.
  • the N output unit 54N7 belonging to the group G2 is connected to the selection circuit 53NB.
  • the selection circuit 53NB is supplied with the pull-down side data signal DATA_N from the pull-down side partial circuit 40N via the delay circuit 50NB and the level shift circuit 51NC, as well as the output data output unit selection signal MRSRon_B and the on-die termination enabling unit selection signal MRSODT_C. Is supplied.
  • Delay circuits 50PA, 50PB, 50NA, and 50NB are circuits that delay the timing of supplying output data to the corresponding selection circuit.
  • the delay circuits 50PA and 50PB are respectively supplied with the pull-up side data signal DATA_P from the pull-up side partial circuit 40P, delayed by a predetermined time, and then output to the corresponding selection circuits 53PA and 53PB. Configured to do.
  • the delay circuits 50NA and 50NB are configured to receive the pull-down side data signal DATA_N from the pull-down side partial circuit 40N, delay them for a predetermined time, and then output them to the corresponding selection circuits 53NA and 53NB, respectively. .
  • FIG. 4 is a diagram showing an internal circuit of the delay circuit 50PA.
  • the other delay circuits 50PB, 50NA and 50NB also have similar internal circuits.
  • each delay circuit has a configuration in which a plurality of buffers that operate using the internal power supply voltage VPERI as an operation power supply are connected in series.
  • the output circuit 41 has a power supply terminal D2 (second power supply terminal) that receives the supply of the internal power supply voltage VPERI from the internal power supply generation circuit 43, and the internal power supply voltage is connected to each delay circuit via the power supply terminal D2.
  • VPERI is supplied. Since the operating power supply of each buffer is the internal power supply voltage VPERI, the voltage level of the signal output from the delay circuits 50PA, 50PB, 50NA, and 50NB is also the internal power supply voltage VPERI.
  • the delay amount of each delay circuit is determined by the number of connected buffers and the specific value of the internal power supply voltage VPERI.
  • the internal power supply voltage VPERI is a voltage having a constant voltage value that does not depend on external factors such as fluctuations in the external power supply voltages VDD and VSS and temperature changes. Therefore, the fluctuation of the delay amount due to the fluctuation of the internal power supply voltage VPERI is suppressed to a level that can be ignored.
  • the specific delay amount of each delay circuit is such that the delay amount of the delay circuit 50PA and the delay amount of the delay circuit 50NA, the delay amount of the delay circuit 50PB and the delay amount of the delay circuit 50NB are equal, and the delay circuit 50PB, It is preferable to determine such that the delay amount of 50 NB is larger than the delay amounts of the delay circuits 50PA and 50NA.
  • Level shift circuits 51PA to 51PC and 51NA to 51NC are circuits for changing the voltage level of input data from the internal power supply voltage VPERI to the external power supply voltage VDD.
  • the voltage level of the pull-up side data signal DATA_P and the pull-down side data signal DATA_N is the internal power supply voltage VPERI.
  • Each delay circuit is also configured to operate using the internal power supply voltage VPERI as an operation power supply.
  • each selection circuit is configured to operate using the external power supply voltage VDD as an operation power supply.
  • the output data output unit selection signal MRSRon_A is a high active signal that is activated to a high level when a read operation is performed using an output unit belonging to the group G1.
  • the output data output unit selection signal MRSRon_B is a high active signal that is activated to a high level when a read operation is performed using an output unit belonging to the group G2.
  • the output data output unit selection signals MRSRon_A and B are supplied to the corresponding selection circuit via the level shift circuit 55, respectively.
  • the level shift circuit 55 is a circuit that changes the voltage level of the input data from the internal power supply voltage VPERI to the external power supply voltage VDD, like the level shift circuit 51PA described above.
  • the on-die termination enabling unit selection signal MRSODT_A is a high-active signal that is activated to a high level when an output unit belonging to the group G0 is used when enabling on-die termination.
  • the on-die termination enabling unit selection signal MRSODT_B is a high-active signal that is activated to a high level when using an output unit belonging to the group G1 when enabling on-die termination.
  • the on-die termination enabling unit selection signal MRSODT_C is a high-active signal that is activated to a high level when an output unit belonging to the group G2 is used when enabling on-die termination.
  • the on-die termination enabling unit selection signals MRSODT_A, B, and C are supplied to the corresponding selection circuits via the activation circuit 56 and the level shift circuit 55, respectively.
  • the function of the level shift circuit 55 is as described above.
  • the activation circuit 56 is a circuit that outputs the on-die termination enabling unit selection signals MRSODT_A, B, and C only when the above-described on-die termination command ODT is activated. Therefore, from the viewpoint of the selection circuit, that the on-die termination enabling unit selection signals MRSODT_A, B, and C that are input are activated means that the on-die termination command ODT is also activated. That is, from the viewpoint of the selection circuit, the on-die termination enabling unit selection signals MRSODT_A, B, and C are activated when the on-die termination is enabled using the output units belonging to the corresponding group, and are deactivated in other cases. It can be said that this is a signal.
  • the selection circuit 52P is a circuit that drives the P output units 54P1 to 54P4 belonging to the group G0 at a common timing.
  • the selection circuit 52P during the read operation is configured to drive the P output units 54P1 to 54P4 in response to the supply of the pull-up side data signal DATA_P from the pull-up side partial circuit 40P.
  • the selection circuit 52P when the on-die termination is valid is configured to drive the P output units 54P1 to 54P4 in response to the activation of the on-die termination validation unit selection signal MRSODT_A supplied from the activation circuit 56. Is done.
  • FIG. 5A is a diagram showing an internal configuration of each of the selection circuit 52P and the P output unit 54P1.
  • FIG. 5B is a table showing the state of each signal shown in FIG. Although not shown in these drawings, the P output units 54P2 to 54P4 are the same as the P output unit 54P1.
  • the output signal P0 (first control signal) of the selection circuit 52P is activated when the output target read data DQ is at a high level (the pull-up side data signal DATA_P is activated at a high level). Activated) or when the on-die termination function of group G0 is enabled (when the on-die termination enabling unit selection signal MRSODT_A is activated to high level). This is a low active signal.
  • the specific output signal P0 is a logical product signal of an inverted signal of the pull-up side data signal DATA_P and an inverted signal of the on-die termination enabling unit selection signal MRSODT_A.
  • the output signal P0 is supplied from the selection circuit 52P to the P output unit 54P1.
  • the output circuit 41 has a power supply terminal D1 (first power supply terminal) that receives a power supply voltage VDDQ supplied from the outside through the power supply terminal 17 shown in FIG. 1, and the P output unit 54P1 has the power supply terminal D1.
  • the Note that the notation ⁇ 4: 0> attached to the reference numeral of the transistor TP means that the configuration corresponding to the reference sign is composed of five parts from the 0th to the 4th. When it is necessary to represent each part individually, it is represented by adding a notation such as ⁇ 0> at the end of the code name.
  • the P output unit 54P1 is supplied with the pull-up impedance adjustment code ZQCODE_P ⁇ 4: 0> from the calibration circuit 44 shown in FIG.
  • the pull-up impedance adjustment codes ZQCODE_P ⁇ 4: 0> correspond to the transistors TP ⁇ 4: 0>, respectively, and become low level when the corresponding transistor is enabled, and are set to high level otherwise. It is an active signal.
  • the impedance of the P output unit 54P1 is the sum of the on-resistance combined resistance value of the transistor TP ⁇ 4: 0> enabled by the pull-up impedance adjustment code ZQCODE_P ⁇ 4: 0> and the resistance value of the resistor R. Equal to the sum. This means that the impedance of the P output unit 54P1 can be adjusted by the pull-up impedance adjustment code ZQCODE_P ⁇ 4: 0>.
  • the corresponding transistor TP ⁇ k> is turned on, and in the other cases, the corresponding transistor TP ⁇ k> is turned off.
  • a logical sum signal (fifth) of the output signal P0 and the corresponding pull-up impedance adjustment code ZQCODE_P ⁇ k> is applied to the gate electrode of the transistor TP ⁇ k>. Control signal).
  • the pull-up side data signal is provided on the condition that the transistor TP ⁇ k> is enabled by the corresponding pull-up impedance adjustment code ZQCODE_P ⁇ k>.
  • DATA_P is at a high level (when read data DQ to be output is at a high level) or when an on-die termination enabling unit selection signal MRSODT_A is at a high level (the on-die termination function of group G0 is enabled) Will be turned on.
  • the transistor TP ⁇ k> is turned off. Therefore, the operation of the selection circuit 52P during the above-described read operation and when the on-die termination is valid is realized.
  • the selection circuit 53PA is a circuit that drives the P output units 54P5 and 54P6 belonging to the group G1 at a common timing.
  • the selection circuit 53PA at the time of read operation is selected only when the output data output unit selection signal MRSRon_A is activated, at a timing different from that of the selection circuit 52P, more specifically by the delay amount of the delay circuit 50PA.
  • the P output units 54P5 and 54P6 are driven at a timing delayed from 52P.
  • the selection circuit 53PA when the on-die termination is valid is configured to drive the P output units 54P5 and 54P6 in response to the activation of the on-die termination enabling unit selection signal MRSODT_B supplied from the activation circuit 56. Is done.
  • FIG. 6A is a diagram showing an internal configuration of each of the selection circuit 53PA and the P output unit 54P5.
  • FIG. 6B is a table showing the state of each signal shown in FIG.
  • the P output unit 54P6 is the same as the P output unit 54P5.
  • the output signal P1 (second control signal) of the selection circuit 53PA is that the read data DQ to be output is at a high level (the pull-up side data signal DATA_P is activated to a high level).
  • the group G1 is selected (when the output data output unit selection signal MRSRon_A is activated to high level), or when the on-die termination function of the group G1 is enabled This is a low active signal that is activated to a low level (when the on-die termination enabling unit selection signal MRSODT_B is activated to a high level).
  • the specific output signal P1 includes a negative logical product signal of the pull-up side data signal DATA_P and the output data output unit selection signal MRSRon_A, and an inverted signal of the on-die termination enabling unit selection signal MRSODT_B. AND signal.
  • the output signal P1 is supplied from the selection circuit 53PA to the P output unit 54P5.
  • the configuration and operation of the P output unit 54P5 are the same as those of the P output unit 54P1 described with reference to FIGS. 5 (a) and 5 (b), detailed description thereof will be omitted.
  • the operation of the P output unit 54P5 the operation of the selection circuit 53PA during the above-described read operation and when the on-die termination is valid is realized.
  • the selection circuit 53PB is a circuit that drives the P output unit 54P7 belonging to the group G2. Only when the output data output unit selection signal MRSRon_B is activated, the selection circuit 53PB during the read operation has a timing different from that of the selection circuits 52P and 53PA, more specifically, by the delay amount of the delay circuit 50PB. The P output unit 54P7 is driven at a timing delayed from the selection circuit 52P. On the other hand, the selection circuit 53PB when the on-die termination is valid is configured to drive the P output unit 54P7 in response to the activation of the on-die termination enabling unit selection signal MRSODT_C supplied from the activation circuit 56. .
  • the specific configuration and operation of the selection circuit 53PB and the P output unit 54P7 are as follows. Instead of the output data output unit selection signal MRSRon_A and the on-die termination enabling unit selection signal MRSODT_B, the output data output unit selection signal MRSRon_B and the on-die termination enabling unit Except that the selection signal MRSODT_C is supplied, it is the same as that of the selection circuit 53PA and the P output unit 54P5 described with reference to FIGS. The operation of the selection circuit 53PB and the P output unit 54P7 realizes the operation of the selection circuit 53PB during the read operation and when the on-die termination is valid.
  • the selection circuit 52N is a circuit that drives the N output units 54N1 to 54N4 belonging to the group G0 at a common timing.
  • the selection circuit 52N during the read operation is configured to drive the N output units 54N1 to 54N4 in response to the supply of the pull-down side data signal DATA_N from the pull-down side partial circuit 40N.
  • the selection circuit 52N when the on-die termination is valid is configured to drive the N output units 54N1 to 54N4 in response to the activation of the on-die termination enabling unit selection signal MRSODT_A supplied from the activation circuit 56. Is done.
  • FIG. 7A is a diagram showing an internal configuration of each of the selection circuit 52N and the N output unit 54N1.
  • FIG. 7B is a table showing the state of each signal shown in FIG. Although not shown in these drawings, the N output units 54N2 to 54N4 are the same as the P output unit 54N1.
  • the output signal N0 (third control signal) of the selection circuit 52N is activated when the output target read data DQ is at the low level (the pull-down data signal DATA_N is activated at the high level.
  • the specific output signal N0 is a logical sum signal of the pull-down data signal DATA_N and the on-die termination enabling unit selection signal MRSODT_A as shown in FIG. 7A.
  • the output signal N0 is supplied from the selection circuit 52N to the N output unit 54N1.
  • the output circuit 41 has a power supply terminal D3 (third power supply terminal) that receives a power supply voltage VSSQ supplied from the outside through the power supply terminal 17 shown in FIG. 1, and the N output unit 54N1 has the power supply terminal D3. And five N-channel MOS transistors TN ⁇ 4: 0> connected in parallel between one end of the resistor R connected to the data input / output terminal 14 (DQ).
  • DQ data input / output terminal
  • the N output unit 54N1 is supplied with a pull-down impedance adjustment code ZQCODE_N ⁇ 4: 0> (second impedance adjustment code) from the calibration circuit 44 shown in FIG.
  • the pull-down impedance adjustment codes ZQCODE_N ⁇ 4: 0> correspond to the transistors TN ⁇ 4: 0>, respectively, and become high level when the corresponding transistor is enabled, and are set to low level otherwise. It is a serious signal.
  • the impedance of the N output unit 54N1 is the sum of the combined resistance value of the on-resistance and the resistance value of the resistor R of the transistor TN ⁇ 4: 0> enabled by the pull-down impedance adjustment code ZQCODE_N ⁇ 4: 0>. Is equal to This means that the impedance of the N output unit 54N1 can be adjusted by the pull-down impedance adjustment code ZQCODE_N ⁇ 4: 0>.
  • the corresponding transistor TN ⁇ k> is turned on, and in other cases, the corresponding transistor TP ⁇ k> is turned off.
  • the logical product signal of the output signal N0 and the corresponding pull-down impedance adjustment code ZQCODE_N ⁇ k> is supplied to the gate electrode of the transistor TN ⁇ k>. Composed.
  • the transistor TN ⁇ k> is enabled by the corresponding pull-down impedance adjustment code ZQCODE_N ⁇ k>.
  • ZQCODE_N pull-down impedance adjustment code
  • the transistor TN ⁇ k> is turned off. Therefore, the operation of the selection circuit 52N during the above-described read operation and when the on-die termination is valid is realized.
  • the N output unit 54N1 is used when the P output unit 54P1 is activated in response to the output signal P0 (the output signal P0 is low).
  • the P output unit 54P1 is inactivated in response to the output signal P0 (the output signal P0 is at the high level).
  • the output signal N0 is deactivated (the output signal N0 becomes low level).
  • the selection circuit 53NA is a circuit that drives the N output units 54N5 and 54N6 belonging to the group G1 at a common timing.
  • the selection circuit 53NA at the time of the read operation is selected only when the output data output unit selection signal MRSRon_A is activated, at a timing different from the selection circuit 52N, more specifically, by the delay amount of the delay circuit 50NA.
  • the N output units 54N5 and 54N6 are driven at a timing delayed from 52N.
  • the selection circuit 53NA when the on-die termination is valid is configured to drive the N output units 54N5 and 54N6 in response to the activation of the on-die termination enabling unit selection signal MRSODT_B supplied from the activation circuit 56. Is done.
  • FIG. 8A is a diagram showing the internal configuration of each of the selection circuit 53NA and the N output unit 54N5.
  • FIG. 8B is a table showing the state of each signal shown in FIG.
  • the N output unit 54P6 is the same as the N output unit 54N5.
  • the output signal N1 (fourth control signal) of the selection circuit 53NA is that the read data DQ to be output is at low level (the pull-down data signal DATA_N is activated to high level).
  • the group G1 is selected (when the output data output unit selection signal MRSRon_A is activated to high level), or when the on-die termination function of the group G1 is enabled ( This is a high active signal that is activated to a high level when the on-die termination enabling unit selection signal MRSODT_B is activated to a high level.
  • the specific output signal N1 is a logical sum signal of the logical product signal of the pull-down data signal DATA_N and the output data output unit selection signal MRSRon_A and the on-die termination enabling unit selection signal MRSODT_B. It is.
  • the output signal N1 is supplied from the selection circuit 53NA to the N output unit 54N5.
  • the configuration and operation of the N output unit 54N5 are the same as those of the N output unit 54N1 described with reference to FIGS. 7 (a) and 7 (b), detailed description thereof is omitted.
  • the operation of the N output unit 54N5 the operation of the selection circuit 53NA at the time of the above-described read operation and when the on-die termination is valid is realized.
  • the N output unit 54N5 is activated when the P output unit 54P5 is activated in response to the output signal P1 (the output signal P1 is low).
  • the output signal N1 is activated (the output signal N1 becomes high level) and the P output unit 54P5 is deactivated according to the output signal P1 (the output signal P1 is at high level).
  • the signal is deactivated according to the output signal N1 (the output signal N1 becomes low level).
  • the selection circuit 53NB is a circuit that drives the N output unit 54N7 belonging to the group G2. Only when the output data output unit selection signal MRSRon_B is activated, the selection circuit 53NB at the time of the read operation has a timing different from that of the selection circuits 52N and 53NA, more specifically, by the delay amount of the delay circuit 50NB. The N output unit 54N7 is driven at a timing delayed from the selection circuit 52P. On the other hand, the on-die termination valid selection circuit 53NB is configured to drive the N output unit 54N7 in response to activation of the on-die termination validation unit selection signal MRSODT_C supplied from the activation circuit 56. .
  • the specific configuration and operation of the selection circuit 53NB and the N output unit 54N7 are as follows. Instead of the output data output unit selection signal MRSRon_A and the on-die termination enabling unit selection signal MRSODT_B, the output data output unit selection signal MRSRon_B and the on-die termination enabling unit Except for the point that the selection signal MRSODT_C is supplied, it is the same as that of the selection circuit 53NA and the N output unit 54N5 described with reference to FIGS. The operation of the selection circuit 53NB and the N output unit 54N7 realizes the operation of the selection circuit 53NB during the above-described read operation and when on-die termination is enabled.
  • a plurality of output units are divided into three groups G0 to G2, and the group G0 includes four output units on each of the pull-up side and the pull-down side.
  • the group G1 includes two output units on each of the pull-up side and the pull-down side
  • the group G2 includes one output unit on each of the pull-up side and the pull-down side.
  • the four P output units 54P1 to 54P4 included in the group G0 are driven at a common timing and at a timing different from that of the group G0.
  • the three P output units 54P5 to 54P7 included in the groups G1 and G2 are driven.
  • the semiconductor device 1 As a result, in the semiconductor device 1 according to the present embodiment, not all seven P output units are driven at the same time. Deterioration can be reduced. On the other hand, since four P output units are driven simultaneously, an effect of improving signal integrity by simultaneously driving a plurality of P output units can be obtained. Therefore, it is possible to maintain good signal integrity of the read data DQ output from the data input / output terminal 14 while being affected by crosstalk between wirings in the package. The same applies to the output of the low level read data DQ.
  • FIG. 9 is a diagram showing a detailed configuration of the output circuit 41 and its peripheral circuits of the semiconductor device according to the first modification of the present embodiment.
  • the semiconductor device according to the present modification is different from the semiconductor device 1 according to the above-described embodiment in that the delay circuits 50PB and 50NB and the level shift circuits 51PC and 51NC are not provided, and otherwise the semiconductor device 1 according to the above-described embodiment. Are the same. Below, it demonstrates paying attention to a difference.
  • the pull-up data signal DATA_P is supplied from the level shift circuit 51PB to the selection circuit 53PB.
  • the pull-down data signal DATA_N is supplied from the level shift circuit 51NB to the selection circuit 53NB. Therefore, the delay amounts of the pull-up data signals DATA_P supplied to the selection circuits 53PA and 53PB are the same, and the delay amounts of the pull-down data signals DATA_N supplied to the selection circuits 53NA and 53NB are also the same. It is.
  • the drive timings of the groups G1 and G2 are the same as each other. However, since at least the group G0 and the groups G1 and G2 can output at different drive timings, the package as in the above embodiment.
  • the signal integrity of the read data DQ output from the data input / output terminal 14 can be kept good while being affected by the crosstalk between the wirings.
  • FIG. 10 is a diagram showing a detailed configuration of the output circuit 41 and its peripheral circuits of the semiconductor device according to the second modification of the present embodiment.
  • the operation power supplies of the selection circuits 52P, 53PA, 53PB, 52N, 53NA, and 53NB are all set to the internal power supply voltage VPERI, and the level shift circuit moves between the selection circuit and the output unit.
  • the level shift circuit 55 is not provided in the supply path of the output data output unit selection signals MRSRon_A, B and the on-die termination enabling unit selection signals MRSODT_A, B, C.
  • the semiconductor device 1 is different from the semiconductor device 1 according to the embodiment, and is otherwise the same as the semiconductor device 1 according to the above embodiment.
  • the voltage levels of the output signals P0 to P2 and N0 to N2 of the selection circuits are the internal power supply voltage VPERI.
  • the level shift circuits 51PA to 51PC and 51NA to 51NC have a role of changing the voltage level of the output signal of the corresponding selection circuit from the internal power supply voltage VPERI to the external power supply voltage VDD. Even in this case, the signal integrity of the read data DQ output from the data input / output terminal 14 can be kept good while being affected by the crosstalk between the wirings in the package as in the above embodiment. It becomes possible.
  • three groups G0 to G2 are provided, but the number of groups may be two, or may be four or more.
  • the number of groups may be two, or may be four or more.
  • the design value of the impedance of each output unit is 240 ⁇ , but the present invention can also be suitably applied to a semiconductor device using an output unit whose design value is not 240 ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Dram (AREA)

Abstract

【課題】パッケージ内での配線間のクロストークの影響を受けつつも、出力データのシグナルインテグリティを良好に保つ。 【解決手段】第1の電源端子と、データ入出力端子14と、第1の電源端子及びデータ入出力端子14の間に互いに並列に接続され、其々が出力信号P0に対応してデータ入出力端子14をドライブする複数のP出力ユニット54P1~54P4と、第1の電源端子及びデータ入出力端子14の間に互いに並列に接続され、其々が出力信号P1に対応してデータ入出力端子14をドライブする複数のP出力ユニット54P5,54P6と、プルアップ側データ信号DATA_Pに対応して出力信号P0,P1を出力するプルアップ側出力回路41Pとを備え、プルアップ側出力回路41Pは、出力信号P0,P1を互いに異なるタイミングで出力することを特徴とする。

Description

半導体装置
 本発明は半導体装置に関し、特に、複数の出力ユニット(単位バッファ)が1つの出力端子に対して並列に接続された構成を有する出力回路を備える半導体装置に関する。
 DRAM(Dynamic Random Access Memory)などの半導体装置には、複数の出力ユニットが1つの出力端子に対して並列に接続された構成を有する出力回路を備えるものがある(例えば特許文献1を参照)。このような出力回路はインピーダンスを可変にするために採用されるもので、例えば各出力ユニットがそれぞれ240Ωのインピーダンスを有する場合、出力回路のインピーダンスは、出力ユニットを1台だけ駆動すれば240Ω、2台駆動すれば240/2=120Ω、3台駆動すれば240/3=80Ω、4台駆動すれば240/4=60Ω、5台駆動すれば240/5=48Ω、などのように出力ユニットの駆動台数に応じて決まる値となる。したがって、出力ユニットの駆動台数を適宜変更することにより、出力回路のインピーダンスを変更することが可能となる。
米国特許出願公開第2012-0119578号明細書
 ところで従来、複数の出力ユニットを駆動する必要がある場合には、駆動対象の複数の出力ユニットを「同時に」駆動するようにしている。こうすることで各出力ユニットの出力が同時に変化するようになることから、出力信号のスルーレートが向上し、高いシグナルインテグリティが得られるようになると、従来考えられていたためである。
 ところが、実際にシグナルインテグリティを測定してみると、駆動対象の複数の出力ユニットを「同時に」駆動しても、必ずしも高いシグナルインテグリティを得られるとは限らないことが判明した。その理由について様々な角度から検討を行ったところ、パッケージ内の配線間のクロストークによるものである可能性が高いことが判明した。以下、詳しく説明する。
 半導体装置は一般に、パッケージ内に半導体チップが封入された構造を有している。半導体チップの端子とパッケージの端子とは、パッケージ内に設けられた配線によって相互に接続される。半導体チップは多数の端子を有していることから、パッケージ内は多数の配線が狭い間隔で密集した状態となっており、隣接する配線の間で大きな相互インダクタンスが発生している。
 半導体チップの出力端子から出力信号を出力すると、この出力信号は、パッケージ内の配線を通過してパッケージの出力端子に至り、そこから外部に出力されることになる。出力信号がパッケージ内の配線を通過する際には、上述した相互インダクタンスにより、隣接する他の配線との間でクロストークが発生する。クロストークの大きさは相互インダクタンス及び電流の時間変化量(dI/dt)に比例するので、電流の時間変化量(dI/dt)が大きいほどクロストークが大きくなり、そのために出力信号のシグナルインテグリティが悪化する。
 ここで、上述したように複数の出力ユニットを同時に駆動する場合、駆動数が多いほど出力データの立ち上がり又は立ち下がりが速くなる。このため、一見すると、駆動数が多いほど出力データのスルーレートが大きくなり、シグナルインテグリティが向上するようにも思える。しかしながら、立ち上がり又は立ち下がりが速いということは電流の時間変化量が大きいということを意味し、これは上述したように、配線間のクローストークが大きくなることを意味する。
 このように、複数の出力ユニットを「同時に」駆動することには、スルーレートが向上するというメリットがある一方で、配線間のクローストークが増大するというデメリットがある。このデメリットが、駆動対象の複数の出力ユニットを「同時に」駆動しても、必ずしも高いシグナルインテグリティを得られるとは限らない理由になっていると考えられる。
 近年、半導体チップの小型化に伴ってパッケージ内の配線が長くなる傾向にある。配線の隣接区間が長くなると相互インダクタンスが大きくなるため、上記のような配線間のクローストークによるシグナルインテグリティの低下が、近年ますます顕著になりつつある。したがって、その影響を受けつつも、出力信号のシグナルインテグリティを良好に保てるようにする技術が求められている。
 本発明の一側面による半導体装置は、第1の電源端子と、出力端子と、前記第1の電源端子及び前記出力端子の間に互いに並列に接続され、其々が第1の制御信号に対応して前記出力端子をドライブする複数の第1出力ユニットと、前記第1の電源端子及び前記出力端子の間に互いに並列に接続され、其々が第2の制御信号に対応して前記出力端子をドライブする複数の第2出力ユニットと、内部データ信号に対応して前記第1及び第2の制御信号を出力する制御回路とを備え、前記制御回路は、前記第1及び第2の制御信号を互いに異なるタイミングで出力することを特徴とする。
 本発明によれば、複数の第1出力ユニットが1つのグループを構成し、複数の第2出力ユニットが他の1つのグループを構成する。そして、同一のグループに属する複数の出力ユニットを共通のタイミングで駆動しつつ、グループ間では駆動タイミングを異ならせているので、複数の出力ユニットを同時に駆動することによるシグナルインテグリティ向上の効果を生かしつつ、出力端子に接続されるパッケージ内配線間のクロストークによるシグナルインテグリティの悪化を軽減できる。したがって、パッケージ内での配線間のクロストークの影響を受けつつも、出力データのシグナルインテグリティを良好に保つことが可能になる。
本発明の好ましい実施の形態による半導体装置1の全体構成を示すブロック図である。 図1に示した内部電源発生回路43に含まれる内部電源電圧VPERIの生成回路を示す図である。 図1に示した出力回路41及びその周辺回路の詳しい構成を示す図である。 図3に示した遅延回路50PAの内部回路を示す図である。 (a)は、図3に示した選択回路52P及びP出力ユニット54P1それぞれの内部構成を示す図である。(b)は、(a)に示した各信号の状態を示す表である。 (a)は、図3に示した選択回路53PA及びP出力ユニット54P5それぞれの内部構成を示す図である。(b)は、(a)に示した各信号の状態を示す表である。 (a)は、図3に示した選択回路52N及びN出力ユニット54N1それぞれの内部構成を示す図である。(b)は、(a)に示した各信号の状態を示す表である。 (a)は、図3に示した選択回路53NA及びN出力ユニット54N5それぞれの内部構成を示す図である。(b)は、(a)に示した各信号の状態を示す表である。 本発明の好ましい実施の形態の第1の変形例による半導体装置の出力回路41及びその周辺回路の詳しい構成を示す図である。 本発明の好ましい実施の形態の第2の変形例による半導体装置の出力回路41及びその周辺回路の詳しい構成を示す図である。
 以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
 図1は、本発明の好ましい実施の形態による半導体装置1の全体構成を示すブロック図である。半導体装置1はシンクロナスDRAMの半導体チップであり、同図に示すように、外部端子として、クロック端子10,11、コマンド端子12、アドレス端子13、データ入出力端子14、キャリブレーション端子15、及び電源端子16,17を備えている。図示していないが、半導体装置1は、これらの端子それぞれに対応する端子を有するパッケージの内部に封入されており、半導体装置1の端子と、対応するパッケージの端子とは、パッケージ内に設けられた配線によって相互に接続される。
 クロック端子10,11はそれぞれ外部クロック信号CK,/CKが供給される端子である。供給された外部クロック信号CK,/CKは、クロック入力回路21を介して位相調整回路22及びタイミングジェネレータ23に供給される。本明細書において信号名の先頭に「/」が付されている信号は、対応する信号の反転信号又はローアクティブな信号であることを意味する。したがって、クロック信号CK,/CKは互いに相補の信号である。位相調整回路22は、クロック入力回路21の出力を受けて内部クロック信号LCLKを生成する機能を有し、生成された内部クロック信号LCLKは出力回路41に供給される。タイミングジェネレータ23は、クロック入力回路21の出力に基づいて別の内部クロック信号を生成し、他の内部回路に供給する回路である。
 コマンド端子12は、それぞれロウアドレスストローブ信号/RAS、カラムアドレスストローブ信号/CAS、ライトイネーブル信号/WE、オンダイターミネーション信号ODTなどが供給される複数の端子によって構成される。これらのコマンド信号は、コマンド入力回路24を介して、コマンドデコーダ25に供給される。コマンドデコーダ25は、コマンド信号の保持、デコード及びカウントなどを行うことによって、各種内部コマンドを生成する回路である。コマンドデコーダ25で生成される内部コマンドには、オンダイターミネーションコマンドODT及びキャリブレーション制御コマンドZQ_comが含まれる。これらはそれぞれ、出力回路41及びキャリブレーション回路44に供給される。
 アドレス端子13は、複数ビットからなるアドレス信号ADDの各ビットがそれぞれ供給される複数の端子によって構成される。アドレス端子13に供給されたアドレス信号ADDは、アドレス入力回路26を介して、アドレスラッチ回路27に供給される。アドレスラッチ回路27は、アドレス信号ADDをラッチする回路である。
 アドレス信号ADDは、通常、メモリセルアレイ34内の1又は複数のメモリセルを特定する信号である。図示していないが、メモリセルアレイ34においては、複数のワード線と複数のビット線が交差しており、その交点にはメモリセルが配置されている。アドレス信号ADDは、ワード線を特定するロウアドレスと、ビット線を特定するカラムアドレスとを含んで構成される。アドレスラッチ回路27にラッチされたアドレス信号ADDのうち、ロウアドレスについてはロウデコーダ33に供給され、カラムアドレスについてはカラムデコーダ32に供給される。
 一方、モードレジスタセットモードにエントリーしている場合のアドレス信号ADDは、モードレジスタ30に供給される。モードレジスタ30に設定される情報には、リードデータ出力時の出力回路41のインピーダンスを示す情報と、オンダイターミネーション有効時の出力回路41のインピーダンスを示す情報とが含まれる。前者は出力データ出力ユニット選択信号MRSRon_A,Bとして、後者はオンダイターミネーション有効化ユニット選択信号MRSODT_A,B,Cとして、それぞれ出力回路41に供給される。
 ロウデコーダ33は、メモリセルアレイ34に含まれる複数のワード線のうち、ロウアドレスに対応するワード線を選択する回路である。一方、カラムデコーダ32は、メモリセルアレイ34に含まれる複数のビット線のうち、カラムアドレスに対応するビット線を選択する回路である。カラムデコーダ32によって選択されたビット線は、図示しないセンスアンプを介してRWAMP(リードライトアンプ)/FIFO(先入れ先出し)40に接続される。
 データ入出力端子14(出力端子)は、それぞれ出力回路41に接続された複数の端子を含んで構成される。これら複数の端子はリードデータDQの出力及びライトデータDQの入力受付を行うための端子であり、それぞれ入力回路にも接続されるが、図1では入力回路の図示を省略している。また、データ入出力端子14には、入出力のタイミングを規定するためのデータストローブ信号DQS,/DQSの入力を受け付けるデータストローブ端子も含まれる。出力回路41は、RWAMP/FIFO40を介してメモリセルアレイ34に接続される。
 リード動作を行う場合、メモリセルアレイ34からRWAMP/FIFO40にプリフェッチされた複数のリードデータDQ(内部データ信号)が、プルアップ側データ信号DATA_P及びプルダウン側データ信号DATA_Nとして出力回路41に供給される。なお、プルアップ側データ信号DATA_Pは、リードデータDQがハイレベルである場合に活性化され、それ以外の場合に非活性とされるハイアクティブな信号である。一方、プルダウン側データ信号DATA_Nは、リードデータDQがローレベルである場合に活性化され、それ以外の場合に非活性とされるハイアクティブな信号である。出力回路41は、供給されたデータを、データ入出力端子14を通じて外部に出力する回路である。
 詳しくは後述するが、出力回路41は、それぞれ240Ωのインピーダンスを有する複数の出力ユニット(単位バッファ)を、データ入出力端子14ごとに有して構成される。1つのデータ入出力端子14に着目して詳しく説明すると、プルアップ側及びプルダウン側のそれぞれについて、7個ずつ出力ユニットが設けられる。なお、以下で特に区別する必要がある場合には、プルアップ側の出力ユニットをP出力ユニットと称し、プルダウン側の出力ユニットをN出力ユニットと称する場合がある。7個のP出力ユニット及び7個のN出力ユニットからなる計14個の出力ユニットは、出力回路41の内部において、後述する3つのグループG0~G2(図3)に分けられている。グループG0は、各4個のP出力ユニット及びN出力ユニットから構成される。グループG1は、各2個のP出力ユニット及びN出力ユニットから構成される。グループG2は、各1個のP出力ユニット及びN出力ユニットから構成される。
 リード動作に関しては、3つのグループG0~G2のうちのグループG1,G2に限り、上述した出力データ出力ユニット選択信号MRSRon_A,Bによって、他のグループから独立して、活性状態を制御可能に構成される。そして、リードデータDQの出力には活性状態にあるグループに属する出力ユニットのみが用いられ、これにより、出力回路41はインピーダンス可変とされている。具体的な例を挙げると、グループG1,G2がいずれも非活性であり、グループG0のみを用いてリードデータDQを出力する場合、出力回路41のインピーダンスは240/4=60Ωとなる。また、グループG2が非活性であり、グループG0,G1を用いてリードデータDQを出力する場合、出力回路41のインピーダンスは240/(4+2)=40Ωとなる。なお、もちろん、グループG0についても活性状態を制御可能に構成することも可能であるが、現在のDRAMの規格では出力回路41のRon/DDT(dynamicODT)にて必要とされるインピーダンスはグループG0,G1,G2の組み合わせにてすべて網羅されるため、上記のような構成としている。
 出力回路41は、オンダイターミネーション機能も有している。具体的には、上述したオンダイターミネーションコマンドODTが活性化されている場合に、一部又は全部の出力ユニットを接続状態とすることにより、外部からデータ入出力端子14に到来する信号が出力回路41で反射してノイズになることを防止する。オンダイターミネーション機能を活性化する場合に接続状態とする出力ユニットは、上述したオンダイターミネーション有効化ユニット選択信号MRSODT_A,B,Cによって選択される。この点についても、詳しくは後述する。
 キャリブレーション端子15は、キャリブレーション用の外部抵抗(不図示)が接続される端子であり、キャリブレーション回路44に接続されている。キャリブレーション回路44は、上述した出力回路41内の出力ユニットと同じ回路構成を有するレプリカバッファを有している。出力ユニット1個当たりのインピーダンスは上述したように240Ωと決められているが、チップ温度や電源電圧の変化等により若干変動する場合がある。キャリブレーション回路44は、この変動をキャンセルするためのプルアップインピーダンス調整コードZQCODE_P及びプルダウンインピーダンス調整コードZQCODE_Nを生成し、出力回路41に供給する機能を有する。プルアップインピーダンス調整コードZQCODE_P及びプルダウンインピーダンス調整コードZQCODE_Nを受けた出力回路41の動作については、後述する。
 キャリブレーション端子15に接続される図示しない外部抵抗は、出力ユニットのインピーダンスの設計値(240Ω)と同じインピーダンスをもった抵抗である。キャリブレーション回路44は、キャリブレーション制御コマンドZQ_comが活性化されている場合に、この外部抵抗の抵抗値とレプリカバッファのインピーダンスとを一致させる動作(キャリブレーション動作)を行うことによって、プルアップインピーダンス調整コードZQCODE_P及びプルダウンインピーダンス調整コードZQCODE_Nを生成する。
 電源端子16は、それぞれ外部電源電圧VDD及び外部電源電圧VSSが供給される2つの端子からなり、内部電源発生回路43に接続されている。内部電源発生回路43は、外部電源電圧VDD及び外部電源電圧VSSから、それぞれ外部電源電圧VDDとは電圧値の異なる内部電源電圧VPP,VOD,VARY,VPERIその他の各種内部電源電圧を生成する回路である。これらの内部電源電圧は、半導体装置1内の各回路へ供給され、動作電源として用いられる。特に内部電源電圧VPERIは、外部電源電圧VDDより低い電圧値を有し、図1に示すようにRWAMP/FIFO40及び出力回路41に供給される。また、内部電源発生回路43は、外部電源電圧VDD,VSSからキャリブレーション用の基準電圧ZQVREFを生成する機能も有している。基準電圧ZQVREFは、キャリブレーション回路44に供給され、キャリブレーション動作の際の電圧比較用に用いられる。
 図2は、内部電源発生回路43に含まれる内部電源電圧VPERIの生成回路を示す図である。同図に示すように、この回路は、オペアンプ43a、Pチャンネル型のMOSトランジスタ43b,43c、及び抵抗素子43dを有して構成される。トランジスタ43b,43cは、オン抵抗が互いに同じである一方、トランジスタ43cがトランジスタ43bより大きなトランジスタサイズを有するよう構成される。
 オペアンプ43aの非反転入力端子には、図示しない基準電圧生成回路から基準電圧VREFが供給される。なお、基準電圧生成回路は、外部電源電圧VDD,VSSの変動や温度変化などの外的要因に寄らずに一定の電圧を生成可能に構成された回路である。具体的には、バンドギャップ・リファレンス回路などを基準電圧生成回路として用いることが好適である。したがって、基準電圧VREFは、外部電源電圧VDD,VSSの変動や温度変化などの外的要因に寄らない一定の電圧値を有する電圧となっている。
 内部電源発生回路43は、この基準電圧VREFに基づいて内部電源電圧VPERIを生成するように構成される。具体的には、まずトランジスタ43bと抵抗素子43dが、外部電源電圧VDDが供給される電源配線と、外部電源電圧VSSが供給される電源配線との間に直列に接続される。オペアンプ43aの反転入力端子は、トランジスタ43bと抵抗素子43dの接続点に接続される。トランジスタ43cのソースは外部電源電圧VDDが供給される電源配線に接続され、ドレインは内部電源電圧VPERIの出力端となる。トランジスタ43b,43cそれぞれのゲート電極は、オペアンプ43aの出力端に共通に接続される。
 トランジスタ43bと抵抗素子43dの電圧は、オペアンプ43aの仮想短絡により、基準電圧VREFとなる。したがって、トランジスタ43bのソース-ドレイン間電圧はVDD-VREFに等しくなり、トランジスタ43bのゲート電極の電位(=オペアンプ43aの出力端の電位)はこのソース-ドレイン間電圧VDD-VREFに応じた値となる。これがトランジスタ43cのゲート電極にも供給されるので、トランジスタ43cのドレインの電位はVREFに等しくなり、これが内部電源電圧VPERIとして出力される。以上の構成により、内部電源電圧VPERIも、基準電圧VREFと同様、外部電源電圧VDD,VSSの変動や温度変化などの外的要因に寄らない一定の電圧値を有する電圧となっている。
 図1に戻る。電源端子17は、それぞれ外部電源電圧VDDQ及び外部電源電圧VSSQが供給される2つの端子からなり、出力回路41及び図示しない入力回路に接続されている。外部電源電圧VDDQ及び外部電源電圧VSSQの各電位は、それぞれ外部電源電圧VDD及び外部電源電圧VSSの各電位と等しい。外部電源電圧VDD及び外部電源電圧VSSとは別に外部電源電圧VDDQ及び外部電源電圧VSSQを供給しているのは、出力回路41等の動作によって生じた電源ノイズが他の回路に伝搬するのを防止するためである。
 次に、本実施の形態による出力回路41の構成について詳しく説明する。
 図3は、出力回路41及びその周辺回路の詳しい構成を示す図である。同図には1つのデータ入出力端子14に関連する部分のみを示しているが、他のデータ入出力端子14に関連する構成も同様である。
 図3に示すように、出力回路41は、7個のP出力ユニット54P1~54P7を有するプルアップ側出力回路41Pと、7個のN出力ユニット54N1~54N7を有するプルダウン側出力回路41Nとから構成される。P出力ユニット54P1~54P7及びN出力ユニット54N1~54N7は、図3に示すように、1つのデータ入出力端子14に対して並列に接続される。
 プルアップ側出力回路41P及びプルダウン側出力回路41Nは、それぞれ入力端子I1,I2(第1及び第2の入力端子)を有して構成される。これら入力端子I1,I2のには、RWAMP/FIFO40から、それぞれ上述したプルアップ側データ信号DATA_P及びプルダウン側データ信号DATA_Nが供給される。
 ここで、RWAMP/FIFO40の構成について簡単に説明する。図3に示すように、RWAMP/FIFO40は、プルアップ側部分回路40P及びプルダウン側部分回路40Nを含んで構成される。プルアップ側データ信号DATA_P及びプルダウン側データ信号DATA_Nは、それぞれプルアップ側部分回路40P及びプルダウン側部分回路40Nによって生成される。なお、図3では、プルアップ側部分回路40P及びプルダウン側部分回路40Nのそれぞれについて、リードデータDQ出力の最終段回路のみを示している。
 プルアップ側部分回路40Pは、図示しない前段回路からパラレルなリードデータ(オッドデータDATA_O及びイーブンデータDATA_E)を受け、シリアルなプルアップ側データ信号DATA_Pに変換して出力する回路である。
 具体的には、プルアップ側部分回路40Pは、図3に示すようにD型のフリップフロップ回路40Pa~40Pcを有して構成される。フリップフロップ回路40Pa,40Pbのデータ入力端子Dには、それぞれオッドデータDATA_O及びイーブンデータDATA_Eが入力される。また、フリップフロップ回路40Pcのデータ入力端子Dは、フリップフロップ回路40Paのデータ出力端子Qと接続される。フリップフロップ回路40Pb,40Pcのデータ出力端子Qは、プルアップ側部分回路40Pの出力端に共通に接続される。フリップフロップ回路40Pa,40Pbそれぞれのクロック入力端子には、図1に示した位相調整回路22から内部クロック信号LCLKが供給される。一方、フリップフロップ回路40Paのクロック入力端子には、内部クロック信号LCLKの反転信号が供給される。
 フリップフロップ回路40Pa~40Pcはそれぞれ、クロック入力端子に供給される信号がローからハイに変化したときのデータ入力端子Dの状態によりデータ出力端子Qを保持する機能を有している。これにより、プルアップ側部分回路40Pの出力端からは、内部クロック信号LCLKの半クロック周期ごとに、オッドデータDATA_OとイーブンデータDATA_Eとが交互に出力されることになる。つまり、フリップフロップ回路40Pa~40Pcはパラレル-シリアル変換を行う機能を有しており、この機能によって、プルアップ側部分回路40Pでは、パラレルなオッドデータDATA_O及びイーブンデータDATA_Eから、シリアルなプルアップ側データ信号DATA_Pが生成される。
 プルアップ側部分回路40P内の各回路は、図3にも示すように、内部電源電圧VPERIによって動作する。したがって、プルアップ側部分回路40Pから出力されるプルアップ側データ信号DATA_Pの電圧レベルは、内部電源電圧VPERIとなっている。
 次に、プルダウン側部分回路40Nは、図示しない前段回路からパラレルなリードデータ(オッドデータDATA_O及びイーブンデータDATA_E)を受け、シリアルなプルダウン側データ信号DATA_Nに変換して出力する回路である。
 具体的には、プルダウン側部分回路40Nは、図3に示すようにD型のフリップフロップ回路40Na~40Ncを有して構成される。これらの動作はプルアップ側部分回路40P内のフリップフロップ回路40Pa~40Pcと同様なので、詳しい説明は省略する。最終的に、プルダウン側部分回路40Nによって、パラレルなオッドデータDATA_O及びイーブンデータDATA_Eから、シリアルなプルダウン側データ信号DATA_Nが生成される。このプルダウン側データ信号DATA_Nの電圧レベルも、プルアップ側データ信号DATA_Pと同じく、内部電源電圧VPERIとなっている。
 ここで、プルダウン側部分回路40Nはプルアップ側部分回路40Pと同様であるので、いずれか一方を削除し、残した回路にDATA_P及びDATA_Nの両者を接続する回路構成も可能である。
 出力回路41の説明に戻る。上述したように、本実施の形態では、P出力ユニット54P1~54P7及びN出力ユニット54N1~54N7を、3つのグループG0~G2にグループ化する。グループG0には、それぞれ複数かつ互いに同数のP出力ユニット及びN出力ユニットが含まれる。また、グループG1,G2のそれぞれには、それぞれ少なくとも1つかつ互いに同数のP出力ユニット及びN出力ユニットが含まれる。
 図3に示した例では、グループG0には、P出力ユニット54P1~54P4(第1出力ユニット)及びN出力ユニット54N1~54N4(第3出力ユニット)が属し、グループG1には、P出力ユニット54P5,54P6(第2出力ユニット)及びN出力ユニット54N5,54N6(第4出力ユニット)が属し、グループG2には、P出力ユニット54P7及びN出力ユニット54N7が属すとしている。以下では、このグループ分けを前提として説明を進める。
 グループG0に属するP出力ユニット54P1~54P4は、選択回路52P(第1の選択回路)に共通に接続される。選択回路52Pには、レベルシフト回路51PA(第1のレベルシフト回路)を介してプルアップ側部分回路40Pからプルアップ側データ信号DATA_Pが供給される他、後述する活性化回路56からオンダイターミネーション有効化ユニット選択信号MRSODT_Aが供給される。
 一方、グループG0に属するN出力ユニット54N1~54N4は、選択回路52N(第3の選択回路)に共通に接続される。選択回路52Nには、レベルシフト回路51NAを介してプルダウン側部分回路40Nからプルダウン側データ信号DATA_Nが供給される他、活性化回路56からオンダイターミネーション有効化ユニット選択信号MRSODT_Aが供給される。
 また、グループG1に属するP出力ユニット54P5,54P6は、選択回路53PA(第2の選択回路)に共通に接続される。選択回路53PAには、遅延回路50PA(第1の遅延回路)及びレベルシフト回路51PB(第2のレベルシフト回路)を介してプルアップ側部分回路40Pからプルアップ側データ信号DATA_Pが供給される他、出力データ出力ユニット選択信号MRSRon_A及びオンダイターミネーション有効化ユニット選択信号MRSODT_Bが供給される。
 一方、グループG1に属するN出力ユニット54N5,54N6は、選択回路53NA(第4の選択回路)に共通に接続される。選択回路53NAには、遅延回路50NA(第2の遅延回路)及びレベルシフト回路51NBを介してプルダウン側部分回路40Nからプルダウン側データ信号DATA_Nが供給される他、出力データ出力ユニット選択信号MRSRon_A及びオンダイターミネーション有効化ユニット選択信号MRSODT_Bが供給される。
 さらに、グループG2に属するP出力ユニット54P7は、選択回路53PBに接続される。選択回路53PBには、遅延回路50PB及びレベルシフト回路51PCを介してプルアップ側部分回路40Pからプルアップ側データ信号DATA_Pが供給される他、出力データ出力ユニット選択信号MRSRon_B及びオンダイターミネーション有効化ユニット選択信号MRSODT_Cが供給される。
 一方、グループG2に属するN出力ユニット54N7は、選択回路53NBに接続される。選択回路53NBには、遅延回路50NB及びレベルシフト回路51NCを介してプルダウン側部分回路40Nからプルダウン側データ信号DATA_Nが供給される他、出力データ出力ユニット選択信号MRSRon_B及びオンダイターミネーション有効化ユニット選択信号MRSODT_Cが供給される。
 遅延回路50PA,50PB,50NA,50NBはそれぞれ、対応する選択回路に出力データを供給するタイミングを遅らせる回路である。具体的には、遅延回路50PA,50PBはそれぞれ、プルアップ側部分回路40Pからプルアップ側データ信号DATA_Pの供給を受け、所定時間遅延させたうえで、それぞれに対応する選択回路53PA,53PBに出力するよう構成される。また、遅延回路50NA,50NBはそれぞれ、プルダウン側部分回路40Nからプルダウン側データ信号DATA_Nの供給を受け、所定時間遅延させたうえで、それぞれに対応する選択回路53NA,53NBに出力するよう構成される。
 図4は、遅延回路50PAの内部回路を示す図である。図示していないが、他の遅延回路50PB,50NA,50NBも同様の内部回路を有している。同図に例示するように、各遅延回路はそれぞれ、内部電源電圧VPERIを動作電源として動作する複数のバッファが直列に接続された構成を有している。出力回路41は内部電源発生回路43から内部電源電圧VPERIの供給を受ける電源端子D2(第2の電源端子)を有しており、各遅延回路へは、この電源端子D2を介して内部電源電圧VPERIが供給される。各バッファの動作電源が内部電源電圧VPERIであることから、遅延回路50PA,50PB,50NA,50NBから出力される信号の電圧レベルも内部電源電圧VPERIとなる。
 図4に示す構成によれば、各遅延回路の遅延量は、バッファの接続台数と、内部電源電圧VPERIの具体的な値とによって決定されることになる。ただし、上述したように、内部電源電圧VPERIは、外部電源電圧VDD,VSSの変動や温度変化などの外的要因に寄らない一定の電圧値を有する電圧である。したがって、内部電源電圧VPERIの変動による遅延量の変動は、無視して構わないレベルに抑えられている。なお、各遅延回路の具体的な遅延量は、遅延回路50PAの遅延量と遅延回路50NAの遅延量、遅延回路50PBの遅延量と遅延回路50NBの遅延量がそれぞれ等しく、かつ、遅延回路50PB,50NBの遅延量が遅延回路50PA,50NAの遅延量より大きくなるように、決定することが好適である。
 レベルシフト回路51PA~51PC,51NA~51NCはそれぞれ、入力されたデータの電圧レベルを、内部電源電圧VPERIから外部電源電圧VDDに変化させる回路である。上述したように、プルアップ側データ信号DATA_P及びプルダウン側データ信号DATA_Nの電圧レベルは内部電源電圧VPERIである。また、各遅延回路も、内部電源電圧VPERIを動作電源として動作するよう構成される。これに対し、図3に示すように、各選択回路は、外部電源電圧VDDを動作電源として動作するよう構成される。また、各出力ユニットは、外部電源電圧VDDQ(=VDD)を動作電源として動作するよう構成される。したがって、プルアップ側データ信号DATA_P及びプルダウン側データ信号DATA_Nを各選択回路に供給する際には、その電圧レベルを外部電源電圧VDDに変換する必要がある。レベルシフト回路51PA~51PC,51NA~51NCは、この変換を行うために設けられている。
 次に、各選択回路及び各出力ユニットの具体的な構成について説明するが、その前に、出力データ出力ユニット選択信号MRSRon_A,B、及び、オンダイターミネーション有効化ユニット選択信号MRSODT_A,B,Cについて、説明する。
 まず出力データ出力ユニット選択信号MRSRon_Aは、グループG1に属する出力ユニットを用いてリード動作を行う場合に、ハイレベルに活性化するハイアクティブな信号である。また、出力データ出力ユニット選択信号MRSRon_Bは、グループG2に属する出力ユニットを用いてリード動作を行う場合に、ハイレベルに活性化するハイアクティブな信号である。出力データ出力ユニット選択信号MRSRon_A,Bはそれぞれ、レベルシフト回路55を介して、対応する選択回路に供給される。レベルシフト回路55は、上述したレベルシフト回路51PAなどと同様、入力されたデータの電圧レベルを、内部電源電圧VPERIから外部電源電圧VDDに変化させる回路である。
 次に、オンダイターミネーション有効化ユニット選択信号MRSODT_Aは、オンダイターミネーションを有効化する際にグループG0に属する出力ユニットを用いる場合に、ハイレベルに活性化するハイアクティブな信号である。また、オンダイターミネーション有効化ユニット選択信号MRSODT_Bは、オンダイターミネーションを有効化する際にグループG1に属する出力ユニットを用いる場合に、ハイレベルに活性化するハイアクティブな信号である。さらに、オンダイターミネーション有効化ユニット選択信号MRSODT_Cは、オンダイターミネーションを有効化する際にグループG2に属する出力ユニットを用いる場合に、ハイレベルに活性化するハイアクティブな信号である。オンダイターミネーション有効化ユニット選択信号MRSODT_A,B,Cはそれぞれ、活性化回路56及びレベルシフト回路55を介して、対応する選択回路に供給される。レベルシフト回路55の機能については、上述した通りである。
 活性化回路56は、上述したオンダイターミネーションコマンドODTが活性化されている場合に限り、オンダイターミネーション有効化ユニット選択信号MRSODT_A,B,Cを出力する回路である。したがって、選択回路から見れば、入力されるオンダイターミネーション有効化ユニット選択信号MRSODT_A,B,Cが活性化されているということは、オンダイターミネーションコマンドODTも活性化されているということを意味する。つまり、選択回路から見れば、オンダイターミネーション有効化ユニット選択信号MRSODT_A,B,Cはそれぞれ、対応するグループに属する出力ユニットを用いてオンダイターミネーションを有効化する場合に活性化し、その他の場合に非活性となる信号であると言える。
 さて、選択回路52Pは、グループG0に属するP出力ユニット54P1~54P4を共通のタイミングで駆動する回路である。リード動作時の選択回路52Pは、プルアップ側部分回路40Pからプルアップ側データ信号DATA_Pが供給されたことに応じて、P出力ユニット54P1~54P4を駆動するよう構成される。一方、オンダイターミネーション有効時の選択回路52Pは、活性化回路56から供給されるオンダイターミネーション有効化ユニット選択信号MRSODT_Aが活性化されていることに応じて、P出力ユニット54P1~54P4を駆動するよう構成される。
 図5(a)は、選択回路52P及びP出力ユニット54P1それぞれの内部構成を示す図である。また、図5(b)は、図5(a)に示した各信号の状態を示す表である。これらの図には示していないが、P出力ユニット54P2~54P4についてもP出力ユニット54P1と同様である。
 選択回路52Pの出力信号P0(第1の制御信号)は、図5(b)に示すように、出力対象のリードデータDQがハイレベルである場合(プルアップ側データ信号DATA_Pがハイレベルに活性化されている場合)、又は、グループG0のオンダイターミネーション機能が有効とされている場合(オンダイターミネーション有効化ユニット選択信号MRSODT_Aがハイレベルに活性化されている場合)にローレベルに活性化されるローアクティブな信号である。具体的な出力信号P0は、図5(a)に示すように、プルアップ側データ信号DATA_Pの反転信号とオンダイターミネーション有効化ユニット選択信号MRSODT_Aの反転信号との論理積信号である。出力信号P0は、選択回路52PからP出力ユニット54P1に供給される。
 出力回路41は、図1に示した電源端子17を通じて外部から供給される電源電圧VDDQを受ける電源端子D1(第1の電源端子)を有しており、P出力ユニット54P1は、この電源端子D1と、一端がデータ入出力端子14(DQ)に接続された抵抗Rの他端との間に並列に接続された5個のPチャンネル型MOSトランジスタTP<4:0>を有して構成される。なお、トランジスタTPの符号に付した<4:0>という表記は、その符号に対応する構成がそれぞれ0番目から4番目までの5個の部分によって構成されていることを意味する。各部分を個別に表す必要がある場合には、符号名の最後に<0>などの表記を付すことによって表す。
 P出力ユニット54P1には、出力信号P0の他に、図1に示したキャリブレーション回路44からプルアップインピーダンス調整コードZQCODE_P<4:0>が供給される。プルアップインピーダンス調整コードZQCODE_P<4:0>はそれぞれトランジスタTP<4:0>に対応しており、対応するトランジスタを有効化する場合にローレベルとなり、それ以外の場合にハイレベルとされるローアクティブな信号である。P出力ユニット54P1のインピーダンスは、トランジスタTP<4:0>のうちプルアップインピーダンス調整コードZQCODE_P<4:0>によって有効化されているもののオン抵抗の合成抵抗値と、抵抗Rの抵抗値との和に等しくなる。このことは、プルアップインピーダンス調整コードZQCODE_P<4:0>によってP出力ユニット54P1のインピーダンスを調整可能であることを意味している。
 P出力ユニット54P1は、図5(b)に示すように、それぞれローアクティブな信号である出力信号P0とプルアップインピーダンス調整コードZQCODE_P<k>(k=0~4)とがともに活性化されている場合(ローレベルとされている場合)に、対応するトランジスタTP<k>をオン状態とし、それ以外の場合に、対応するトランジスタTP<k>をオフ状態とするよう構成される。具体的には、図5(a)に示すように、トランジスタTP<k>のゲート電極に、出力信号P0と、対応するプルアップインピーダンス調整コードZQCODE_P<k>との論理和信号(第5の制御信号)が供給されるよう構成される。
 これにより、図5(b)からも理解されるように、トランジスタTP<k>は、対応するプルアップインピーダンス調整コードZQCODE_P<k>によって有効化されていることを条件として、プルアップ側データ信号DATA_Pがハイレベルである場合(出力対象のリードデータDQがハイレベルである場合)、又は、オンダイターミネーション有効化ユニット選択信号MRSODT_Aがハイレベルである場合(グループG0のオンダイターミネーション機能が有効とされている場合)にオンとされることになる。これら以外の場合には、トランジスタTP<k>はオフとされる。したがって、上述したリード動作時及びオンダイターミネーション有効時の選択回路52Pの動作が実現される。
 図3に戻る。選択回路53PAは、グループG1に属するP出力ユニット54P5,54P6を共通のタイミングで駆動する回路である。リード動作時の選択回路53PAは、出力データ出力ユニット選択信号MRSRon_Aが活性化されている場合に限り、選択回路52Pとは異なるタイミングで、より具体的には遅延回路50PAの遅延量分だけ選択回路52Pから遅れたタイミングで、P出力ユニット54P5,54P6を駆動するよう構成される。一方、オンダイターミネーション有効時の選択回路53PAは、活性化回路56から供給されるオンダイターミネーション有効化ユニット選択信号MRSODT_Bが活性化されていることに応じて、P出力ユニット54P5,54P6を駆動するよう構成される。
 図6(a)は、選択回路53PA及びP出力ユニット54P5それぞれの内部構成を示す図である。また、図6(b)は、図6(a)に示した各信号の状態を示す表である。これらの図には示していないが、P出力ユニット54P6についてもP出力ユニット54P5と同様である。
 選択回路53PAの出力信号P1(第2の制御信号)は、図6(b)に示すように、出力対象のリードデータDQがハイレベルであり(プルアップ側データ信号DATA_Pがハイレベルに活性化されており)、かつ、グループG1が選択されている場合(出力データ出力ユニット選択信号MRSRon_Aがハイレベルに活性化されている場合)、又は、グループG1のオンダイターミネーション機能が有効とされている場合(オンダイターミネーション有効化ユニット選択信号MRSODT_Bがハイレベルに活性化されている場合)にローレベルに活性化されるローアクティブな信号である。具体的な出力信号P1は、図6(a)に示すように、プルアップ側データ信号DATA_Pと出力データ出力ユニット選択信号MRSRon_Aの否定論理積信号と、オンダイターミネーション有効化ユニット選択信号MRSODT_Bの反転信号との論理積信号である。出力信号P1は、選択回路53PAからP出力ユニット54P5に供給される。
 P出力ユニット54P5の構成及び動作は、図5(a)(b)を参照して説明したP出力ユニット54P1のそれと同じであるので、詳しい説明は省略する。P出力ユニット54P5の動作により、上述したリード動作時及びオンダイターミネーション有効時の選択回路53PAの動作が実現される。
 図3に戻る。選択回路53PBは、グループG2に属するP出力ユニット54P7を駆動する回路である。リード動作時の選択回路53PBは、出力データ出力ユニット選択信号MRSRon_Bが活性化されている場合に限り、選択回路52P,53PAとは異なるタイミングで、より具体的には遅延回路50PBの遅延量分だけ選択回路52Pから遅れたタイミングで、P出力ユニット54P7を駆動するよう構成される。一方、オンダイターミネーション有効時の選択回路53PBは、活性化回路56から供給されるオンダイターミネーション有効化ユニット選択信号MRSODT_Cが活性化されていることに応じて、P出力ユニット54P7を駆動するよう構成される。
 選択回路53PB及びP出力ユニット54P7の具体的な構成及び動作は、出力データ出力ユニット選択信号MRSRon_A及びオンダイターミネーション有効化ユニット選択信号MRSODT_Bに代えて、出力データ出力ユニット選択信号MRSRon_B及びオンダイターミネーション有効化ユニット選択信号MRSODT_Cが供給される点を除き、図6(a)(b)を参照して説明した選択回路53PA及びP出力ユニット54P5のそれと同じであるので、詳しい説明は省略する。選択回路53PB及びP出力ユニット54P7の動作により、上述したリード動作時及びオンダイターミネーション有効時の選択回路53PBの動作が実現される。
 選択回路52Nは、グループG0に属するN出力ユニット54N1~54N4を共通のタイミングで駆動する回路である。リード動作時の選択回路52Nは、プルダウン側部分回路40Nからプルダウン側データ信号DATA_Nが供給されたことに応じて、N出力ユニット54N1~54N4を駆動するよう構成される。一方、オンダイターミネーション有効時の選択回路52Nは、活性化回路56から供給されるオンダイターミネーション有効化ユニット選択信号MRSODT_Aが活性化されていることに応じて、N出力ユニット54N1~54N4を駆動するよう構成される。
 図7(a)は、選択回路52N及びN出力ユニット54N1それぞれの内部構成を示す図である。また、図7(b)は、図7(a)に示した各信号の状態を示す表である。これらの図には示していないが、N出力ユニット54N2~54N4についてもP出力ユニット54N1と同様である。
 選択回路52Nの出力信号N0(第3の制御信号)は、図7(b)に示すように、出力対象のリードデータDQがローレベルである場合(プルダウン側データ信号DATA_Nがハイレベルに活性化されている場合)、又は、オンダイターミネーション機能が有効とされている場合(オンダイターミネーション有効化ユニット選択信号MRSODT_Aがハイレベルに活性化されている場合)にハイレベルに活性化されるハイアクティブな信号である。具体的な出力信号N0は、図7(a)に示すように、プルダウン側データ信号DATA_Nとオンダイターミネーション有効化ユニット選択信号MRSODT_Aとの論理和信号である。出力信号N0は、選択回路52NからN出力ユニット54N1に供給される。
 出力回路41は、図1に示した電源端子17を通じて外部から供給される電源電圧VSSQを受ける電源端子D3(第3の電源端子)を有しており、N出力ユニット54N1は、この電源端子D3と、一端がデータ入出力端子14(DQ)に接続された抵抗Rの他端との間に並列に接続された5個のNチャンネル型MOSトランジスタTN<4:0>を有して構成される。
 N出力ユニット54N1には、出力信号N0の他に、図1に示したキャリブレーション回路44からプルダウンインピーダンス調整コードZQCODE_N<4:0>(第2のインピーダンス調整コード)が供給される。プルダウンインピーダンス調整コードZQCODE_N<4:0>はそれぞれトランジスタTN<4:0>に対応しており、対応するトランジスタを有効化する場合にハイレベルとなり、それ以外の場合にローレベルとされるハイアクティブな信号である。N出力ユニット54N1のインピーダンスは、トランジスタTN<4:0>のうちプルダウンインピーダンス調整コードZQCODE_N<4:0>によって有効化されているもののオン抵抗の合成抵抗値と、抵抗Rの抵抗値との和に等しくなる。このことは、プルダウンインピーダンス調整コードZQCODE_N<4:0>によってN出力ユニット54N1のインピーダンスを調整可能であることを意味している。
 N出力ユニット54N1は、図7(b)に示すように、それぞれハイアクティブな信号である出力信号N0とプルダウンインピーダンス調整コードZQCODE_N<k>(k=0~4)とがともに活性化されている場合(ハイレベルとされている場合)に、対応するトランジスタTN<k>をオン状態とし、それ以外の場合に、対応するトランジスタTP<k>をオフ状態とするよう構成される。具体的には、図7(a)に示すように、トランジスタTN<k>のゲート電極に、出力信号N0と、対応するプルダウンインピーダンス調整コードZQCODE_N<k>との論理積信号が供給されるよう構成される。
 これにより、図7(b)からも理解されるように、トランジスタTN<k>は、対応するプルダウンインピーダンス調整コードZQCODE_N<k>によって有効化されていることを条件として、プルダウン側データ信号DATA_Nがハイレベルである場合(出力対象のリードデータDQがローレベルである場合)、又は、オンダイターミネーション有効化ユニット選択信号MRSODT_Aがハイレベルである場合(グループG0のオンダイターミネーション機能が有効とされている場合)にオンとされることになる。これら以外の場合には、トランジスタTN<k>はオフとされる。したがって、上述したリード動作時及びオンダイターミネーション有効時の選択回路52Nの動作が実現される。
 また、図5(b)と図7(b)を比較すると理解されるように、N出力ユニット54N1は、P出力ユニット54P1が出力信号P0に応じて活性化されるとき(出力信号P0がローレベルであるとき)に、出力信号N0に応じて活性化され(出力信号N0がハイレベルとなり)、P出力ユニット54P1が出力信号P0に応じて非活性化されるとき(出力信号P0がハイレベルであるとき)に、出力信号N0に応じて非活性化される(出力信号N0がローレベルとなる)ことになる。
 図3に戻る。選択回路53NAは、グループG1に属するN出力ユニット54N5,54N6を共通のタイミングで駆動する回路である。リード動作時の選択回路53NAは、出力データ出力ユニット選択信号MRSRon_Aが活性化されている場合に限り、選択回路52Nとは異なるタイミングで、より具体的には遅延回路50NAの遅延量分だけ選択回路52Nから遅れたタイミングで、N出力ユニット54N5,54N6を駆動するよう構成される。一方、オンダイターミネーション有効時の選択回路53NAは、活性化回路56から供給されるオンダイターミネーション有効化ユニット選択信号MRSODT_Bが活性化されていることに応じて、N出力ユニット54N5,54N6を駆動するよう構成される。
 図8(a)は、選択回路53NA及びN出力ユニット54N5それぞれの内部構成を示す図である。また、図8(b)は、図8(a)に示した各信号の状態を示す表である。これらの図には示していないが、N出力ユニット54P6についてもN出力ユニット54N5と同様である。
 選択回路53NAの出力信号N1(第4の制御信号)は、図8(b)に示すように、出力対象のリードデータDQがローレベルであり(プルダウン側データ信号DATA_Nがハイレベルに活性化されており)、かつ、グループG1が選択されている場合(出力データ出力ユニット選択信号MRSRon_Aがハイレベルに活性化されている場合)、又は、グループG1のオンダイターミネーション機能が有効とされている場合(オンダイターミネーション有効化ユニット選択信号MRSODT_Bがハイレベルに活性化されている場合)にハイレベルに活性化されるハイアクティブな信号である。具体的な出力信号N1は、図8(a)に示すように、プルダウン側データ信号DATA_Nと出力データ出力ユニット選択信号MRSRon_Aの論理積信号と、オンダイターミネーション有効化ユニット選択信号MRSODT_Bとの論理和信号である。出力信号N1は、選択回路53NAからN出力ユニット54N5に供給される。
 N出力ユニット54N5の構成及び動作は、図7(a)(b)を参照して説明したN出力ユニット54N1のそれと同じであるので、詳しい説明は省略する。N出力ユニット54N5の動作により、上述したリード動作時及びオンダイターミネーション有効時の選択回路53NAの動作が実現される。
 また、図6(b)と図8(b)を比較すると理解されるように、N出力ユニット54N5は、P出力ユニット54P5が出力信号P1に応じて活性化されるとき(出力信号P1がローレベルであるとき)に、出力信号N1に応じて活性化され(出力信号N1がハイレベルとなり)、P出力ユニット54P5が出力信号P1に応じて非活性化されるとき(出力信号P1がハイレベルであるとき)に、出力信号N1に応じて非活性化される(出力信号N1がローレベルとなる)ことになる。
 図3に戻る。選択回路53NBは、グループG2に属するN出力ユニット54N7を駆動する回路である。リード動作時の選択回路53NBは、出力データ出力ユニット選択信号MRSRon_Bが活性化されている場合に限り、選択回路52N,53NAとは異なるタイミングで、より具体的には遅延回路50NBの遅延量分だけ選択回路52Pから遅れたタイミングで、N出力ユニット54N7を駆動するよう構成される。一方、オンダイターミネーション有効時の選択回路53NBは、活性化回路56から供給されるオンダイターミネーション有効化ユニット選択信号MRSODT_Cが活性化されていることに応じて、N出力ユニット54N7を駆動するよう構成される。
 選択回路53NB及びN出力ユニット54N7の具体的な構成及び動作は、出力データ出力ユニット選択信号MRSRon_A及びオンダイターミネーション有効化ユニット選択信号MRSODT_Bに代えて、出力データ出力ユニット選択信号MRSRon_B及びオンダイターミネーション有効化ユニット選択信号MRSODT_Cが供給される点を除き、図8(a)(b)を参照して説明した選択回路53NA及びN出力ユニット54N5のそれと同じであるので、詳しい説明は省略する。選択回路53NB及びN出力ユニット54N7の動作により、上述したリード動作時及びオンダイターミネーション有効時の選択回路53NBの動作が実現される。
 以上説明したように、本実施の形態による半導体装置1によれば、複数の出力ユニットを3グループG0~G2に分け、グループG0がプルアップ側とプルダウン側それぞれに4個ずつ出力ユニットを含み、グループG1がプルアップ側とプルダウン側それぞれに2個ずつ出力ユニットを含み、グループG2がプルアップ側とプルダウン側それぞれに1個ずつ出力ユニットを含むようにしている。そして、例えばハイレベルのリードデータDQを出力する際には、グループG0に含まれる4個のP出力ユニット54P1~54P4を共通のタイミングで駆動しつつ、グループG0とは異なるタイミングで、必要に応じて、グループG1,G2に含まれる3個のP出力ユニット54P5~54P7を駆動するようにしている。これにより、本実施の形態による半導体装置1では、7個のP出力ユニットすべてが同時に駆動されることがないので、データ入出力端子14に接続されるパッケージ内配線間のクロストークによるシグナルインテグリティの悪化を軽減できる。一方で、4個のP出力ユニットを同時に駆動しているので、複数のP出力ユニットを同時に駆動することによるシグナルインテグリティ向上の効果も得ることができる。したがって、パッケージ内での配線間のクロストークの影響を受けつつも、データ入出力端子14から出力されるリードデータDQのシグナルインテグリティを良好に保つことが可能になる。ローレベルのリードデータDQの出力についても同様である。
 また、本実施の形態による半導体装置1によれば、オンダイターミネーション有効化ユニット選択信号MRSODT_A,B,Cによって、選択回路52P,53PA,53PB,52N,53NA,53NBそれぞれの出力信号P0~P2,N0~N2を活性化することができるので、オンダイターミネーション機能についても好適に実現することが可能となる。
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施の形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
 図9は、本実施の形態の第1の変形例による半導体装置の出力回路41及びその周辺回路の詳しい構成を示す図である。本変形例による半導体装置は、遅延回路50PB,50NB及びレベルシフト回路51PC,51NCを備えない点で上記実施の形態による半導体装置1と相違し、その他の点では上記実施の形態による半導体装置1と同一である。以下では相違点に着目して説明する。
 本変形例では、選択回路53PBには、レベルシフト回路51PBからプルアップ側データ信号DATA_Pが供給される。同様に、選択回路53NBには、レベルシフト回路51NBからプルダウン側データ信号DATA_Nが供給される。したがって、選択回路53PA,53PBのそれぞれに供給されるプルアップ側データ信号DATA_Pの遅延量は互いに同一であり、選択回路53NA,53NBのそれぞれに供給されるプルダウン側データ信号DATA_Nの遅延量も互いに同一である。その結果、グループG1,G2の駆動タイミングも互いに同一ということになるが、少なくともグループG0とグループG1,G2とでは、異なる駆動タイミングでの出力が実現されるので、上記実施の形態と同様、パッケージ内での配線間のクロストークの影響を受けつつも、データ入出力端子14から出力されるリードデータDQのシグナルインテグリティを良好に保つことが可能になる。
 図10は、本実施の形態の第2の変形例による半導体装置の出力回路41及びその周辺回路の詳しい構成を示す図である。本変形例による半導体装置は、選択回路52P,53PA,53PB,52N,53NA,53NBの動作電源がいずれも内部電源電圧VPERIとされており、レベルシフト回路が選択回路と出力ユニットの間に移動している点、並びに、これに伴って出力データ出力ユニット選択信号MRSRon_A,B及びオンダイターミネーション有効化ユニット選択信号MRSODT_A,B,Cの供給経路にレベルシフト回路55が設けられていない点で上記実施の形態による半導体装置1と相違し、その他の点では上記実施の形態による半導体装置1と同一である。
 第2の変形例では、各選択回路の出力信号P0~P2,N0~N2の電圧レベルは、内部電源電圧VPERIとなる。一方で、各出力ユニットの動作電源は、上記実施の形態と同様、外部電源電圧VDDQ(=VDD)である。レベルシフト回路51PA~51PC,51NA~51NCは、対応する選択回路の出力信号の電圧レベルを内部電源電圧VPERIから外部電源電圧VDDに変化させる役割を担っている。このようにしても、上記実施の形態と同様、パッケージ内での配線間のクロストークの影響を受けつつも、データ入出力端子14から出力されるリードデータDQのシグナルインテグリティを良好に保つことが可能になる。
 その他、例えば上記実施の形態では3つのグループG0~G2を設けたが、グループの数は2つであってもよく、4つ以上であってもよい。つまり、複数の出力ユニットを同時に駆動することによって、複数の出力ユニットを同時に駆動することによるシグナルインテグリティ向上の効果を生かすことができ、一方で、この複数の出力ユニットとは異なるタイミングで駆動する出力ユニットを設けることで、すべての出力ユニットを同時に駆動する場合に比べて、パッケージ内配線間のクロストークによるシグナルインテグリティの悪化が軽減できればよい。
 また、上記実施の形態では、各出力ユニットのインピーダンスの設計値が240Ωであるとしたが、本発明は、設計値が240Ωでない出力ユニットを用いる半導体装置にも好適に適用可能である。
1                半導体装置
10,11            クロック端子
12               コマンド端子
13               アドレス端子
14               データ入出力端子
15               キャリブレーション端子
16,17            電源端子
21               クロック入力回路
22               位相調整回路
23               タイミングジェネレータ
24               コマンド入力回路
25               コマンドデコーダ
26               アドレス入力回路
27               アドレスラッチ回路
30               モードレジスタ
32               カラムデコーダ
33               ロウデコーダ
34               メモリセルアレイ
40               RWAMP/FIFO
40N              RWAMP/FIFO40のプルダウン側部分回路
40P              RWAMP/FIFO40のプルアップ側部分回路
40Na~40Nc,40Pa~40Pc フリップフロップ回路
41              出力回路
41N              出力回路41のプルダウン側出力回路
41P              出力回路41のプルアップ側出力回路
43               内部電源発生回路
43a              オペアンプ
43d              抵抗素子
44               キャリブレーション回路
50NA,50NB,50PA,50PB 遅延回路
51NA~51NC,51PA~51PC,55 レベルシフト回路
52N,53NA,53NB,52P,53PA,53PB 選択回路
54N1~54N7        N出力ユニット
54P1~54P7        P出力ユニット
56               活性化回路
MRSODT_A,B,C     オンダイターミネーション有効化ユニット選択信号
MRSRon_A,B       出力データ出力ユニット選択信号
N0~N2,P0~P2      選択回路の出力信号
TN<0>~<4>        Nチャンネル型MOSトランジスタ
TP<0>~<4>,43b,43c Pチャンネル型MOSトランジスタ
ZQCODE_N         プルダウンインピーダンス調整コード
ZQCODE_P         プルアップインピーダンス調整コード

Claims (11)

  1.  第1の電源端子と、
     出力端子と、
     前記第1の電源端子及び前記出力端子の間に互いに並列に接続され、其々が第1の制御信号に対応して前記出力端子をドライブする複数の第1出力ユニットと、
     前記第1の電源端子及び前記出力端子の間に互いに並列に接続され、其々が第2の制御信号に対応して前記出力端子をドライブする複数の第2出力ユニットと、
     内部データ信号に対応して前記第1及び第2の制御信号を出力する制御回路とを備え、
     前記制御回路は、前記第1及び第2の制御信号を互いに異なるタイミングで出力することを特徴とする半導体装置。
  2.  前記制御回路は、
     内部データ信号を受ける入力端子と、
     前記入力端子と前記複数の第1出力ユニットとの間に設けられ、前記第1の制御信号を出力する第1の選択回路と、
     前記入力端子と前記複数の第2出力ユニットとの間に設けられ、前記第2の制御信号を出力する第2の選択回路と、
     前記入力端子と前記複数の第2出力ユニットとの間に、前記第2の選択回路と直列に設けられる遅延回路と、を備えることを特徴とする請求項1に記載の半導体装置。
  3.  内部電源発生回路と、前記内部電源発生回路において発生された前記第1の電源端子における電圧とは異なる内部電源を受ける第2の電源端子と、を更に備え、
     前記遅延回路は前記第2の電源端子と接続されることを特徴とする請求項2に記載の半導体装置。
  4.  前記制御回路は、
     前記入力端子及び前記第1の選択回路の間に設けられる第1のレベルシフト回路と、
     前記遅延回路及び前記第2の選択回路の間に設けられる第2のレベルシフト回路と、を更に備えることを特徴とする請求項3に記載の半導体装置。
  5.  前記制御回路は、
     前記第1の選択回路及び前記複数の第1出力ユニットの間に設けられる第1のレベルシフト回路と、
     前記第2の選択回路及び前記複数の第2出力ユニットの間に設けられる第2のレベルシフト回路と、を更に備えることを特徴とする請求項3に記載の半導体装置。
  6.  前記複数の第1出力ユニット及び前記複数の第2出力ユニットは、其々が前記第1の電源端子及び前記出力端子の間に互いに並列に接続される複数のトランジスタを備え、其々が前記複数のトランジスタを其々制御する複数の第5の制御信号を共通に受けることを特徴とする請求項2に記載の半導体装置。
  7.  前記制御回路は第1の制御回路であって、
     第3の電源端子と、
     前記第3の電源端子及び前記出力端子の間に互いに並列に接続され、其々が第3の制御信号に対応して前記出力端子をドライブする複数の第3出力ユニットと、
     前記第3の電源端子及び前記出力端子の間に互いに並列に接続され、其々が第4の制御信号に対応して前記出力端子をドライブする複数の第4出力ユニットと、
     前記内部データ信号に対応して前記第3及び第4の制御信号を出力する第2の制御回路とを備え、
     前記第2の制御回路は、前記第3及び第4の制御信号を互いに異なるタイミングで出力することを特徴とする請求項1に記載の半導体装置。
  8.  前記第1の制御回路における前記入力端子は第1の入力端子であり、前記遅延回路は第1の遅延回路であって、
     前記第2の制御回路は、
     前記内部データ信号を受ける第2の入力端子と、
     前記第2の入力端子と前記複数の第3出力ユニットとの間に設けられ、前記第3の制御信号を出力する第3の選択回路と、
     前記第2の入力端子と前記複数の第4出力ユニットとの間に設けられ、前記第4の制御信号を出力する第4の選択回路と、
     前記第2の入力端子と前記複数の第4出力ユニットとの間に、前記第4の選択回路と直列に設けられる第2の遅延回路と、を備えることを特徴とする請求項7に記載の半導体装置。
  9.  前記第1の遅延回路及び第2の遅延回路の遅延量は互いに等しいことを特徴とする請求項8に記載の半導体装置。
  10.  前記複数の第1の出力ユニットの台数は前記複数の第2の出力ユニットの台数よりも多く且つ前記第3の出力ユニットの台数と等しく、前記複数の第2の出力ユニットの台数は前記複数の第4の出力ユニットの台数と等しいことを特徴とする請求項9に記載の半導体装置。
  11.  前記複数の第3出力ユニットは、前記複数の第1出力ユニットが前記第1の制御信号に応じて活性化されるときに前記第3の制御信号に応じて活性化され、前記複数の第1出力ユニットが前記第1の制御信号に応じて非活性化されるときに前記第3の制御信号に応じて非活性化され、前記複数の第4出力ユニットは、前記複数の第2出力ユニットが前記第2の制御信号に応じて活性化されるときに前記第4の制御信号に応じて活性化され、前記複数の第2出力ユニットが前記第2の制御信号に応じて非活性化されるときに前記第4の制御信号に応じて非活性化されることを特徴とする請求項10に記載の半導体装置。
PCT/JP2014/052207 2013-02-13 2014-01-31 半導体装置 WO2014125938A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-025151 2013-02-13
JP2013025151 2013-02-13

Publications (1)

Publication Number Publication Date
WO2014125938A1 true WO2014125938A1 (ja) 2014-08-21

Family

ID=51353947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052207 WO2014125938A1 (ja) 2013-02-13 2014-01-31 半導体装置

Country Status (2)

Country Link
TW (1) TW201503588A (ja)
WO (1) WO2014125938A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014182861A (ja) * 2013-03-20 2014-09-29 Toshiba Corp 半導体記憶装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786900A (ja) * 1993-09-17 1995-03-31 Fujitsu Ltd 半導体装置
JP2000224023A (ja) * 1999-02-03 2000-08-11 Nec Corp 半導体集積回路及びそのスルーレート制御方法
JP2006203405A (ja) * 2005-01-19 2006-08-03 Elpida Memory Inc 半導体装置の出力回路及びこれを備える半導体装置、並びに、出力回路の特性調整方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786900A (ja) * 1993-09-17 1995-03-31 Fujitsu Ltd 半導体装置
JP2000224023A (ja) * 1999-02-03 2000-08-11 Nec Corp 半導体集積回路及びそのスルーレート制御方法
JP2006203405A (ja) * 2005-01-19 2006-08-03 Elpida Memory Inc 半導体装置の出力回路及びこれを備える半導体装置、並びに、出力回路の特性調整方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014182861A (ja) * 2013-03-20 2014-09-29 Toshiba Corp 半導体記憶装置

Also Published As

Publication number Publication date
TW201503588A (zh) 2015-01-16

Similar Documents

Publication Publication Date Title
US10200044B2 (en) Semiconductor device having impedance calibration function to data output buffer and semiconductor module having the same
JP5624441B2 (ja) 半導体装置
US9368189B2 (en) Semiconductor device including output circuit constituted of plural unit buffer circuits in which impedance thereof are adjustable
JP4159587B2 (ja) 半導体装置の出力回路及びこれを備える半導体装置
JP2015076655A (ja) 半導体装置
JP2002094366A (ja) 半導体装置
JP2015050691A (ja) 半導体装置
US9160339B2 (en) Semiconductor device having calibration circuit that adjusts impedance of output buffer
US9030233B2 (en) Semiconductor device having serializer converting parallel data into serial data to output serial data from output buffer circuit
KR100829787B1 (ko) 온 다이 터미네이션 테스트에 적합한 반도체 메모리 장치,이를 구비한 메모리 테스트 시스템, 및 온 다이 터미네이션테스트 방법
JP5618772B2 (ja) 半導体装置
US8856577B2 (en) Semiconductor device having multiplexer
WO2014125938A1 (ja) 半導体装置
US20160049180A1 (en) Semiconductor device including input/output circuit
JP2006140548A (ja) 半導体集積回路装置
US20110267099A1 (en) Semiconductor device generating complementary output signals
US9130556B2 (en) Semiconductor device having output buffer circuit in which impedance thereof can be controlled
US8717795B2 (en) Semiconductor device having plural circuit blocks operating at the same timing
JP2014127894A (ja) 半導体装置
JP2015002453A (ja) 半導体装置
JP2014146910A (ja) 半導体装置
JP2014168118A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14752225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14752225

Country of ref document: EP

Kind code of ref document: A1