JP2015125088A - 容量トリミング回路 - Google Patents

容量トリミング回路 Download PDF

Info

Publication number
JP2015125088A
JP2015125088A JP2013270851A JP2013270851A JP2015125088A JP 2015125088 A JP2015125088 A JP 2015125088A JP 2013270851 A JP2013270851 A JP 2013270851A JP 2013270851 A JP2013270851 A JP 2013270851A JP 2015125088 A JP2015125088 A JP 2015125088A
Authority
JP
Japan
Prior art keywords
capacitance
capacitor
input terminal
inverting input
differential amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013270851A
Other languages
English (en)
Inventor
辻 信昭
Nobuaki Tsuji
信昭 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2013270851A priority Critical patent/JP2015125088A/ja
Priority to PCT/JP2014/084002 priority patent/WO2015098893A1/ja
Publication of JP2015125088A publication Critical patent/JP2015125088A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/2403Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by moving plates, not forming part of the capacitor itself, e.g. shields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45514Indexing scheme relating to differential amplifiers the FBC comprising one or more switched capacitors, and being coupled between the LC and the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45551Indexing scheme relating to differential amplifiers the IC comprising one or more switched capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Amplifiers (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

【課題】全差動アンプを使用したCV変換回路において簡単且つ高精度に静電容量の事前調整を行えるようにする。
【解決手段】容量トリミング回路7は、全差動アンプ21の入力端子に対して接続又は切り離しが可能な複数のトリミングコンデンサ51を用いて調整することにより、全差動アンプ21の2つの入力端子のそれぞれに接続される静電容量を略同一の状態に調整する容量トリミング部5と、容量トリミング部5による静電容量の調整が行われるとき、第1フィードバックコンデンサCf1の一端に基準電圧Vcを印加することにより第1のコンデンサ8で容量分圧された電圧V1を生じさせると共に、第2フィードバックコンデンサCf2の一端に基準電圧Vcを印加することにより第2のコンデンサ9で容量分圧された電圧V2を生じさせる容量分圧発生部6とを備え、電圧V1,V2の比較結果を出力するコンパレータとして全差動アンプ21を動作させる。
【選択図】図4

Description

本発明は、静電容量型センサなどから出力される信号を検出するためのCV変換回路における容量トリミング回路に関する。
従来、自動車や携帯端末装置などに搭載される加速度センサなどの各種センサとして、MEMS(Micro Electro Mechanical Systems)構造によって2つの固定電極の間に可動電極を配置した静電容量型センサが知られている。この種の静電容量型センサは、一般に、センサに作用する加速度などに応じて可動電極が変位することによって生じる静電容量の変化を検知するためのCV変換回路を備えている(例えば特許文献1)。CV変換回路は、可動電極又は固定電極から転送される電荷量に基づいて静電容量の変化を例えば0.1〜1.0μV程度の微小な電圧変化として検知するため、外乱ノイズによって電荷移動が生じると、静電容量の変化量を正確に検知することができなくなる。
そのため、近年では、CV変換回路に全差動アンプを用いて信号検出を行うことにより、外乱ノイズをキャンセルして微小な静電容量変化を検知できるようにした回路構成が採用されつつある。例えば、全差動アンプの2つの入力端子のいずれか一方に静電容量型センサを接続し、他方に静電容量型センサと略同一の静電容量を有するダミーコンデンサを接続する場合、静電容量型センサに接続された信号線と、ダミーコンデンサが接続された信号線の双方に外乱ノイズが作用しても全差動アンプの2つの出力信号の差分によって外乱ノイズをキャンセルすることができるため、ノイズの影響を低減することができる。
特開平5−340958号公報
しかしながら、上述のように全差動アンプの2つの入力端子に互いに異なる構造の素子が接続されている場合、それらの静電容量を予め略同一の状態に形成することは難しい。また静電容量型センサに寄生する寄生容量とダミーコンデンサに寄生する寄生容量とは必ずしも一致しない。全差動アンプの2つの入力端子のそれぞれに接続される静電容量が互いに略同一ではない場合、外乱ノイズが作用すると2つの信号線のそれぞれに異なる電荷量の電荷移動が生じるため、外乱ノイズを良好にキャンセルすることができなくなる。
そのため、全差動アンプを用いてCV変換回路を構成する場合には、多数のトリミングコンデンサを配置しておき、それら多数のトリミングコンデンサのうちから選択したコンデンサを全差動アンプの2つの入力端子の少なくとも一方に接続したり、或いは切り離したりすることにより、全差動アンプの2つの入力端子に接続される静電容量のアンバランスを予め解消するようにしている。すなわち、全差動アンプの2つの出力信号を後段回路によって増幅し、その増幅信号をAD変換した値で実際のノイズ量の増減具合を判別しながらトリミングコンデンサの接続や切り離しを個別に行っていくことにより、全差動アンプの2つの入力端子に接続される静電容量が略同一の状態に調整される。
ところが、静電容量を調整する際に、全差動アンプの出力信号を増幅した増幅信号をAD変換した値で実際のノイズ量の増減を判別する手法を採用すると、静電容量の差が小さい場合にはノイズ量の増減具合を正確に判別することが難しくなる。そのため、静電容量のトリミングに時間がかかると共に、数fF(フェムトファラッド)程度の高精度なトリミング設定を行うことが困難であるという問題がある。
本発明は、上記問題点を解決することを目的としてなされたものであり、全差動アンプを使用したCV変換回路において、実際のノイズ量を検出することなく、簡単且つ高精度に静電容量のトリミングを行うことができるようにした容量トリミング回路を提供するものである。
上記目的を達成するため、本発明が課題解決手段として採用したところは、全差動アンプを有し、全差動アンプの反転入力端子と非反転出力端子との間に第1フィードバックコンデンサが接続されると共に、非反転入力端子と反転出力端子との間に第1フィードバックコンデンサと静電容量が略同一の第2フィードバックコンデンサが接続されたCV変換回路において、反転入力端子に接続される少なくとも1つの第1のコンデンサによる第1の静電容量と、非反転入力端子に接続される少なくとも1つの第2のコンデンサによる第2の静電容量との静電容量差をトリミングする容量トリミング回路であって、反転入力端子又は非反転入力端子に対して個別に接続又は切り離しが可能な複数のトリミングコンデンサを有し、複数のトリミングコンデンサを個別に反転入力端子又は非反転入力端子に対して接続又は切り離すことにより、第1の静電容量と第2の静電容量とを略同一の状態に調整する容量トリミング部と、容量トリミング部によって静電容量の調整が行われるとき、第1フィードバックコンデンサの一端に基準電圧を印加することにより第1フィードバックコンデンサと第1のコンデンサとの容量分圧に応じた電圧を反転入力端子に生じさせると共に、第2フィードバックコンデンサの一端に基準電圧を印加することにより第2フィードバックコンデンサと第2のコンデンサとの容量分圧に応じた電圧を非反転入力端子に生じさせ、反転入力端子に生じる電圧と非反転入力端子に生じる電圧との比較結果を出力する容量分圧発生部と、を備える構成にある。
また本発明が更なる課題解決手段として採用したところは、上記構成において、容量分圧発生部が、第1フォードバックコンデンサの一端を反転出力端子から切り離して基準電圧に接続すると共に、第2フォードバックコンデンサの一端を非反転出力端子から切り離して基準電圧に接続することにより、全差動アンプをコンパレータとして動作させ、反転入力端子に生じる電圧と非反転入力端子に生じる電圧との比較結果を反転出力端子及び非反転出力端子のそれぞれから出力させる構成にある。
また本発明が更なる課題解決手段として採用したところは、上記構成において、容量分圧発生部は、第1及び第2フィードバックコンデンサのそれぞれの一端に基準電圧を印加する前に、第1及び第2フィードバックコンデンサのそれぞれに全差動アンプのオフセット電圧に応じた初期電荷を蓄積する構成にある。
また本発明が更なる課題解決手段として採用したところは、上記構成において、反転入力端子及び非反転入力端子のいずれか一方には、静電容量型センサの出力端子が接続され、他方には、静電容量型センサの静電容量と略同一のダミーコンデンサが接続されることを特徴とする構成である。
本発明によれば、容量トリミング部による静電容量の調整が行われるときに容量分圧を生じさせ、その容量分圧で生じる電圧によって静電容量を比較することができるため、実際のノイズ量を検出する必要がなくなり、しかも簡単且つ高精度に静電容量のトリミングを行うことができるようになる。
容量トリミング回路を備えたセンサデバイスの一構成例を示す図である。 センサ部の等価回路を示す図である。 調整モードにおける第1の動作状態を示す図である。 調整モードにおける第2の動作状態を示す図である。
以下、本発明に関する好ましい実施形態について図面を参照しつつ詳細に説明する。尚、以下に説明する各実施形態において互いに共通する部材には同一符号を付しており、それらについての重複する説明は省略する。
図1は、本発明に係る容量トリミング回路7を備えたセンサデバイスの一構成例を示す図である。このセンサデバイスは、MEMSによって構成された静電容量型センサ3を有するセンサ部1と、そのセンサ部1に接続され、静電容量型センサ3の静電容量を検知するCV変換回路2と、そのCV変換回路2に組み込まれる容量トリミング回路7とを備え、センサ部1に作用する加速度を検出するセンサとして構成される。
センサ部1に設けられる静電容量型センサ3は、バネ構造などによって支持された所定方向に変位可能な錘13を有しており、この錘13を挟んで静電容量可変の2つのコンデンサ11,12が直列に接続された構成である。これらコンデンサ11,12は、錘13と連動して変位する可動電極とその可動電極に対向する固定電極とによって構成される。錘13が中間位置にあるときには、各コンデンサ11,12は互いに等しい静電容量C1である。センサ部1に加速度が作用して錘13が中間位置から所定方向に変位すると、その変位量に応じて各コンデンサ11,12の静電容量が変化する。例えば、一方のコンデンサ11の静電容量が(C1+ΔC)に増加すると、他方のコンデンサ12の静電容量が(C1−ΔC)に減少する。また一方のコンデンサ11の静電容量が(C1−ΔC)に減少すると、他方のコンデンサ12の静電容量が(C1+ΔC)に増加する。各コンデンサ11,12の可動電極は錘13と同電位であり、錘13を介してCV変換回路2への出力端子mbに接続される。またコンデンサ11の固定電極は入力端子X1に接続され、コンデンサ12の固定電極は入力端子X2に接続される。これら入力端子X1,X2には、例えば数百kHz程度の高周波信号であって、互いに極性が反転する矩形波信号φ1,φ2が入力し、各コンデンサ11,12の固定電極に印加される。したがって、静電容量型センサ3は、各コンデンサ11,12の静電容量に応じた電荷信号であって、矩形波信号φ1,φ2によって変調された信号をCV変換回路2へ出力する。
またセンサ部1には、CV変換回路2からみた静電容量型センサ3の静電容量(コンデンサ11,12の合成容量)と略同一の静電容量C2のダミーコンデンサ4を有している。ダミーコンデンサ4は、互いに対向する一対の固定電極で構成され、静電容量C2が固定である。このダミーコンデンサ4は、一端がCV変換回路2への出力端子mbvに接続され、他端が接地される。
CV変換回路2は、主として、全差動アンプ21と、第1フィードバックコンデンサCf1と、第2フィードバックコンデンサCf2と、第1及び第2フィードバックコンデンサCf1,Cf2の蓄積電荷をリセットするスイッチ22,23とを備えて構成される。第1フィードバックコンデンサCf1は、全差動アンプ21の反転入力端子と非反転出力端子との間に接続され、第2フィードバックコンデンサCf2は、全差動アンプ21の非反転入力端子と反転出力端子との間に接続される。スイッチ22は、第1フィードバックコンデンサCf1と並列に全差動アンプ21の反転入力端子と非反転出力端子との間に接続される。またスイッチ23は、第2フィードバックコンデンサCf2と並列に全差動アンプ21の非反転入力端子と反転出力端子との間に接続される。そして全差動アンプ21の反転入力端子は、センサ部1の端子mbに繋がる信号線L1を介して静電容量型センサ3の錘13に接続され、非反転入力端子は、センサ部1の端子mbvに繋がる信号線L2を介してダミーコンデンサ4の一端に接続される。このような構成により、全差動アンプ21は積分アンプとして動作する。
そしてCV変換回路2は、所定のタイミングでスイッチ22,23を一時的にオンさせて第1及び第2フィードバックコンデンサCf1,Cf2の蓄積電荷をリセットした後、静電容量型センサ3及びダミーコンデンサ4のそれぞれから出力される電荷信号を第1及び第2フィードバックコンデンサCf1,Cf2のそれぞれに蓄積してCV変換を行う。すなわち、CV変換回路2は、コンデンサ11,12の両端に矩形波信号φ1,φ2が印加されることによって静電容量型センサ3から出力される電荷信号を第1フィードバックコンデンサCf1に蓄積し、全差動アンプ21の非反転出力端子から各コンデンサ11,12の静電容量に応じた信号であって、所定の基準電圧Vrefを中心電圧とする出力信号Vopを出力する。一方、ダミーコンデンサ4に印加される電圧が一定であれば、ダミーコンデンサ4と第2フィードバックコンデンサCf2との間に電荷転送が生じないため、全差動アンプ21は反転出力端子から所定の基準電圧Vrefに相当する出力信号Vonを出力する。
上記構成において例えば信号線L1,L2に外乱ノイズが作用すると、全差動アンプ21の反転入力端子と非反転入力端子のそれぞれの電圧Vin,Vipがその外乱ノイズの影響によって変動する。このとき、外乱ノイズの影響によって信号線L1から第1フィードバックコンデンサCf1に転送される電荷量と、信号線L2から第2フィードバックコンデンサCf2に転送される電荷量とが互いに等しい状態であれば、全差動アンプ21から出力される2つの出力信号Vop,Vonの差分信号Vout(=Vop−Von)により、外乱ノイズをキャンセルすることができる。しかし、実際には、図1に示すようにセンサ部1に設けられた静電容量型センサ3に寄生する寄生容量Cp1とダミーコンデンサ4に寄生する寄生容量Cp2とが一致しない。そのため、ダミーコンデンサ4の静電容量C2が静電容量型センサ3の静電容量(コンデンサ11,12の合成容量)と略同一であっても、全差動アンプ21の反転入力端子と非反転入力端子のそれぞれに接続されているセンサ部1の静電容量は略同一にはならない。
図2は、CV変換回路2からセンサ部1をみた場合のセンサ部1の等価回路を示す図である。図2に示すように、CV変換回路2からみた場合、センサ部1は、端子mbに第1のコンデンサ8による第1の静電容量Csが接続されており、また端子mbvに第2のコンデンサ9による第2の静電容量Cvが接続されているのと等価である。ここで、第1の静電容量Csはコンデンサ11,12と寄生容量Cp1とを合成した静電容量である。また第2の静電容量Cvはダミーコンデンサ4と寄生容量Cp2とを合成した静電容量である。そして寄生容量Cp1,Cp2が互いに異なるため、第1の静電容量Csと第2の静電容量Cvとは互いに略同一の状態にはならない。そのような状況で、信号線L1,L2に外乱ノイズが作用すると、信号線L1,L2のそれぞれからセンサ部1側に吸収される電荷量が等しくならず、外乱ノイズによって第1フィードバックコンデンサCf1に蓄積される電荷量と、第2フィードバックコンデンサCf2に蓄積される電荷量とが一致しなくなる。それ故、全差動アンプ21から出力される2つの出力信号Vop,Vonの差分を算出しても外乱ノイズを良好にキャンセルすることができない。すなわち、第1の静電容量Csと第2の静電容量Cvとのアンバランスが外乱ノイズを良好にキャンセルすることができない要因となる。
そこで本実施形態のCV変換回路2は、容量トリミング回路7を備えており、全差動アンプ21の反転入力端子と非反転入力端子のそれぞれに接続されているセンサ部1の第1の静電容量Csと第2の静電容量Cvとのアンバランスを予め解消できるようにしている。この容量トリミング回路7は、信号線L2に設けられる容量トリミング部5と、CV変換回路2における第1フィードバックコンデンサCf1と全差動アンプ21の非反転出力端子との間、及び、第2フィードバックコンデンサCf2と全差動アンプ21の反転出力端子との間のそれぞれに設けられる容量分圧発生部6とを備えて構成される。
容量トリミング部5は、複数のトリミングコンデンサ51を有し、全差動アンプ21の非反転入力端子に接続される信号線L2に対してそれら複数のトリミングコンデンサ51を個別に接続したり、切り離すことができる。すなわち、容量トリミング部5は、信号線L2と接地点との間に、トリミングコンデンサ51とスイッチ52とが直列に接続された構成のトリミング素子53を複数備えており、それら複数のトリミング素子53から選択した素子のスイッチ52をオンすることにより、全差動アンプ21の非反転入力端子に接続された信号線L2に任意の静電容量を付与する。そして信号線L2に付与する静電容量をトリミングすることにより、全差動アンプ21の反転入力端子と非反転入力端子のそれぞれに接続される静電容量を予め略同一の状態に設定する。尚、複数のトリミングコンデンサ51は、それぞれ同一の静電容量であっても良いし、それぞれ異なる静電容量であっても良い。
例えば、容量トリミング部5に設けられる各スイッチ52は、図示を省略するメモリに外部から書き込まれた情報に基づきオンオフする。そのため、センサデバイスの製造後、出荷前に静電容量を調整し、全差動アンプ21の反転入力端子と非反転入力端子のそれぞれに接続される静電容量が略同一となる各スイッチ52のオンオフ状態を予めメモリに書き込んでおけば、センサデバイスの出荷後に静電容量を調整する必要はない。
容量分圧発生部6は、容量トリミング部5による静電容量の調整が行われるとき、全差動アンプ21の反転入力端子と非反転入力端子のそれぞれに接続される静電容量が略同一であるか否かを高精度に判別できるようにする回路である。この容量分圧発生部6は、容量トリミング部5による静電容量の調整が行われるときに動作する複数のスイッチ61〜66を備えている。スイッチ61〜63は、全差動アンプ21の非反転出力端子と第1フィードバックコンデンサCf1との間に設けられる。スイッチ61は、第1フィードバックコンデンサCf1の一端を全差動アンプ21の非反転出力端子に接続したり、非反転出力端子から開放したりするスイッチである。スイッチ62は、第1フィードバックコンデンサCf1の一端を接地点に接続したり、接地点から開放するスイッチである。スイッチ63は、第1フィードバックコンデンサCf1の一端を基準電圧Vcに接続したり、基準電圧Vcから開放するスイッチである。またスイッチ64〜66は、全差動アンプ21の反転出力端子と第2フィードバックコンデンサCf2との間に設けられる。スイッチ64は、第2フィードバックコンデンサCf2の一端を全差動アンプ21の反転出力端子に接続したり、反転出力端子から開放したりするスイッチである。スイッチ65は、第2フィードバックコンデンサCf2の一端を接地点に接続したり、接地点から開放するスイッチである。スイッチ66は、第2フィードバックコンデンサCf2の一端を基準電圧Vcに接続したり、基準電圧Vcから開放するスイッチである。
そしてスイッチ61,64は、通常、第1及び第2フィードバックコンデンサCf1,Cf2の一端を全差動アンプ21の非反転出力端子及び反転出力端子に接続したオン状態となっており、外部から入力する制御信号によって第1及び第2フィードバックコンデンサCf1,Cf2の一端を全差動アンプ21の非反転出力端子及び反転出力端子から開放するオフ状態となる。またスイッチ62,65は、通常、第1及び第2フィードバックコンデンサCf1,Cf2の一端を接地点から開放したオフ状態となっており、外部から入力する制御信号によって第1及び第2フィードバックコンデンサCf1,Cf2の一端を接地点に接続するオン状態となる。さらにスイッチ63,66は、通常、第1及び第2フィードバックコンデンサCf1,Cf2の一端を基準電圧Vcから開放したオフ状態となっており、外部から入力する制御信号によって第1及び第2フィードバックコンデンサCf1,Cf2の一端を基準電圧Vcに接続するオン状態となる。以下、容量分圧発生部6の動作について詳しく説明する。
容量トリミング部5による静電容量の調整が行われる調整モードが指定されると、容量分圧発生部6は、はじめに外部から入力する制御信号に基づいて、図3に示すようにスイッチ61,63,64,66をオフにし、スイッチ62,65をオンにする。このときCV変換回路2に設けられたスイッチ22,23はオン状態となる。この調整モードでは、センサ部1に加速度は作用せず、錘13が中間位置にある状態を保持する。また調整モードでは、センサ部1の入力端子X1,X2が接地された状態となる。
図3に示す状態では、全差動アンプ21がバッファアンプとして動作する。ここで全差動アンプ21のオフセット電圧をVoffとし、そのオフセット電圧Voffが出力信号Vopのみに含まれていると仮定した場合、全差動アンプ21の出力信号VopはVop=Vref+Voffとなり、出力信号VonはVon=Vrefとなる。このとき、第1フィードバックコンデンサCf1及び第1のコンデンサ8には電圧(Vref+Voff)が印加され、第2フィードバックコンデンサCf2及び第2のコンデンサ9には電圧Vrefが印加される。つまり、図3に示す状態では、全差動アンプ21のオフセット電圧Voffを含んで各コンデンサ8,9,Cf1,Cf2に初期電荷が蓄積される。
上記のようにして初期電荷を蓄積すると、次に容量分圧発生部6は、外部から入力する制御信号に基づいて、図4に示すようにスイッチ61,62,64,65をオフにし、スイッチ63,66をオンにする。このときCV変換回路2に設けられたスイッチ22,23はオフ状態となる。すなわち、容量分圧発生部6は、第1フィードバックコンデンサCf1の一端を全差動アンプ21の非反転出力端子から切り離し、その一端に基準電圧Vcを印加することにより、第1フィードバックコンデンサCf1と第1のコンデンサ8との容量分圧に応じた電圧V1を全差動アンプ21の反転入力端子に生じさせる。これにより、全差動アンプ21の反転入力端子に生じる容量分圧に基づく電圧V1は、V1=Cf1/(Cf1+Cs)*Vcとなる。また容量分圧発生部6は、同様に、第2フィードバックコンデンサCf2の一端を全差動アンプ21の反転出力端子から切り離し、その一端に基準電圧Vcを印加することにより、第2フィードバックコンデンサCf2と第2のコンデンサ9との容量分圧に応じた電圧V2を全差動アンプ21の非反転入力端子に生じさせる。これにより、全差動アンプ21の非反転入力端子に生じる容量分圧に基づく電圧V2は、V2=Cf2/(Cf2+Cv)*Vcとなる。
また図4に示す状態では、全差動アンプ21の帰還パスが開放されるため、全差動アンプ21はコンパレータとして動作する。そのため、全差動アンプ21は、反転入力端子に入力する電圧V1と、非反転入力端子に入力する電圧V2とを比較した結果を出力信号Vop,Vonとして出力する。
例えば、基準電圧Vcを1.3V、第1フィードバックコンデンサCf1の静電容量Cf1を200fF、第1のコンデンサ8の静電容量Csを2000fFとした場合、全差動アンプ21の反転入力端子に入力する電圧V1は、V1=200/(200+2000)*1.3=0.118182Vとなる。また同様に、基準電圧を1.3V、第2フィードバックコンデンサCf2の静電容量Cf2を200fF、第2のコンデンサ9の静電容量Cvを1998fFとした場合、全差動アンプ21の非反転入力端子に入力する電圧V2は、V2=200/(200+1998)*1.3=0.118289Vとなる。このとき、コンパレータとして動作する全差動アンプ21に入力する電圧V1,V2の差分(V2−V1)は、(V2−V1)=0.107mVとなるため、全差動アンプ21のDCゲインが100dBであると仮定すれば、全差動アンプ21の出力信号Vop,Vonは、Vop−Von=10.7Vとなる。したがって、全差動アンプ21はコンパレータとして十分機能し、コンパレータ出力である出力信号Vopは「High」となり、出力信号Vonは「Low」となる。
また上記と同様の条件下で、例えば第2のコンデンサ9の静電容量Cvを2002fFとした場合、全差動アンプ21の非反転入力端子に入力する電圧V2は、V2=200/(200+2002)*1.3=0.118074Vとなる。このとき、コンパレータとして動作する全差動アンプ21に入力する電圧V1,V2の差分(V2−V1)は、(V2−V1)=−0.108mVとなるため、全差動アンプ21のDCゲインが100dBであると仮定すれば、全差動アンプ21の出力信号Vop,Vonは、Vop−Von=−10.8Vとなる。したがって、全差動アンプ21は上記と同様にコンパレータとして十分機能し、コンパレータ出力である出力信号Vopは「Low」となり、出力信号Vonは「High」となる。
このように容量分圧発生部6は、第1フィードバックコンデンサCf1の一端に基準電圧Vcを印加して第1フィードバックコンデンサCf1と第1のコンデンサ8との容量分圧に応じた電圧V1を生じさせると共に、第2フィードバックコンデンサCf2の一端に基準電圧Vcを印加して第2フィードバックコンデンサCf2と第2のコンデンサ9との容量分圧に応じた電圧V2を生じさせ、全差動アンプ21をコンパレータとして動作させてそれら電圧V1,V2の比較結果を出力する。これにより、第1のコンデンサ8の静電容量Csと第2のコンデンサ9の静電容量Cvとの差が、上記の通り、2fF程度の僅かな差であっても良好に検知することができる。したがって、容量トリミング部5による静電容量のトリミングを行うときには、全差動アンプ21のコンパレータ出力である出力信号Vop,Vonのいずれか一方が「High」から「Low」へ、又は、「Low」から「High」へ切り替わるところで細かなトリミングを行うことにより、第1のコンデンサ8の静電容量Csと第2のコンデンサ9の静電容量Cvとの差を2fF程度以下の範囲に抑えることができ、高精度なトリミングを行うことが可能である。
特に、容量分圧発生部6は、基準電圧Vcを容量分圧した電圧V1,V2を生じさせるのに先立ち、各コンデンサ8,9,Cf1,Cf2のそれぞれに全差動アンプ21のオフセット電圧Voffを加味した初期電荷を蓄積し、その後、基準電圧Vcを容量分圧した電圧V1,V2を生じさせるようにしている。そのため、第1のコンデンサ8の静電容量Csと第2のコンデンサ9の静電容量Cvとの差を検出するときには、全差動アンプ21のオフセット電圧Voffに相当する電荷が蓄積された状態で検出することができる。これにより、全差動アンプ21を積分アンプとして動作させる状態と同じ状態で静電容量の差を検出することができるため、トリミングが完了した後に調整モードから通常の動作モードに切り替わったときでも、全差動アンプ21の反転入力端子に接続された静電容量と、非反転入力端子に接続された静電容量とが略同一に調整されたバランス状態が保持される。尚、全差動アンプ21のコンパレータ出力(High又はLow)に基づいて容量トリミング部5による静電容量の調整を行った後、反転入力端子に接続された静電容量と、非反転入力端子に接続された静電容量とのバランス状態を再度確認するときには、その都度、全差動アンプ21のオフセット電圧Voffを加味した初期電荷を蓄積してから基準電圧Vcを容量分圧した電圧V1,V2を生じさせるようにすることが好ましい。
トリミングが完了して調整モードを終了し、通常の動作モードへ切り替えると、容量分圧発生部6は、図1に示すようにスイッチ61,64をオンにし、スイッチ62,63,65,66をオフにする。また容量トリミング部5は、調整モードにおいて調整された静電容量を常に信号線L2に付与する状態に固定する。そのため、通常の動作モードにおいて加速度に応じた錘13の変位を検出するときには、全差動アンプ21の反転入力端子及び非反転入力端子のそれぞれに接続される静電容量が互いに略同一の状態である。したがって、信号線L1,L2に外乱ノイズが作用した場合に、その外乱ノイズの影響によって信号線L1から第1フィードバックコンデンサCf1に転送される電荷量と、信号線L2から第2フィードバックコンデンサCf2に転送される電荷量とが略同一になるため、全差動アンプ21から出力される2つの出力信号Vop,Vonの差分信号Vout(=Vop−Von)により、そのような外乱ノイズを良好にキャンセルすることができるようになる。
また上述した調整モードにおいてコンパレータとして動作する全差動アンプ21から電圧V1,V2の比較結果を高速で出力できるようにするためには、全差動アンプ21に接続される図示省略の位相補償容量を全差動アンプ21から切り離した状態でコンパレータとして動作させることが好ましい。この場合、調整モードが終了して通常の動作モードへ切り替えるときには、再び位相補償容量を全差動アンプ21に接続することにより発振を防止する。
以上のように本実施形態の容量トリミング回路7は、全差動アンプ21の反転入力端子に接続される第1の静電容量Csと全差動アンプ21の非反転入力端子に接続される第2の静電容量Cvとが略同一の状態となるように調整する容量トリミング部5と、その容量トリミング部5によって静電容量の調整が行われるときに、第1及び第2フィードバックコンデンサCf1,Cf2のそれぞれに基準電圧Vcを印加することによって容量分圧に応じた電圧V1,V2を反転入力端子及び非反転入力端子のそれぞれに生じさせ、それら電圧V1,V2の比較結果を出力する容量分圧発生部6とを備えている。このような構成によれば、容量トリミング部5による静電容量の調整が行われるときに、実際のノイズ量を検出する必要がないため、静電容量の調整に時間はかからない。また容量分圧によって生成される電圧V1,V2の大小比較によって静電容量のアンバランスを判別することが可能であるため、簡単に且つ高精度に静電容量を調整することが可能である。
また容量分圧発生部6は、上述のように、第1フォードバックコンデンサCf1の一端を全差動アンプ21の非反転出力端子から切り離してその一端に基準電圧Vcに接続すると共に、第2フォードバックコンデンサCf2の一端を全差動アンプ21の反転出力端子から切り離してその一端に基準電圧Vcに接続することにより、全差動アンプ21をコンパレータとして動作させ、反転入力端子に生じる電圧V1と非反転入力端子に生じる電圧V2との比較結果を反転出力端子及び非反転出力端子のそれぞれから出力させる構成である。そのため、電圧V1,V2を比較するために全差動アンプ21とは異なる別のコンパレータを設ける必要はなく、センサデバイスの回路規模を縮小できるという利点がある。
また容量分圧発生部6は、上述のように、容量トリミング部5による静電容量の調整が行われるときには、第1及び第2フィードバックコンデンサCf1,Cf2のそれぞれの一端に基準電圧Vcを印加する前に、第1及び第2フィードバックコンデンサCf1,Cf2のそれぞれに全差動アンプ21のオフセット電圧Voffに応じた初期電荷を蓄積するようにしている。これにより、全差動アンプ21のオフセット電圧Voffを反映させた状態で静電容量の調整を行うことができるため、調整モード終了後の通常の動作モードにおいても静電容量が略同一に調整された状態を保持することができ、外乱ノイズを良好にキャンセルすることができるようになる。
以上、本発明に関する一実施形態について説明したが、本発明は上述した内容に限定されるものではなく、種々の変形例を適用することが可能である。
例えば上記実施形態では、容量トリミング部5を、全差動アンプ21の非反転入力端子に繋がる信号線L2に設けた場合を例示した。しかし、これに限られるものではなく、容量トリミング部5を、全差動アンプ21の反転入力端子に繋がる信号線L1に設けても構わない。また容量トリミング部5を、全差動アンプ21の非反転入力端子及び反転入力端子のそれぞれに繋がる信号線L1,L2のそれぞれに設けても良い。信号線L1,L2のそれぞれに容量トリミング部5を設ければ静電容量の微妙な調整が可能になるため、より高精度な調整が可能になる。
また上記実施形態では、センサ部1に1軸の静電容量型センサ3が設けられる場合を例示した。しかし、これに限られるものでもなく、例えばセンサ部1に、互いに直交する3軸方向の加速度を検知するための3つの静電容量型センサ3が設けられたものであっても構わない。この場合、それら3つの静電容量型センサ3の錘13が端子mbに接続されるため、ダミーコンデンサ4の静電容量C2は、それら3つの静電容量型センサ3を合成した静電容量と略同一となるように形成される。
また上記実施形態では、調整モードにおいて全差動アンプ21をコンパレータとして動作させる場合を例示したが、これに限られるものではなく、調整モードにおいて使用するコンパレータを全差動アンプ21とは別に設けても構わない。ただし、この場合は、センサデバイスの回路規模が大型化する。そのため、センサデバイスの小型化が望まれる場合には、コンパレータを全差動アンプ21とは別に設けるよりも、上述したように全差動アンプ21をコンパレータとして利用する方がより好ましい。
また上記実施形態では、全差動アンプ21の反転入力端子に静電容量型センサ3の出力端子が接続され、非反転入力端子に静電容量型センサ3の静電容量と略同一のダミーコンデンサ4が接続された状態を例示した。しかし、これに限られるものではなく、全差動アンプ21の非反転入力端子に静電容量型センサ3を接続し、反転入力端子にダミーコンデンサ4を接続したものであっても構わない。
更には、ダミーコンデンサ4を設けることなく、静電容量型センサ3のコンデンサ11の固定電極を端子mbに接続し、コンデンサ12の固定電極を端子mbvに接続したものであっても良い。この場合、高周波の矩形波信号は錘13に印加され、静電容量型センサ3の2つの固定電極のそれぞれから各コンデンサ11,12の静電容量に応じた電荷信号がCV変換回路2に出力される。そのような構成であっても、寄生容量Cp1,Cp2にバラツキがあれば、上述した容量トリミング回路7によって寄生容量Cp1,Cp2のバラツキを高精度に調整することができる。
また上記実施形態では、一例として静電容量型センサ3が加速度を検知するセンサである場合を例示したが、これに限られるものではなく、加速度以外の物理量(例えば角速度)を検知するセンサとして構成されるものであっても構わない。
2 CV変換回路、3 静電容量型センサ、4 ダミーコンデンサ、5 容量トリミング部、6 容量分圧発生部、7 容量トリミング回路、8 第1のコンデンサ、9 第2のコンデンサ、21 全差動アンプ、Cf1 第1フィードバックコンデンサ、Cf2 第2フィードバックコンデンサ、51 トリミングコンデンサ。

Claims (4)

  1. 全差動アンプを有し、前記全差動アンプの反転入力端子と非反転出力端子との間に第1フィードバックコンデンサが接続されると共に、非反転入力端子と反転出力端子との間に前記第1フィードバックコンデンサと静電容量が略同一の第2フィードバックコンデンサが接続されたCV変換回路において、前記反転入力端子に接続される少なくとも1つの第1のコンデンサによる第1の静電容量と、前記非反転入力端子に接続される少なくとも1つの第2のコンデンサによる第2の静電容量との静電容量差をトリミングする容量トリミング回路であって、
    前記反転入力端子又は前記非反転入力端子に対して個別に接続又は切り離しが可能な複数のトリミングコンデンサを有し、前記複数のトリミングコンデンサを個別に前記反転入力端子又は前記非反転入力端子に対して接続又は切り離すことにより、前記第1の静電容量と前記第2の静電容量とを略同一の状態に調整する容量トリミング部と、
    前記容量トリミング部によって静電容量の調整が行われるとき、前記第1フィードバックコンデンサの一端に基準電圧を印加することにより前記第1フィードバックコンデンサと前記第1のコンデンサとの容量分圧に応じた電圧を前記反転入力端子に生じさせると共に、前記第2フィードバックコンデンサの一端に前記基準電圧を印加することにより前記第2フィードバックコンデンサと前記第2のコンデンサとの容量分圧に応じた電圧を前記非反転入力端子に生じさせ、前記反転入力端子に生じる電圧と前記非反転入力端子に生じる電圧との比較結果を出力する容量分圧発生部と、
    を備えることを特徴とする容量トリミング回路。
  2. 前記容量分圧発生部は、前記第1フォードバックコンデンサの一端を前記非反転出力端子から切り離して前記基準電圧に接続すると共に、前記第2フォードバックコンデンサの一端を前記反転出力端子から切り離して前記基準電圧に接続することにより、前記全差動アンプをコンパレータとして動作させ、前記反転入力端子に生じる電圧と前記非反転入力端子に生じる電圧との比較結果を前記反転出力端子及び前記非反転出力端子のそれぞれから出力させることを特徴とする請求項1に記載の容量トリミング回路。
  3. 前記容量分圧発生部は、前記第1及び第2フィードバックコンデンサのそれぞれの一端に前記基準電圧を印加する前に、前記第1及び第2フィードバックコンデンサのそれぞれに前記全差動アンプのオフセット電圧に応じた初期電荷を蓄積することを特徴とする請求項1又は2に記載の容量トリミング回路。
  4. 前記反転入力端子及び前記非反転入力端子のいずれか一方には、静電容量型センサの出力端子が接続され、他方には、前記静電容量型センサの静電容量と略同一のダミーコンデンサが接続されることを特徴とする請求項1乃至3のいずれかに記載の容量トリミング回路。
JP2013270851A 2013-12-27 2013-12-27 容量トリミング回路 Pending JP2015125088A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013270851A JP2015125088A (ja) 2013-12-27 2013-12-27 容量トリミング回路
PCT/JP2014/084002 WO2015098893A1 (ja) 2013-12-27 2014-12-22 容量トリミング回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013270851A JP2015125088A (ja) 2013-12-27 2013-12-27 容量トリミング回路

Publications (1)

Publication Number Publication Date
JP2015125088A true JP2015125088A (ja) 2015-07-06

Family

ID=53478746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013270851A Pending JP2015125088A (ja) 2013-12-27 2013-12-27 容量トリミング回路

Country Status (2)

Country Link
JP (1) JP2015125088A (ja)
WO (1) WO2015098893A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116706A1 (ja) * 2016-12-21 2018-06-28 アルプス電気株式会社 静電容量検出装置及び入力装置
JP2019514275A (ja) * 2016-03-30 2019-05-30 日本テキサス・インスツルメンツ合同会社 増幅器のための同相利得トリミング
JP2020020769A (ja) * 2018-08-03 2020-02-06 国立大学法人東京工業大学 静電容量検出回路

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025371A (ja) * 2014-07-16 2016-02-08 株式会社デンソー 半導体装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078916B2 (en) * 2004-04-06 2006-07-18 Analog Devices, Inc. Linearity enhancement for capacitive sensors
JP2008102091A (ja) * 2006-10-20 2008-05-01 Toyota Motor Corp 容量型検出回路
JP5287785B2 (ja) * 2010-04-07 2013-09-11 株式会社デンソー 静電容量式物理量センサ回路
US9032777B2 (en) * 2011-09-16 2015-05-19 Robert Bosch Gmbh Linearity enhancement of capacitive transducers by auto-calibration using on-chip neutralization capacitors and linear actuation
WO2013102499A1 (en) * 2012-01-05 2013-07-11 Epcos Ag Differential microphone and method for driving a differential microphone

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019514275A (ja) * 2016-03-30 2019-05-30 日本テキサス・インスツルメンツ合同会社 増幅器のための同相利得トリミング
JP7104275B2 (ja) 2016-03-30 2022-07-21 テキサス インスツルメンツ インコーポレイテッド 増幅器のための同相利得トリミング
WO2018116706A1 (ja) * 2016-12-21 2018-06-28 アルプス電気株式会社 静電容量検出装置及び入力装置
US10817114B2 (en) 2016-12-21 2020-10-27 Alps Alpine Co., Ltd. Capacitance detection device for detecting capacitance between object proximate to detection electrode and the detection electrode and input device used for inputting information according to proximity of object
JP2020020769A (ja) * 2018-08-03 2020-02-06 国立大学法人東京工業大学 静電容量検出回路
JP7161178B2 (ja) 2018-08-03 2022-10-26 国立大学法人東京工業大学 静電容量検出回路

Also Published As

Publication number Publication date
WO2015098893A1 (ja) 2015-07-02

Similar Documents

Publication Publication Date Title
JP5331304B2 (ja) 検出回路、インターフェース回路、電子機器、差動容量性センサー読み取り方法
AU731610B2 (en) Capacitance detection system and method
JP3262013B2 (ja) 容量型センサインターフェース回路
US6753691B2 (en) Method and circuit for detecting displacements using micro-electromechanical sensors with compensation of parasitic capacitances and spurious displacements
EP2474811B1 (en) Capacitance type physical quantity sensor and angular velocity sensor
US9116166B2 (en) Linearity enhancement of capacitive transducers by auto-calibration using on-chip neutralization capacitors and linear actuation
CN107231596B (zh) 电容性传感器测试
US10274510B2 (en) Cancellation of noise due to capacitance mismatch in MEMS sensors
US6856144B2 (en) Method and circuit for detecting movements through micro-electric-mechanical sensors, compensating parasitic capacitances and spurious movements
WO2015098893A1 (ja) 容量トリミング回路
US9118338B2 (en) Offset compensation circuit and method thereof
JP2014020827A (ja) 静電容量型センサの検出回路
JP2009097932A (ja) 容量型検出装置
US20060175540A1 (en) Capacitance type physical quantity sensor
US10768020B2 (en) Capacitive sensor
WO2010131640A1 (ja) 静電容量検出回路
EP3404422B1 (en) System including a capacitive transducer and an excitation circuit for such a transducer and a method for measuring acceleration with such a system
JP6201774B2 (ja) 物理量検出回路、物理量検出装置、電子機器および移動体
JP2006292469A (ja) 容量式物理量センサ
JP5257897B2 (ja) 出力回路
JP4269388B2 (ja) 容量式物理量検出装置
JP6314813B2 (ja) 加速度センサ
Tirupathi et al. A differential output switched capacitor based capacitive sensor interfacing circuit
US8237489B2 (en) Capacitance interface circuit
WO2017179618A1 (ja) 静電容量式センサ

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150401

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160217