JP2015102739A - 光導波路の製造方法、光導波路および光電気混載基板 - Google Patents

光導波路の製造方法、光導波路および光電気混載基板 Download PDF

Info

Publication number
JP2015102739A
JP2015102739A JP2013243998A JP2013243998A JP2015102739A JP 2015102739 A JP2015102739 A JP 2015102739A JP 2013243998 A JP2013243998 A JP 2013243998A JP 2013243998 A JP2013243998 A JP 2013243998A JP 2015102739 A JP2015102739 A JP 2015102739A
Authority
JP
Japan
Prior art keywords
optical waveguide
forming member
light transmission
mask
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013243998A
Other languages
English (en)
Inventor
匠 久保田
Takumi Kubota
匠 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2013243998A priority Critical patent/JP2015102739A/ja
Publication of JP2015102739A publication Critical patent/JP2015102739A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

【課題】ミラー面とアライメントマークとの位置ずれ要因を少なくするとともに、製造工程を短くすることができる光導波路の製造方法を提供すること、また、かかる製造方法を用いて製造された光導波路およびそれを備える光電気混載基板を提供すること。【解決手段】光導波路1の製造方法は、コア部14およびクラッド部を備える光導波路形成用部材1Xと、光透過部911、912を有するマスク910とを準備する準備工程と、光透過部911を介して光導波路形成用部材1Xにレーザーを照射することにより、コア部14の軸線またはその延長線に対して傾斜した方向に横断するミラー面を内壁面の一部として有する凹部または貫通孔を形成するとともに、光透過部912を介して光導波路形成用部材1Xにレーザーを照射することにより、アライメントマークを構成する凹部または貫通孔を形成する加工工程と、を有する。【選択図】図4

Description

本発明は、光導波路の製造方法、光導波路および光電気混載基板に関するものである。
近年、光信号を一地点から他地点に導くための手段として、光導波路が普及しつつある。この光導波路は、線状のコア部と、その周囲を覆うように設けられたクラッド部とを有している。コア部は、光に対して実質的に透明な材料によって構成され、クラッド部は、コア部より屈折率が低い材料によって構成されている。
光導波路では、コア部の一端から導入された光が、クラッド部との境界で反射しながら他端に搬送される。光導波路の入射側には、半導体レーザー等の発光素子が配置され、出射側には、フォトダイオード等の受光素子が配置される。発光素子から入射された光は光導波路を伝搬し、受光素子により受光され、受光した光の明滅パターンもしくはその強弱パターンに基づいて通信を行う。
このような光導波路によって例えば信号処理基板内の電気配線が置き換えられると、高周波ノイズの発生、電気信号の劣化といった電気信号に特有の課題が解消され、信号処理基板のさらなる高スループット化が可能になると期待されている。
電気配線を光導波路に置き換える際には、電気信号と光信号との相互変換を行う必要があることから、発光素子および受光素子とこれらの間を光学的に接続する光導波路とを備えた光導波路モジュールが開発されている。
このような光導波路モジュールに用いられる光導波路は、例えば、特許文献1に開示されているように、光路を変換して発光素子または受光素子と光学的に接続するため、コア部およびクラッド部をコア部の軸線に対して傾斜した方向に切断した切断面で構成されたミラー面が設けられている。
このようなミラー面が設けられた光導波路を光導波路モジュールに組み込む際には、一般に、光導波路に設けられたアライメントマークに基づいて位置合わせが行われる。
特開2010−107845号公報
しかし、従来では、アライメントマークは、ミラー面加工の後に、ミラー面の外形やミラー面の反射光の位置に基づいて位置決めしながら、ミラー面加工とは別の加工により形成されていたため、ミラー面とアライメントマークとの位置ずれ要因が大きく、また、光導波路の製造工程が長くなるという問題があった。
本発明の目的は、ミラー面とアライメントマークとの位置ずれ要因を少なくするとともに、製造工程を短くすることができる光導波路の製造方法を提供すること、また、かかる製造方法を用いて製造された光導波路およびそれを備える光電気混載基板を提供することにある。
このような目的は、下記(1)〜(6)の本発明により達成される。
(1) コア部およびクラッド部を備える光導波路形成用部材と、光透過部を有するマスクとを準備する準備工程と、
前記光透過部を介して前記光導波路形成用部材にレーザーを照射することにより、前記光導波路形成用部材に加工を施す加工工程と、を有し、
前記光透過部は、第1の光透過部および第2の光透過部を有しており、
前記加工工程において、前記第1の光透過部を介して前記光導波路形成用部材に前記レーザーを照射することにより、前記コア部の軸線またはその延長線に対して傾斜した方向に横断するミラー面を内壁面の一部として有する凹部または貫通孔を形成するとともに、前記第2の光透過部を介して前記光導波路形成用部材に前記レーザーを照射することにより、アライメントマークを構成する凹部または貫通孔を形成することを特徴とする光導波路の製造方法。
(2) 前記加工工程において、前記光導波路形成用部材に対して前記マスクを相対的に移動させつつ、前記第1の光透過部および前記第2の光透過部を介して前記光導波路形成用部材に前記レーザーを照射する上記(1)に記載の光導波路の製造方法。
(3) 前記準備工程において、第3の光透過部および第4の光透過部を有する固定マスクを準備し、
前記加工工程において、前記光導波路形成用部材に対して前記固定マスクを固定配置した状態で、前記第1の光透過部および前記第3の光透過部が重なり合う領域、および、前記第2の光透過部および前記第4の光透過部が重なり合う領域を介して前記光導波路形成用部材に前記レーザーを照射する上記(2)に記載の光導波路の製造方法。
(4) 前記第4の光透過部は、スポット状をなしている上記(3)に記載の光導波路の製造方法。
(5) 上記(1)ないし(4)のいずれか1項に記載の製造方法を用いて製造されたことを特徴とする光導波路。
(6) 上記(5)に記載の光導波路を備えることを特徴とする光電気混載基板。
本発明によれば、ミラー面およびアライメントマークを同一のマスクを用いたレーザー加工により同時形成するので、ミラー面とアライメントマークとの位置ずれ要因が少なく、また、ミラー面およびアライメントマークを別々の加工により形成する場合に比し、光導波路の製造工程を短くすることができる。
本発明の光導波路の第1実施形態を示す斜視図である。 図1に示す光導波路の部分拡大平面図である。 図1に示す光導波路の縦断面図であって、(a)は、ミラー面の形成部位を示す図、(b)は、アライメントマークの形成部位を示す図である。 図1に示す光導波路の製造に用いるマスクを説明するための図である。 図4に示すマスクの開口部(第1の光透過部および第2の光透過部)を説明するための図である。 図1に示す光導波路の製造方法の準備工程を説明するための縦断面図であって、(a)は、ミラー面の形成予定部位を示す図、(b)は、アライメントマークの形成予定部位を示す図である。 図1に示す光導波路の製造方法の加工工程を説明するための縦断面図であって、(a)は、ミラー面の形成部位を示す図、(b)は、アライメントマークの形成部位を示す図である。 本発明の光導波路の第2実施形態を示す斜視図である。 図8に示す光導波路の縦断面図であって、アライメントマークの形成部位を示す図である。 図8に示す光導波路の製造に用いるマスクを説明するための図である。 図10に示すマスクの開口部(第1の光透過部、第2の光透過部および第4の光透過部)を説明するための図である。 本発明の光導波路の第3実施形態を示す縦断面図であって、アライメントマークの形成部位を示す図である。 図12に示す光導波路の製造に用いるマスクを説明するための図である。 図13に示すマスクの開口部(第1の光透過部、第2の光透過部および第4の光透過部)を説明するための図である。 本発明の光電気混載基板の実施形態を示す縦断面図である。
以下、本発明の光導波路の製造方法、光導波路および光電気混載基板について添付図面に示す好適実施形態に基づいて詳細に説明する。
≪第1実施形態≫
まず、本発明の第1実施形態について説明する。
<光導波路>
最初に、本発明の光導波路、すなわち本発明の光導波路の製造方法を用いて製造された光導波路について説明する。
図1は、本発明の光導波路の第1実施形態を示す斜視図、図2は、図1に示す光導波路の部分拡大平面図である。また、図3は、図1に示す光導波路の縦断面図であって、図3(a)は、ミラー面の形成部位を示す図、図3(b)は、アライメントマークの形成部位を示す図である。なお、以下では、説明の便宜上、図1および図3中の下側を「下」、上側を「上」という。
図1に示す光導波路1は、帯状または板状をなしており、光入射部と光出射部との間で光信号を伝送し、光通信を行う。
図1に示す光導波路1は、下側からクラッド層11、コア層13およびクラッド層12をこの順で積層してなる積層体10を備えている。コア層13中には、長尺状の複数のコア部14とその側面に隣接して設けられた側面クラッド部15とが形成されている。このように2層のクラッド層11、12に挟まれたコア層13がコア部14および側面クラッド部15を有することにより、コア部14の外周が側面クラッド部15およびクラッド層11、12で構成されるクラッド部で囲まれることとなり、コア部14に効率的に光を閉じ込めて伝搬させることができる。
また、光導波路1には、積層体10を貫通する複数の空洞部170(貫通孔)と、積層体10のクラッド層12側に設けられたアライメントマークを構成する1対の凹部180とが設けられている。
コア部14の屈折率は、クラッド部の屈折率より大きければよいが、その差は0.3%以上であるのが好ましく、0.5%以上であるのがより好ましい。一方、上限値は特に設定されないが、好ましくは5.5%程度とされる。屈折率差が前記下限値未満の場合、光を伝搬する効果が低下するおそれがあり、一方、屈折率差が前記上限値を上回る場合、光の伝送効率のそれ以上の向上は期待できない。
なお、前記屈折率差とは、コア部14の最大屈折率をn4、側面クラッド部15、クラッド層11およびクラッド層12の各最小屈折率をn5、n1、n2としたとき、次式で表される。
屈折率差(%)=|n4/n5−1|×100
屈折率差(%)=|n4/n1−1|×100
屈折率差(%)=|n4/n2−1|×100
また、コア層13の幅方向、すなわち図3の紙面奥行方向(紙面に対して垂直な方向)における屈折率分布は、いかなる形状の分布であってもよい。すなわち、この屈折率分布は、屈折率が不連続的に変化したいわゆるステップインデックス(SI)型の分布であってもよく、屈折率が連続的に変化したいわゆるグレーデッドインデックス(GI)型の分布であってもよい。SI型の分布であれば屈折率分布の形成が容易であり、GI型の分布であれば屈折率の高い領域に信号光が集まる確率が高くなるため伝送効率が向上する。
同様に、光導波路1の厚さ方向、すなわち図2の上下方向における屈折率分布も、上述したステップインデックス型の分布であってもよく、上述したグレーデッドインデックス型の分布であってもよい。
また、コア部14は、図1では積層体10の層厚方向から見た平面視(以下、単に「平面視」という)で直線状であるが、これに限定されず、平面視で曲線状であってもよく、また、途中で分岐または交差していてもよい。
また、コア部14の横断面形状は、図1では四角形(矩形状)であるが、これに限定されず、例えば、真円、楕円形、長円形等の円形、三角形、五角形、六角形等の他の多角形であってもよい。ただし、コア部14の横断面形状が四角形(矩形状)であることにより、コア部14を形成し易い利点がある。
コア部14の幅および高さ(コア層13の厚さ)は、特に限定されないが、1〜200μm程度であるのが好ましく、5〜100μm程度であるのがより好ましい。これにより、コア部14の伝送効率を高めつつコア部14の高密度化を図ることができる。すなわち、単位面積当たりに敷設可能なコア部14の数を多くすることができるので、小面積であっても大容量の光通信を行うことができる。
なお、コア層13に形成されるコア部14の数は、図1では説明の便宜上4本であるが、これに限定されず、1〜3本または5本以上であってもよく、例えば、1〜100本とされる。
上述したようなコア層13およびクラッド層11、12の構成材料(主材料)は、例えば、アクリル系樹脂、メタクリル系樹脂、ポリカーボネート、ポリスチレン、エポキシ系樹脂やオキセタン系樹脂のような環状エーテル系樹脂、ポリアミド、ポリイミド、ポリベンゾオキサゾール、ポリシラン、ポリシラザン、シリコーン系樹脂、フッ素系樹脂、ポリウレタン、ポリオレフィン系樹脂、ポリブタジエン、ポリイソプレン、ポリクロロプレン、PETやPBTのようなポリエステル、ポリエチレンサクシネート、ポリサルフォン、ポリエーテル、また、ベンゾシクロブテン系樹脂やノルボルネン系樹脂等の環状オレフィン系樹脂のような各種樹脂材料等を用いることができる。なお、樹脂材料は、異なる組成のものを組み合わせた複合材料であってもよい。これらは、比較的加工が容易であるため、空洞部170が形成されるコア層13やクラッド層11、12の構成材料として好適である。
なお、光導波路1において、クラッド層11は必要に応じて設けられればよく、省略することもできる。その場合、空気層がクラッド層11の役目を果たすこととなる。
(ミラー面)
前述したように、光導波路1には、積層体10の一部が貫通するように除去されてなる複数の空洞部170が設けられている。図1に示すように、この空洞部170は、各コア部14の長手方向の途中に位置している。なお、図1では、各コア部14に対応して、空洞部170が4つ設けられているが、空洞部170の数は、これに限定されず、任意であり、例えば、コア部14の数と一致していなくてもよい。
この空洞部170の内壁面の一部は、コア部14の軸線Aに対して傾斜した方向に横断する傾斜面171になっている。この傾斜面171は、光反射性を有し、コア部14の光路を変換する「ミラー面」(光路変換部)として機能する。例えば、傾斜面171からなるミラー面は、コア部14内において図3(a)の右側から左側に向かって伝搬する光を、下方に向けて反射することにより、伝搬方向を変換する。なお、ここで、「軸線A」は、コア部14の中心を通り、かつ、コア部14の光軸に沿った線(中心線)である。
また、空洞部170は、クラッド層12の上面に直交しかつコア部14の軸線Aに平行な断面の形状が、略台形をなしている。この台形は、図3(a)の下側の辺が短く、上側の辺が長い。また、この台形の斜辺に相当するのが、前述した傾斜面171、および、この傾斜面171に対向する位置にある傾斜面172である。
また、空洞部170の内壁面(内側面)のうち、コア部14の軸線Aとほぼ平行な2つの面は、それぞれクラッド層11の下面に対して垂直な直立面173、174になっている(図2参照)。これらの2つの傾斜面171、172と2つの直立面173、174とにより、空洞部170の内側面が構成されている。
ここで、本実施形態では、前述したように空洞部170が積層体10を貫通しているため、傾斜面171は、図2および図3に示すように、クラッド層11、12を横断する領域であるクラッド部領域111、121と、コア層13を横断する領域であるコア層領域131とで構成されている。これらと同様の領域を傾斜面172も有する。
また、傾斜面171の軸線Aに対する傾斜角度θ1は、傾斜面171が変換する光路の結合先の位置に応じて適宜設定されるが、好ましくは30〜60°程度に設定され、より好ましくは35〜50°程度に設定される。傾斜角度θ1を前記範囲内に設定することにより、傾斜面171においてコア部14の光路を効率よく変換し、光路変換に伴う損失を抑制することができる。一方、傾斜面172の軸線Aに対する傾斜角度θ2は、傾斜角度θ1と同じであっても異なっていてもよいが、40°以上であることが好ましく、40〜60°程度であることがより好ましく、40〜50°程度であることがさらに好ましい。これにより、空洞部170の形成が容易となる。
なお、ここで、θ1およびθ2は、それぞれ、図3(a)に示す断面で見たときの軸線Aに対する傾斜角度をいう。また、傾斜角度θ1、θ2の測定は、社団法人日本電子回路工業会が発行するJPCA規格「光導波路を用いた光配線板の寸法測定方法(JPCA−PE02−05−02S)」を用いることができる。
また、傾斜面171の表面粗さSRaは、傾斜面171が光反射性を発揮できればよいが、0.15μmより小さいことが好ましく、0.01μm以上0.1μm以下であることがより好ましく、0.02μm以上0.08μm以下であることがさらに好ましい。これにより、傾斜面171を光反射性の優れたミラー面として使用することができる。
また、傾斜面172の表面粗さSRaは、傾斜面171の表面粗さSRaと同じであっても異なっていてもよいが、0.15μm以上であることが好ましく、0.2μm以上5μm以下であることがより好ましく、0.4μm以上1μm以下であることがさらに好ましい。
なお、表面粗さSRaとは、表面粗さデータにより表される曲面から基準面積だけ抜き取った部分の中心面上に直交座標軸(X軸、Y軸)を置き、中心面に直交する軸をZ軸で表し、所定の式で与えられた値をμm単位で表示するようにした中心面平均粗さである。
また、本実施形態では、傾斜面171、172は、それぞれ、平坦面で構成されているが、凹状または凸状に湾曲している部分を有していてもよい。
また、必要に応じて、ミラー面を構成する傾斜面171の表面には、反射膜が成膜されていてもよい。この反射膜としては、例えば、Au、Ag、Al等の金属膜や、コア部14より低屈折率の材料の膜等が挙げられる。金属膜の形成方法としては、例えば、真空蒸着のような物理蒸着法、CVDのような化学蒸着法、めっき法等が挙げられる。
また、空洞部170は、コア部14の軸線A上ではなく、軸線Aの延長線上に設けられていてもよい。
(アライメントマーク)
前述したように、光導波路1には、積層体10の上面の一部が除去されてなる1対(2つ)の凹部180が設けられている。図1に示すように、この1対の凹部180は、平面視で、複数のコア部14を挟む位置に設けられている。
この1対の凹部180は、光導波路1を他の部材(例えばプリント基板)に搭載する際の光導波路1と他の部材との位置合わせや、光導波路1に加工を施す際の加工部の位置決め等に用いる「アライメントマーク」として機能し得る。なお、凹部180の数および配置は、凹部180をアライメントマークとして用いることができればよく、図示のものに限定されず、例えば、凹部180の数が3つ以上であってもよいし、また、凹部180が空洞部170に対してコア部14の長手方向にずれた位置に配置されていてもよい。ただし、凹部180は、コア部14における光伝送を妨げない位置に設けられるのが好ましい。
特に、この1対の凹部180は、前述した複数の空洞部170と一括して形成されたものである。そのため、1対の凹部180は、各空洞部170との高精度な位置関係を有する。これにより、例えば、光導波路1を他の部材(例えばプリント基板)に搭載する際に、1対の凹部180をアライメントマークとして用いて光導波路1と他の部材との位置合わせを行うことにより、他の部材とミラー面である傾斜面171との位置合わせを高精度に行うことができる。その結果、位置合わせ作業を容易かつ正確に行うことができ、光導波路1と他の部材との光結合効率を高めることができる。
凹部180は、平面視形状がスポット状をなしている。これにより、凹部180を優れた視認性を有するアライメントマークとして用いることができる。なお、上記「スポット状」として、本実施形態では四角形を例に挙げているが、これに限定されず、例えば、三角形、五角形等の他の多角形、円形、楕円形等であってもよい。
また、凹部180は、クラッド層12の上面に直交しかつコア部14の軸線Aに平行な断面の形状が、略台形をなしている。この台形は、図3(b)の下側の辺が短く、上側の辺が長い。また、この台形の斜辺に相当するのが、図2および図3(b)に示す、面181、および、この面181に対向する位置にある面182である。
本実施形態では、面181、182は、積層体10の上面または下面に対して傾斜している。これらの傾斜角は、後に詳述する凹部180形成時におけるレーザーの照射条件等により決められるものであり、図示のものに限定されず、任意であるが、前述した傾斜面171、172の傾斜角度θ1、θ2と異なることが好ましく、傾斜面171、172の傾斜角度θ1、θ2よりも大きいことがより好ましい。これにより、凹部180を視認する際に空洞部170との区別が容易となる。また、面181、182は、積層体10の上面または下面に対して垂直であってもよい。この場合も、凹部180を視認する際に空洞部170との区別が容易となる。
また、凹部180の内壁面(内側面)のうち、コア部14の軸線Aとほぼ平行な2つの面183、184は、それぞれ積層体10の上面または下面に対して垂直である(図2参照)。これらの4つの面181、182、183、184により、凹部180の内側面が構成されている。
ここで、本実施形態では、凹部180は、クラッド層12を貫通しており、凹部180の底面は、コア層13に位置している。そのため、面181は、図2および図3に示すように、クラッド層12を横断する領域であるクラッド部領域122と、コア層13を横断する領域であるコア層領域132とで構成されている。これらと同様の領域を面182も有する。なお、凹部180は、クラッド層12を貫通せずに、凹部180の底面がクラッド層12に位置していてもよい。
また、このようなコア層13に底面が位置する凹部180は、コア層13に底面が位置しない空洞部170と区別して視認することが容易となる。
また、凹部180の深さは、ミラー面を内壁面の一部として有する空洞部170の深さよりも浅い。これにより、後述するレーザー加工の際、積層体10の上面または下面に対する面181、182の角度を容易に垂直またはそれに近くすることができる。また、面181、182が傾斜していても、凹部180を平面視したときの面181、182の面積が小さくなる。そのため、凹部180を視認する際の凹部180の外形が明瞭となる。
また、凹部180の内壁面の少なくとも一部の表面粗さは、ミラー面を構成する傾斜面171の表面粗さよりも大きいことが好ましい。これにより、凹部180の視認性を高めることができる。
以上説明したような空洞部170および凹部180は、以下に詳述するように、同一のマスクを用いたレーザー加工により一括して形成される。これにより、ミラー面とアライメントマークとの位置ずれ要因が少なく、また、ミラー面およびアライメントマークを別々の加工により形成する場合に比し、光導波路1の製造工程を短くすることができる。
<光導波路の製造方法>
次に、本発明の光導波路の製造方法について説明する。なお、以下では、前述した光導波路1を製造する場合を例に説明する。
図4は、図1に示す光導波路の製造に用いるマスクを説明するための図、図5は、図4に示すマスクの開口部(第1の光透過部および第2の光透過部)を説明するための図である。また、図6は、図1に示す光導波路の製造方法の準備工程を説明するための縦断面図であって、図6(a)は、ミラー面の形成予定部位を示す図、図6(b)は、アライメントマークの形成予定部位を示す図である。また、図7は、図1に示す光導波路の製造方法の加工工程を説明するための縦断面図であって、図7(a)は、ミラー面の形成部位を示す図、図7(b)は、アライメントマークの形成部位を示す図である。
光導波路1の製造方法は、[1]光導波路形成用部材1Xおよびマスク910を準備する準備工程と、[2]マスク910を用いて光導波路形成用部材1Xをレーザー加工することにより空洞部170および凹部180を形成する加工工程と、を有する。
以下、各工程について順次説明する。
[1]
まず、図4に示すように、光導波路形成用部材1Xおよびマスク910を準備する。
光導波路形成用部材1Xは、空洞部170および凹部180が形成されていない以外は、光導波路1と同様であり、クラッド層11、コア層13およびクラッド層12をこの順で積層してなる積層体10を備えている。したがって、光導波路形成用部材1Xは、コア部14と、側面クラッド部15およびクラッド層11、12からなるクラッド部と、を備える。
この光導波路形成用部材1Xの製造方法としては、例えば、(a)クラッド層11を形成するための組成物、コア層13を形成するための組成物、およびクラッド層12を形成するための組成物を、順次成膜して製造する方法、(b)各組成物を用いてクラッド層11、コア層13およびクラッド層12をそれぞれ形成した後、積層する方法、(c)3種の組成物を同時に押出成形して積層体を製造する方法等が挙げられる。
光導波路形成用部材1Xの製造に際しては、コア層13を形成するための組成物として、露光により屈折率が変化する屈折率変調能を有するものを用いれば、このコア層形成層に露光処理を施すことのみで、所望のパターンで敷設されたコア部14を含むコア層13を得ることができる。
なお、コア層13の製造方法は、このような方法に限定されない。例えば成膜工程と、フォトリソグラフィー技術とエッチング技術とを組み合わせたパターニング工程と、を繰り返し行うことにより、所望のパターンで敷設されたコア部14を含むコア層13を得ることができる。
また、マスク910は、光透過部として第1の光透過部911および第2の光透過部912を有する。第1の光透過部911および第2の光透過部912は、それぞれ、後述する加工工程[2]で用いるレーザーに対する透過性を有する。また、マスク910の第1の光透過部911および第2の光透過部912以外の部分は、後述する加工工程[2]で用いるレーザー光に対する遮光性を有する。なお、第1の光透過部911および第2の光透過部912の詳細については、加工工程[2]の説明と併せて後に説明する。
[2]
次に、マスク910の第1の光透過部911および第2の光透過部912を介して光導波路形成用部材1Xにレーザーを照射することにより、光導波路形成用部材1Xに加工を施す。このように、マスク910を用いて光導波路形成用部材1Xをレーザー加工することにより、空洞部170および凹部180を一括して形成する。
本実施形態では、まず、図4および図6に示すように、光導波路形成用部材1Xおよびマスク910を配置した後、図5に示すように、光導波路形成用部材1Xに対してマスク910を相対的に移動させつつ、図6および図7に示すように、第1の光透過部911および第2の光透過部912を介して光導波路形成用部材1XにレーザーLを照射する。このような相対的な移動を行うことにより、コア部14の軸線Aに対して傾斜したミラー面を容易に形成することができる。
このようなレーザー加工に用いるレーザー加工装置は、例えば、図示しないが、光導波路形成用部材1Xが載置される駆動ステージと、この駆動ステージ上の光導波路形成用部材1Xにレーザー光を照射し得るレーザー光源と、を備え、マスク910は、レーザー光源から出射されるレーザー光の光軸上に配置される。
レーザー光源は、発振するレーザーの波長に応じて適宜選択されるが、例えば、YAGレーザー、YVOレーザー、Ybレーザー、半導体レーザーのような各種固体レーザー、COレーザー、He−Neレーザー、エキシマーレーザーのような各種気体レーザー等が挙げられる。
また、レーザーの波長は、積層体10の構成材料に応じて適宜設定されるが、例えば150〜950nm程度とされる。
駆動ステージとしては、例えばX−Yステージやリニアアクチュエーター等が用いられる。マスク910に対して駆動ステージ上に載置した光導波路形成用部材1Xを相対的に移動させることにより、光導波路形成用部材1Xに対してレーザーの照射領域を任意のパターンで走査させることができる。これにより、光導波路形成用部材1Xの任意の位置に対して任意の時間のレーザー照射を施すことができる。
光導波路形成用部材1Xは、レーザーが照射されると、その照射領域では気化反応が生じ、凹部が生じる。したがって、照射領域を走査させることにより、走査軌跡に沿って凹部が連続的に形成され、最終的には走査軌跡に応じた開口を有する凹部が形成されることとなる。
なお、固定配置したマスク910に対して光導波路形成用部材1Xを移動させるのではなく、光導波路形成用部材1Xを固定配置した状態でマスク910を移動させるようにしてもよく、また、マスク910および光導波路形成用部材の双方を移動させるようにしてもよい。
本製造方法に係るマスク910は、板状体であって、前述したように、光透過部として第1の光透過部911および第2の光透過部912を有する。図6および図7に示すように、このマスク910に対して光導波路形成用部材1Xとは反対側から照射されたレーザーLは、その一部が第1の光透過部911および第2の光透過部912を透過することにより整形されたレーザーL1、L2となって光導波路形成用部材1Xに照射される。これにより、第1の光透過部911および第2の光透過部912のそれぞれの平面視形状に対応した光導波路形成用部材1X上の領域にレーザーL1、L2が選択的に照射されることとなる。
また、マスク910は、図5および図7に示すように、コア部14の長手方向、すなわちY方向に沿って第1の光透過部911および第2の光透過部912が光導波路形成用部材1Xに対して相対的に移動しつつレーザーLが照射されるように使用される。なお、図4〜7では、説明の便宜上、光導波路形成用部材1Xの直近に光導波路形成用部材1Xの上面に平行となるようにマスク910が配置されているが、マスク910の位置は、レーザーLの光路の形状、配置等に応じて設定されるものであり、レーザーLの光軸上であれば、これに限定されず、例えば、マスク910は、光導波路形成用部材1Xに対して比較的大きな離間距離で離れていてもよいし、光導波路形成用部材1Xの上面に対して傾斜または直交するように配置されていてもよい。また、マスク910とレーザー光源との間や、マスク910と光導波路形成用部材1Xとの間には、必要に応じて、レンズ、プリズム等の光学部品が配置されていてもよい。また、マスク910を移動させる場合には、レーザー光源から出射されるレーザーがマスク910の移動に追従するように走査されてもよい。また、図6、7では、説明の便宜上、レーザーL、L1、L2が平行光である場合を例に図示しているが、これに限定されず、例えば、レーザーL、L1、L2がレンズ等により光導波路形成用部材に向けて集束していてもよい。
このように光導波路形成用部材1Xに対してマスク910を相対的に移動させることにより、レーザーL1が図7(a)中2点鎖線で示す位置L1aから図7(a)中実線で示す位置L1bまで光導波路形成用部材1Xに対して相対的に移動するとともに、レーザーL2が図7(b)中2点鎖線で示す位置L2aから図7(b)中実線で示す位置L2bまで光導波路形成用部材1Xに対して相対的に移動する。
このようなレーザーL1、L2の移動により、レーザーL1の移動に伴う照射領域の平面視形状に応じた平面視形状の空洞部170が形成されるとともに、レーザーL2の移動に伴う照射領域の平面視形状に応じた平面視形状の凹部180が形成される。
ここで、レーザーL1の移動に伴う照射領域において、レーザーL1の積算光量は、図5に示すY方向の中央部から両端(すなわち移動開始端と移動終了端)側に向かうにつれて徐々に減少する積算光量分布となる。このため、レーザーL1の移動に伴う照射領域のY方向の一方側と他方側には、図3に示すような傾斜面171と傾斜面172とがそれぞれ形成されることとなる。このとき、第1の光透過部911の移動とともに移動速度やレーザーLの出力を適宜変更することにより、傾斜面171、172の傾斜角度を調整することもできる。
同様に、レーザーL2の移動に伴う照射領域のY方向の一端部と他端部には、図3に示すような傾斜した面181、182がそれぞれ形成されることとなるが、Y方向に沿った第1の光透過部911の長さは、マスク910のY方向の移動量とほぼ同等であるのに対し、Y方向に沿った第2の光透過部912の長さは、マスク910のY方向の移動量よりも大幅に短い。そのため、レーザーL2の移動に伴う照射領域のY方向の中央部には、光導波路形成用部材1Xの上面または下面に平行な底面が形成されることとなる。また、形成される凹部180は、空洞部170の深さよりも浅くなる。
また、第2の光透過部912は、光導波路形成用部材1Xに対するマスク910の相対的な移動方向(図5に示すY方向)に対して垂直な方向(図5に示すX方向)に沿って細長い形状をなしている。これにより、本実施形態のように1つのマスク910を用いてミラー面およびアライメントマークを形成する場合において、正方形またはこれに近い長方形の平面視形状をなすアライメントマーク(凹部180)を形成することができる。
ここで、Y方向に沿った第2の光透過部912の長さを短くすると、形成される凹部180の深さが浅くなり、一方、Y方向に沿った第2の光透過部912の長さを長くすると、形成される凹部180の深さが深くなる。本実施形態では、1つのマスク910を用いて空洞部170および凹部180を形成するため、Y方向に沿った第2の光透過部912の長さに応じて、Y方向に沿った凹部180の長さが変化する。したがって、Y方向に沿った凹部180の長さとX方向に沿った凹部180との長さを同等または近似したものとするには、前述したように第2の光透過部912を細長くする必要がある。
以上説明したような光導波路1の製造方法によれば、ミラー面およびアライメントマークを同一のマスク910を用いたレーザー加工により同時形成するので、ミラー面とアライメントマークとの位置ずれ要因が少なく、また、ミラー面およびアライメントマークを別々の加工により形成する場合に比し、光導波路1の製造工程を短くすることができる。
≪第2実施形態≫
次に、本発明の第2実施形態について説明する。
図8は、本発明の光導波路の第2実施形態を示す斜視図である。また、図9は、図8に示す光導波路の縦断面図であって、アライメントマークの形成部位を示す図、図10は、図8に示す光導波路の製造に用いるマスクを説明するための図である。
本実施形態は、アライメントマークを構成する凹部の形状およびその凹部の形成方法が異なる以外は、前述した第1実施形態と同様である。
以下、第2実施形態について説明するが、以下の説明では、前述した実施形態との相違点について説明し、同様の事項についてはその説明を省略する。
図8に示す光導波路1Aには、アライメントマークとして機能し得る1対の凹部180Aが設けられている。
この各凹部180Aは、積層体10の上面の一部が除去されてなり、平面視形状がスポット状をなしている。特に、本実施形態では、凹部180Aの平面視形状は、円形である。また、凹部180Aは、クラッド層12を貫通しており、凹部180Aの底面は、コア層13の上面で構成されている。
このような凹部180Aを有する光導波路1Aは、図10に示すような2つのマスク910、920を用いたレーザー加工により製造することができる。以下、光導波路1Aの製造方法について詳述する。
光導波路1Aの製造方法は、[1A]光導波路形成用部材1Xおよびマスク910、920を準備する準備工程と、[2A]マスク910、920を用いて光導波路形成用部材1Xをレーザー加工することにより空洞部170および凹部180Aを形成する加工工程と、を有する。
以下、各工程について順次説明する。
[1A]
まず、図10に示すように、光導波路形成用部材1Xおよびマスク910、920を準備する。
マスク910は、光導波路形成用部材1Xに対して相対的に移動させて用いる移動マスクであるのに対し、マスク920は、マスク910に重ねた状態で光導波路形成用部材1Xに対して固定配置して用いる固定マスクである。マスク920は、光透過部として第3の光透過部921および第4の光透過部922を有する。第3の光透過部921および第4の光透過部922は、それぞれ、後述する加工工程[2A]で用いるレーザーに対する透過性を有する。また、マスク920の第3の光透過部921および第4の光透過部922以外の部分は、後述する加工工程[2A]で用いるレーザー光に対する遮光性を有する。なお、第3の光透過部921および第4の光透過部922の詳細については、加工工程[2A]の説明と併せて後に説明する。
[2A]
次に、マスク910、920を用いて光導波路形成用部材1Xをレーザー加工することにより、空洞部170および凹部180Aを一括して形成する。
具体的に説明すると、図10に示すように、光導波路形成用部材1Xに対してマスク920を固定配置した状態で、マスク920に重ねたマスク910を光導波路形成用部材1Xに対して相対的に移動させつつ、第1の光透過部911および第3の光透過部921が重なり合う領域、および、第2の光透過部912および第4の光透過部922が重なり合う領域を介して光導波路形成用部材1Xにレーザーを照射する。なお、図10では、マスク920がマスク910に対して光導波路形成用部材1Xとは反対側に配置されているが、マスク920はマスク910と光導波路形成用部材1Xとの間に配置されていてもよい。
このとき、第3の光透過部921は、図11に示すように、マスク910、920が重なる方向から見たとき、第1の光透過部911の移動領域を包含する。したがって、第1の光透過部911および第3の光透過部921が重なり合う領域を介して、光導波路形成用部材1Xに対してレーザーを照射することにより、前述した第1実施形態と同様に、第1の光透過部911の移動領域の平面視形状に対応した平面視形状の空洞部170が形成される。
一方、第4の光透過部922は、マスク910、920が重なる方向から見たとき、第2の光透過部912の移動領域に包含される。したがって、第2の光透過部912および第4の光透過部922が重なり合う領域を介して、光導波路形成用部材1Xに対してレーザーを照射することにより、第4の光透過部922の平面視形状に対応した平面視形状の凹部180Aが形成される。
ここで、前述した第1実施形態と同様、Y方向に沿った第2の光透過部912の長さを短くすると、形成される凹部180Aの深さが浅くなり、一方、Y方向に沿った第2の光透過部912の長さを長くすると、形成される凹部180Aの深さが深くなる。本実施形態では、前述したような2つのマスク910、920を用いて空洞部170および凹部180Aを形成するため、Y方向に沿った第2の光透過部912の長さを変更しても、Y方向に沿った凹部180Aの長さが変化せず、第4の光透過部922の平面視形状に対応した平面視形状の凹部180Aを形成することができる。したがって、任意の深さの凹部180Aで構成されるアライメントマークを容易に形成することができる。
≪第3実施形態≫
次に、本発明の第3実施形態について説明する。
図12は、本発明の光導波路の第3実施形態を示す縦断面図であって、アライメントマークの形成部位を示す図である。また、図13は、図12に示す光導波路の製造に用いるマスクを説明するための図、図14は、図13に示すマスクの開口部(第1の光透過部、第2の光透過部および第4の光透過部)を説明するための図である。
本実施形態は、アライメントマークを貫通孔で構成した以外は、前述した第2実施形態と同様である。
以下、第3実施形態について説明するが、以下の説明では、前述した実施形態との相違点について説明し、同様の事項についてはその説明を省略する。
図12に示す光導波路1Bには、アライメントマークとして機能し得る貫通孔180Bが設けられている。
この貫通孔180Bは、積層体10を貫通しており、平面視形状がスポット状(円形)をなしている。このような貫通孔180Bは、積層体10のクラッド層11側から容易に視認し得るアライメントマークとして用いることができる。
このような貫通孔180Bを有する光導波路1Bは、図13に示すような2つのマスク910B、920を用いたレーザー加工により製造することができる。以下、光導波路1Bの製造方法について詳述する。
光導波路1Bの製造方法は、[1B]光導波路形成用部材1Xおよびマスク910B、920を準備する準備工程と、[2B]マスク910B、920を用いて光導波路形成用部材1Xをレーザー加工することにより空洞部170および貫通孔180Bを形成する加工工程と、を有する。
以下、各工程について順次説明する。
[1B]
まず、図13に示すように、光導波路形成用部材1Xおよびマスク910B、920を準備する。
マスク910Bは、前述した実施形態のマスク910において、第2の光透過部912に代えて第2の光透過部912Bを有し、それ以外は、マスク910と同様である。
また、マスク910Bは、光導波路形成用部材1Xに対して相対的に移動させて用いる移動マスクであるのに対し、マスク920は、マスク910Bに重ねた状態で光導波路形成用部材1Xに対して固定配置して用いる固定マスクである。
[2B]
次に、マスク910B、920を用いて光導波路形成用部材1Xをレーザー加工することにより、空洞部170および貫通孔180Bを一括して形成する。
具体的に説明すると、図13に示すように、光導波路形成用部材1Xに対してマスク920を固定配置した状態で、マスク920に重ねたマスク910Bを光導波路形成用部材1Xに対して相対的に移動させつつ、第1の光透過部911および第3の光透過部921が重なり合う領域、および、第2の光透過部912Bおよび第4の光透過部922が重なり合う領域を介して光導波路形成用部材1Xにレーザーを照射する。
このとき、第3の光透過部921は、マスク910B、920が重なる方向から見たとき、第1の光透過部911の移動領域を包含する。したがって、第1の光透過部911および第3の光透過部921が重なり合う領域を介して、光導波路形成用部材1Xに対してレーザーを照射することにより、前述した第1実施形態と同様に、第1の光透過部911の移動領域の平面視形状に対応した平面視形状の空洞部170が形成される。
一方、第4の光透過部922は、マスク910、920が重なる方向から見たとき、第2の光透過部912Bの移動領域に包含される。したがって、第2の光透過部912Bおよび第4の光透過部922が重なり合う領域を介して、光導波路形成用部材1Xに対してレーザーを照射することにより、第4の光透過部922の平面視形状に対応した平面視形状の貫通孔180Bが形成される。
特に、本実施形態では、マスク910、920が重なる方向から見たとき、第2の光透過部912Bが常に第4の光透過部922を包含するよう、Y方向に沿った第2の光透過部912Bの長さがマスク910の移動量よりも長くなっている。これにより、第4の光透過部922を透過するレーザー光の量が多く(時間が長く)なり、積層体10を貫通する貫通孔180Bを形成することができる。
<光電気混載基板>
次に、本発明の光電気混載基板の実施形態について説明する。
図15は、本発明の光電気混載基板の実施形態を示す縦断面図である。
図15に示す光電気混載基板100は、光導波路(本発明の光導波路)1と、その下面に積層された電気配線基板5と、これらの間に介挿され両者を接着する接着シート90と、を有している。ここで、光導波路1は、下面に設けられた支持フィルム2と、上面に設けられたカバーフィルム3と、を含む。
図15に示す電気配線基板5は、コア基板51とその両面に積層されたビルドアップ層52とを備えた多層基板50と、この多層基板50の下面に設けられたバンプ53と、を有している。このような電気配線基板5は、このバンプ53を介して他の回路に実装可能なインターポーザーとして用いられる。
コア基板51は、電気配線基板5を支持する基板であり、その構成材料としては、例えば、各種樹脂材料が挙げられる。この他、紙、ガラス布、樹脂フィルム等を基材とし、この基材に樹脂材料を含浸させたもの、具体的には、ガラス布・エポキシ銅張積層板、ガラス不織布・エポキシ銅張積層板等のコンポジット銅張積層板に使用される絶縁性基板の他、ポリエーテルイミド樹脂基板、ポリエーテルケトン樹脂基板、ポリサルフォン系樹脂基板等の耐熱・熱可塑性の有機系リジッド基板や、アルミナ基板、窒化アルミニウム基板、炭化ケイ素基板等のセラミックス系リジッド基板等であってもよい。
また、コア基板51には貫通孔が設けられており、貫通孔内にはコア基板51の両面に積層されたビルドアップ層52同士を電気的に接続する貫通配線が形成されている。
一方、ビルドアップ層52は、絶縁層521と導体層522とを交互に積層することにより形成される。導体層522にはパターニングが施され、電気配線が形成されている。また、絶縁層521には貫通孔が設けられており、貫通孔内には絶縁層521の両面に設けられた電気配線同士を接続する貫通配線が形成されている。
これらの導体層522および貫通配線は、それぞれ、銅、アルミニウム、ニッケル、クロム、亜鉛、錫、金、銀のような金属単体、またはこれらの金属元素を含む合金等の導電性材料で構成される。
また、絶縁層521は、酸化ケイ素、窒化ケイ素のようなケイ素化合物、ポリイミド系樹脂、エポキシ系樹脂のような樹脂材料等により構成される。
このようにして、ビルドアップ層52内には、面方向のみでなく厚さ方向にも広がる電気回路を構築することができ、電気回路の高密度化を図ることができる。
なお、このような多層基板50は、いかなる工法で形成されたものであってもよいが、一例としてアディティブ法、セミアディティブ法、サブトラクティブ法等の各種ビルドアップ工法により形成される。
また、本発明の光電気混載基板が備える電気配線基板は、上述した電気配線基板5のような多層基板を含むものに限定されず、例えば多層基板を単層の電気配線基板(リジッド基板)で代替したものであってもよく、ポリイミド基板、ポリエステル基板、アラミドフィルム基板のような各種フレキシブル基板で代替したものであってもよい。また、多層基板50は、コア基板51を含まないコアレスの多層基板で代替することもできる。
また、図15に示す電気配線基板5は、多層基板50の上面に設けられたソルダーレジスト層54を有している。ソルダーレジスト層54を設けることにより、電気配線基板5の導体層522を酸化や腐食等から保護するとともに、多層基板50の上面の平滑化を図り、接着シート90と多層基板50との密着性を高めることができる。なお、ソルダーレジスト層54のうち、導体層522との接続部には図示しない開口が形成されている。
なお、この電気配線基板5には、図示しない電気素子が搭載されていてもよい。電気素子としては、例えば、IC、LSI、RAM、ROM、コンデンサー、コイル、抵抗、ダイオード等が挙げられる。
また、図15に示す光電気混載基板100は、光導波路1を貫通する貫通孔16と、貫通孔16内に設けられた貫通配線17と、を有している。
図15に示す貫通孔16は、光導波路1およびその下方に位置する接着シート90とソルダーレジスト層54とを貫通している。
貫通配線17は、貫通孔16内の少なくとも一部を充填する導電性材料で構成されている。また、図15に示す貫通配線17は、その下端が電気配線基板5の導体層522に接続され、上端が光導波路1の上面に露出している。
また、図15に示す光電気混載基板100は、電気配線基板5上に搭載された光素子6を有している。
図15に示す光素子6は、素子本体60と、素子本体60の下面に設けられた受発光部61および端子62と、端子62から下方に突出するよう設けられたバンプ63と、を有している。なお、受発光部とは、受光部または発光部、あるいはその双方の機能を有するものを指す。
光素子6は、受発光部61の光軸が光導波路1の空洞部170の傾斜面171(ミラー)を介してコア部14の光軸と一致するよう配置されている。これにより、光導波路1と光素子6とが光学的に接続され、光導波路1を伝搬する光信号を光素子6に受光させたり、光素子6から出射された光信号を光導波路1に入射したりすることができる。
また、バンプ63は、貫通配線17の上面に接続されている。これにより、光素子6が機械的に固定されるとともに、光素子6の端子62と貫通配線17とが電気的に接続され、光素子6の動作を電気配線基板5側から制御し得るよう構成されている。
光素子6としては、例えば、面発光レーザー(VCSEL)、発光ダイオード(LED)、有機EL素子等の発光素子、フォトダイオード(PD、APD)等の受光素子が挙げられる。
<電子機器>
上述したような本発明に係る光導波路は、伝送効率が高く、かつ他の光学部品との光結合効率に優れたものである。このため、本発明の光導波路を備えることにより、高品質の光通信を行い得る信頼性の高い電子機器が得られる。
本発明の光導波路を備える電子機器としては、例えば、携帯電話、ゲーム機、ルーター装置、WDM装置、パソコン、テレビ、ホーム・サーバー等の電子機器類が挙げられる。これらの電子機器では、いずれも、例えばLSI等の演算装置とRAM等の記憶装置との間で、大容量のデータを高速に伝送する必要がある。したがって、このような電子機器が本発明の光導波路を備えることにより、電気配線に特有なノイズ、信号劣化等の不具合が解消され、その性能の飛躍的な向上が期待できることから、電子機器の低コスト化に貢献することができる。
さらに、光導波路部分では、電気配線に比べて発熱量が大幅に削減される。このため、冷却に要する電力を削減することができ、電子機器全体の消費電力を削減することができる。
以上、本発明の光導波路の製造方法、光導波路および光電気混載基板について説明したが、本発明はこれに限定されるものではなく、例えば、本発明の光導波路の製造方法は、任意の目的の工程が1または2以上追加されてもよし、また、本発明の光導波路は、前述した実施形態の同様の機能を発揮する任意の構成のものに置換することができ、また、任意の構成を付加することもできる。
また、本発明は、前述した各実施形態の任意の構成同士を組み合わせるようにしてもよい。
また、前述した実施形態では、マスクを光導波路形成用部材に対して相対的に移動しながら、光導波路形成用部材をレーザー加工する場合を例に説明したが、本発明は、これに限定されず、マスクと光導波路形成用部材との位置関係を固定した状態で、光導波路形成用部材をレーザー加工してもよい。この場合、例えば、ミラー面を形成するためのマスクの光透過部としてグレースケールマスクを用いればよい。
また、傾斜面171を光入射側ミラーとして用いた場合、光出射側はコア部14の端面からコア部14の光軸に沿って光を出射させるようにしてもよく、その際、出射端にはコネクターが装着されていてもよい。一方、傾斜面171を光出射側ミラーとして用いた場合、光入射側はコア部14の端面からコア部14の光軸に沿って光を入射するようにしてもよく、その際、入射端にはコネクターが装着されていてもよい。
また、光導波路には複数の傾斜面が形成されていてもよい。例えば2つの傾斜面が形成されている場合、一方の傾斜面を光入射側ミラーとして用い、他方の傾斜面を光出射側ミラーとして用いることができる。
1 光導波路
1A 光導波路
1B 光導波路
1X 光導波路形成用部材
2 支持フィルム
3 カバーフィルム
5 電気配線基板
6 光素子
10 積層体
11 クラッド層
12 クラッド層
13 コア層
14 コア部
15 側面クラッド部
16 貫通孔
17 貫通配線
50 多層基板
51 コア基板
52 ビルドアップ層
53 バンプ
54 ソルダーレジスト層
60 素子本体
61 受発光部
62 端子
63 バンプ
90 接着シート
100 光電気混載基板
111 クラッド部領域
121 クラッド部領域
122 クラッド部領域
131 コア層領域
132 コア層領域
170 空洞部
171 傾斜面
172 傾斜面
173 直立面
174 直立面
180 凹部
180A 凹部
180B 貫通孔
181 面
182 面
183 面
184 面
521 絶縁層
522 導体層
910 マスク
910B マスク
911 第1の光透過部
912 第2の光透過部
912B 第2の光透過部
920 マスク(固定マスク)
921 第3の光透過部
922 第4の光透過部
A 軸線
L レーザー
L1 レーザー
L1a 位置
L1b 位置
L2 レーザー
L2a 位置
L2b 位置

Claims (6)

  1. コア部およびクラッド部を備える光導波路形成用部材と、光透過部を有するマスクとを準備する準備工程と、
    前記光透過部を介して前記光導波路形成用部材にレーザーを照射することにより、前記光導波路形成用部材に加工を施す加工工程と、を有し、
    前記光透過部は、第1の光透過部および第2の光透過部を有しており、
    前記加工工程において、前記第1の光透過部を介して前記光導波路形成用部材に前記レーザーを照射することにより、前記コア部の軸線またはその延長線に対して傾斜した方向に横断するミラー面を内壁面の一部として有する凹部または貫通孔を形成するとともに、前記第2の光透過部を介して前記光導波路形成用部材に前記レーザーを照射することにより、アライメントマークを構成する凹部または貫通孔を形成することを特徴とする光導波路の製造方法。
  2. 前記加工工程において、前記光導波路形成用部材に対して前記マスクを相対的に移動させつつ、前記第1の光透過部および前記第2の光透過部を介して前記光導波路形成用部材に前記レーザーを照射する請求項1に記載の光導波路の製造方法。
  3. 前記準備工程において、第3の光透過部および第4の光透過部を有する固定マスクを準備し、
    前記加工工程において、前記光導波路形成用部材に対して前記固定マスクを固定配置した状態で、前記第1の光透過部および前記第3の光透過部が重なり合う領域、および、前記第2の光透過部および前記第4の光透過部が重なり合う領域を介して前記光導波路形成用部材に前記レーザーを照射する請求項2に記載の光導波路の製造方法。
  4. 前記第4の光透過部は、スポット状をなしている請求項3に記載の光導波路の製造方法。
  5. 請求項1ないし4のいずれか1項に記載の製造方法を用いて製造されたことを特徴とする光導波路。
  6. 請求項5に記載の光導波路を備えることを特徴とする光電気混載基板。
JP2013243998A 2013-11-26 2013-11-26 光導波路の製造方法、光導波路および光電気混載基板 Pending JP2015102739A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013243998A JP2015102739A (ja) 2013-11-26 2013-11-26 光導波路の製造方法、光導波路および光電気混載基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013243998A JP2015102739A (ja) 2013-11-26 2013-11-26 光導波路の製造方法、光導波路および光電気混載基板

Publications (1)

Publication Number Publication Date
JP2015102739A true JP2015102739A (ja) 2015-06-04

Family

ID=53378461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013243998A Pending JP2015102739A (ja) 2013-11-26 2013-11-26 光導波路の製造方法、光導波路および光電気混載基板

Country Status (1)

Country Link
JP (1) JP2015102739A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019061065A (ja) * 2017-09-27 2019-04-18 京セラ株式会社 光導波路および光回路基板
JP2021018409A (ja) * 2019-07-17 2021-02-15 新光電気工業株式会社 光導波路、光導波路装置及び光導波路の製造方法
WO2021124932A1 (ja) * 2019-12-20 2021-06-24 京セラ株式会社 光回路基板
WO2023063313A1 (ja) * 2021-10-14 2023-04-20 パナソニックIpマネジメント株式会社 光電気複合基板およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040202429A1 (en) * 2003-04-10 2004-10-14 Lambda Crossing Ltd. Planar optical component for coupling light to a high index waveguide, and method of its manufacture
JP2005014043A (ja) * 2003-06-26 2005-01-20 Nitto Denko Corp 凹部形成方法、光学フィルムの製造方法及び液晶表示装置
JP2011081142A (ja) * 2009-10-06 2011-04-21 Sumitomo Bakelite Co Ltd ミラー付き光導波路の製造方法
JP2013174834A (ja) * 2012-02-27 2013-09-05 Sumitomo Bakelite Co Ltd 光導波路の製造方法および光導波路モジュールの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040202429A1 (en) * 2003-04-10 2004-10-14 Lambda Crossing Ltd. Planar optical component for coupling light to a high index waveguide, and method of its manufacture
JP2005014043A (ja) * 2003-06-26 2005-01-20 Nitto Denko Corp 凹部形成方法、光学フィルムの製造方法及び液晶表示装置
JP2011081142A (ja) * 2009-10-06 2011-04-21 Sumitomo Bakelite Co Ltd ミラー付き光導波路の製造方法
JP2013174834A (ja) * 2012-02-27 2013-09-05 Sumitomo Bakelite Co Ltd 光導波路の製造方法および光導波路モジュールの製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019061065A (ja) * 2017-09-27 2019-04-18 京セラ株式会社 光導波路および光回路基板
JP7027091B2 (ja) 2017-09-27 2022-03-01 京セラ株式会社 光導波路および光回路基板
JP2021018409A (ja) * 2019-07-17 2021-02-15 新光電気工業株式会社 光導波路、光導波路装置及び光導波路の製造方法
JP7321907B2 (ja) 2019-07-17 2023-08-07 新光電気工業株式会社 光導波路、光導波路装置及び光導波路の製造方法
WO2021124932A1 (ja) * 2019-12-20 2021-06-24 京セラ株式会社 光回路基板
JPWO2021124932A1 (ja) * 2019-12-20 2021-06-24
CN114930213A (zh) * 2019-12-20 2022-08-19 京瓷株式会社 光电路基板
JP7352653B2 (ja) 2019-12-20 2023-09-28 京セラ株式会社 光回路基板
WO2023063313A1 (ja) * 2021-10-14 2023-04-20 パナソニックIpマネジメント株式会社 光電気複合基板およびその製造方法

Similar Documents

Publication Publication Date Title
US10667388B2 (en) Optical waveguide having aluminum nitride thin film
JP5139375B2 (ja) 光インターフェースモジュールの製造方法、及び、光インターフェースモジュール
JP5218668B2 (ja) 位置決め構造体を有する光導波路基板の製造方法、及び光電気混載基板の製造方法
JP6115067B2 (ja) 光モジュール
US20120014641A1 (en) Optical-electrical wiring board and optical module
KR20090028435A (ko) 광 도파로 탑재 기판 및 그 제조 방법
JP2007148087A (ja) 光電気集積配線基板及び光電気集積配線システム
WO2015002188A1 (ja) 光モジュール用部材、光モジュールおよび電子機器
JP2015102739A (ja) 光導波路の製造方法、光導波路および光電気混載基板
US8737794B2 (en) Two-layer optical waveguide and method of manufacturing the same
JP5277874B2 (ja) 光電気混載基板および電子機器
JP2014122929A (ja) 光導波路装置及びその製造方法
US9983368B2 (en) Optical waveguide device
US9244224B2 (en) Optical waveguide device
JP5625706B2 (ja) 積層体の製造方法
JP2015087713A (ja) 光導波路、光電気混載基板および電子機器
JP2015106099A (ja) 光配線部品、光モジュール、光電気混載基板および電子機器
JP6268932B2 (ja) 光導波路、インプリント用型、光導波路の製造方法、光電気混載基板および電子機器
JP6958063B2 (ja) 光導波路の製造方法
JP2015049256A (ja) 光モジュール用部材、光モジュールおよび電子機器
JP2015106143A (ja) 光導波路、光電気混載基板および電子機器
JP2015106142A (ja) 光導波路、光電気混載基板および電子機器
JP2019028116A (ja) 光導波路、光導波路接続体および電子機器
Chang et al. Fabrication of fully embedded board-level optical interconnects and optoelectronic printed circuit boards
JP2015099329A (ja) 光導波路、光電気混載基板および電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180320