JP2015046398A - 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質、リチウムイオン二次電池及び電気化学キャパシタ - Google Patents
非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質、リチウムイオン二次電池及び電気化学キャパシタ Download PDFInfo
- Publication number
- JP2015046398A JP2015046398A JP2014210647A JP2014210647A JP2015046398A JP 2015046398 A JP2015046398 A JP 2015046398A JP 2014210647 A JP2014210647 A JP 2014210647A JP 2014210647 A JP2014210647 A JP 2014210647A JP 2015046398 A JP2015046398 A JP 2015046398A
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- negative electrode
- electrode active
- active material
- electrolyte secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Silicon Compounds (AREA)
Abstract
Description
従来、この種の二次電池の高容量化策として、例えば、負極材料にV、Si、B、Zr、Snなどの酸化物及びそれらの複合酸化物を用いる方法(例えば、特許文献1、特許文献2参照)、溶融急冷した金属酸化物を負極材として適用する方法(例えば、特許文献3参照)、負極材料に酸化珪素を用いる方法(例えば、特許文献4参照)、負極材料にSi2N2O及びGe2N2Oを用いる方法(例えば、特許文献5参照)等が知られている。また、負極材に導電性を付与する目的として、SiOを黒鉛とメカニカルアロイング後、炭化処理する方法(例えば、特許文献6参照)、珪素粒子表面に化学蒸着法により炭素層を被覆する方法(例えば、特許文献7参照)、酸化珪素粒子表面に化学蒸着法により炭素層を被覆する方法(例えば、特許文献8参照)がある。
このようなロータリーキルンを用いて被覆することで、材料の表面に黒鉛被膜を効率的に被覆でき、特性のバラツキがほとんどない負極活物質を生産性良く製造することができる。
このように、接粉部の材質をカーボンとすれば、炉芯管の内壁への材料の付着を抑制して、長時間安定して黒鉛被膜で被覆できる。
このようにエアノッカーで振動させることで、炉芯管の内壁に材料が付着することを効果的に抑制できる。
このようなローラーハースキルンを用いて被覆することで、材料の表面に黒鉛被膜を効率的に被覆でき、特性のバラツキがほとんどない負極活物質を生産性良く製造することができる。
このような化学蒸着によれば、材料の表面全体を効率的かつ均一に黒鉛被覆することができる。
このような材料であれば、電池の充放電容量を効果的に向上させることができる負極活物質を製造することができる。
このように本発明の製造方法により製造されたものであれば、高い充放電容量と良好なサイクル特性を有する電池を作製可能で、安価な非水電解質二次電池用負極活物質となる。
このように本発明の非水電解質二次電池用負極活物質を使用したものであれば、低コストで高品質のリチウムイオン二次電池又は電気化学キャパシタとなる。
そこで、本発明者らは連続生産の可能性について詳細検討を行った結果、連続炉を用いて、特に、材料粉末を仕込んだ匣鉢を、自転するローラーに載せて搬送する方式のローラーハースキルンや、炉芯管を回転させる方式のロータリーキルンを使用することで、市場の要求する特性レベルを満たした上で連続生産が可能となることを見出し、本発明を完成するに至った。
本発明は、リチウムイオンを吸蔵、放出し得る材料の表面が黒鉛被膜で被覆された非水電解質二次電池用負極活物質を製造する方法である。
特に、理論充放電容量の大きなSi、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、酸化珪素のいずれか、又はこれらのうち2以上の混合物を用いた場合に、充放電容量をより向上でき、さらには本発明の製造方法がより効果的である。
平均粒子径が0.01μmより小さいと表面酸化の影響で純度が低下し、リチウムイオン二次電池の負極活物質として用いた場合、充放電容量が低下したり、嵩密度が低下し、単位体積あたりの充放電容量が低下する場合がある。逆に50μmより大きいと、電極作製時にスラリーをうまく塗布できないおそれがある。
なお、平均粒子径は、レーザー光回折法による粒度分布測定における体積平均粒子径で表すことができる。
この珪素/二酸化珪素分散体(Si/SiO2)中における珪素微粒子(Si)の分散量は、2〜36質量%、特に10〜30質量%であることが好ましい。この分散珪素量が2質量%未満では、充放電容量が小さくなる場合があり、逆に36質量%を超えるとサイクル性が低下する場合がある。
例えば、一般式SiOx(0.5≦x<1.6)で表される酸化珪素粉末を、不活性ガス雰囲気下、900〜1400℃の温度域で熱処理を施して不均化する方法を好適に採用できる。
酸化珪素粉末の平均粒子径及びBET比表面積が上記範囲外では、所望の平均粒子径及びBET比表面積を有する珪素複合体粉末を得ることが困難である。また、xの値が0.5より小さいSiOx粉末の製造はサイクル特性に難があり、xの値が1.6以上のものは、熱処理を行い不均化反応を行なった際に、不活性なSiO2の割合が大きく、リチウムイオン二次電池に使用した場合、充放電容量が低下するおそれがある。
なお、処理時間(不均化時間)は、不均化処理温度に応じて10分〜20時間、特に30分〜12時間の範囲で適宜選定することができるが、例えば1100℃の処理温度においては5時間程度で所望の物性を有する珪素複合体粉末(不均化物)が得られる。
このような連続炉であれば、従来用いられていたバッチ炉等と同程度に、所望の被覆量で均一な黒鉛被膜を形成できるとともに、高品質の負極活物質を連続的に製造して、大量生産することが可能である。従って、電池特性を向上させることができる負極活物質を低コストに製造することができる。
ローラーハースキルンであれば、特に化学蒸着によって、リチウムイオンを吸蔵、放出し得る材料の表面を黒鉛被膜で被覆するのに好適であり、電池の容量・サイクル特性の向上を達成できる負極活物質を確実にバラツキなく製造することができる。
ロータリーキルンについても、特に化学蒸着によって材料の表面を黒鉛被膜で被覆するのに好適で、電池の容量・サイクル特性の向上を達成できる負極活物質を確実にバラツキなく製造することができる。
図4はロータリーキルン6の炉芯管1の断面図である。本発明で用いる炉芯管1は外側が金属で、内側の接粉部がカーボンの2重構造であることが好ましい。黒鉛被膜を蒸着する際に粒子の凝集が起こり、炉芯管の内壁にも付着する恐れがあり、これを抑制するには内壁(接粉部)の材質がカーボンであることが好ましい。ここでカーボンとは、CIP材、押出材、モールド材、カーボンコンポジットと呼ばれる炭素繊維(CF)と樹脂(主にエポキシ等の熱硬化性樹脂)の複合素材、またC/Cコンポジットと呼ばれる炭素繊維と炭素または黒鉛マトリックスの先進複合材料などを用いることができ、特に限定されるものではない。また、更に付着を少なくするには、炉芯管1の外壁にエアノッカー5などを設置して炉芯管1を定期的に振動させることが有効であり、この点で外壁が金属であることが好ましい。この材質は特に限定されるものではなく、温度など使用条件によって、ステンレス、インコネル、ハステロイ、耐熱鋳鋼など適宜選択すればよい。また、外壁がアルミナ、SiCなどのセラミック製であると衝撃で割れる恐れがある。上記のような特定の材質、構造のロータリーキルンを用いることで、黒鉛被膜の被覆を長時間安定して実施できる。
処理温度が800℃以上であれば、効率的に黒鉛被覆が行われ、処理時間も短時間にできるため生産性が良い。また、1300℃より高いと、化学蒸着処理により粒子同士が融着、凝集を起こす可能性があり、凝集面で導電性被膜が形成されず、リチウムイオン二次電池の負極活物質として用いた場合、サイクル性能が低下するおそれがある。また、材料が珪素複合体粉末の場合には、複合体粉末中の珪素微粒子の結晶化が進み、リチウムイオン二次電池の負極活物質として用いた場合に充電時の膨張が大きくなるおそれもある。ここで、処理温度とは装置内における最高設定温度のことで、連続式のローラーハースキルンやロータリーキルンの場合、炉の中央部の温度が該当することが多い。
例えば、メタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン等の炭化水素の単独もしくは混合物、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環乃至3環の芳香族炭化水素もしくはこれらの混合物が挙げられる。また、タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油も単独もしくは混合物として用いることができる。
黒鉛被覆量は特に限定されるものではないが、0.3〜40質量%、好ましくは0.5〜30質量%、更に好ましくは2〜20質量%である。黒鉛被覆量が0.3質量%未満では十分な導電性を維持できなく、結果として非水電解質二次電池に用いた場合にサイクル性が低下することがある。逆に黒鉛被覆量が40質量%を超えても効果の向上が見られないばかりか、負極材料に占める黒鉛の割合が多くなり、非水電解質二次電池に用いた場合、充放電容量が低下することがある。
例えばリチウムイオン二次電池は、上記負極活物質を用いる点に特徴を有し、負極に用いるその他の材料や、正極、電解質、セパレータなどの材料及び電池形状などは限定されない。例えば、正極活物質としてはLiCoO2、LiNiO2、LiMn2O4、V2O5、MnO2、TiS2、MoS2などの遷移金属の酸化物及びカルコゲン化合物などが用いられる。電解質としては、例えば、過塩素酸リチウムなどのリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフランなどの単体又は2種類以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。
(実施例1)
平均粒子径8μmの一般式SiOx(x=1.02)で表される酸化珪素粉末40gを、内寸100mm×100mm、高さ20mmのアルミナ製匣鉢に仕込んだ。仕込んだ粉体層の厚みは約5mmであった。
ガスは、メタンを窒素で2体積%に希釈したものを、140L/minで炉下部のガス入り口から流入させた。炉出口から匣鉢を回収し、匣鉢1個につき約43gの黒色粉末を得た。得られた黒色粉末は、平均粒子径=8.2μm、黒鉛被覆量6.8質量%の導電性粉末であった。
次に、得られた導電性粉末を負極活物質として用いた電池評価を、以下の方法で行った。
まず、得られた導電性粉末にポリイミドを10質量%加え、更にN−メチルピロリドンを加えてスラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、80℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、この電極を350℃で1時間真空乾燥した後、2cm2に打ち抜き、負極とした。
実施例1と同様の酸化珪素粉末40gを、実施例1と同様のアルミナ製匣鉢に仕込んだ。これを50個準備して、実施例1と同じローラーハースキルンに横2列で連続的に通した。ゾーンの温度設定や搬送速度、ガス条件も実施例1と同じに設定し、最初に炉に入った匣鉢が出口から出てきた時点で条件成立とした。この時、炉内に同時に存在する匣鉢は横2列、縦15行の計30個となる。条件成立後に炉入り口から入った最初の匣鉢を炉出口から回収し、その後10行分(×2列=20個)の匣鉢から粉末を取り出して質量を測定したところ、全て42.1〜42.4gの範囲内であった。得られた黒色粉末の黒鉛被覆量を表1に示す。表1に示すように匣鉢間でのばらつきが少ない導電性粉末であった。
この結果、2行―1列目(実施例2−1)が初回充電容量2040mAh/g、初回放電容量1651mAh/g、初回充放電効率80.9%、50サイクル目の放電容量1486mAh/g、50サイクル後のサイクル保持率90%であり、もう1つの8行―2列目(実施例2−2)が初回充電容量2039mAh/g、初回放電容量1652mAh/g、初回充放電効率81.0%、50サイクル目の放電容量1487mAh/g、50サイクル後のサイクル保持率90%であった。
実施例1と同様の酸化珪素粉末40gを同様の匣鉢に入れ、バッチ式加熱炉内に仕込んだ。その後、油回転式真空ポンプで100Pa以下まで減圧しつつ、300℃/hrの昇温速度で1100℃まで昇温、保持した。次に、CH4ガスを0.1NL/minで流入し、5時間の黒鉛被覆処理を行った。なお、この時の減圧度1000Paであった。処理後は降温し、42.3gの黒色粉末を得た。得られた黒色粉末は、平均粒子径=8.2μm、黒鉛被覆量5.3質量%の導電性粉末であった。
平均粒子径8μmの一般式SiOx(x=0.96)で表される酸化珪素粉末を、図3に示すような、炉芯管内径200mm、炉芯管長3mのロータリーキルンに、スクリュー式フィーダーを使用して1kg/時間で供給した。炉芯管の材質は図4に示すような外側:耐熱鋳鋼、内側:カーボンの2重管構造とした。ヒーターは1020℃に設定した。このとき、炉芯管中央部は1000℃であった。炉芯管は、原料供給部側が高くなるように1°の傾きに調整した。炉芯管の回転数は、0.4回転/分に設定した。
また、図3に示すようにエアノッカー5を3基設置し、それぞれ1回/30秒の間隔で、10秒づつずれて作動させるよう設定した。
ガスは、メタンを窒素で15体積%に希釈したものを、30L/minでガス入り口から流入させた。原料の供給開始から5時間経過すると時間当たりの排出量が安定したため、その時点から2時間分の生成物を回収した。得られた黒色粉末は、平均粒子径=8.2μm、黒鉛被覆量5.8質量%の導電性粉末であった。
次に、得られた導電性粉末を負極活物質として用いた電池評価を、以下の方法で行った。
まず、得られた導電性粉末にポリイミドを10質量%加え、更にN−メチルピロリドンを加えてスラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、80℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、この電極を350℃で1時間真空乾燥した後、2cm2に打ち抜き、負極とした。
実施例3と同じ原料を使用し、実施例3と同じロータリーキルンにスクリュー式フィーダーを使用して2kg/時間で供給した。ガスは、メタンを窒素で30体積%に希釈したものを、30L/minでガス入り口から流入させた。その他の条件は実施例3と同様とした。原料の供給開始から5時間経過すると時間当たりの排出量が安定したため、その時点から2時間分の生成物を回収した。得られた黒色粉末は、平均粒子径=8.1μm、黒鉛被覆量5.3質量%の導電性粉末であった。
原料、装置共に実施例3のものを使用し、運転条件も実施例3と同様であるが、エアノッカーを作動させずに運転を行った。
炉芯管内壁に固着が発生して原料供給開始から5時間経過して排出量が安定したが、約8時間経過したあたりから時間当たり排出量が減少し始め、最終的には閉塞により排出されなくなったので運転を中断せざるを得なくなった。
排出が安定していた時点で回収したサンプルは黒色粉末で、平均粒子径=8.1μm、黒鉛被覆量5.7質量%の導電性粉末であった。
実施例3と同様の酸化珪素粉末40gをカーボン製トレイに10mmの層厚みとなるように入れ、バッチ式加熱炉内に仕込んだ。その後、油回転式真空ポンプで100Pa以下まで減圧しつつ、300℃/hrの昇温速度で1000℃まで昇温、保持した。次に、メタンガスを0.1NL/minで流入し、15時間の黒鉛被覆処理を行った。なお、この時の減圧度は1000Paであった。処理後は降温し、42gの黒色粉末を得た。得られた黒色粉末は、平均粒子径=8.2μm、黒鉛被覆量5.1質量%の導電性粉末であった。
実施例3と同様の酸化珪素粉末40gをカーボン製トレイに10mmの層厚みとなるように入れ、バッチ式加熱炉内に仕込んだ。常圧のまま300℃/hrの昇温速度で1000℃まで昇温、保持した。次に、メタンを窒素で20体積%に希釈したものを、1NL/minで流入し、5時間の黒鉛被覆処理を行った。処理後は降温し、42.1gの黒色粉末を得た。得られた黒色粉末は、平均粒子径=8.3μm、黒鉛被覆量5.0質量%の導電性粉末であった。
また、表3中の「C使用率」とは、通気したガスに含有されるC(炭素)分のうち何%が被覆に使用されたかを計算した数値である。トレイに粉末を静置させるバッチ式と比較して、攪拌されながら処理ガスと接触するロータリーキルンでは非常に使用率が高く、経済的であることも確認できた。
5…エアノッカー、 6…ロータリーキルン、
10…ローラーハースキルン、 11…ヒーター、 12…ガス出口、
13…ガス入り口、 14…匣鉢、 15…ローラー。
Claims (7)
- リチウムイオンを吸蔵、放出し得る材料の表面が黒鉛被膜で被覆された非水電解質二次電池用負極活物質の製造方法であって、
前記材料の表面を黒鉛被膜で被覆する工程を、連続炉で行い、前記連続炉として、炉芯管が回転することにより内部の前記材料を混合・攪拌しながら表面を黒鉛被膜で被覆するロータリーキルンを用い、前記炉芯管として、外側が金属で、内側の接粉部がカーボンの2重構造のものを使用することを特徴とする非水電解質二次電池用負極活物質の製造方法。 - 前記炉芯管を、エアノッカーで定期的に振動させることを特徴とする請求項1に記載の非水電解質二次電池用負極活物質の製造方法。
- 前記材料の表面を黒鉛被膜で被覆する工程において、有機物ガス及び/又は蒸気中、800〜1300℃で化学蒸着により前記材料の表面を黒鉛被膜で被覆することを特徴とする請求項1又は請求項2に記載の非水電解質二次電池用負極活物質の製造方法。
- 前記リチウムイオンを吸蔵、放出し得る材料を、珪素、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiOx(0.5≦x<1.6)で表される酸化珪素のいずれか、又はこれらのうち2以上の混合物とすることを特徴とする請求項1乃至請求項3のいずれか一項に記載の非水電解質二次電池用負極活物質の製造方法。
- 請求項1乃至請求項4のいずれか一項に記載の非水電解質二次電池用負極活物質の製造方法により製造したものであることを特徴とする非水電解質二次電池用負極活物質。
- 請求項5に記載の非水電解質二次電池用負極活物質を使用したものであることを特徴とするリチウムイオン二次電池。
- 請求項5に記載の非水電解質二次電池用負極活物質を使用したものであることを特徴とする電気化学キャパシタ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014210647A JP5964919B2 (ja) | 2011-05-26 | 2014-10-15 | 非水電解質二次電池用負極活物質の製造方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011117962 | 2011-05-26 | ||
JP2011117962 | 2011-05-26 | ||
JP2014210647A JP5964919B2 (ja) | 2011-05-26 | 2014-10-15 | 非水電解質二次電池用負極活物質の製造方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011221262A Division JP5698102B2 (ja) | 2011-05-26 | 2011-10-05 | 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質、リチウムイオン二次電池及び電気化学キャパシタ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015046398A true JP2015046398A (ja) | 2015-03-12 |
JP5964919B2 JP5964919B2 (ja) | 2016-08-03 |
Family
ID=47675818
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011221262A Active JP5698102B2 (ja) | 2011-05-26 | 2011-10-05 | 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質、リチウムイオン二次電池及び電気化学キャパシタ |
JP2014210531A Active JP5964917B2 (ja) | 2011-05-26 | 2014-10-15 | 非水電解質二次電池用負極活物質の製造方法 |
JP2014210647A Active JP5964919B2 (ja) | 2011-05-26 | 2014-10-15 | 非水電解質二次電池用負極活物質の製造方法 |
JP2015152219A Active JP5965040B2 (ja) | 2011-05-26 | 2015-07-31 | 非水電解質二次電池用負極活物質の製造方法 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011221262A Active JP5698102B2 (ja) | 2011-05-26 | 2011-10-05 | 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質、リチウムイオン二次電池及び電気化学キャパシタ |
JP2014210531A Active JP5964917B2 (ja) | 2011-05-26 | 2014-10-15 | 非水電解質二次電池用負極活物質の製造方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015152219A Active JP5965040B2 (ja) | 2011-05-26 | 2015-07-31 | 非水電解質二次電池用負極活物質の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (4) | JP5698102B2 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6312212B2 (ja) | 2014-11-18 | 2018-04-18 | 信越化学工業株式会社 | 回転式筒状炉、及び非水電解質二次電池用負極活物質の製造方法 |
JP6312213B2 (ja) * | 2014-11-18 | 2018-04-18 | 信越化学工業株式会社 | 回転式筒状炉、及び非水電解質二次電池用負極活物質の製造方法 |
JP2016100047A (ja) * | 2014-11-18 | 2016-05-30 | 信越化学工業株式会社 | 非水電解質二次電池用負極材の製造方法、非水電解質二次電池用負極材、非水電解質二次電池用負極、及びリチウムイオン二次電池 |
JP6339924B2 (ja) * | 2014-11-26 | 2018-06-06 | 信越化学工業株式会社 | ケイ素系負極活物質材料用cvd装置、ケイ素系負極活物質材料の製造方法、非水電解質二次電池用負極の製造方法、及びリチウムイオン二次電池の製造方法 |
JP6280515B2 (ja) * | 2015-03-31 | 2018-02-14 | 信越化学工業株式会社 | 炭素被膜形成装置、炭素被膜形成方法、リチウムイオン電池用負極材の製造方法、及びリチウムイオン電池の製造方法 |
JP6455284B2 (ja) * | 2015-03-31 | 2019-01-23 | 株式会社豊田自動織機 | 炭素コート珪素系負極活物質粒子の製造方法 |
JP6451598B2 (ja) * | 2015-11-09 | 2019-01-16 | 信越化学工業株式会社 | 回転式筒状炉及び非水電解質二次電池用負極活物質の製造方法 |
JP6477456B2 (ja) * | 2015-12-22 | 2019-03-06 | 信越化学工業株式会社 | 回転式筒状炉及び非水電解質二次電池用負極活物質の製造方法 |
JP6686652B2 (ja) * | 2016-04-13 | 2020-04-22 | 株式会社豊田自動織機 | 炭素被覆Si含有負極活物質の製造方法 |
KR101994026B1 (ko) * | 2016-06-09 | 2019-06-27 | 히타치 긴조쿠 가부시키가이샤 | 리튬 이차 전지용 정극 활물질의 제조 방법 |
DE102016221782A1 (de) * | 2016-11-07 | 2018-05-09 | Wacker Chemie Ag | Kohlenstoff-beschichtete Siliciumpartikel für Lithiumionen-Batterien |
JP2018206594A (ja) * | 2017-06-02 | 2018-12-27 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質の製造方法 |
CN113124683B (zh) * | 2020-01-15 | 2022-09-27 | 株洲弗拉德科技有限公司 | 一种带上料器真空气相沉积炉 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0379984A (ja) * | 1989-08-21 | 1991-04-04 | Mitsui Toatsu Chem Inc | 高耐熱ロータリーキルン |
JPH08171911A (ja) * | 1994-12-16 | 1996-07-02 | Mitsubishi Gas Chem Co Inc | 非水溶媒二次電池負極用炭素材料の製造方法 |
JP2004047404A (ja) * | 2002-05-17 | 2004-02-12 | Shin Etsu Chem Co Ltd | 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材 |
JP2007216212A (ja) * | 2006-01-19 | 2007-08-30 | Asahi Kasei Chemicals Corp | 不飽和酸または不飽和ニトリル製造用酸化物触媒およびその製造方法並びに不飽和酸または不飽和ニトリルの製造方法 |
JP2009262146A (ja) * | 2008-03-31 | 2009-11-12 | Asahi Kasei Chemicals Corp | 酸化物触媒の製造方法 |
JP2011058785A (ja) * | 2009-09-14 | 2011-03-24 | Takasago Ind Co Ltd | ロータリーキルンおよび当該ロータリーキルンにより製造される電池材料 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0927324A (ja) * | 1995-05-09 | 1997-01-28 | Fuji Photo Film Co Ltd | 非水二次電池 |
JP2000012021A (ja) * | 1998-06-23 | 2000-01-14 | Nippon Steel Corp | リチウム二次電池負極用炭素材料 |
JP4252846B2 (ja) * | 2002-07-31 | 2009-04-08 | パナソニック株式会社 | リチウム二次電池 |
JP4171897B2 (ja) * | 2003-04-24 | 2008-10-29 | 信越化学工業株式会社 | 非水電解質二次電池用負極材及びその製造方法 |
JP4684734B2 (ja) * | 2005-04-28 | 2011-05-18 | Jx日鉱日石エネルギー株式会社 | 電極材料用炭素質物 |
JP5196149B2 (ja) * | 2008-02-07 | 2013-05-15 | 信越化学工業株式会社 | 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ |
JP2009224323A (ja) * | 2008-02-21 | 2009-10-01 | Nippon Steel Chem Co Ltd | 非水電解質二次電池負極活物質及び非水電解質二次電池負極活物質の製造方法 |
JP2010067437A (ja) * | 2008-09-10 | 2010-03-25 | Sumitomo Chemical Co Ltd | 電極活物質、電極および非水電解質二次電池 |
CN102196994B (zh) * | 2009-10-22 | 2013-09-11 | 昭和电工株式会社 | 石墨材料、电池电极用碳材料和电池 |
-
2011
- 2011-10-05 JP JP2011221262A patent/JP5698102B2/ja active Active
-
2014
- 2014-10-15 JP JP2014210531A patent/JP5964917B2/ja active Active
- 2014-10-15 JP JP2014210647A patent/JP5964919B2/ja active Active
-
2015
- 2015-07-31 JP JP2015152219A patent/JP5965040B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0379984A (ja) * | 1989-08-21 | 1991-04-04 | Mitsui Toatsu Chem Inc | 高耐熱ロータリーキルン |
JPH08171911A (ja) * | 1994-12-16 | 1996-07-02 | Mitsubishi Gas Chem Co Inc | 非水溶媒二次電池負極用炭素材料の製造方法 |
JP2004047404A (ja) * | 2002-05-17 | 2004-02-12 | Shin Etsu Chem Co Ltd | 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材 |
JP2007216212A (ja) * | 2006-01-19 | 2007-08-30 | Asahi Kasei Chemicals Corp | 不飽和酸または不飽和ニトリル製造用酸化物触媒およびその製造方法並びに不飽和酸または不飽和ニトリルの製造方法 |
JP2009262146A (ja) * | 2008-03-31 | 2009-11-12 | Asahi Kasei Chemicals Corp | 酸化物触媒の製造方法 |
JP2011058785A (ja) * | 2009-09-14 | 2011-03-24 | Takasago Ind Co Ltd | ロータリーキルンおよび当該ロータリーキルンにより製造される電池材料 |
Also Published As
Publication number | Publication date |
---|---|
JP2015046397A (ja) | 2015-03-12 |
JP5964919B2 (ja) | 2016-08-03 |
JP2013008654A (ja) | 2013-01-10 |
JP5965040B2 (ja) | 2016-08-03 |
JP5964917B2 (ja) | 2016-08-03 |
JP5698102B2 (ja) | 2015-04-08 |
JP2015228381A (ja) | 2015-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5965040B2 (ja) | 非水電解質二次電池用負極活物質の製造方法 | |
EP2088221B1 (en) | Non-aqueous electrolyte secondary battery negative electrode material, making method, lithium ion secondary battery, and electrochemical capacitor | |
JP4171897B2 (ja) | 非水電解質二次電池用負極材及びその製造方法 | |
JP2019114559A (ja) | 非水電解質二次電池用負極材及び二次電池 | |
JP3952180B2 (ja) | 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材 | |
JP5245592B2 (ja) | 非水電解質二次電池用負極材、ならびにリチウムイオン二次電池及び電気化学キャパシタ | |
JP6312212B2 (ja) | 回転式筒状炉、及び非水電解質二次電池用負極活物質の製造方法 | |
JP5949194B2 (ja) | 非水電解質二次電池用負極活物質の製造方法 | |
JP6451598B2 (ja) | 回転式筒状炉及び非水電解質二次電池用負極活物質の製造方法 | |
JP2011192453A (ja) | 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ | |
KR20160065107A (ko) | 규소 함유 재료, 비수전해질 이차 전지용 부극, 비수전해질 이차 전지 및 그들의 제조 방법 | |
JP2016100047A (ja) | 非水電解質二次電池用負極材の製造方法、非水電解質二次電池用負極材、非水電解質二次電池用負極、及びリチウムイオン二次電池 | |
JP5182498B2 (ja) | 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ | |
JP2003317717A (ja) | 非水電解質二次電池負極材の製造方法 | |
JP2000106182A (ja) | リチウム二次電池用負極材料、その製造方泡及びリチウム二次電池 | |
JP2016106358A (ja) | 非水電解質二次電池用負極活物質の製造方法 | |
JP6477456B2 (ja) | 回転式筒状炉及び非水電解質二次電池用負極活物質の製造方法 | |
JP2004296161A (ja) | 珪素の導電性物質被覆物及びその製造方法並びに非水電解質二次電池用負極材 | |
JP6312213B2 (ja) | 回転式筒状炉、及び非水電解質二次電池用負極活物質の製造方法 | |
JP6046594B2 (ja) | リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法 | |
JP6394498B2 (ja) | 黒鉛被覆粒子及びその製造方法 | |
JP2003308837A (ja) | リチウムイオン二次電池用負極材及びその製造方法 | |
JP6975435B2 (ja) | 非水電解質二次電池負極の製造方法 | |
JP6173969B2 (ja) | 粒状珪素酸化物及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160614 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160630 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5964919 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |