JP2015005355A - 蓄電素子 - Google Patents

蓄電素子 Download PDF

Info

Publication number
JP2015005355A
JP2015005355A JP2013128674A JP2013128674A JP2015005355A JP 2015005355 A JP2015005355 A JP 2015005355A JP 2013128674 A JP2013128674 A JP 2013128674A JP 2013128674 A JP2013128674 A JP 2013128674A JP 2015005355 A JP2015005355 A JP 2015005355A
Authority
JP
Japan
Prior art keywords
positive electrode
storage element
separator
negative electrode
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013128674A
Other languages
English (en)
Inventor
明彦 宮崎
Akihiko Miyazaki
明彦 宮崎
澄男 森
Sumio Mori
森  澄男
智典 加古
Tomonori Kako
智典 加古
健太 中井
Kenta Nakai
健太 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2013128674A priority Critical patent/JP2015005355A/ja
Publication of JP2015005355A publication Critical patent/JP2015005355A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】蓄電素子の出力を向上させると共に内部短絡時の温度上昇を抑制すること。
【解決手段】蓄電素子10は、正極基材22の表面に正極活物質を含む正極合剤層23が形成された正極板18と、負極基材24の表面に負極活物質を含む負極合剤層25が形成された負極板19と、正極板18と負極板19との間に介されたセパレータ21と、電解液26と、を備え、正極合剤層23の表面に間隔を空けて接触させた一対のプローブ間の電気抵抗値である2端子間正極抵抗値が15Ω〜100Ωであり、室温においてセパレータ21に直径1mmの貫通孔を形成し、セパレータの周囲を耐熱テープで固定した状態で150℃、60分間加熱した後の貫通孔の直径のうち最大のものを破膜径とした場合において、破膜径は3mmより小さい。
【選択図】図1

Description

本発明は、蓄電素子の温度上昇を抑制する技術に関する。
従来、正極板にセパレータを介して負極板を重ね合わせ、それら全体を渦巻き状に捲回させてなる蓄電要素をケース内に収容してなる蓄電素子が知られている(例えば、特許文献1)。
特開平7−282818号公報
近年、蓄電素子に対して高出力化が求められている。そこで、蓄電素子の内部抵抗を低減させることにより、蓄電素子の出力を向上させることが考えられる。
しかし、蓄電素子の内部抵抗を低減させると、ケース内に侵入した導電性の異物がセパレータを貫通して正極板と負極板とを内部短絡させた場合に、正極板、異物、及び負極板に比較的に大きな短絡電流が流れるおそれがある。すると、蓄電素子の温度が上昇することが懸念される。
このように、蓄電素子の出力を向上させることと、内部短絡時における蓄電素子の温度上昇を抑制することと、を両立させることは困難であった。
本明細書では、蓄電素子の出力を向上させると共に内部短絡時の温度上昇を抑制する技術を提供する。
本明細書に開示される蓄電素子は、正極基材の表面に正極活物質を含む正極合剤層が形成された正極板と、負極基材の表面に負極活物質を含む負極合剤層が形成された負極板と、前記正極板と前記負極板との間に介されたセパレータと、電解液と、を備え、前記正極合剤層の表面に間隔を空けて接触させた一対のプローブ間の電気抵抗値である2端子間正極抵抗値が15Ω〜100Ωであり、室温において前記セパレータに直径1mmの貫通孔を形成し、前記セパレータの周囲を耐熱テープで固定した状態で150℃、60分間加熱した後の前記貫通孔の直径のうち最大のものを破膜径とした場合において、前記破膜径は3mmより小さい。
本明細書に開示される蓄電素子によれば、蓄電素子の出力を向上させると共に内部短絡時の温度上昇を抑制することができる。
実施形態1に係る蓄電素子を示す斜視図 蓄電素子を、長側面に直交する平面で切断した断面図 正極板、セパレータ、負極板、及び異物を示す一部拡大断面図 2端子間正極抵抗値と、実験例1に対する25℃電池出力の比との関係を示すグラフ 2端子間正極抵抗値と、実験例1に対する釘刺温度上昇値の比との関係を示すグラフ
(実施形態の概要)
初めに、本実施形態に係る蓄電素子の概要について説明する。
本明細書によって開示される蓄電素子は、正極基材の表面に正極活物質を含む正極合剤層が形成された正極板と、負極基材の表面に負極活物質を含む負極合剤層が形成された負極板と、前記正極板と前記負極板との間に介されたセパレータと、電解液と、を備え、前記正極合剤層の表面に間隔を空けて接触させた一対のプローブ間の電気抵抗値である2端子間正極抵抗値が15Ω〜100Ωであり、室温において前記セパレータに直径1mmの貫通孔を形成し、前記セパレータの周囲を耐熱テープで固定した状態で150℃、60分間加熱した後の前記貫通孔の直径のうち最大のものを破膜径とした場合において、前記破膜径は3mmより小さい。
蓄電素子の出力を向上させるためには、2端子間正極抵抗値又は2端子間負極抵抗値を下げることにより、蓄電素子の内部抵抗値を全体として下げればよいと考えられる。一方、一般に、2端子間負極抵抗値は、2端子間正極抵抗値よりも小さい。そのため、2端子間負極抵抗値が蓄電素子の内部抵抗値に与える影響は、2端子間正極抵抗値と比較して小さいと考えられる。
そこで、本明細書に開示された技術に係る蓄電素子においては、2端子間正極抵抗値を100Ω以下とした。これにより、蓄電素子の出力を向上させることができる。
ところが、発明者らが鋭意研究した結果、2端子間正極抵抗値が15Ω未満であると、蓄電素子の内部抵抗のうち、2端子間正極抵抗値と異なる内部抵抗が支配的になるため、いくら2端子間正極抵抗値を小さくしても蓄電素子の出力を十分に向上させることはできないことがわかった。
一方、このように2端子間正極抵抗値を15Ω未満にすると、異物の混入により蓄電素子が内部短絡した場合に、正極板、異物、及び負極板を流れる短絡電流値が大きくなり、蓄電素子の温度上昇が大きくなることが懸念される。つまり、2端子間正極抵抗値を15Ωより小さくすると、蓄電素子の出力は十分に向上しないにも関わらず、蓄電素子が内部短絡した場合の温度上昇は大きくなってしまうのである。
そこで、本明細書に開示された技術に係る蓄電素子においては、2端子間正極抵抗値を15Ω以上とした。これにより、蓄電素子が異物の混入により内部短絡した場合における短絡電流値を比較的に小さくすることができるので、蓄電素子が内部短絡した際における蓄電素子の温度上昇を抑制することができる。
また、この蓄電素子によれば、室温においてセパレータに形成された直径1mmの貫通孔は、150℃、60分加熱した後であっても、貫通孔の直径の最大のものは3mmより小さい。これにより、内部短絡時に温度が蓄電素子内の温度が上昇した場合でも、セパレータに形成されたピンホールの直径が拡大することを抑制することができる。この結果、内部短絡により蓄電素子の温度が上昇した場合でも、正極板と負極板との間の短絡経路が拡大することを抑制することができるので、内部短絡時における蓄電素子の温度上昇を抑制することができる。
このように、本明細書に開示された技術によれば、蓄電素子の出力を向上させると共に、蓄電素子の温度上昇を抑制することができる。
上記の蓄電素子では、前記セパレータの保液率が30%〜80%である構成としてもよい。
この蓄電素子によれば、セパレータに含浸される電解液の量を増大させることができる。これにより、これにより、セパレータと電解液と合わせた全体的な熱容量を増大させることができる。これにより、蓄電素子に内部短絡が生じた場合でも、蓄電素子の温度上昇を抑制することができる。
上記の蓄電素子では、前記セパレータの膜厚が13μm以上である構成としてもよい。
この蓄電素子によれば、セパレータに含浸される電解液の量を増大させることができる。これにより、これにより、セパレータと電解液と合わせた全体的な熱容量を増大させることができる。これにより、蓄電素子に内部短絡が生じた場合でも、蓄電素子の温度上昇を抑制することができる。
また、セパレータに異物が混入して正極板と負極板とが内部短絡した場合において、セパレータを厚くすることによって、内部短絡する場合の導電経路を長くすることができる。これにより導電経路の電気抵抗を大きくすることができるので、短絡電流を減少させることができる。この結果、内部短絡時における蓄電素子の温度上昇を抑制することができる。
上記の蓄電素子では、前記正極基材の片面における前記正極合剤層の厚さ寸法である片面正極合剤厚み、又は前記負極基材の片面における前記負極合剤層の厚さ寸法である片面負極合剤厚みが20μm以上である構成としてもよい。
この蓄電素子によれば、正極合剤層又は負極合剤層に含浸される電解液の量を増大させることができる。これにより、これにより、正極合剤層又は負極合剤層と、電解液と合わせた全体的な熱容量を増大させることができる。この結果、蓄電素子に内部短絡が生じた場合でも、蓄電素子の温度上昇を抑制することができる。
<実施形態1>
以下、実施形態1について図1から図5を参照しつつ説明する。実施形態1に係る蓄電素子10は、例えば、電気自動車、ハイブリッド自動車等の車両(図示せず)に搭載されて、動力源として使用される。実施形態1に係る蓄電素子10は、リチウムイオン電池であって、ケース11内に、正極板18と、負極板19と、セパレータ21と、電解液26と、を収容してなる。なお、蓄電素子10としてはリチウムイオン電池に限られず、必要に応じて任意の蓄電池を選択することができる。
(ケース11)
図1に示すように、ケース11は金属製であって、扁平な直方体形状をなしている。ケース11は、一対の長側面12と、一対の短側面13と、を有する。ケース11を構成する金属としては、鉄、鉄合金、アルミニウム、アルミニウム合金等、必要に応じて任意の金属を選択しうる。
ケース11は、上方に開口するケース本体14と、このケース本体14に取り付けられた開口を塞ぐ蓋15と、を備える。蓋15の上面には、正極端子16と、負極端子17とが、上方に突出して設けられている。正極端子16は、ケース11内において公知の手法により正極板18と電気的に接続されている。また、負極端子17は、ケース11内において公知の手法により負極板19と電気的に接続されている。
(蓄電要素20)
図2に示すように、ケース11内には、正極板18、セパレータ21、負極板19、セパレータ21の順に積層し、それら全体を巻回させてなる蓄電要素20が収容されている。また、ケース11内には、電解液26が注入されている。
図3に示すように、正極板18は、正極基材22の片面又は両面に正極合剤層23が形成されてなる。また、負極板19は、負極基材24の片面又は両面に負極合剤層25が形成されてなる。正極合剤層23と負極合剤層25とは、セパレータ21を介して重ねられている。
(正極板18)
正極基材22は金属製の箔状をなしている。本実施形態に係る正極基材22は、アルミニウム又はアルミニウム合金からなる。正極基材22の厚さは5μmから20μmが好ましい。本実施形態に係る正極基材22の厚さは15μmである。
正極基材22の片面又は両面には、正極合剤を含む正極合剤層23が形成されている。本実施形態においては、正極基材22の両面に正極合剤層23が形成されている。正極合剤は、正極活物質と、導電助剤と、バインダと、を含む。
正極活物質としては、リチウムイオンを吸蔵放出可能な正極活物質であれば、適宜公知の材料を使用できる。例えば、正極活物質として、LiMPO、LiMSiO、LiMBO(MはFe、Ni、Mn、Co等から選択される1種又は2種以上の遷移金属元素)等のポリアニオン化合物、チタン酸リチウム、マンガン酸リチウム等のスピネル化合物、LiMO(MはFe、Ni、Mn、Co等から選択される1種又は2種以上の遷移金属元素)等のリチウム遷移金属酸化物等を用いることができる。
導電助剤の種類は特に制限されず、金属であっても非金属であってもよい。金属の導電剤としては、CuやNiなどの金属元素から構成される材料を用いることができる。また、非金属の導電剤としては、グラファイト、カーボンブラック、アセチレンブラック、ケッチェンブラックなどの炭素材料を用いることができる。
バインダは、電極製造時に使用する溶媒や電解液26に対して安定であり、また、充放電時の酸化還元反応に対して安定な材料であれば特にその種類は制限されない。例えば、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。
また、必要に応じて、正極合剤に粘度調整剤などを含有させてもよい。粘度調整剤としては、カルボキシメチルセルロース(CMC)、N−メチルピロリドン(NMP)など必要に応じて任意の化合物を適宜に選択することができる。
(負極板19)
負極基材24は金属製の箔状をなしている。本実施形態に係る負極基材24は、銅又は銅合金からなる。負極基材24の厚さは5μm〜20μmが好ましい。本実施形態に係る負極基材24の厚さは10μmである。
負極基材24の片面又は両面には、負極合剤を含む負極合剤層25が形成されている。本実施形態においては、負極基材4の両面に負極合剤層25が形成されている。負極合剤は、負極活物質と、導電助剤と、バインダと、を含む。
負極板19に用いられる導電助剤、バインダ、粘度調整剤などは、正極板18に用いられたものと同様のものを適宜に選択して使用することができるので、説明を省略する。
負極活物質としては、炭素材料、その他リチウムと合金化可能な元素、合金、金属酸化物、金属硫化物、金属窒化物、などが挙げられる。炭素材料の例としてはハードカーボン,ソフトカーボン,グラファイト等が挙げられる.リチウムと合金可能な元素の例としては、例えば、Al、Si、Zn、Ge、Cd、Sn、およびPb等を挙げることができる。これらは単独で含まれていてもよく、2種以上が含まれていてもよい。また、合金の例としてはNi−Si合金、およびTi−Si合金等の遷移金属元素を含む合金等が挙げられる.金属酸化物の例としてはSnB0.40.63.1などのアモルファススズ酸化物、SnSiOなどのスズ珪素酸化物、SiOなどの酸化珪素、Li4+xTi12などのスピネル構造のチタン酸リチウムなどが挙げられる。金属硫化物の例としては、TiSなどの硫化リチウム、MoSなどの硫化モリブデン、FeS、FeS、LiFeSなどの硫化鉄が挙げられる.これらの中でも特にハードカーボン、中でもD50が8μmより小さい小粒子径ハードカーボンが好ましい。
(セパレータ21)
セパレータ21の基材30としては、ポリオレフィン微多孔膜、合成樹脂製の織物又は不織布、天然繊維、ガラス繊維又はセラミック繊維の織物又は不織布、紙等を用いることができる。ポリオレフィン微多孔膜としては、ポリエチレン、ポリプロピレン、またはこれらの複合膜を利用することができる。合成樹脂繊維としては、ポリアクリロニトリル(PAN)、ポリアミド(PA)、ポリエステル、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)又はポリエチレン(PE)等のポリオレフィン、又はこれらの混合物から選択することができる。セパレータ21の厚さは、5〜35μmが好ましい。
セパレータ21には、少なくとも基材30の片面に、耐熱粒子とバインダとを含む耐熱層31が形成されていてもよい。セパレータ21に耐熱層31が形成されている場合には、耐熱層31は正極合剤層23に対向するように配されるのが好ましい。耐熱粒子は大気下で500℃にて重量減少が5%以下であるものが望ましい.中でも800℃にて重量減少が5%以下であるものが望ましい.そのような材料として無機化合物が挙げられる。無機化合物は下記のうちの一つ以上の無機物の単独もしくは混合体もしくは複合化合物からなる。酸化鉄、SiO、Al、TiO、BaTiO、ZrO、アルミナ−シリカ複合酸化物などの酸化物微粒子、窒化アルミニウム、窒化ケイ素などの窒化物微粒子、フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶微粒子;シリコン、ダイヤモンドなどの共有結合性結晶微粒子、タルク、モンモリロナイトなどの粘土微粒子、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカなどの鉱物資源由来物質あるいはそれらの人造物などが挙げられる。また、金属微粒子、SnO、スズ−インジウム酸化物(ITO)などの酸化物微粒子、カーボンブラック、グラファイトなどの炭素質微粒子などの導電性微粒子の表面を、電気絶縁性を有する材料(例えば、上記の電気絶縁性の無機粒子を構成する材料)で表面処理することで、電気絶縁性を持たせた微粒子であってもよい。特に、SiO、Al、アルミナ−シリカ複合酸化物が好ましい。
バインダは、電解液26に対して安定な材料であれば、特にその種類は制限されない。バインダとしては、ポリアクリロニトリル、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリアクリル酸メチル、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン−ブタジエンゴム、ニトリル−ブタジエンゴム、ポリスチレンあるいはポリカーボネートを挙げることができる。電気化学的な安定性の点からは、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンあるいはポリエチレンオキサイドが、より好ましい。特に、ポリフッ化ビニリデン、ポリアクリル酸、ポリメタクリル酸、スチレン−ブタジエンゴムが好ましい。
(電解液26)
電解液26としては、非水溶媒に電解質塩を溶解させた非水電解液を用いることができる。電解液26は、ケース11内において、正極合剤層23、負極合剤層25、及びセパレータ21に含浸されている。なお、電解液26のうち、正極合剤層23、負極合剤層25、及びセパレータ21に含浸されずにケース11内に溜まったものについては、図示を省略した。電解液26は限定されるものではなく、一般にリチウムイオン電池等への使用が提案されているものが使用可能である。非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。なお、電解液26には公知の添加剤を加えてもよい。
電解質塩としては、例えば、LiClO,LiBF,LiAsF,LiPF,LiSCN,LiBr,LiI,LiSO,Li10Cl10,NaClO,NaI,NaSCN,NaBr,KClO,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,(CHNBF,(CHNBr,(CNClO,(CNI,(CNBr,(n−CNClO,(n−CNI,(CN−maleate,(CN−benzoate,(CN−phtalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。
さらに、LiBFとLiN(CSOのようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より望ましい。
また、電解液26として常温溶融塩やイオン液体を用いてもよい。
以下、本発明を実験例に基づき詳細に説明する。なお、本発明は下記実験例により何ら限定されるものではない。
実験例1〜30では、上方に開口されたケース本体14の内部に蓄電要素20を収容し、正極板18と正極端子16とを接続し、負極板19と負極端子17とを接続した後に電解液26を注入し、ケース本体14に蓋15を溶接することにより、蓄電素子10を作製した。
<実験例1>
正極板は次のようにして作製された。正極活物質として組成式LiNiMnCoOで表されるリチウム複合酸化物90質量部と、バインダとしてポリフッ化ビニリデン5質量部と、導電助剤としてアセチレンブラック5質量部と、を混合することにより正極合剤を調製した。この正極合剤を、厚さ15μmのアルミニウム箔からなる正極基材の両面に塗布した。これを乾燥した後、ロールプレス機で加圧することにより、正極板を作製した。
負極板は次のようにして作製された。負極活物質としてハードカーボン95質量部と、バインダとしてポリフッ化ビニリデン5質量部と、を混合した。これにN−メチルピロリドンを適宜加えてペースト状に調製することにより、負極合剤を作製した。この負極合剤を厚さ10μmの銅箔からなる負極基材の両面に塗布した。これを乾燥した後、ロールプレス機で加圧することにより負極板を作製した。
セパレータは次のようにして作製された。基材として透気度130、厚み16μmのポリオレフィン微多孔膜を使用した。また、97:3の比率で混合したアルミナ粒子とスチレン−ブタジエンゴム(バインダ)に、カルボキシメチルセルロース(増粘剤)とイオン交換水(溶媒)を混合することでコート剤を作成した。このコート剤を、基材片面にグラビア法にて塗工した。塗工後、80℃、12時間乾燥した。これにより、厚みが6μmの耐熱層を有するセパレータを作製した。
上記のようにして得られた正極板と、セパレータと、負極板と、セパレータと、を順に重ね合わせ、渦巻き状に巻回することにより巻回型の蓄電要素20を作製した。
電解液としては、溶質としてLiPFを用い、溶媒としてプロピレンカーボネートと、ジメチルカーボネートと、エチルメチルカーボネートとの混合溶媒を用いた。混合溶媒は、各成分の体積比が、プロピレンカーボネート:ジメチルカーボネート:エチルメチルカーボネート=3:2:5となるよう調製した。この混合溶媒にLiPFを溶解させて、LiPFの濃度が1 mol/Lとなるように調製した。
上記の構成要素を用いて、実験例1に係る蓄電素子を作製した。
<実験例2〜6>
実験例1で用いられたセパレータとは異なるセパレータを用いた以外は、実験例1と同様の手法で実験例2〜6に係る蓄電素子を作製した。
<正極板及びセパレータの蓄電素子からの取り出し>
蓄電素子を放電状態(2V)にて解体して、正極板、及びセパレータを取り出し、ジメチルカーボネートにて十分に洗浄した。その後、正極板、及びセパレータを25℃で真空乾燥した。
<ピンホール加熱試験>
上記のようにして蓄電素子から取り出したセパレータを4cm×4cmの大きさに切り出し、その中央部に直径1mmの貫通孔を形成した。その後、セパレータの四隅(周囲)を耐熱テープで固定し、オーブンにて、150℃、60分加熱した。加熱後の貫通孔の直径を測定し、直径の最大値を破膜径とした。
1つの実験例あたり、1個の蓄電素子から5つの試料を切り出し、それぞれの試料に対して上記の試験を実行した。このようにして得られた5つの破膜径の平均値を、各実験例の破膜径とした。これらの試験結果を表1に纏めて示す。
<2端子間正極抵抗値測定>
上記のようにして蓄電素子から取り出した正極板を2cm×2cmの大きさに切り出し、正極合剤層の表面の抵抗値を、2端子表面抵抗計(株式会社三菱化学アナリテック製、ロレスタEP)を用いて測定した。正極合剤層の表面に接触させる測定部分は、一対のプローブを有する、株式会社三菱化学アナリテック製のMCP−TPAP(プローブ間隔10mm、プローブ先端部分の直径2mm、バネ圧240g/本)を用いた。
一対のプローブを正極合剤層の表面に接触させることにより測定される抵抗値は、以下に示す5つの抵抗値の総和となる。1つ目の抵抗値としては、一対のプローブの一方と、正極合剤層との間の接触抵抗値が検出される。2つ目の抵抗値としては、一対のプローブの一方と、正極基材との間に位置する正極合剤層の抵抗値が検出される。3つ目の抵抗値として、一対のプローブの間に対応する位置に配されている正極基材の抵抗値も検出されるが、正極基材は正極合剤層に比べて導電性に優れる金属(アルミニウム)からなるので、正極基材の抵抗値は相対的に小さなものとなっている。4つ目の抵抗値としては、一対のプローブの他方と、正極基材との間に位置する正極合剤層の抵抗値が検出される。5つ目の抵抗値としては、一対のプローブの他方と、正極合剤層との間の接触抵抗値が検出される。
1つの実験例あたり、1個の蓄電素子から5つの試料を切り出し、上記の測定をそれぞれの試料に対して5回ずつ、計25回実行した。1つの試料で測定した5つの値の平均値をその試料の2端子間正極抵抗値とした。このようにして得られた5つの2端子間正極抵抗値の平均値を、各実験例の2端子間正極抵抗値とした。これらの測定結果を表1に纏めて示す。
<セパレータ厚み>
上記のように蓄電素子から取り出されたセパレータにつき、その断面をCP(クロスセクションポリッシャ)加工した後、SEM観察を行った。1つのセパレータ片につき、5か所にて厚みを測定し、その平均値をセパレータ厚みTとした。これらの測定結果を表1に纏めて示す。
<片面正極合剤厚み>
上記のように蓄電素子から取り出された正極板につき、マイクロメータを用いて、正極板のうち正極合剤が塗布された部分の厚みP1を測定した。その後、溶剤にて正極合剤を剥離し、剥離後の正極板の厚みP2を測定した。上記のようにして求めた測定値から、下記の式にて、片面正極合剤厚みP3を算出した。
P3=(P1−P2)/2
なお、正極合剤を剥離させる溶剤としては、正極基材を浸食しないものであれば特に制限はなく、例えば、アセトン、N−メチルピロリドンを好適に用いることができる。
1つの実験例あたり、1個の蓄電素子から5つの試料を切り出し、それぞれの試料に対して上記の測定を実行した。このようにして得られた5つの片面正極合剤厚みの平均値を、各実験例の片面正極合剤厚みとした。これらの測定結果を表1に纏めて示す。
<保液率>
上記のように蓄電素子から取り出したセパレータをL1×L2の大きさに切り出し、質量W1を測定した。本実施形態では、L1=L2=4cmとした。
次に、セパレータをプロピレンカーボネートに1分間浸漬させた後、セパレータの表面に付着したプロピレンカーボネートを拭き取り、質量W2を測定した。
保液率R(%)は、上記のようにして求めた質量W1(g)、W2(g)、長さL1(cm)、L2(cm)、セパレータ厚みT(cm)、プロピレンカーボネートの密度d(g/cm)から、下記の式にて算出した。
R=[{(W2−W1)/d}/(L1×L2×T)]×100
1つの実験例あたり、1個の蓄電素子から5つの試料を切り出し、それぞれの試料に対して上記の測定を実行した。このようにして得られた5つの保液率の平均値を、各実験例の保液率とした。これらの測定結果を表1に纏めて示す。
<釘刺試験>
釘刺試験の直前に、25℃、4Aにて、上限4.1V、下限2.4Vで蓄電素子を放電させた電流容量により1C(A)を定め、放電状態から25℃、0.5C(A)にて、蓄電素子を1.6時間充電することにより、SOC(残存容量:State Of Charge)を80%とした蓄電素子を調製した。この蓄電素子に対し、直径1mmのステンレス製の釘を、蓄電素子の長側面の中央部に貫通させた。このとき、蓄電素子に釘を貫通させる直前から蓄電素子の温度が低下するまでの間、蓄電素子の表面温度を測定した。その後、最も温度が高かった値と釘を貫通させる直前の値との差を求め、釘刺試験実行時の温度上昇値とした。
1つの実験例あたり、3個の蓄電素子に対して上記の測定を実行した。このようにして得られた3つの温度の平均値を、各実験例における釘刺試験実行時の温度とした。このようにして得られた釘刺試験実行時の温度から25℃を引いた温度を釘刺試験実行時の温度上昇値とした。その後、実験例1に係る釘刺試験実行時の温度上昇値を100として、実験例1に係る釘刺試験実行時の温度上昇値に対する他の実験例に係る釘刺試験実行時の温度上昇値の比を算出した。これらの測定結果を表1に纏めて示す。
<25℃出力試験>
25℃出力試験の直前に、25℃、4Aにて、上限4.1V、下限2.4Vで蓄電素子を放電させた電流容量により1C(A)を定め、放電状態から25℃、0.5C(A)にて、蓄電素子を1時間充電することにより、SOC50%とした蓄電素子を調製した。この蓄電素子の電圧(通電前の電圧)を測定した後、温度25℃、20Cにて連続的に放電させた。そして、放電開始から10秒後の電圧(放電電圧)を測定した。この放電電圧と、通電前の電圧とから、以下の式により、蓄電素子の抵抗D1を算出した。
D1=|10秒後の放電電圧−通電前の電圧|/放電電流
なお、|10秒後の放電電圧−通電前の電圧|は、10秒後の放電電圧と、通電前電圧との差の絶対値を表す。
次いで、通電前の電圧と、下限電圧と、上記のようにして算出した抵抗D1とから、下記の式により、出力Pを算出した。
P=(|通電前の電圧−下限電圧|/抵抗D1)×下限電圧
1つの実験例あたり、3個の蓄電素子に対して上記の試験を実行した。このようにして得られた3つの出力Pの平均値を、各実験例に係る蓄電素子の出力Pとした。
表1には、実験例1に係る蓄電素子の出力Pを100とした場合における、他の実験例に係る蓄電素子の出力Pの比を示した。
Figure 2015005355
表1においては、実験例1〜4は実施例とされ、実験例5〜6は比較例とされる。破膜径が1.0μm〜2.5μmである実験例1〜4においては、実験例1に対する釘刺温度上昇値の比が180%以下であったのに対し、破膜径が3.0μm〜4.0μmである実験例5〜6においては、実験例1に対する釘刺温度上昇値の比は230%以上であった。このように、破膜径を3μmより小さくすることにより、蓄電素子が内部短絡した場合における安全性を向上させることができる。
実験例1〜4においては、室温においてセパレータに形成された直径1mmの貫通孔は、150℃、60分加熱後であっても、貫通孔の直径は3mmよりも小さいものとなっている。これにより、蓄電素子内に異物が混入して、この異物がセパレータを貫通することにより内部短絡が発生した場合でも、セパレータに形成された貫通孔が拡大することが抑制されるようになっている。これにより、内部短絡時に蓄電素子内の温度が上昇した場合でも、正極板と負極板との間の短絡経路が拡大することを抑制することができるので、内部短絡時における蓄電素子の温度上昇を抑制することができる。
破膜径は、3mmよりも小さいことが好ましく、2.5mmよりも小さいとより好ましく、2.0mmよりも小さいことが特に好ましい。
図3に示すように、蓄電素子内に異物27が混入して、セパレータ21を貫通すると、セパレータ21には貫通孔28が形成される。蓄電素子内の温度が上昇することにより貫通孔28の直径が拡大すると、正極板18と負極板19との間の短絡経路が拡大する虞がある。すると、蓄電素子内の温度が更に上昇することが懸念される。本実施形態によれば、蓄電素子内の温度が上昇した場合でも、セパレータ21に形成された貫通孔28の直径が拡大することを抑制できるので、蓄電素子内の温度上昇を抑制することができる。
<実験例7〜13>
実験例1で用いられた正極板とは異なる正極板を用いた以外は、実験例1と同様の手法で実験例7〜13に係る蓄電素子を作製した。より具体的には、導電助剤の添加量を変化させた正極板を用いた。次いで、実験例7〜13に係る蓄電素子に対して、実験例1〜6に対して実施したのと同様の測定及び試験を実施した。これらの結果を、実験例1の結果を合わせて、表2に纏めた。
図4には、2端子間正極抵抗値を横軸とし、実験例1に対する25℃電池出力の比を縦軸としたグラフを示した。また、図5には、2端子間正極抵抗値を横軸とし、実験例1に対する釘刺温度上昇値の比を縦軸としたグラフを示した。
Figure 2015005355
表2においては、実験例1、及び実験例8〜12は実施例とされ、実験例7及び実験例13は比較例とされる。
蓄電素子の出力を向上させる手法としては、2端子間正極抵抗値を下げることにより、蓄電素子の内部抵抗を全体として下げることが考えられる。
実験例7〜12においては、2端子間正極抵抗値を100Ω以下とすることにより、実験例1に対する25℃の電池出力の比を93%以上とすることができた。これにより、蓄電素子の出力を向上させることができた。
一方、実験例7における2端子間正極抵抗値は10Ωであり、実験例8における2端子間正極抵抗値である15Ωよりも小さい。しかし、実験例1に対する25℃の電池出力の比に関し、実験例7及び実験例8は、共に102%となった。これは、2端子間正極抵抗値を15Ωより小さくしても、蓄電素子の内部抵抗のうち、2端子間正極抵抗値と異なる内部抵抗が支配的になるため、いくら2端子間正極抵抗値を小さくしても蓄電素子の出力を十分に向上させることができないためと考えられる。
図4に示すように、2端子間正極抵抗値が100Ωよりも大きい場合、実験例1に対する25℃の電池出力の比が78%以下となるので好ましくない。これに対し、2端子間正極抵抗値は80Ω以下であると、実験例1に対する25℃の電池出力の比が93%以上となるので好ましい。2端子間正極抵抗値が75Ω以上であると、実験例1に対する25℃の電池出力の比が98%以上となるので、より好ましい。2端子間正極抵抗値が45Ω以下であると、実験例1に対する25℃の電池出力の比が99%以上となるので、特に好ましい。
一方、このように2端子間正極抵抗値を15Ωより小さくすると、異物の混入により蓄電素子が内部短絡した場合に、正極板、異物、及び負極板を流れる短絡電流値が大きくなり、蓄電素子の温度上昇が大きくなることが懸念される。つまり、2端子間正極抵抗値を15Ωより小さくすると、蓄電素子の出力は十分に向上しないにも関わらず、蓄電素子が内部短絡した場合の温度上昇は大きくなってしまうのである。
そこで、本実施形態に係る蓄電素子においては、2端子間正極抵抗値を15Ω以上とした。これにより、蓄電素子が異物の混入により内部短絡した場合における短絡電流値を比較的に小さくすることができるので、蓄電素子が内部短絡した際における蓄電素子の温度上昇を抑制することができる。
また、図5に示すように、2端子間正極抵抗値が15Ωよりも小さくなると、実験例1に対する釘刺温度上昇値の比が200%以上となり、好ましくない。これに対し、2端子間正極抵抗値が15Ω以上であると、実験例1に対する釘刺温度上昇値の比が125%以下となるので好ましい。また、2端子間正極抵抗値が25Ω以下であると、実験例1に対する釘刺温度上昇値の比が110%以下となるので、より好ましい。
<実験例14〜18>
実験例1で用いられたセパレータとは異なるセパレータを用いた以外は、実験例1と同様の手法で実験例14〜18に係る蓄電素子を作製した。次いで、実験例14〜18に係る蓄電素子に対して、実験例1〜6に対して実施したのと同様の測定及び試験を実施した。これらの結果を、実験例1の結果を合わせて、表3に纏めた。
Figure 2015005355
表3においては、実験例1、及び実験例14〜18は実施例とされる。
セパレータの保液率が30%より小さいと、セパレータに含まれる電解液が相対的に少なくなるので、セパレータと電解液とを合わせた全体的な熱容量が減少し、内部短絡時に温度上昇しやすくなる。このため、セパレータの保液率は30%以上が好ましい。セパレータの保液率を30%以上とすることにより、実験例1に対する釘刺し温度上昇値の比を118%以下とすることができる。
一方、セパレータの保液率が80%より大きいと、セパレータの強度低下が顕著になる。
また、セパレータの保液率が50%〜70%であると、セパレータに含まれる電解液が相対的に多くなるので、セパレータと電解液とを合わせた全体的な熱容量が増加し、内部短絡時に温度上昇しにくくなるので、より好ましい。セパレータの保液率が50%〜70%にすることにより、実験例1に対する釘刺し温度上昇値の比を98%〜103%にすることができる。
<実験例19〜24>
実験例1で用いられたセパレータとは異なるセパレータを用いた以外は、実験例1と同様の手法で実験例19〜24に係る蓄電素子を作製した。この際、基材と耐熱層の厚みの比率を一定としながらセパレータの総厚みを変化させた。次いで、実験例19〜24に係る蓄電素子に対して、実験例1〜6に対して実施したのと同様の測定及び試験を実施した。これらの結果を、実験例1の結果を合わせて、表4に纏めた。
Figure 2015005355
表4においては、実験例1、及び実験例19〜24は実施例とされる。
セパレータ厚みを13μmよりも大きくすると、セパレータに含浸される電解液の量が相対的に多くなる。このため、セパレータと電解液とを合わせた全体的な熱容量が増加するので、実験例1に対する釘刺温度上昇値の比を116%以下にすることができる。この結果、蓄電素子の内部短絡時における温度上昇を抑制することができる。このため、セパレータ厚みは13μm以上が好ましく、15μm以上がより好ましく、19μm以上が特に好ましい。
また、図3に示すように、蓄電素子の内部に異物27が混入してセパレータ21を貫通し、内部短絡が発生した場合、短絡電流は、正極板18、異物27、負極板19の順に流れる。このとき、セパレータ厚みTを厚くすることにより、内部短絡する場合の導電経路を長くすることができる。これにより、導電経路の電気抵抗を大きくすることができるので、短絡電流を減少させることができる。この結果、内部短絡時における蓄電素子の温度上昇を抑制することができる。
セパレータ厚みが13μm以上であると、導電経路の電気抵抗を大きくすることができる。これにより、実験例1に対する釘刺温度上昇値の比を116%以下にすることができるので好ましい。
上記の理由から、セパレータ厚みは13μm以上が好ましく、15μm以上がより好ましく、19μm以上が特に好ましい。
一方、セパレータ厚みが35μmよりも大きくなると、実験例1に対する25℃の電池出力の比が88%よりも小さくなる。このため、セパレータ厚みは35μm以下が好ましく、30μm以下がより好ましく、26μm以下が特に好ましい。
<実験例25〜30>
実験例1で用いられた正極板とは異なる正極板を用いた以外は、実験例1と同様の手法で実験例25〜30に係る蓄電素子を作製した。なお、合剤層厚みの変化に伴い、2端子間正極抵抗値が変化するため、導電助剤の添加量も変化させた。次いで、実験例25〜30に係る蓄電素子に対して、実験例1〜6に対して実施したのと同様の測定及び試験を実施した。これらの結果を、実験例1の結果を合わせて、表5に纏めた。
Figure 2015005355
表5においては、実験例1、及び実験例25〜30は実施例とされる。
片面正極合剤厚みを15μm以上にすると、正極合剤層に含浸される電解液の量を増大させることができる。これにより、これにより、正極合剤層と、電解液と合わせた全体的な熱容量を増大させることができる。この結果、蓄電素子に内部短絡が生じた場合でも、蓄電素子の温度上昇を抑制することができる。この結果、片面正極合剤厚みを15μm以上である実験例25〜30においては、実験例1に対する釘刺温度上昇値の比を95%以上にすることができる。片面正極合剤厚みは、15μm以上が好ましく、20μm以上がより好ましく、30μm以上が特に好ましい。
一方、片面正極合剤厚みを70μmよりも大きくすると、蓄電素子内の正極基材又は負極基材(金属箔)の割合が小さくなり、活物質の割合が増加する。このため、正極合剤層又は負極合剤層の発熱に対する放熱が不十分になることにより、蓄電素子の温度が上昇することが懸念される。したがって、片面正極合剤層厚みは70μm以下にすることにより、実験例1に対する釘刺温度上昇値の比を131%以下にすることができる。片面正極合剤厚みは70μm以下が好ましく、60μm以下がより好ましく、50μm以下が特に好ましい。
以上より、本明細書に開示された技術によれば、蓄電素子の出力を向上させると共に、蓄電素子の温度上昇を抑制することができる。
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)本実施形態に係る蓄電素子10は角形電池としたが、これに限られず、円筒形、ラミネートタイプ等、必要に応じて任意の形状を採用しうる。また、リチウムイオン二次電池に限らず、ニッケル水素電池やリチウムイオンキャパシタ等の蓄電素子に適用してもよい。
(2)本実施形態においては、溶媒に非水電解質を溶解させた電解液を使用したが、電解液をゲル化させたものであってもよく、また電解液を高分子化合物に含浸させたものであってもよく、必要に応じて任意の非水電解質を選択しうる。
(3)本実施形態に係る発電要素20は、正極板18と、セパレータ21と、負極板19と、セパレータ21とをこの順に重ね合わせて巻回させてなる巻回型としたが、これに限られず、正極板18と、セパレータ21と、負極板19と、セパレータ21と、をこの順に繰り返し積層してなる積層型としてもよい。
(4)本実施形態では、正極基材22の両面に正極合剤層23が形成される構成としたが、正極基材22の片面に正極合剤層23が形成される構成としてもよい。
(5)本実施形態では、負極基材24の両面に負極合剤層25が形成される構成としたが、負極基材24の片面に負極合剤層25が形成される構成としてもよい。
(6)本実施形態では、片面正極合剤厚みを20μm以上としたが、これに限られず、片面負極合剤厚みを20μm以上としてもよい。
10:蓄電素子
18:正極板
19:負極板
21:セパレータ
22:正極基材
23:正極合剤層
24:負極基材
25:負極合剤層
26:電解液

Claims (4)

  1. 正極基材の表面に正極活物質を含む正極合剤層が形成された正極板と、
    負極基材の表面に負極活物質を含む負極合剤層が形成された負極板と、
    前記正極板と前記負極板との間に介されたセパレータと、
    電解液と、を備え、
    前記正極合剤層の表面に間隔を空けて接触させた一対のプローブ間の電気抵抗値である2端子間正極抵抗値が15Ω〜100Ωであり、
    室温において前記セパレータに直径1mmの貫通孔を形成し、前記セパレータの周囲を耐熱テープで固定した状態で150℃、60分間加熱した後の前記貫通孔の直径のうち最大のものを破膜径とした場合において、前記破膜径は3mmより小さい蓄電素子。
  2. 請求項1に記載の蓄電素子であって、
    前記セパレータの保液率が30%〜80%である蓄電素子。
  3. 請求項1または請求項2に記載の蓄電素子であって、
    前記セパレータの膜厚が13μm以上である蓄電素子。
  4. 請求項1ないし請求項3のいずれか一項に記載の蓄電素子であって、
    前記正極基材の片面における前記正極合剤層の厚さ寸法である片面正極合剤厚み、又は前記負極基材の片面における前記負極合剤層の厚さ寸法である片面負極合剤厚みが20μm以上である蓄電素子。
JP2013128674A 2013-06-19 2013-06-19 蓄電素子 Pending JP2015005355A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013128674A JP2015005355A (ja) 2013-06-19 2013-06-19 蓄電素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013128674A JP2015005355A (ja) 2013-06-19 2013-06-19 蓄電素子

Publications (1)

Publication Number Publication Date
JP2015005355A true JP2015005355A (ja) 2015-01-08

Family

ID=52301107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013128674A Pending JP2015005355A (ja) 2013-06-19 2013-06-19 蓄電素子

Country Status (1)

Country Link
JP (1) JP2015005355A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160556A (ja) * 2018-03-13 2019-09-19 三洋電機株式会社 非水電解質二次電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282818A (ja) * 1994-02-16 1995-10-27 Hitachi Maxell Ltd 積層型電池
US5527644A (en) * 1994-02-16 1996-06-18 Hitachi Maxell, Ltd. Layer built cell
JP2005203249A (ja) * 2004-01-16 2005-07-28 Sanyo Electric Co Ltd 非水電解質電池用正極の製造方法および非水電解質電池
JP2011100603A (ja) * 2009-11-05 2011-05-19 Hitachi Ltd リチウムイオン二次電池
WO2012023197A1 (ja) * 2010-08-19 2012-02-23 トヨタ自動車株式会社 リチウムイオン二次電池および該電池用セパレータ
WO2012131883A1 (ja) * 2011-03-28 2012-10-04 トヨタ自動車株式会社 リチウムイオン二次電池
WO2013005683A1 (ja) * 2011-07-01 2013-01-10 日本ゼオン株式会社 二次電池用多孔膜、製造方法、及び用途
JP2013065477A (ja) * 2011-09-19 2013-04-11 Toyota Motor Corp 二次電池用セパレータの製造方法,非水電解質二次電池,および二次電池用セパレータの製造装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282818A (ja) * 1994-02-16 1995-10-27 Hitachi Maxell Ltd 積層型電池
US5527644A (en) * 1994-02-16 1996-06-18 Hitachi Maxell, Ltd. Layer built cell
JP2005203249A (ja) * 2004-01-16 2005-07-28 Sanyo Electric Co Ltd 非水電解質電池用正極の製造方法および非水電解質電池
JP2011100603A (ja) * 2009-11-05 2011-05-19 Hitachi Ltd リチウムイオン二次電池
WO2012023197A1 (ja) * 2010-08-19 2012-02-23 トヨタ自動車株式会社 リチウムイオン二次電池および該電池用セパレータ
WO2012131883A1 (ja) * 2011-03-28 2012-10-04 トヨタ自動車株式会社 リチウムイオン二次電池
WO2013005683A1 (ja) * 2011-07-01 2013-01-10 日本ゼオン株式会社 二次電池用多孔膜、製造方法、及び用途
JP2013065477A (ja) * 2011-09-19 2013-04-11 Toyota Motor Corp 二次電池用セパレータの製造方法,非水電解質二次電池,および二次電池用セパレータの製造装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160556A (ja) * 2018-03-13 2019-09-19 三洋電機株式会社 非水電解質二次電池
US20190288290A1 (en) * 2018-03-13 2019-09-19 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
CN110277534A (zh) * 2018-03-13 2019-09-24 三洋电机株式会社 非水电解质二次电池

Similar Documents

Publication Publication Date Title
JP5834940B2 (ja) 非水電解質二次電池用のセパレータ、及び非水電解質二次電池
JP5264099B2 (ja) 非水電解質二次電池
EP2077594A1 (en) Composite separator films for lithium-ion batteries
JP6179125B2 (ja) 蓄電素子
WO2011021644A1 (ja) 非水系電解液二次電池用セパレータ及び非水系電解液二次電池
CN105280906B (zh) 蓄电元件
JP6350150B2 (ja) 蓄電素子
JPWO2012005139A1 (ja) セラミックセパレータ及び蓄電デバイス
KR102243458B1 (ko) 비수 전해질 이차전지, 및, 비수 전해질 이차전지의 제조 방법
EP3249734A1 (en) Lithium ion secondary battery
JP2012043629A (ja) 非水系電解液二次電池用セパレータ及び非水系電解液二次電池
JP6476974B2 (ja) 蓄電素子、及び蓄電素子の製造方法
JP6484995B2 (ja) リチウムイオン二次電池
US9991563B2 (en) Energy storage device and energy storage apparatus
JP2016085836A (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
JP6899312B2 (ja) 非水電解質、及び非水電解質蓄電素子
US11258065B2 (en) Energy storage device
JP2018078029A (ja) 負極及び非水電解質蓄電素子
JP2015005355A (ja) 蓄電素子
JP6413347B2 (ja) 蓄電素子
JP6589386B2 (ja) 蓄電素子
KR102273644B1 (ko) 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
JP2017152175A (ja) リチウムイオン二次電池
WO2017159674A1 (ja) 蓄電素子
JP2011138646A (ja) リチウムイオン電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171102