JP2015001099A - 揚鉱システム - Google Patents

揚鉱システム Download PDF

Info

Publication number
JP2015001099A
JP2015001099A JP2013126022A JP2013126022A JP2015001099A JP 2015001099 A JP2015001099 A JP 2015001099A JP 2013126022 A JP2013126022 A JP 2013126022A JP 2013126022 A JP2013126022 A JP 2013126022A JP 2015001099 A JP2015001099 A JP 2015001099A
Authority
JP
Japan
Prior art keywords
pipe
ore
valve
water
valve device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013126022A
Other languages
English (en)
Inventor
知則 角
Tomonori Sumi
知則 角
徹 池▲崎▼
Toru Ikezaki
徹 池▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Engineering Co Ltd filed Critical Nippon Steel and Sumikin Engineering Co Ltd
Priority to JP2013126022A priority Critical patent/JP2015001099A/ja
Publication of JP2015001099A publication Critical patent/JP2015001099A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

【課題】鉱石による移送管の閉塞を速やかに解消でき、長期にわたって安定的な操業が可能な揚鉱システムを提供する。
【解決手段】海底で採掘された鉱石W1を含む海水W2を海上の採鉱母船2へ揚鉱管8で移送し、移送された鉱石W1を含む海水W2を採鉱母船2でセパレータ3によって鉱石W1と海水W2とに分離し、この海水W2を循環ポンプ4で昇圧した後に戻り管9によって海底のハイドロモータ10へ移送し、ハイドロモータ10で海底の水中ポンプ11を回転駆動し、採掘された鉱石W1を含む海水W2を揚鉱管8へ導入することで連続的に揚鉱を行う。また、揚鉱管8及び戻り管9の中途位置で、これら揚鉱管8と戻り管9とを連通するバイパス管5が設けられ、さらに海水W2の流入経路、流出経路を切り替え可能な第一バルブ21、第二バルブ22、第三バルブ23が設けられている。
【選択図】図1

Description

本発明は、海底で採掘した鉱石を海上まで揚鉱する揚鉱システムに関する。
日本近海の海底には、海底熱水鉱床と呼ばれる他金属硫化物鉱床が存在している。海底熱水鉱床には、銅、鉛、亜鉛、金、銀等の金属が高い品位で含まれており、これらを海底から採掘することができれば、資源確保の点で非常に有用である。
海底を採掘して有価金属を揚鉱する手法については様々な技術がこれまで開発されている。例えば特許文献1の揚鉱システムでは、循環ポンプによって海水を海上から海底のハイドロモータへ送り込み、このハイドロモータによって水中ポンプを駆動し、採掘された鉱石を海水とともに海上へ移送している。そして海上では、鉱石と海水を分離して鉱石を収集し、海水のみをハイドロモータへ送り込んで水中ポンプの駆動を行う。このようにして、海上と海底との間で海水を循環させることで連続的な揚鉱が可能となっている。
さらに、特許文献1の揚鉱システムにおいては、海上から海底への海水の戻り管(返送ライザー)と海底から海上への揚鉱管(揚鉱ライザー)とを連結するバイパス管が設けられており、揚鉱管内で鉱石による閉塞が生じた場合に、このバイパス管を通じて海水を循環させることで閉塞を解消するようになっている。
特開2011−196047号公報
しかしながら、特許文献1の揚鉱システムでは、バイパス管よりも海上側となる位置では、鉱石による移送管の閉塞の解消が可能であるものの、その一方で、海底側となる位置で移送管が閉塞されてしまうと、閉塞を解消することは非常に難しい。特に、水深2000m程度の深海から鉱石を移送する揚鉱システムでは、一度システムが設置されてしまうとメンテナンス等が容易ではないため、このままでは揚鉱を継続することが不可能となるおそれがある。
本発明はこのような事情を考慮してなされたものであり、鉱石による移送管の閉塞を速やかに解消し、長期にわたって安定的な操業が可能な揚鉱システムを提供することを目的とする。
上記課題を解決するため、本発明は以下の手段を採用している。
即ち、本発明に係る揚鉱システムは、水上に設けられた採鉱基地と、前記採鉱基地から水底に向かって延びて、該水底で採掘された鉱石を含む水を前記採鉱基地へ移送する揚鉱管と、前記採鉱基地に設けられ、前記揚鉱管によって移送された前記鉱石を含む水を、前記鉱石と前記水とに分離するセパレータと、前記採鉱基地に設けられ、前記セパレータで分離された前記水を昇圧する循環ポンプと、前記採鉱基地から前記水底に向かって延びて、前記循環ポンプからの前記水を移送する戻り管と、前記戻り管に連通して、前記戻り管からの前記水によって回転駆動されるハイドロモータと、前記ハイドロモータに軸結合されて回転駆動されるとともに、前記揚鉱管に連通し、前記鉱石を含む水を前記揚鉱管へ導入する水中ポンプと、前記揚鉱管及び前記戻り管の中途位置で、これら揚鉱管と戻り管とを接続して連通するバイパス管と、前記戻り管と前記バイパス管との接続部分に設けられた第一の弁装置と、前記揚鉱管と前記バイパス管との接続部分に設けられた第二の弁装置と、前記戻り管において、前記第一の弁装置と前記ハイドロモータとの間に設けられた第三の弁装置と、を備え、前記第一の弁装置は、前記ハイドロモータ及び前記バイパス管のうちのいずれか一つと、前記採鉱基地との間を連通するように切り替え可能であり、前記第二の弁装置は、前記水中ポンプ、前記採鉱基地、及び、前記バイパス管のうちのいずれか二つの間を連通するように切り替え可能であり、前記第三の弁装置は、前記第一の弁装置及び前記戻り管の外部となる水中のうちのいずれか一つと、前記ハイドロモータとの間を連通するように切り替え可能である、ことを特徴とする。
このような揚鉱システムによると、採鉱基地で、鉱石を含む水を取り込み、鉱石と水とを分離した後に、循環ポンプによって水のみをハイドロモータに送り込んで回転駆動させる。そして、ハイドロモータには水中ポンプが軸結合されて回転駆動されることで、鉱石を含む水を吸い込んで採鉱基地に移送する。そして通常運転時には、採鉱基地とハイドロモータとの間を連通するように第一の弁装置が設定され、水中ポンプと採鉱基地との間を連通するように第二の弁装置が設定され、さらに、第一の弁装置とハイドロモータとの間を連通するように第三の弁装置が設定されることで、採鉱基地に鉱石を含む水を連続的に移送する。
ここで、第一の弁装置、第二の弁装置、第三の弁装置が、水の流通経路を切り替え可能に設けられている。よって、バイパス管との接続部分である第二の弁装置が設けられた位置よりも水上側で、揚鉱管が鉱石によって閉塞されてしまった場合には、採鉱基地とバイパス管との間を連通するように第一の弁装置を切り替え、バイパス管と採鉱基地との間を連通するように第二の弁装置を切り替える。これによって、ハイドロモータ及び水中ポンプを経由せずに、採鉱基地からの水を循環させることが可能となる。従って、水中ポンプによって新たに鉱石を含む水が揚鉱管に導入されることがなくなるとともに、揚鉱管を閉塞している鉱石を循環ポンプによって昇圧された水の圧力で押し出すことで、採鉱基地に向かって閉塞している鉱石を排出することができる。即ち、循環ポンプで昇圧した状態の水を鉱石の閉塞部分に直接供給することができるようになる。このため、ハイドロモータ、水中ポンプを経由することによる水のエネルギー損失を低減しながら水を閉塞部分へ供給することができ、より効率的に閉塞の解消を行うことができる。
さらに、バイパス管との接続部分である第二の弁装置が設けられた位置よりも水底側で、揚鉱管が鉱石によって閉塞されてしまった場合には、採鉱基地とバイパス管との間を連通するように第一の弁装置を切り替え、バイパス管と水中ポンプとの間を連通するように第二の弁装置を切り替え、さらに、ハイドロモータと戻り管の外部の水中とを連通するように第三の弁装置を切り替える。これによって、戻り管からの水を、バイパス管を経由して水中ポンプに流入させ、即ち、通常運転時とは逆の方向に揚鉱管内で水を流通させることで水中ポンプから鉱石を排出することができる。この際、ハイドロモータへは戻り管からの水は流入しないため、水流によってハイドロモータが回転駆動されることはない。しかしながら、鉱石を水中ポンプから排出する際に、水中ポンプが回転されてしまい、ハイドロモータは水中ポンプに軸結合されていることで、このように回転した水中ポンプによってハイドロモータが回転駆動されてしまう。よって、ハイドロモータが戻り管へ向かって水を吸い込むように、通常運転時とは逆方向に水を流通させてしまう。ここで、上述したように第三の弁装置を設け、ハイドロモータと戻り管の外部の水中との間を連通させることで、このように逆流する水を採鉱基地に向かって流通させることなく、第三の弁装置から戻り管の外部へ排出することが可能となる。よって、確実に鉱石の排出機能を発揮させることが可能である。
また、第一の弁装置、前記第二の弁装置、前記第三の弁装置には、三方弁が用いられていてもよい。
このように三方弁を用いることで、容易に水の流通経路の切り替えが可能であるとともに、これら第一の弁装置、第二の弁装置、第三の弁装置の部品の共通化を図ることができる。
さらに、本発明に係る揚鉱システムは、前記揚鉱管及び前記戻り管のうちの少なくとも一つに、前記水の流動状態を検出する流動検知センサをさらに備えていてもよい。
このような揚鉱システムによると、流動検知センサによって、水の流動状態を検出することで、この検出結果に基づいて、揚鉱管での鉱石による閉塞を検知することができる。即ち、揚鉱管で水が流動しにくい状態となっている場合には、閉塞状態となったと判断することができるため、検出結果に基づいて第一の弁装置、第二の弁装置、第三の弁装置の切り替えを行うことが可能となる。
請求項1の揚鉱システムによると、第一の弁装置、第二の弁装置、第三の弁装置を設けることで、水の流通経路を変更して、揚鉱管の閉塞を速やかに解消し、長期にわたって安定的な操業が可能となる。
また、請求項2の揚鉱システムによると、容易に水の流通経路を変更可能となるとともに、部品共通化によるコストダウンも可能となる。
さらに、請求項3の揚鉱システムによると、揚鉱管が閉塞されたか否かを判断でき、これに基づいて第一の弁装置、第二の弁装置、第三の弁装置の切り替えることができ、効率的に閉塞した鉱石を排出することが可能となる。
本発明の実施形態に係る揚鉱システムの概略全体構成図である。 本発明の実施形態に係る揚鉱システムに関し、通常運転時での、海水の流通経路を示す要部拡大図である。 本発明の実施形態に係る揚鉱システムに関し、第二バルブと採鉱母船との間で、揚鉱管が鉱石によって閉塞された場合の海水の流通経路を示す要部拡大図である。 本発明の実施形態に係る揚鉱システムに関し、第二バルブと水中ポンプとの間で、揚鉱管が鉱石によって閉塞された場合の海水の流通経路を示す要部拡大図である。
以下、本発明の実施形態に係る揚鉱システム1について説明する。
図1に示すように、揚鉱システム1は、海底で採掘された鉱石W1を海上(水上)まで移送するシステムである。
この揚鉱システム1は、海上に設置された採鉱母船2(採鉱基地)と、採鉱母船2に設けられたセパレータ3及び循環ポンプ4と、採鉱母船2から海底(水底)へと延びる揚鉱管8及び戻り管9と、戻り管9の先端に接続されたハイドロモータ10と、揚鉱管8の先端に接続された水中ポンプ11とを備えている。
さらに、揚鉱システム1は、揚鉱管8と戻り管9とを各々の中途位置で接続するバイパス管5と、戻り管9及び揚鉱管8に設けられた弁装置15と、揚鉱管8に設けられ、海水W2(水)の流動状態を検出する流動検知センサ17とを備えている。
採鉱母船2は、目的とする海域の洋上に停泊させて揚鉱を行う。ただし、船に限定されることはなく、海上に建設されたプラットホームなどであってもよい。
揚鉱管8は、強度を確保するために鋼管が用いられるが、これに限定されることはなく、可撓性を有するフレキシブルライザー等であってもよい。
そして、この揚鉱管8は、海底で採掘された鉱石W1を含む海水W2をスラリー状流体Wとして採鉱母船2に移送可能となっている。
セパレータ3は、採鉱母船2において、揚鉱管8からのスラリー状流体Wを鉱石W1と海水W2とに分離する。このセパレータ3には、例えばオーバーフロー槽、サイクロン、濾過装置、篩などが用いられる。
循環ポンプ4は、採鉱母船2において、セパレータ3と接続されて連通し、セパレータ3でスラリー状流体Wから分離された海水W2を昇圧する。
戻り管9は、揚鉱管8と同様に、鋼管やフレキシブルライザーが用いられ、揚鉱管8に併設されて海底に向かって延びている。さらに、この戻り管9は、採鉱母船2に設けられた循環ポンプ4に接続されて連通しており、循環ポンプ4で昇圧された海水W2を海底に向かって移送するようになっている。
ハイドロモータ10は、海底に設けられ、戻り管9の先端に接続されて連通しており、戻り管9からの海水W2によって回転駆動される。ハイドロモータ10については詳細説明は省略するが、海水W2によって回転駆動される羽根車10aと、羽根車10aに取り付けられて羽根車10aとともに回転する回転軸10bとを有し、具体的には、例えばフランシス水車などが用いられる。
水中ポンプ11は、海底に設けられてハイドロモータ10の回転軸10bに軸結合されているとともに、揚鉱管8の先端に接続されて連通している。そして、この水中ポンプ11は、回転軸10bに軸結合された羽根車11aを有しており、ハイドロモータ10の回転動力によってこの羽根車11aが回転駆動されることで、スラリー状流体Wを吸い込んで揚鉱管8へ導入する。
次に、弁装置15について説明する。
弁装置15は、戻り管9とバイパス管5との接続部分に設けられた第一バルブ21(第一の弁装置)と、揚鉱管8とバイパス管5との接続部分に設けられた第二バルブ22(第二の弁装置)と、戻り管9において、第一バルブ21とハイドロモータ10との間に設けられた第三バルブ23(第三の弁装置)とを有している。
第一バルブ21は、戻り管9において、ハイドロモータ10及びバイパス管5のうちのいずれか一つと、採鉱母船2との間が連通するように切り替え可能な三方弁となっている。即ち、戻り管9からハイドロモータ10へ向かって海水W2を流通させるか、又は、戻り管9からバイパス管5へ海水W2を流通させるかで、いずれか一つの流通経路を選択可能となっている。
第二バルブ22は、揚鉱管8において、水中ポンプ11と、採鉱母船2と、バイパス管5のうちのいずれか二つの間が連通するように切り替え可能な三方弁となっている。即ち、水中ポンプ11から採鉱母船2へ向かって海水W2を流通させるか、又は、バイパス管5から採鉱母船2へ向かって海水W2を流通させるか、又は、バイパス管5から水中ポンプ11へ向かって海水W2を流通させるかで、いずれか一つの流通経路を選択可能となっている。
第三バルブ23は、戻り管9において、第一バルブ21及び戻り管9の外部となる海中(水中)のうちのいずれか一つと、ハイドロモータ10との間を連通するように切り替え可能な三方弁となっている。即ち、採鉱母船2から第一バルブ21を通過した海水W2をハイドロモータ10へ向かって流通させるか、又は、ハイドロモータ10から戻り管9へ逆流する海水W2を戻り管9の外部に排出するように流通させるかで、いずれか一つの流通経路を選択可能となっている。
流動検知センサ17は、揚鉱管8内に設けられたセンサであって、揚鉱管8の内部での流動状態を検出することで、海水W2(スラリー状流体W)の閉塞有無を検出する。
具体的には、この流動検知センサ17は、例えば圧力センサや流量センサ等であって、流動状態が悪い場合には圧力値が大きくなり、また、流量の値が小さくなる。
流動検知センサ17は本実施形態では、第二バルブ22を挟んで、採鉱母船2側の第一センサ31と、水中ポンプ11側の第二センサ32との二つが設けられている。
そして、第一バルブ21、第二バルブ22、第三バルブ23については、流動検知センサ17の検出結果に基づいて切り替え操作が行われるようになっている。具体的には、流動検知センサ17と採鉱母船2とを信号線によって接続しておき、検出結果に基づいて第一バルブ21、第二バルブ22、第三バルブ23の切り替えを行う。
そして、切り替えに際しては、ROV(Remotely Operated Vehicle)を用いてもよい。また、第一バルブ21、第二バルブ22、第三バルブ23の各々と採鉱母船2とを不図示の信号線によって接続するとともに、不図示の制御器を用いて採鉱母船2からの操作によって切り替えを行ってもよい。
なお、流動検知センサ17の出力信号を受けて、例えば出力値が所定の閾値を超えた場合に、不図示の制御器によって自動的に第一バルブ21、第二バルブ22、第三バルブ23の各々の切り替え操作を行ってもよい。
次に、揚鉱管8が、鉱石W1によって閉塞してしまった際に、海水W2の流通経路を変更した場合の海水W2の流動の様子について説明する。
図2に示すように、鉱石W1が揚鉱管8を閉塞していない通常運転時には、採鉱母船2とハイドロモータ10との間を連通するように第一バルブ21が設定されており、水中ポンプ11と採鉱母船2との間を連通するように第二バルブ22が設定されている。これにより、採鉱母船2にスラリー状流体Wを連続的に移送するとともに、セパレータ3で分離された海水W2を、戻り管9へ移送する。
また、図3に示すように、第二バルブ22が設けられた位置よりも海上側で、揚鉱管8が鉱石W1によって閉塞されたと第一センサ31(図1参照)が検知した際には、第一バルブ21を切り替え、採鉱母船2とバイパス管5との間を連通するようにする。さらに、第二バルブ22を切り替え、バイパス管5と採鉱母船2との間を連通するようにする。これによって、ハイドロモータ10、水中ポンプ11を経由せずに、海水W2のみを採鉱母船2、戻り管9、揚鉱管8、バイパス管5の間で循環させる。
さらに、図4に示すように、第二バルブ22が設けられた位置よりも海底側で、揚鉱管8が鉱石W1によって閉塞されてしまったと第二センサ32が検知した際には、第一バルブ21を切り替え、採鉱母船2とバイパス管5との間を連通するようにし、第二バルブ22を切り替え、バイパス管5と水中ポンプ11との間を連通するようにする。さらに、第三バルブ23を切り替え、ハイドロモータ10と戻り管9の外部となる海中との間を連通するようする。
このようにすることで、戻り管9からの海水W2を、バイパス管5を経由して水中ポンプ11に流入させ、即ち、通常運転時とは逆の方向に揚鉱管8の内部で海水W2を流通させ、水中ポンプ11を逆回転させる。この際、ハイドロモータ10も逆回転されて海水W2を吸い込むとともに、戻り管9の内部を通常運転時とは逆の方向に海水W2を流通させて、第三バルブ23から戻り管9の外部に排出する。
このような揚鉱システム1によると、例えば、揚鉱管8の第二バルブ22よりも海上側となる上部で、揚鉱管8が閉塞されてしまった際には、図3に示すように、第一バルブ21及び第二バルブ22を切り替えることで、スラリー状流体Wが新たに揚鉱管8に導入されることがなくなる。
さらに、揚鉱管8を閉塞している鉱石W1を、循環ポンプ4で昇圧された海水W2の圧力で押し出すことで、採鉱母船2に向かって排出することが可能となる。従って、循環ポンプ4で昇圧した状態の海水W2を閉塞部分に直接供給することができるようになる。このため、ハイドロモータ10、水中ポンプ11を経由することによる海水W2のエネルギー損失を低減しながら海水W2を閉塞部分へ供給することができ、より効率的に閉塞の解消を行うことができる。
また、例えば、揚鉱管8の第二バルブ22よりも海底側となる下部で、揚鉱管8が閉塞されてしまった場合には、図4に示すように、第一バルブ21、第二バルブ22、第三バルブ23を切り替えることで、戻り管9からの海水W2をバイパス管5を経由して水中ポンプ11に流入させる。即ち、第二バルブ22よりも下部において、通常運転時とは逆の方向に揚鉱管8の内部で海水W2を流通させ、鉱石W1を水中ポンプ11から排出することができる。
そして、この際、ハイドロモータ10へは戻り管9からの海水W2は流入しないため、海水W2によってハイドロモータ10が回転駆動されることはないが、鉱石W1を水中ポンプ11から排出することで、水中ポンプ11が通常運転時とは逆方向に回転されることになる。
そして、ハイドロモータ10は水中ポンプ11に軸結合されていることで、このように逆回転する水中ポンプ11によって、ハイドロモータ10が回転駆動されてしまい、戻り管9へ向かって海水W2を吸い込むように、通常運転時とは逆方向に海水W2を流通させてしまう。
ここで本実施形態では、上述のように第三バルブ23を設け、ハイドロモータ10と戻り管9の外部との間を連通させることで、このように逆流する海水W2を採鉱母船2に向かって流通させることなく、第三バルブ23から戻り管9の外部へ排出することが可能となる。よって、確実に鉱石W1の排出機能を発揮させることが可能となる。
また、本実施形態では、第一バルブ21、第二バルブ22、第三バルブ23に同じ三方弁を用いることができ、容易に海水W2の流通経路を変更可能となるとともに、部品の共通化によってコストダウンを図ることもできる。
また、流動検知センサ17によって、例えば揚鉱管8の内部での流動状態を検出することで、この検出結果に基づいて、揚鉱管8での閉塞を検知することができる。即ち、揚鉱管8で流動性が悪い状態となっている場合には、揚鉱管8が鉱石W1によって閉塞されたと判断することができ、検出結果に基づいて第一バルブ21、第二バルブ22、第三バルブ23の切り替えを行って、より効率的に閉塞した鉱石W1を排出することが可能となる。
本実施形態の揚鉱システム1によると、第一バルブ21、第二バルブ22、第三バルブ23の切り替えによって、海水W2の流通経路を容易に変更でき、揚鉱管8の閉塞を速やかに解消して、長期にわたって安定的な操業が可能となる。
以上、本発明の実施形態について詳細を説明したが、本発明の技術的思想を逸脱しない範囲内において、多少の設計変更も可能である。
第一バルブ21、第二バルブ22、第三バルブ23は三方弁でなくともよく、流通経路を切り替える機能を有するものであればよい。
また、上述の実施形態では、海底から採掘した鉱石W1を揚鉱しているが、これに限定されることなく、湖上に採鉱母船2を設け、湖底から採掘した鉱石W1の揚鉱を行ってもよい。
1…揚鉱システム 2…採鉱母船(採鉱基地) 3…セパレータ 4…循環ポンプ 5…バイパス管 8…揚鉱管 9…戻り管 10…ハイドロモータ 10a…羽根車 10b…回転軸 11…水中ポンプ 11a…羽根車 15…弁装置 17…流動検知センサ 21…第一バルブ 22…第二バルブ 23…第三バルブ 31…第一センサ 32…第二センサ W1…鉱石 W2…海水 W…スラリー状流体

Claims (3)

  1. 水上に設けられた採鉱基地と、
    前記採鉱基地から水底に向かって延びて、該水底で採掘された鉱石を含む水を前記採鉱基地へ移送する揚鉱管と、
    前記採鉱基地に設けられ、前記揚鉱管によって移送された前記鉱石を含む水を、前記鉱石と前記水とに分離するセパレータと、
    前記採鉱基地に設けられ、前記セパレータで分離された前記水を昇圧する循環ポンプと、
    前記採鉱基地から前記水底に向かって延びて、前記循環ポンプからの前記水を移送する戻り管と、
    前記戻り管に連通して、前記戻り管からの前記水によって回転駆動されるハイドロモータと、
    前記ハイドロモータに軸結合されて回転駆動されるとともに、前記揚鉱管に連通し、前記鉱石を含む水を前記揚鉱管へ導入する水中ポンプと、
    前記揚鉱管及び前記戻り管の中途位置で、これら揚鉱管と戻り管とを接続して連通するバイパス管と、
    前記戻り管と前記バイパス管との接続部分に設けられた第一の弁装置と、
    前記揚鉱管と前記バイパス管との接続部分に設けられた第二の弁装置と、
    前記戻り管において、前記第一の弁装置と前記ハイドロモータとの間に設けられた第三の弁装置と、
    を備え、
    前記第一の弁装置は、前記ハイドロモータ及び前記バイパス管のうちのいずれか一つと、前記採鉱基地との間を連通するように切り替え可能であり、
    前記第二の弁装置は、前記水中ポンプ、前記採鉱基地、及び、前記バイパス管のうちのいずれか二つの間を連通するように切り替え可能であり、
    前記第三の弁装置は、前記第一の弁装置及び前記戻り管の外部となる水中のうちのいずれか一つと、前記ハイドロモータとの間を連通するように切り替え可能である、
    ことを特徴とする揚鉱システム。
  2. 前記第一の弁装置、前記第二の弁装置、前記第三の弁装置には、三方弁が用いられていることを特徴とする請求項1に記載の揚鉱システム。
  3. 前記揚鉱管及び前記戻り管のうちの少なくとも一つに、前記水の流動状態を検出する流動検知センサをさらに備えることを特徴とする請求項1又は2に記載の揚鉱システム。
JP2013126022A 2013-06-14 2013-06-14 揚鉱システム Pending JP2015001099A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013126022A JP2015001099A (ja) 2013-06-14 2013-06-14 揚鉱システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013126022A JP2015001099A (ja) 2013-06-14 2013-06-14 揚鉱システム

Publications (1)

Publication Number Publication Date
JP2015001099A true JP2015001099A (ja) 2015-01-05

Family

ID=52295785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013126022A Pending JP2015001099A (ja) 2013-06-14 2013-06-14 揚鉱システム

Country Status (1)

Country Link
JP (1) JP2015001099A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150052115A (ko) * 2012-08-30 2015-05-13 코닝 인코포레이티드 프로파일 관재 및 슬리브 제조 기기 및 그 방법
WO2018088053A1 (ja) * 2016-11-11 2018-05-17 三井造船株式会社 ガスハイドレート回収方法およびガスハイドレート回収装置
JP2019052491A (ja) * 2017-09-15 2019-04-04 株式会社不動テトラ 海底鉱物取り込み装置、それを用いた揚鉱装置及び揚鉱方法
JP2019120063A (ja) * 2018-01-09 2019-07-22 株式会社不動テトラ キャリア物質、これを用いる海底有価物質の揚鉱方法及び揚鉱装置
JP2020045643A (ja) * 2018-09-14 2020-03-26 古河機械金属株式会社 水中用礫管理装置およびこれを備える水中用整粒移送装置並びに水中での礫供給状態の管理方法
CN113513486A (zh) * 2021-03-19 2021-10-19 四川宏华石油设备有限公司 用于提升海中矿浆的泵单元及组合结构及采矿提升系统
CN114135290A (zh) * 2021-11-22 2022-03-04 大连理工大学 一种深海采矿系统
CN116084953A (zh) * 2023-02-09 2023-05-09 哈尔滨工程大学 一种深海采矿系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150052115A (ko) * 2012-08-30 2015-05-13 코닝 인코포레이티드 프로파일 관재 및 슬리브 제조 기기 및 그 방법
WO2018088053A1 (ja) * 2016-11-11 2018-05-17 三井造船株式会社 ガスハイドレート回収方法およびガスハイドレート回収装置
JP2019052491A (ja) * 2017-09-15 2019-04-04 株式会社不動テトラ 海底鉱物取り込み装置、それを用いた揚鉱装置及び揚鉱方法
JP2019120063A (ja) * 2018-01-09 2019-07-22 株式会社不動テトラ キャリア物質、これを用いる海底有価物質の揚鉱方法及び揚鉱装置
JP2020045643A (ja) * 2018-09-14 2020-03-26 古河機械金属株式会社 水中用礫管理装置およびこれを備える水中用整粒移送装置並びに水中での礫供給状態の管理方法
JP7107793B2 (ja) 2018-09-14 2022-07-27 古河機械金属株式会社 水中用礫管理装置およびこれを備える水中用整粒移送装置並びに水中での礫供給状態の管理方法
CN113513486A (zh) * 2021-03-19 2021-10-19 四川宏华石油设备有限公司 用于提升海中矿浆的泵单元及组合结构及采矿提升系统
CN113513486B (zh) * 2021-03-19 2023-08-11 四川宏华石油设备有限公司 用于提升海中矿浆的泵单元及组合结构及采矿提升系统
CN114135290A (zh) * 2021-11-22 2022-03-04 大连理工大学 一种深海采矿系统
CN116084953A (zh) * 2023-02-09 2023-05-09 哈尔滨工程大学 一种深海采矿系统

Similar Documents

Publication Publication Date Title
JP2015001099A (ja) 揚鉱システム
JP5490582B2 (ja) 揚鉱システムおよび揚鉱方法
KR101689374B1 (ko) 잠수정용 가변부력 제어장치
JP2021535830A (ja) モジュール化された海中海水淡水化システム
JP2012193578A (ja) 海底鉱物資源の揚鉱システム及び揚鉱方法
EP0968755A2 (en) Hydrostatic pressure plant for separation/concentration/desalination of liquids, in particular sea or brackish water, via reverse osmosis
JP5432022B2 (ja) 揚鉱システム
JP2012503721A (ja) 深海採鉱ライザおよびリフトシステム
CN112424447B (zh) 泵送系统
JP2020509787A (ja) 揚水システムおよび方法
JP6557762B1 (ja) 揚鉱システム及び鉱石投入装置
EP3333327A1 (en) Autonomous dredging vehicle for dredging a dam reservoir
JP2019078018A (ja) 採掘装置およびこれを備える海洋資源揚鉱装置、並びに、海洋資源の揚鉱方法
KR101623094B1 (ko) 시추 선박의 벌크시스템
JP2015007416A (ja) 揚水中継筐体と、これを用いる揚水システム
KR102370409B1 (ko) 선박의 물의 열처리를 위한 시스템과 방법
JP2020521072A (ja) 油圧駆動水中ポンピングのシステムおよび方法
JP4420907B2 (ja) 貨物船のバラストタンク注排水装置および貨物タンククリーニング装置
JP6389074B2 (ja) 海水交換装置
KR101390493B1 (ko) 평형수 처리용 선박
JP3199040U (ja) フィッシュポンプ及びフィッシュポンプシステム
JP4471121B2 (ja) プール用の循環ろ過システム
WO2018088053A1 (ja) ガスハイドレート回収方法およびガスハイドレート回収装置
JP2011179603A (ja) 油圧モータ駆動装置
KR20160066981A (ko) 선박의 배기 파이프를 통한 해수 역류 방지 시스템 및 방법