JP2014504508A - ブタジエンの生合成のための微生物および方法 - Google Patents

ブタジエンの生合成のための微生物および方法 Download PDF

Info

Publication number
JP2014504508A
JP2014504508A JP2013552630A JP2013552630A JP2014504508A JP 2014504508 A JP2014504508 A JP 2014504508A JP 2013552630 A JP2013552630 A JP 2013552630A JP 2013552630 A JP2013552630 A JP 2013552630A JP 2014504508 A JP2014504508 A JP 2014504508A
Authority
JP
Japan
Prior art keywords
coa
reductase
crotonyl
pathway
butadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013552630A
Other languages
English (en)
Other versions
JP2014504508A5 (ja
JP5960729B2 (ja
Inventor
バーク,マーク,ジェイ.
ブルガード,アンソニー,ピー.
スン,ジュン
オステルハウト,ロビン,イー.
ファーキャ,プリティ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genomatica Inc
Original Assignee
Genomatica Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genomatica Inc filed Critical Genomatica Inc
Publication of JP2014504508A publication Critical patent/JP2014504508A/ja
Publication of JP2014504508A5 publication Critical patent/JP2014504508A5/ja
Application granted granted Critical
Publication of JP5960729B2 publication Critical patent/JP5960729B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/026Unsaturated compounds, i.e. alkenes, alkynes or allenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01036Acetoacetyl-CoA reductase (1.1.1.36)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/01Oxidoreductases acting on the CH-CH group of donors (1.3) with NAD+ or NADP+ as acceptor (1.3.1)
    • C12Y103/01008Acyl-CoA dehydrogenase (NADP+) (1.3.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/08Oxidoreductases acting on the CH-CH group of donors (1.3) with flavin as acceptor (1.3.8)
    • C12Y103/08006Glutaryl-CoA dehydrogenase (1.3.8.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/99Oxidoreductases acting on the CH-CH group of donors (1.3) with other acceptors (1.3.99)
    • C12Y103/99032Glutaryl-CoA dehydrogenase (non-decarboxylating) (1.3.99.32)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01009Acetyl-CoA C-acetyltransferase (2.3.1.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/0107Glutaconyl-CoA decarboxylase (4.1.1.70)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/010553-Hydroxybutyryl-CoA dehydratase (4.2.1.55)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01124-Hydroxybutanoyl-CoA dehydratase (4.2.1.120)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y403/00Carbon-nitrogen lyases (4.3)
    • C12Y403/01Ammonia-lyases (4.3.1)
    • C12Y403/010143-Aminobutyryl-CoA ammonia-lyase (4.3.1.14)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/12Silica and alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/16Clays or other mineral silicates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/31Chromium, molybdenum or tungsten combined with bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/14Phosphorus; Compounds thereof
    • C07C2527/16Phosphorus; Compounds thereof containing oxygen
    • C07C2527/167Phosphates or other compounds comprising the anion (PnO3n+1)(n+2)-
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/14Phosphorus; Compounds thereof
    • C07C2527/16Phosphorus; Compounds thereof containing oxygen
    • C07C2527/167Phosphates or other compounds comprising the anion (PnO3n+1)(n+2)-
    • C07C2527/173Phosphoric acid or other acids with the formula Hn+2PnO3n+1
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、ブタジエン経路を有する非天然微生物を提供する。本発明はさらに、当該微生物を利用してブタジエンを生産する方法を提供する。

Description

発明の詳細な説明
〔関連出願〕
本出願は、2011年2月2日に出願された、米国仮出願第61/438,947号の優先権による利益を主張し、その全ての内容は、参照として本明細書に組み込まれる。
〔背景技術〕
本発明は、概して生合成プロセスに関する。より具体的には、ブタジエン生合成能を有する生物に関する。
毎年2.5×1010ポンドを超えるブタジエン(1,3‐ブタジエン,BD)が生産されており、(1)合成ゴムおよびABS樹脂といったポリマー、並びに、(2)ヘキサメチレンジアミンおよび1,4‐ブタンジオールといった化学物質の製造に供されている。
ナフサ、液化石油ガス、エタン、あるいは天然ガスなどの供給原料油を、エチレンおよび他のオレフィンに変換するための水蒸気分解プロセスの副産物として、ブタジエンは、典型的に生産される。代替供給原料および再生可能な供給原料の少なくとも一方からブタジエンの製造を可能にすれば、より持続可能な化学物質生産プロセスの追及における主要な進歩となるであろう。
ブタジエンを再生可能に生産することができる1つの方法には、1,4‐ブタンジオールまたは1,3‐ブタンジオールなどのジオールを生産するための糖類または他の供給原料の発酵が含まれる。分離され、生成された1,4‐ブタンジオールまたは1,3‐ブタンジオールなどのジオールが、金属から構成される触媒を含む第2の工程において脱水されることでブタジエンが生産される。
再生可能な供給原料からブタジエンを直接、発酵により生産することで、脱水の工程の必要がなくなり、ブタジエンガス(bp−4.4℃)は、発酵槽から継続的に放出され、容易に濃縮され、回収されるようになるであろう。
発酵による生産プロセスを発展させることにより、化石に依拠したブタジエンに対する必要性を排除し、石油化学により生産されるブタジエンと比較して、費用、エネルギー、および有害な廃棄物と排出物を実質的に削減することができる。
(1)糖蜜、サトウキビの汁、農業および木材の廃棄物などのバイオマス資源、および(2)合成ガスおよび二酸化炭素などのC1供給原料などの、安価で再生可能な供給原料から、ブタジエンを効率的に生産する微生物と方法とがここに記載されており、関連する優れた点も含めて記載されている。
〔要約〕
本発明は、ブタジエンを生産するために十分な量発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する非天然微生物を提供する。本発明はさらに、このような微生物を利用してブタジエンを生産する方法を提供する。すなわち、ブタジエン経路を有する非天然微生物を、ここに記載されるように、ブタジエンを生産するための条件下で、かつ十分な時間にわたって培養することによって、ブタジエンを生産する方法を提供する。
ある実施形態では、ここに開示する態様は、ブタジエンを生産するプロセスに関する。このプロセスは次の(a)および(b)を含む。(a)クロチルアルコールを生産する非天然微生物を十分な量の栄養および培地中で発酵培養する工程。(b)非天然微生物の培養により生産されたクロチルアルコールをブタジエンへ変換する工程。
〔図面の簡単な説明〕
図1は、イソプレノイドおよびテルペンの天然経路を示している。ここに示された基質を産物に変換する酵素は、(A)アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ、(B)ヒドロキシメチルグルタリル‐CoAシンターゼ、(C)3‐ヒドロキシ‐3‐メチルグルタリル‐CoAレダクターゼ(アルコール生成)、(D)メバロン酸キナーゼ、(E)ホスホメバロン酸キナーゼ、(F)ジホスホメバロン酸デカルボキシラーゼ、(G)イソペンテニル‐二リン酸イソメラーゼ、(H)イソプレンシンターゼを含んでいる。
図2は、アセチル‐CoA、グルタコニル‐CoA、グルタリル‐CoA、3‐アミノブチリル‐CoA、あるいは4‐ヒドロキシブチリル‐CoAから、クロチルアルコールを経由して、ブタジエンの生産を行う例示的な経路を示している。ここに示された基質を産物に変換する酵素は、(A)アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ、(B)アセトアセチル‐CoAレダクターゼ、(C)3‐ヒドロキシブチリル‐CoAデヒドラターゼ、(D)クロトニル‐CoAレダクターゼ(アルデヒド生成)、(E)クロトンアルデヒドレダクターゼ(アルコール生成)、(F)クロチルアルコールキナーゼ、(G)2‐ブテニル‐4‐リン酸キナーゼ、(H)ブタジエンシンターゼ、(I)クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、クロトニル‐CoAトランスフェラーゼ、(J)クロトン酸レダクターゼ、(K)クロトニル‐CoAレダクターゼ(アルコール生成)、(L)グルタコニル‐CoAデカルボキシラーゼ、(M)グルタリル‐CoAデヒドロゲナーゼ、(N)3‐アミノブチリル‐CoAデアミナーゼ、(O)4‐ヒドロキシブチリル‐CoAデヒドラターゼ、(P)クロチルアルコールジホスホキナーゼを含んでいる。ブタジエンへの化学的経路は脱水プロセスを利用する。
図3は、エリトロース‐4‐リン酸からブタジエンの生産を行う例示的な経路を示している。ここに示された基質を産物に変換する酵素は、(A)エリトロース‐4‐リン酸レダクターゼ、(B)エリトリトール‐4‐リン酸シチジリルトランスフェラーゼ、(C)4‐(シチジン5’‐ジホスホ)‐エリトリトールキナーゼ、(D)エリトリトール2,4‐シクロ二リン酸シンターゼ、(E)1‐ヒドロキシ‐2‐ブテニル4‐二リン酸シンターゼ、(F)1‐ヒドロキシ‐2‐ブテニル4‐二リン酸レダクターゼ、(G)ブテニル4‐二リン酸イソメラーゼ、(H)ブタジエンシンターゼ、(I)エリトロース‐4‐リン酸キナーゼ、(J)エリトロースレダクターゼ、(K)エリトリトールキナーゼを含んでいる。
図4は、マロニル‐CoAとアセチル‐CoAとからブタジエンの生産を行う例示的な経路を示している。ここに示された基質を産物に変換する酵素は、(A)マロニル‐CoA:アセチル‐CoAアシルトランスフェラーゼ、(B)3‐オキソグルタリル‐CoAレダクターゼ(ケトン還元)、(C)3‐ヒドロキシグルタリル‐CoAレダクターゼ(アルデヒド生成)、(D)3‐ヒドロキシ‐5‐オキソペンタン酸レダクターゼ、(E)3,5‐ジヒドロキシペンタン酸キナーゼ、(F)3H5PPキナーゼ、(G)3H5PDPデカルボキシラーゼ、(H)ブテニル4‐二リン酸イソメラーゼ、(I)ブタジエンシンターゼ、(J)3‐ヒドロキシグルタリル‐CoAレダクターゼ(アルコール生成)、(K)3‐オキソグルタリル‐CoAレダクターゼ(アルデヒド生成)、(L)3,5‐ジオキソペンタン酸レダクターゼ(ケトン還元)、(M)3,5‐ジオキソペンタン酸レダクターゼ(アルデヒド還元)、(N)5‐ヒドロキシ‐3‐オキソペンタン酸レダクターゼ、(O)3‐オキソ‐グルタリル‐CoAレダクターゼ(CoA還元およびアルコール生成)を含んでいる。化合物の略号は、3H5PP(3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸)、および3H5PDP(3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸)を含んでいる。
〔本発明の詳細な説明〕
本発明は、ブタジエンを生合成によって生産する能力を有する細胞および生物の設計と生成とに関する。本発明は、具体的には、ブタジエン経路酵素をコードしている1つあるいはそれ以上の核酸を導入することによって、ブタジエンを生産することができる微生物の設計に関する。
一態様において本発明は、ブタジエンの生合成による生産のための代謝設計を同定する、Escherichia coliの代謝のインシリコ化学量論モデルを利用する。本明細書に記載されている結果は、Escherichia coliおよびその他の細胞、あるいは生物において、ブタジエンの生合成を達成するように、代謝経路が設計され得かつ組換え的に操作され得ることを示している。例えば、操作された代謝の遺伝子型を有する系統を構築することによって、ブタジエンの生合成による生産を確立することができる。代謝を操作された細胞または生物は、また、ブタジエンの生合成をさらに増大させるために、理論的最大増殖に近づける条件を含む適応進化に供され得る。
ある態様において、設計された系統のブタジエン生合成特性は、遺伝的に安定化され、かつ継続的なバイオプロセスにおいて特に有用なものとなる。
分離系統設計戦略(Separate strain design strategy)は、異なる非天然の、または異種性の反応能力を、E.cоliまたは他のホスト生物に組み込むことで同定され、これにより、アセチル‐CoA、グルタコニル‐CoA、グルタリル‐CoA、3‐アミノブチリル‐CoA、4‐ヒドロキシブチリル−CoA、エリトロース‐4‐リン酸、またはマロニル‐CoAとアセチルCoAとからブタジエンを生産する代謝経路を導入する。インシリコ代謝設計は、これらの各基質または代謝中間体から、微生物内でブタジエンの生合成を実現すると確認された。
基盤コンピュータ構成を介して同定された系統を、ブタジエンまたはその他の中間体および/または下流産物の生合成による生産を実現する任意の予測される代謝変更を遺伝子的に操作することにより、実際の生産に用いることが可能である。さらにまた、その他の態様において、これらの化合物の生合成による生産を提示する系統は、産物の生合成をさらに増大するための適応進化にさらに供され得る。適応進化の後の産物生合成の生産量の水準もまた、システムのコンピュータ構成によって予測することも可能である。
グルコースからの理論的なブタジエン生産量の最大値は、1.09mоl/mоl(0.33g/g)である。
11C12=12C+18CO+30H
図2および図4に示した経路は、供したグルコース1mоlにつき、1.0mоlのブタジエンの生産を達成する。理論的な最大値にまで生産量を増加することは、もし細胞が、還元的な(あるいは逆向き)TCAサイクルまたはWood−Ljungdahl経路などの経路によって、COを固定することが可能であれば実現できる。図3に示された経路を有するように操作された生物もまた、ブタジエンの理論的な最大生産量の近くにまで迫ることができる。
本明細書で用いられている「非天然」という用語は、本発明の微生物(microbial organism)または微生物(microorganism)を参照して用いられている場合、その微生物が、参照種の野生型系統を含む参照種の天然の系統において正常には見出されない、少なくとも1つの遺伝的変更を有しているということを意味することが意図される。遺伝的変更としては、例えば、代謝性ポリペプチドをコードしている発現可能な核酸を導入する改変、他の核酸の付加、核酸の欠失、および/または微生物の遺伝材料の他の機能性崩壊が挙げられる。このような改変は、例えば、参照種に対して異種性のポリペプチド、同種のポリペプチド、または異種性のポリペプチドおよび同種のポリペプチドの両方についての、コーディング領域およびその機能性フラグメントを含む。さらなる改変としては、例えば、改変が遺伝子またはオペロンの発現を変更する非コーディング調節領域が挙げられる。例示的な代謝性ポリペプチドは、ブタジエン生合成経路における酵素またはタンパク質を含む。
代謝性改変は、天然に存在する状態から変更されている生化学的な反応をいう。したがって、非天然の微生物は、代謝性ポリペプチドまたはその機能的フラグメントをコードする核酸に対して遺伝的な改変を有し得る。例示的な代謝性改変は、本明細書に開示されている。
本明細書に用いられている、Cという分子式および54.09g/mоl(図2〜4参照)(IUPAC名 ブタ‐1,3‐ジエン)を有する「ブタジエン」という用語は、1,3‐ブタジエン、ビエチレン、エリトレン(erythrene)、ジビニル(divinyl)、ビニルエチレンが、本明細書全体を通して交換可能に使用される。ブタジエンは無色で、穏やかな芳香性またはガソリン様のにおいを有する非腐食性の液化ガスである。ブタジエンは低い発火点を有するので、爆発性と引火性との両方の性質を有する。
本明細書に用いられている「単離された」という用語は、微生物を参照して用いられる場合、参照微生物が天然に見出されるときの少なくとも1つの構成要素から実質的に離れた生物を意味することが意図される。上記の用語は、その天然の環境にて見出されるときのいくつかの構成要素または全ての構成要素から取り出された微生物を含む。上記の用語はまた、その微生物が非天然の環境にて見出されるときのいくつかの構成要素または全ての構成要素から取り出されている微生物を含む。したがって、単離された微生物は、天然にて見出される場合あるいは増殖しているとき、または非天然の環境にて保存されている場合あるいは生存しているとき、他の物質から部分的にまたは完全に分離されている。単離された微生物の特定の例は、部分的に精製された微生物、実質的に精製された微生物、および非天然の媒体中にて培養されている微生物を含む。
本明細書で用いられている「微生物(microbial)」、「微生物(microbial organism)」および「微生物(microorganism)」という用語は、古細菌、細菌または真核生物のドメイン内に含まれる微小細胞として存在する任意の生物を意味することが意図される。したがって、上記の用語は、原核生物細胞若しくは真核生物細胞、または微小サイズを有する原核生物若しくは真核生物を含むことが意図されており、酵母および真菌などの真核生物微生物と同様に、全ての種の細菌、古細菌および真正細菌を含む。また、上記の用語は、生化学的な生産のために培養され得る任意の種の細胞培養も含む。
本明細書で用いられている「CoA」または「補酵素A」という用語は、その存在が、活性酵素系を形成するための多くの酵素(アポ酵素)の活性に必要である有機性の補因子(cofactor)または補欠分子族(酵素の非タンパク質部位)の意味が意図される。補酵素Aは特定の縮合酵素において機能し、アセチル基転移または他のアシル基転移、脂肪酸の合成および酸化、ピルビン酸酸化、およびその他のアセチル化に作用する。
本明細書で用いられている「実質的嫌気性」という用語は、培養条件または増殖条件を参照して用いられている場合、酸素の量が液体媒体中での溶存酸素の飽和量の約10%未満であることを意味することが意図される。上記の用語はまた、酸素が約1%未満である雰囲気を用いて維持される液体媒体または固体媒体の密閉チャンバを含むことが意図される。
本明細書で用いられている「外因性」は、参照分子または参照活性が宿主微生物に導入されることを意味することが意図される。分子は、例えば、宿主染色体に融合させることによって、または、プラスミドなどの非染色体遺伝物質として、コーディング核酸を宿主遺伝物質へ導入されることによって、導入され得る。したがって、コーディング核酸の発現を参照して用いられる場合、この用語は、発現可能な形態にてそのコーディング核酸を微生物へ導入することをいう。生合成の活性を参照して用いられる場合、上記の用語は、宿主参照生物へ導入された活性をいう。その供給源は、例えば、宿主微生物への導入に続いて参照活性を発現する、同種または異種性のコーディング核酸であり得る。したがって、「内因性」という用語は、宿主中に存在する参照分子または参照活性をいう。同様に、上記の用語は、コーディング核酸の発現を参照して用いられる場合、微生物内に含まれるコーディング核酸の発現をいう。「異種性」という用語は、参照種以外の供給源に由来する分子または活性をいう一方、「同種」という用語は、宿主微生物に由来する分子または活性をいう。したがって、本発明のコーディング核酸の外因性の発現は、異種性のコーディング核酸または同種のコーディング核酸のどちらか一方または両方を利用し得る。
1つよりも多くの外因性核酸が微生物に含まれている場合、上述されているように、1つよりも多くの外因性核酸が、参照されたコーディング核酸または生合成の活性をいうということが理解される。さらに、本明細書中にて開示されているように、このような1つよりも多くの外因性核酸は宿主微生物に、別々の核酸分子上に、ポリシストロン性の核酸分子上に、または、これらの組合せに導入され得るということ、および、さらには1つよりも多くの外因性核酸としてみなされ得るということが理解される。例えば、本明細書中にて開示されているように、微生物は、所望の経路の酵素またはタンパク質をコードする2つまたはそれ以上の外因性核酸を発現するように操作され得る。所望の活性をコードする2つの外因性核酸が宿主微生物に導入される場合、この2つの外因性核酸が、例えば、単一のプラスミド上あるいは別々のプラスミド上に単一の核酸として導入され得ること、そして、単一の部位あるいは複数の部位にて宿主染色体に組み込まれ得ること、および、さらには2つの外因性核酸とみなされ得るということが理解される。同様に、2つよりも多くの外因性核酸が、所望の任意の組合せ、例えば、単一のプラスミド上あるいは別々のプラスミド上にて宿主生物へ導入され得ること、単一の部位または複数の部位にて宿主染色体に組み込まれ得ること、および、さらには2つまたはそれ以上の外因性核酸、例えば、3つの外因性核酸としてみなされ得るということが理解される。したがって、参照された外因性核酸または生合成の活性の数は、コーディング核酸の数または生合成の活性の数のことであり、宿主生物に導入された別々の核酸の数のことではない。
本発明の非天然の微生物は、安定的な遺伝的変更を含み得、これは、上記遺伝的変更の損失なしで5世代よりも長期にわたって培養することができる微生物をいう。大抵の場合、安定的な遺伝的変更は、10世代よりも長期にわたって持続する改変を含み、具体的には、安定的な改変が約25世代よりも長期間持続し、より具体的には、安定的な遺伝的改変が無制限を含めて、50世代よりも長期間存続する。
本明細書中にて例証されている代謝性改変を含む遺伝的変更が、E.coliなどの好適な宿主生物、および、上記遺伝的変更に対応する代謝性反応あるいは所望の代謝経路についての遺伝子などの所望の遺伝材料に好適な供給源生物を参照して記載されているということを、当業者は理解するであろう。しかしながら、広範な種々の生物の完全なゲノム配列解析、および、ゲノム分野の高い技術レベルを有していれば、当業者は、本質的に全ての他の生物に、本明細書中にて提供された教示およびガイダンスを容易に適用することができ得る。例えば、本明細書中にて例証されたE.coliの代謝性変更は、参照種以外の種からの同一または類似のコーディング核酸を取り込ませることによって容易に他の種に適用することができる。このような遺伝的変更としては、例えば、一般的には、種のホモログの遺伝的変更、特に、オルソログ、パラログまたは非オルソロガス遺伝子の置換が挙げられる。
オルソログは、垂直血統(vertical descent)によって関連する単数のあるいは複数の遺伝子であり、異なる生物にて実質的に同じまたは同一の機能を果たす。例えば、マウスのエポキシドヒドロラーゼ、およびヒトのエポキシドヒドロラーゼは、エポキシドの加水分解の生物学的機能についての考慮されたオルソログであり得る。遺伝子は、例えば、それらが同種であること、または共通祖先からの進化によって関連することを示すに十分な量の配列類似性を共有する場合、垂直血統によって関連する。遺伝子はまた、一次配列の類似性が特定可能でないという範囲にまで共通の祖先から進化したことを示すに十分な量の、必然的な配列類似性ではなく三次元構造を共有する場合、考慮されたオルソログであり得る。オルソログである遺伝子は、約25%〜100%のアミノ酸配列同一性の、配列類似性を有するタンパク質をコードすることができる。25%未満のアミノ酸類似性を共有するタンパク質をコードする遺伝子は、それらの三次元構造もまた類似性を示す場合、垂直血統によって生じたとみなすこともできる。組織プラスミノゲンアクティベータおよびエラスターゼを含むセリンプロテアーゼファミリーのメンバーの酵素は、共通の祖先から垂直血統によって生じたとみなすことができる。
オルソログとしては、例えば、進化を通じて、構造および全体的活性が枝分かれした遺伝子または当該遺伝子にコードされる遺伝子産物が挙げられる。例えば、ある種が2つの機能を示す遺伝子産物をコードし、このような機能が第2の種において別個の遺伝子に分離した場合、これらの3つの遺伝子およびこれらに対応する産物は、オルソログであるとみなされる。生化学的な産物の生成に関して、導入または破壊されるべき代謝活性を有するオルソログ遺伝子が、非天然の微生物の作成のために選択されるべきであるということを、当業者は理解するであろう。分離可能な活性を示すオルソログの例は、別個の活性が、2つあるいはそれ以上の種の間で、または、単一種の中で、別個の遺伝子産物に分離されている場合である。特定の例は、エラスターゼ蛋白質分解およびプラスミノーゲン蛋白質分解、すなわち2つのタイプのセリンプロテアーゼ活性、のプラスミノーゲン活性剤およびエラスターゼとしての別個の分子への分離である。第2の例は、マイコプラズマ5’‐3’エクソヌクレアーゼおよびDrosophila DNAポリメラーゼIII活性の分離である。第1の種からのDNAポリメラーゼは、第2の種からのエクソヌクレアーゼまたはポリメラーゼのどちらか一方または両方に対するオルソログとみなされ得、そしてその逆も同様である。対照的に、パラログは、例えば、複製、引き続く進化的な分岐によって関連するホモログであり、類似または共通の、しかし同一でない機能を有する。パラログは、例えば、同一の種または異なる種を起源としても、同一の種または異なる種に由来してもよい。例えば、ミクロソームエポキシドヒドロラーゼ(エポキシドヒドロラーゼI)、および可溶性エポキシドヒドロラーゼ(エポキシドヒドロラーゼII)は、別個の2つの酵素を示すので共通の祖先から共進化したパラログとみなされ得る。上記2つの酵素は、異なる反応を触媒し、同じ種において別個の機能を有する。パラログは、互いに顕著な配列類似性を有する同一の種からのタンパク質であり、このことは、パラログが同種であるか、あるいは共通の祖先からの共進化を通じて関連することを示唆する。パラログタンパク質ファミリーのグループとしては、HipAホモログ、ルシフェラーゼ遺伝子、ペプチダーゼ等が挙げられる。
非オルソロガス遺伝子置換は、異なる種における参照遺伝子機能を代替し得る、ある種からの非オルソロガス遺伝子である。代替としては、例えば、異なる種における参照機能と比較して、起源の種にて実質的に同じまたは類似の機能を行うことができるものが挙げられる。大抵、非オルソロガス遺伝子置換は、参照機能をコードする既知の遺伝子に構造的に関連する場合に識別可能であるが、構造的に関連しないが機能的に類似の遺伝子およびその対応する遺伝子産物もまた、いうまでもなく、本明細書中にて使用される場合の上記用語の意味の範囲内に含まれる。機能的類似性は、例えば、代替されるために探索される機能をコードする遺伝子と比較して、非オルソロガス遺伝子産物の活性部位または結合領域にて、少なくともいくつかの構造的類似性が必要とされる。したがって、非オルソロガス遺伝子としては、例えば、パラログまたは関連しない遺伝子が挙げられる。
したがって、ブタジエンの生合成能力を有する本発明に係る非天然の微生物を同定し、および構築するに際し、当業者は、代謝性改変の同定がオルソログの同定、および封入または不活性化を含み得るという、本明細書に提供された教示および手本を、特定の種に適用することによって理解するであろう。同様なまたは実質的に同様な代謝性反応を触媒する酵素をコードするパラログおよび/または非オルソロガス遺伝子置換が参照微生物中に存在する限り、当業者はまた、進化的に関連する遺伝子を利用することができる。
オルソログ、パラログ、および非オルソロガス遺伝子置換は、当業者に周知の方法によって決定され得る。例えば、2つのポリペプチドについての核酸配列またはアミノ酸配列を調べることによって、比較される配列の間での配列同一性および配列類似性が示される。このような類似性に基づいて、当業者は、その類似性が、これらのタンパク質が共通の祖先からの進化を通じて関係することを示すに十分高いかどうかを決定することができる。Align、BLAST、Clustal Wなどのような当業者に周知のアルゴリズムは、未処理の配列の類似性または同一性を比較および決定し、そして、重みまたはスコアが割り当てられ得る配列での、ギャップの存在および有意性をまた決定する。このようなアルゴリズムはまた、当業者に知られており、ヌクレオチド配列の類似性または同一性の決定のために同様に適用可能である。関連していることを決定するための十分な類似性に関するパラメータは、統計学的類似性、あるいは、ランダムポリペプチドにおける類似の一致を見出す見込み、および、決定された一致の有意性、を算出するための周知の方法に基づいてコンピュータを用いて計算される。2つまたはそれ以上の配列のコンピュータによる比較はまた、所望される場合、当業者によって視覚的に最適化され得る。関連する遺伝子産物またはタンパク質は、高い類似性、例えば25%〜100%の配列同一性、を有することが期待され得る。関連しないタンパク質は、十分なサイズのデータベースがスキャンされる場合に偶然起こることが期待される程度と本質的に同程度(約5%)、の同一性を有している。5%〜24%の間の配列は、比較される配列が関連していると結論付けるに十分な相同性を示しても示さなくてもよい。データセットのサイズを与える上記の一致の有意性を決定するためのさらなる統計学的分析は、これらの配列の関連性を決定するために実行され得る。
BLASTアルゴリズムを用いる2つまたはそれ以上の配列の関連性を決定するための典型的なパラメータは、例えば、以下で説明するようなものであり得る。簡潔には、アミノ酸配列アラインメントは、BLASTP version 2.0.8.(Jan-05-1999)、および以下のパラメータ(Matrix: 0 BLOSUM62; gap open: 11; gap extension: 1; x_dropoff: 50; expect: 10.0; wordsize: 3; filter: on)を用いて実行され得る。核酸配列アラインメントは、BLASTN version 2.0.6 (Sept-16-1998)、および以下のパラメータ(Match: 1; mismatch: -2; gap open: 5; gap extension: 2; x_dropoff: 50; expect: 10.0; wordsize: 11; filter: off)を用いて実行され得る。当業者は、比較のストリンジェンシーを増加させるかまたは減少させて、例えば、2つまたはそれ以上の配列の関連性を決定するために、どのような改変が上記パラメータに対してなされ得るのかを知るであろう。
ある態様において本発明は、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物を提供し、上記ブタジエン経路は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;クロトン酸レダクターゼ;クロトニル‐CoAレダクターゼ(アルコール生成);グルタコニル‐CoAデカルボキシラーゼ;グルタリル‐CoAデヒドロゲナーゼ;3‐アミノブチリル‐CoAデアミナーゼ;4‐ヒドロキシブチリル‐CoAデヒドラターゼ;またはクロチルアルコールジホスホキナーゼを含む(図2)。ある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;およびブタジエンシンターゼを含む(図2、ステップA〜H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む(図2、ステップA〜C、K、F、G、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;ブタジエンシンターゼ;クロトニル‐CoAレダクターゼ(アルコール生成);およびクロチルアルコールジホスホキナーゼを含む(図2、ステップA〜C、K、P、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む(図2、ステップA〜C、I、J、E、F、G、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;クロトン酸レダクターゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップA〜C、I、J、E、P、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエンシンターゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップA〜E、P、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、グルタコニル‐CoAデカルボキシラーゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;およびブタジエンシンターゼを含む(図2、ステップL、D〜H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、グルタコニル‐CoAデカルボキシラーゼ;クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む(図2、ステップL,K,F,G,H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、グルタコニル‐CoAデカルボキシラーゼ;ブタジエンシンターゼ;クロトニル‐CoAレダクターゼ(アルコール生成);およびクロチルアルコールジホスホキナーゼを含む(図2、ステップL、K、P、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、グルタコニル‐CoAデカルボキシラーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む(図2、ステップL、I、J、E、F、G、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、グルタコニル‐CoAデカルボキシラーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;クロトン酸レダクターゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップL、I、J、E、P、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエン;グルタコニル‐CoAデカルボキシラーゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップL、C、D、E、P、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、グルタリル‐CoAデヒドロゲナーゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;およびブタジエンシンターゼを含む(図2、ステップM、D〜H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、グルタリル‐CoAデヒドロゲナーゼ;クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む(図2、ステップM、K、F、G、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、グルタリル‐CoAデヒドロゲナーゼ;ブタジエンシンターゼ;クロトニル‐CoAレダクターゼ(アルコール生成);およびクロチルアルコールジホスホキナーゼを含む(図2、ステップM、K、P、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、グルタリル‐CoAデヒドロゲナーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む(図2、ステップM、I、J、E、F、G、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、グルタリル‐CoAデヒドロゲナーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;クロトン酸レダクターゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップM、I、J、E、P、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエンシンターゼ;グルタリル‐CoAデヒドロゲナーゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップM、C、D、E、P、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、3‐アミノブチリル‐CoAデアミナーゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐
リン酸キナーゼ;およびブタジエンシンターゼを含む(図2、ステップN、D〜H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、3‐アミノブチリル‐CoAデアミナーゼ;クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む(図2、ステップN、K、F、G、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、3‐アミノブチリル‐CoAデアミナーゼ;ブタジエンシンターゼ;クロトニル‐CoAレダクターゼ(アルコール生成);およびクロチルアルコールジホスホキナーゼを含む(図2、ステップN、K、P、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、3‐アミノブチリル‐CoAデアミナーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む(図2、ステップN、I、J、E、F、G、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、3‐アミノブチリル‐CoAデアミナーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;クロトン酸レダクターゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップN、I、J、E、P、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエンシンターゼ;3‐アミノブチリル‐CoAデアミナーゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップN、C、D、E、P、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、4‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;およびブタジエンシンターゼを含む(図2、ステップO、D〜H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、4‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む(図2、ステップO、K、F、G、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、4‐ヒドロキシブチリル‐CoAデヒドラターゼ;ブタジエンシンターゼ;クロトニル‐CoAレダクターゼ(アルコール生成);およびクロチルアルコールジホスホキナーゼを含む(図2、ステップO、K、P、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、4‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む(図2、ステップO、I、J、E、F、G、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、4‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;クロトン酸レダクターゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップO、I、J、E、P、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエンシンターゼ;4‐ヒドロキシブチリル‐CoAデヒドラターゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップL、C、D、E、P、H)。
ある態様において本発明は、クロチルアルコール経路を有する微生物を含む非天然微生物を提供する。上記クロチルアルコール経路は、クロチルアルコールを生産するために十分な量にて発現するクロチルアルコール経路酵素をコードしている、少なくとも1つの外因性の核酸を含む。上記クロチルアルコール経路は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;クロトン酸レダクターゼ;クロトニル‐CoAレダクターゼ(アルコール生成);グルタコニル‐CoAデカルボキシラーゼ:グルタリル‐CoAデヒドロゲナーゼ;3‐アミノブチリル‐CoAデアミナーゼ;または4‐ヒドロキシブチリル‐CoAデヒドラターゼを含む。
ある態様において上記微生物は、2つの外因性の核酸を含み、上記2つの外因性の核酸は、それぞれクロチルアルコール経路酵素をコードしている。また別の態様において上記微生物は、3つの外因性の核酸を含み、上記3つの外因性の核酸は、それぞれクロチルアルコール経路酵素をコードしている。さらに別の態様において上記微生物は、4つの外因性の核酸を含み、上記4つの外因性の核酸は、それぞれクロチルアルコール経路酵素をコードしている。
ある態様において上記クロチルアルコール経路は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む。またある態様において上記クロチルアルコール経路は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む。またある態様において上記クロチルアルコール経路は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む。またある態様において上記クロチルアルコール経路は、グルタコニル‐CoAデカルボキシラーゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む。またある態様において上記クロチルアルコール経路は、グルタコニル‐CoAデカルボキシラーゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む。またある態様において上記クロチルアルコール経路は、グルタコニル‐CoAデカルボキシラーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む。またある態様において上記クロチルアルコール経路は、グルタリル‐CoAデヒドロゲナーゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む。またある態様において上記クロチルアルコール経路は、グルタリル‐CoAデヒドロゲナーゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む。またある態様において上記クロチルアルコール経路は、グルタリル‐CoAデヒドロゲナーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む。またある態様において上記クロチルアルコール経路は、3‐アミノブチリル‐CoAデアミナーゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む。またある態様において上記クロチルアルコール経路は、3‐アミノブチリル‐CoAデアミナーゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む。またある態様において上記クロチルアルコール経路は、3‐アミノブチリル‐CoAデアミナーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む。またある態様において上記クロチルアルコール経路は、4‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む。またある態様において上記クロチルアルコール経路は、4‐ヒドロキシブチリル‐CoAデヒドラターゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む。またある態様において上記クロチルアルコール経路は、4‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む。ある態様において上記クロチルアルコール経路を有する上記非天然微生物は、少なくとも1つの外因性の核酸を含み、上記少なくとも1つの外因性の核酸は異種性の核酸である。またある態様において上記クロチルアルコール経路を有する上記非天然微生物は、実質的に嫌気性である培養媒体中に存在する。
ある態様において本発明は、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物を提供し、上記ブタジエン経路は、エリトロース‐4‐リン酸レダクターゼ;エリトリトール‐4‐リン酸シチジリルトランスフェラーゼ;4‐(シチジン5’‐ジホスホ)‐エリトリトールキナーゼ;エリトリトール2,4‐シクロ二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸レダクターゼ;ブテニル4‐二リン酸イソメラーゼ;ブタジエンシンターゼ;エリトロース‐4‐リン酸キナーゼ;エリトロースレダクターゼ;またはエリトリトールキナーゼを含む(図3)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、エリトロース‐4‐リン酸レダクターゼ;エリトリトール‐4‐リン酸シチジリルトランスフェラーゼ;4‐(シチジン5’‐ジホスホ)‐エリトリトールキナーゼ;エリトリトール2,4‐シクロ二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸レダクターゼ;およびブタジエンシンターゼを含む(図3、ステップA〜FおよびH)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、エリトロース‐4‐リン酸レダクターゼ;エリトリトール‐4‐リン酸シチジリルトランスフェラーゼ;4‐(シチジン5’‐ジホスホ)‐エリトリトールキナーゼ;エリトリトール2,4‐シクロ二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸レダクターゼ;ブテニル4‐二リン酸イソメラーゼ;およびブタジエンシンターゼを含む(図3、ステップA〜H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、エリトリトール‐4‐リン酸シチジリルトランスフェラーゼ;4‐(シチジン5’‐ジホスホ)‐エリトリトールキナーゼ;エリトリトール2,4‐シクロ二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸レダクターゼ;ブタジエンシンターゼ;エリトロース‐4‐リン酸キナーゼ;エリトロースレダクターゼ;およびエリトリトールキナーゼを含む(図3、ステップI、J、K、B〜F、H)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、エリトリトール‐4‐リン酸シチジリルトランスフェラーゼ;4‐(シチジン5’‐ジホスホ)‐エリトリトールキナーゼ;エリトリトール2,4‐シクロ二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸レダクターゼ;ブテニル4‐二リン酸イソメラーゼ;ブタジエンシンターゼ;エリトロース‐4‐リン酸キナーゼ;エリトロースレダクターゼ;およびエリトリトールキナーゼを含む(図3、ステップI、J、K、B〜H)。
ある態様において本発明は、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物を提供し、上記ブタジエン経路は、マロニル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;3‐オキソグルタリル‐CoAレダクターゼ(ケトン還元);3‐ヒドロキシグルタリル‐CoAレダクターゼ(アルデヒド生成);3‐ヒドロキシ‐5‐オキソペンタン酸レダクターゼ;3,5‐ジヒドロキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸デカルボキシラーゼ;ブテニル4‐二リン酸イソメラーゼ;ブタジエンシンターゼ;3‐ヒドロキシグルタリル‐CoAレダクターゼ(アルコール生成);3‐オキソグルタリル‐CoAレダクターゼ(アルデヒド生成);3,5‐ジオキソペンタン酸レダクターゼ(ケトン還元);3,5‐ジオキソペンタン酸レダクターゼ(アルデヒド還元);5‐ヒドロキシ‐3‐オキソペンタン酸レダクターゼ;または3‐オキソ‐グルタリル‐CoAレダクターゼ(CoA還元およびアルコール生成)を含む(図4)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、マロニル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;3‐オキソグルタリル‐CoAレダクターゼ(ケトン還元);3‐ヒドロキシグルタリル‐CoAレダクターゼ(アルデヒド生成);3‐ヒドロキシ‐5‐オキソペンタン酸レダクターゼ;3,5‐ジヒドロキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸デカルボキシラーゼ;ブテニル4‐二リン酸イソメラーゼ;およびブタジエンシンターゼを含む(図4、ステップA〜I)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、マロニル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;3,5‐ジヒドロキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸デカルボキシラーゼ;ブテニル4‐二リン酸イソメラーゼ;ブタジエンシンターゼ;3‐オキソグルタリル‐CoAレダクターゼ(アルデヒド生成);3,5‐ジオキソペンタン酸レダクターゼ(アルデヒド還元);および5‐ヒドロキシ‐3‐オキソペンタン酸レダクターゼを含む(図4、ステップA、K、M、N、E、F、G、H、I)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、マロニル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;3‐ヒドロキシ‐5‐オキソペンタン酸レダクターゼ;3,5‐ジヒドロキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸デカルボキシラーゼ;ブテニル4‐二リン酸イソメラーゼ;ブタジエンシンターゼ;3‐オキソグルタリル‐CoAレダクターゼ(アルデヒド生成);および3,5‐ジオキソペンタン酸レダクターゼ(ケトン還元)を含む(図4、ステップA、K、L、D、E、F、G、H、I)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、マロニル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;3,5‐ジヒドロキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸デカルボキシラーゼ;ブテニル4‐二リン酸イソメラーゼ;ブタジエンシンターゼ;5‐ヒドロキシ‐3‐オキソペンタン酸レダクターゼ;および3‐オキソ‐グルタリル‐CoAレダクターゼ(CoA還元およびアルコール生成)を含む(図4、ステップA、O、N、E、F、G、H、I)。またある実施形態では、ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路を有する微生物を含む非天然微生物は、マロニル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;3‐オキソグルタリル‐CoAレダクターゼ(ケトン還元);3,5‐ジヒドロキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸デカルボキシラーゼ;ブテニル4‐二リン酸イソメラーゼ;ブタジエンシンターゼ;および3‐ヒドロキシグルタリル‐CoAレダクターゼ(アルコール生成)を含む(図4、ステップA、B、J、E、F、G、H、I)。
さらに付加的な態様において本発明は、ブタジエン経路を有する非天然微生物を提供する。そして上記非天然の微生物は、基質を産物に変換する酵素またはタンパク質をコードする少なくとも1つの外因性の核酸を含む。当該基質と産物とは、アセチル‐CoAとアセトアセチル‐CoA、アセトアセチル‐CoAと3‐ヒドロキシブチリル‐CoA、3‐ヒドロキシブチリル‐CoAとクロトニル‐CoA、クロトニル‐CoAとクロトンアルデヒド;クロトンアルデヒドとクロチルアルコール、クロチルアルコールと2‐ブテニル‐リン酸、2‐ブテニル‐リン酸と2‐ブテニル‐4‐二リン酸、2‐ブテニル‐4‐二リン酸とブタジエン;エリトロース‐4‐リン酸とエリトリトール‐4‐リン酸、エリトリトール‐4‐リン酸と4‐(シチジン5’‐ジホスホ)‐エリトリトール、4‐(シチジン5’‐ジホスホ)‐エリトリトールと2‐ホスホ‐4‐(シチジン5’‐ジホスホ)‐エリトリトール、エリトリトール‐2,4‐シクロ二リン酸、エリトリトール‐2,4‐シクロ二リン酸と1‐ヒドロキシ‐2‐ブテニル4‐二リン酸、1‐ヒドロキシ‐2‐ブテニル4‐二リン酸とブテニル4‐二リン酸、ブテニル4‐二リン酸と2‐ブテニル4‐二リン酸、1‐ヒドロキシ‐2‐ブテニル4‐二リン酸と2‐ブテニル4‐二リン酸、2‐ブテニル4‐二リン酸とブタジエン、マロニル‐CoAおよびアセチル‐CoAと3‐オキソグルタリル‐CoA、3‐オキソグルタリル‐CoAと3‐ヒドロキシグルタリル‐CoAと3‐ヒドロキシ‐5‐オキソペンタン酸、3‐ヒドロキシ‐5‐オキソペンタン酸と3,5‐ジヒドロキシペンタン酸、3,5‐ジヒドロキシペンタン酸と3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸、3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸と3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸、3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸とブテニル4‐二リン酸、グルタコニル‐CoAとクロトニル‐CoA、グルタリル‐CoAとクロトニル‐CoA、3‐アミノブチリル‐CoAとクロトニル‐CoA、4‐ヒドロキシブチリル‐CoAとクロトニル‐CoA、クロトニル‐CoAとクロトン酸、クロトン酸とクロトンアルデヒド、クロトニル‐CoAとクロチルアルコール、クロチルアルコールと2‐ブテニル‐4‐二リン酸、エリトロース‐4‐リン酸とエリトロース、エリトロースとエリトリトール、エリトリトールとエリトリトール‐4‐リン酸、3‐オキソグルタリル‐CoAと3,5‐ジオキソペンタン酸、3,5‐ジオキソペンタン酸と5‐ヒドロキシ‐3‐オキソペンタン酸、5‐ヒドロキシ‐3‐オキソペンタン酸と3,5‐ジヒドロキシペンタン酸、3‐オキソグルタリル‐CoAと5‐ヒドロキシ‐3‐オキソペンタン酸、3,5‐ジオキソシペンタン酸と3‐ヒドロキシ‐5‐オキソペンタン酸、および3‐ヒドロキシグルタリル‐CoAと3,5‐ジヒドロキシペンタン酸、からなる群より選択される。これらは単なる例示であり、所望の産物を生産するために適用可能な任意の基質‐産物の対が本明細書において開示されているに過ぎないことを、当業者は理解するであろう。そして、適合したどの活性が当該基質を当該産物に変換するために利用できるかについて、本明細書に指導に基づいて当業者によって容易に決定され得る、ということを当業者は理解するであろう。従って、本発明は、ブタジエン経路を有する非天然微生物を提供する。そして上記非天然の微生物は、図2〜4に示すようなブタジエン経路の基質を産物に変換する酵素またはタンパク質をコードする少なくとも1つの外因性の核酸を含む。
ブタジエン経路を有する微生物として本明細書に記載されているが、ブタジエン経路の中間体を十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含む非天然微生物を、本発明は付加的に提供することが理解される。例えば、本明細書に開示するように、ブタジエン経路は図2〜4において例示される。従って、本発明は、ブタジエンを生産するブタジエン経路を有する微生物に加えて、ブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含む非天然微生物を提供する。そして、当該微生物は、例えば、アセトアセチル‐CoA、3‐ヒドロキシブチリル‐CoA、クロトニル‐CoA、クロトンアルデヒド、クロチルアルコール、2‐べテニル‐リン酸、2‐ブテニル‐4‐二リン酸、エリトリトール‐4‐リン酸、4‐(シチジン5’‐ジホスホ)‐エリトリトール、2‐ホスホ‐4‐(シチジン5’‐ジホスホ)‐エリトリトール、エリトリトール‐2,4‐シクロ二リン酸、1‐ヒドロキシ‐2‐ブテニル4‐二リン酸、ブテニル4‐二リン酸、2‐ブテニル4‐二リン酸、3‐オキソグルタリル‐CoA、3‐ヒドロキシグルタリル‐CoA、3‐ヒドロキシ‐5‐オキソペンタン酸、3,5‐ジヒドロキシペンタン酸、3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸、3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸、クロトン酸、エリトロース、エリトリトール、3,5‐ジオキソペンタン酸、または5‐ヒドロキシペンタン酸などブタジエン経路の中間体を生産する。
実施例中に記載されたような、および図2〜4に示された経路を含め図中に例示されたような、本明細書に開示された任意の経路は、要望に応じて、任意の経路の中間体または産物を生産する非天然微生物を作成するために利用され得るということが理解される。本明細書に開示されているように、中間体を生産するこのような微生物は、所望の産物を生産するために、下流経路酵素を発現している他の微生物と組み合わせて利用され得る。しかしながら、ブタジエン経路の中間体を生産する非天然微生物は、中間体を所望の産物として生産するために利用され得ることが理解される。
ある態様においてブタジエンへの経路は、クロチルアルコールの生合成による生産と、それに続くブタジエンへの化学的な脱水とによって達成され得る。ある態様において本発明は、ブタジエンを生産するためのプロセスを提供する。上記ブタジエンを生産するためのプロセスは、(a)クロチルアルコールを生産する非天然微生物を十分な量の栄養および培地中で発酵培養する工程;および(b)上記非天然微生物の培養により生産されたクロチルアルコールをブタジエンへ変換する工程、を含む。
アルコールの脱水は公知技術であり、触媒使用および触媒不使用の双方について、様々な熱プロセスを包含することができる。ある態様において触媒を使用する熱的脱水は、酸化金属触媒またはシリカ(silica)を用いて行われる。ある態様において、上記プロセスの(b)は、触媒存在下における化学的脱水によって行われる。例えば、クロチルアルコールはモリブデン酸ビスマス上で脱水され得、1,3‐ブタジエンを産生することが示唆されている(Adams, C.R., J. Catal. 10:355‐361 (1968))。
脱水は、アルコール基の活性化、およびそれに続く、E1脱離またはE2脱離などの標準的な脱離機構による脱離を介して達成され得る。活性化は、アルコール基をヨウ素、塩素または臭素などのハロゲンへ転化することを介して達成され得る。また、活性化は、アルコール基を適した脱離基へと転化する、スルホニル基、リン酸基、またはその他の官能基を介して成し遂げられ得る。ある態様において活性化基は、トシラート(tosylate)、メシラート(mesylate)、ノシラート(nosylate)、ブロシラート(brosylate)、およびトリフラート(triflate)から選択された硫酸基、硫酸エステル基である。ある態様において脱離基は、リン酸基またはリン酸エステル基である。このようなある態様において、脱水剤は酸化リン(V)(phosphorous pentoxide)である。
ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を有する微生物を含む非天然微生物を利用する。上記クロチルアルコール経路は、クロチルアルコールを生産するために十分な量にて発現するクロチルアルコール経路酵素をコードしている、少なくとも1つの外因性の核酸を含む。上記クロチルアルコール経路は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;クロトン酸レダクターゼ;クロトニル‐CoAレダクターゼ(アルコール生成);グルタコニル‐CoAデカルボキシラーゼ:グルタリル‐CoAデヒドロゲナーゼ;3‐アミノブチリル‐CoAデアミナーゼ;または4‐ヒドロキシブチリル‐CoAデヒドラターゼを含む。
ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、非天然微生物を利用する。上記非天然微生物は、2つの外因性の核酸を含み、上記2つの外因性の核酸は、それぞれクロチルアルコール経路酵素をコードしている。ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、非天然微生物を利用する。上記非天然微生物は、3つの外因性の核酸を含み、上記3つの外因性の核酸は、それぞれクロチルアルコール経路酵素をコードしている。ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、非天然微生物を利用する。上記非天然微生物は、4つの外因性の核酸を含み、上記4つの外因性の核酸は、それぞれクロチルアルコール経路酵素をコードしている。
ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成):およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む。ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む。ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む。
ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、グルタコニル‐CoAデカルボキシラーゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む。ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、グルタコニル‐CoAデカルボキシラーゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む。ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、グルタコニル‐CoAデカルボキシラーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む。ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);およびグルタコニル‐CoAデカルボキシラーゼを含む。
ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、グルタリル‐CoAデヒドロゲナーゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む。ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、グルタリル‐CoAデヒドロゲナーゼおよびクロトニル‐CoAレダクターゼ(アルコール生成)を含む。ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、グルタリル‐CoAデヒドロゲナーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む。ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);グルタリル‐CoAデヒドロゲナーゼを含む。
ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、3‐アミノブチリル‐CoAデアミナーゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む。ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、3‐アミノブチリル‐CoAデアミナーゼおよびクロトニル‐CoAレダクターゼ(アルコール生成)を含む。ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、3‐アミノブチリル‐CoAデアミナーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む。ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);および3‐アミノブチリル‐CoAデアミナーゼを含む。
ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、4‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む。ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、4‐ヒドロキシブチリル‐CoAデヒドラターゼおよびクロトニル‐CoAレダクターゼ(アルコール生成)を含む。ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、4‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む。ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記クロチルアルコール経路は、3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);4‐ヒドロキシブチリル‐CoAデヒドラターゼを含む。
ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む微生物を利用する。上記微生物は、少なくとも1つの外因性の核酸を含み、上記少なくとも1つの外因性の核酸は異種性の核酸である。ある態様においてクロチルアルコールの生物的生産に依存する本発明のプロセスは、クロチルアルコール経路を含む非天然微生物を利用する。上記非天然微生物は、実質的に嫌気性である培養媒体中に存在する。
本明細書において提供される教示およびガイダンスによれば、当業者は、ブタジエン経路における他の生合成上の中間体もまた、1,3‐ブタジエンへの化学酵素的な経路の標的となり得ることを理解するであろう。例えば、シリカ(silica)触媒によって、エタノール存在下において、クロトンアルデヒドは1,3‐ブタジエンへと変換されることが示唆されている(Toussaint et al., Ind. Eng. Chem., 39(2):120‐125, (1947))。ある態様において、1,3‐ブタジエンを生産するためのプロセスは、(a)クロトンアルデヒドを生産する非天然微生物を十分な量の栄養および培地中で発酵培養する工程;および(b)上記非天然微生物の培養により生産されたクロトンアルデヒドをブタジエンへ変換する工程、を含む。本発明の、このようなある化学酵素的なプロセスにおいてクロトンアルデヒドおよびエタノールはいずれも、1つの非天然微生物からの、または2つの独立した微生物からの発酵産物として供給され得る。上記2つの発酵産物は、上述のようにシリカ触媒を用いて1,3‐ブタジエンへと変換され得る。
本発明は、代謝反応、反応物または産物についての一般的な文献を照会することにより、または(1)参照される代謝反応、反応物または産物と関連している、あるいは参照される代謝反応、反応物または産物を触媒する酵素、あるいは(2)参照される代謝反応、反応物または産物と関連しているタンパク質、をコードしている少なくとも1つの核酸あるいは遺伝子について専門的な文献を照会することにより記載されている。本明細書中で特に言及しない限り、当業者は反応について参照することは反応物および反応産物について参照することでもあるということを理解するであろう。同様に、本明細書中で特に言及しない限り、反応物あるいは産物について参照することは、反応について参照することでもあること、およびこれらの代謝を構成するもののいずれかについて参照することは、(1)参照される反応、反応物または産物を触媒する酵素、および(2)参照される反応、反応物または産物を含むタンパク質、をコードしている1つあるいは複数の遺伝子について参照することでもある。さらに、代謝生化学、酵素学および遺伝学の周知の分野を考慮すれば、本明細書で参照することは、対応するコードされている酵素および当該酵素が触媒する反応、または、反応物および反応産物と同様に反応にも関連しているタンパク質、について参照することでもある。
本明細書で開示しているように、中間体クロタネート(3,5‐ジオキソペンタン酸、5‐ヒドロキシ‐3‐オキソペンタン酸、3‐ヒドロキシ‐5‐オキソペンタン酸、3‐オキソグルタリル‐CoAおよび3‐ヒドロキシグルタリル‐CoA、およびその他の中間体)はカルボン酸であり、完全プロトン化、部分的プロトン化、および完全に脱プロトン化した形態を含むさまざまなイオン化形態として存在し得る。従って、特に、化合物が存在するpHに依存することが知られているため、末尾に付加された「‐ate」あるいは酸(acid)の形態は、任意の脱プロトン化した形態と遊離酸の形態との両方を記載するために交換可能に適用され得る。カルボン酸の産物あるいは中間体は、O‐カルボン酸およびS‐カルボン酸エステルなどのように、カルボン酸の産物あるは中間体のエステル形態を含むことが理解される。O‐およびS‐カルボン酸は、C1からC6の低族アルキルであって、分岐鎖のあるいは直鎖のカルボン酸を含み得る。メチル、エチル、n‐プロピル、i‐プロピル、sec‐ブチルおよびtert‐ブチル、ペンチル、ヘキシルなどのO‐およびS‐カルボン酸などのO‐およびS‐カルボン酸のうちいくつかは、例えば、プロペニル、ブテニル、ペンチル、およびへキセニルなどのO‐およびS‐カルボン酸などを提供する不飽和をさらに有し得、これに限定されない。O‐カルボン酸は生合成経路の産物であり得る。例えば、生合成経路を経由して生産されるO‐カルボン酸としては、メチルクロタネート;メチル‐3,5‐ジオキソペンタン酸;メチル‐5‐ヒドロキシ‐3‐オキソペンタン酸;メチル‐3‐ヒドロキシ‐5‐オキソペンタン酸;3‐オキソグルタリル‐CoA,メチルエステル;3‐ヒドロキシグルタリル‐CoA,メチルエステル;エチルクロタネート;エチル‐3,5‐ジオキソペンタン酸;エチル‐5‐ヒドロキシ‐3‐キソペンタン酸;エチル‐3‐ヒドロキシ‐5‐オキソペンタン酸;3‐オキソグルタリル‐CoA,エチルエステル;3‐ヒドロキシグルタリル‐CoA,エチルエステル;n‐プロピルクロタネート;n‐プロピル‐3,5‐ジオキソペンタン酸;n‐プロピル‐5‐ヒドロキシ‐3‐オキソペンタン酸;n‐プロピル‐3‐ヒドロキシ‐5‐オキソペンタン酸;3‐オキソグルタリル‐CoA,n‐プロピルエステル;および3‐ヒドロキシグルタリル‐CoA,n‐プロピルエステルなどが挙げられ、これに限定されない。その他の生化学的に生産されるO‐カルボン酸は、中鎖から長鎖の、すなわちC7からC22の、O‐カルボン酸を含み得、例えば、へプチル、オクチル、ノニル、デシル、ウンデシル、ラウリル、トリデシル、ミリスチル、ペンタデシル、セチル、パルミトリル、ヘプタデシル、ステアリル、ノナデシル、アラキジル、ヘネイコシル(heneicosyl)、およびベヘニルアルコールなどの脂肪アルコールから生成されるO‐カルボン酸エステルが挙げられる。そして、そのいずれもが任意の分岐および/または不飽和を有し得る。O‐カルボン酸エステルは、遊離カルボン酸産物のエステル化、またはO‐あるいはS‐カルボン酸のエステル転移などの生化学的あるいは化学的な過程を経由しても生産され得る。S‐カルボン酸は、CoAのS‐エステル、システイニル‐S‐エステル、アルキルチオエステル、および、さまざまなアリールおよびヘテロアリールチオエステルなどが例として挙げられる。
本発明の非天然微生物は、1つ以上のブタジエンの生合成経路に関与している、1つ以上の酵素またはタンパク質をコードしている発現可能な核酸の導入によって生産され得る。生合成のために選ばれる宿主微生物に依存して、いくつかの、あるいは全ての特定のブタジエン生合成経路についての核酸が発現され得る。例えば、選択された宿主が、所望の生合成経路についての1つ以上の酵素またはタンパク質を欠失している場合、欠失した酵素またはタンパク質についての発現可能な核酸が、続けて起こる外因性発現のためにその宿主へ導入される。あるいは、選択された宿主が経路の遺伝子のいくつかの外因性の発現を示すが、他を欠失している場合、コーディング核酸は欠失した酵素またはタンパク質に代わって、ブタジエン生合成を達成するために必要とされる。従って、本発明の非天然微生物は、所望の生合成経路を得るために外因性の酵素の活性あるいはタンパク質の活性を導入することで作成され得る。あるいは、所望の生合成経路はブタジエンなどの所望の産物を、1つ以上の内因性の酵素あるいはタンパク質と共に、1つ以上の外因性酵素の活性あるいはタンパク質の活性を導入することによって、獲得され得る。
宿主微生物は、例えば、細菌、酵母、真菌、または発酵過程に適用可能な様々な他の微生物のいずれかから選択され得、これらにおいて非天然微生物は作成され得る。例示的な細菌としては、以下より選択される種が挙げられる:Escherichia coli、Klebsiella oxytoca、Anaerobiospirillum succiniciproducens、Actinobacillus succinogenes、Mannheimia succiniciproducens、Rhizobium etli、Bacillus subtilis、Corynebacterium glutamicum、Gluconobacter oxydans、Zymomonas mobilis、Lactococcus lactis、Lactobacillus plantarum、Streptomyces coelicolor、Clostridium acetobutylicum、Pseudomonas fluorescens、およびPseudomonas putida。例示的な酵母または真菌としては、以下より選択される種が挙げられる:Saccharomyces cerevisiae、Schizosaccharomyces pombe、Kluyveromyces lactis、Kluyveromyces marxianus、Aspergillus terreus、Aspergillus niger、Pichia pastoris、Rhizopus arrhizus、Rhizobus oryzae、Yarrowia lipolyticaなど。E.coliは、よく特徴付けられた微生物であり遺伝子操作に適しているため、とりわけ便利な宿主生物である。他の特に便利な宿主生物としては、Saccharomyces cerevisiaeなどの酵母が挙げられる。所望の産物を生産するために代謝の改変および/または遺伝子の改変を導入するために、任意の適した宿主微生物が利用できることが理解される。
選択された宿主微生物のブタジエン生合成経路構成成分に依存して、本発明の非天然微生物は、少なくとも1つの外因性に発現したブタジエン経路をコードしている核酸、および1つ以上のブタジエン生合成経路についての全てのコーディング核酸に至るまでを含んでいる。例えば、ブタジエン生合成は、対応するコーディング核酸の外因性の発現を介して、経路酵素あるいは経路タンパク質が欠失した宿主において確立され得る。ブタジエン経路の全ての酵素または全てのタンパク質を欠失している宿主において、当該経路に含まれる全ての酵素または当該経路に含まれる全てのタンパク質の外因性の発現が含まれ得る。宿主が経路酵素あるいはタンパク質のうち少なくとも1つを有している場合においても、当該経路の全ての酵素あるいは当該経路の全てのタンパク質が発現され得ることが理解される。例えば、ブタジエンの生産のための経路における全ての酵素または全てのタンパク質の外因性の発現が含まれ得る。すなわち、例えば、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ、アセトアセチル‐CoAレダクターゼ、3‐ヒドロキシブチリル‐CoAデヒドラターゼ、クロトニル‐CoAレダクターゼ(アルデヒド生成)、クロトンアルデヒドレダクターゼ(アルコール生成)、クロチルアルコールキナーゼ、2‐ブテニル‐4‐リン酸キナーゼ、およびブタジエンシンターゼなど(図2、ステップA〜H)である。
本明細書において提供される教示およびガイダンスによって、当業者は、発現可能な形態で導入するためのコーディング核酸の数は、少なくとも、選択された宿主微生物のブタジエン経路欠失と類似するということを理解するであろう。従って、本発明の非天然微生物は、1個、2個、3個、4個、5個、6個、7個、8個、9個、または10個の、本明細書で開示されるブタジエン生合成経路を構成する酵素またはタンパク質をコードしている全ての核酸に至るまでを有し得る。ある態様において、非天然微生物は、ブタジエン生合成を促進するかあるいは最適化する、または宿主微生物に他の有用な機能を与える、他の遺伝的改変もまた含み得る。このような他の機能としては、例えば、アセチル‐CoA、グルタコニル‐CoA、グルタリル‐CoA、3‐アミノブチリル‐CoA、4‐ヒドロキシブチリル‐CoA、エリトロース‐4‐リン酸、またはマロニル‐CoAなどのブタジエン経路前駆体の1つ以上の合成の増加することが挙げられる。
大抵の場合、宿主微生物は、ブタジエン経路の前駆体を、天然に生産される分子または操作された産物として生産するように選択される。これらは、所望の前駆体のde novo生産、あるいは、宿主微生物によって天然に生産される前駆体の増加した生産のいずれかを提供する。例えば、アセチル‐CoA、グルタコニル‐CoA、グルタリル‐CoA、3‐アミノブチリル‐CoA、4‐ヒドロキシブチリル‐CoA、エリトロース‐4‐リン酸、またはマロニル‐CoAは、E.coliのような宿主微生物にて天然に生産される。宿主微生物は、本明細書中に開示されるような前駆体の生産を増加するように操作され得る。さらに、所望の前駆体を産生するように操作されている微生物は、宿主生物として使用され得ると共に、ブタジエン経路の酵素またはタンパク質を発現するようにさらに操作され得る。
ある態様において、本発明の非天然微生物は、ブタジエンを合成する酵素的能力を含む宿主から作成される。この特定の態様において、ブタジエン経路産物の合成あるいは蓄積を増加させて、例えば、ブタジエン生産に向けてブタジエン経路反応を駆動するための有用であり得る。増加した合成または蓄積は、例えば、上記ブタジエン経路の酵素またはタンパク質の1つ以上をコードしている核酸の過剰発現によって達成され得る。ブタジエン経路の1つまたは複数の酵素および/または1つまたは複数のタンパク質を過剰発現することは、例えば、外因性の1つまたは複数の遺伝子の外因性の発現を介して、または、異種性の1つまたは複数の遺伝子の外因性の発現を介して生じ得る。従って、天然生物は、1個、2個、3個、4個、5個、6個、7個、8個、9個、または10個の、ブタジエン生合成経路を構成する酵素またはタンパク質をコードしている全ての核酸に至るまでの過剰発現を介して、例えば、ブタジエンを生産する本発明の非天然微生物として容易に作成され得る。さらに、非天然生物は、ブタジエン生合成経路の酵素の活性増加を生じる内因性遺伝子の突然変異誘発によって作成され得る。
特に有用な態様において、コーディング核酸の外因性の発現が用いられる。外因性の発現は、発現エレメントおよび/または調節エレメントを特別な指示にしたがって変更する(custom tailor)能力、および、使用者によって制御される所望の発現レベルを達成するための適用を、宿主に与える。しかし、内因性の発現はまた、誘導性のプロモータまたは他の調節エレメントに連結された場合に、ネガティブな調節エフェクタを除去することまたは遺伝子のプロモータを誘導することによって、他の態様に利用され得る。従って、天然の誘導性のプロモータを有する内因性遺伝子は、適切な誘導剤を供給することによって上方制御され得、また内因性の遺伝子の調節領域は、誘導性の調節エレメントを組み込むように操作され得、これにより、内因性の遺伝子の発現増加を所望の時点で調節することを可能にする。同様に、誘導性のプロモータは、非天然微生物に導入された外因性の遺伝子についての調節エレメントとして含まれ得る。
本発明の方法において、1つ以上の外因性核酸のいずれかが、本発明の非天然微生物を作成するために微生物へ導入され得ることが理解される。核酸は、例えば、ブタジエン生合成経路を微生物に付与するように導入され得る。あるいは、コーディング核酸は、生合成能を有する中間体微生物を作成して、必要とされる反応のいくつかを触媒してブタジエン生合成能を付与するために導入され得る。例えば、ブタジエン生合成経路を有する非天然微生物は、所望の酵素またはタンパク質をコードしている少なくとも2つの外因性の核酸を含み得る。例えば、クロチルアルコールキナーゼとブタジエンシンターゼ、または、4‐(シチジン5’‐ジホスホ)‐エリトリトールキナーゼとブタジエンシンターゼ、または、1‐ヒドロキシ‐2‐ブテニル4‐二リン酸シンターゼとブタジエンシンターゼ、または、3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸キナーゼとブタジエンシンターゼ、または、クロトニル‐CoAヒドロラーゼとクロチルアルコールジホスホキナーゼ、エリトロースレダクターゼとブタジエンシンターゼ、3‐オキソ‐グルタリル‐CoAレダクターゼ(CoA還元およびアルコール生成)と3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸デカルボキシラーゼ、の組み合わせなどが挙げられる。従って、ブタジエン経路の2つ以上の酵素あるいはタンパク質の任意の組み合わせが、本発明の非天然微生物に含まれ得ることが理解される。同様に、ブタジエン経路の3つ以上の酵素あるいはタンパク質の任意の組み合わせは、例えば、クロチルアルコールキナーゼ、2‐ブテニル‐4‐リン酸キナーゼとブタジエンシンターゼ;または、1‐ヒドロキシ‐2‐ブテニル4‐二リン酸シンターゼ、1‐ヒドロキシ‐2‐ブテニル4‐二リン酸レダクターゼとブタジエンシンターゼ;または、3‐オキソ‐グルタリル‐CoAレダクターゼ、3‐ヒドロキシ‐5‐オキソペンタン酸レダクターゼとブタジエンシンターゼ;または、アセチル‐CoA:アセチルCoAアシルトランスフェラーゼ、クロチルアルコールキナーゼとブタジエンシンターゼ;または、グルタコニル‐CoAデカルボキシラーゼ、クロトニル‐CoAレダクターゼ(アルコール生成)とクロチルアルコールジホスホキナーゼ;または、エリトロース‐4‐リン酸キナーゼ、4‐(シチジン5’‐ジホスホ)‐エリトリトールキナーゼと1‐ヒドロキシ‐2‐ブテニル4‐二リン酸シンターゼ;または、3,5‐ジオキソペンタン酸レダクターゼ(アルデヒド還元)、ブテニル4‐二リン酸イソメラーゼとブタジエンシンターゼなど、所望されるように、所望の生合成経路の酵素および/またはタンパク質の組み合わせが対応する所望の産物の生産を生じる限り、本発明の非天然微生物に含まれ得ることが理解される。同様に、ブタジエン経路の4つ以上の酵素あるいはタンパク質の任意の組み合わせ(例えば、クロトンアルデヒドレダクターゼ(アルコール生成)、クロチルアルコールキナーゼ、2‐ブテニル‐4‐リン酸キナーゼとブタジエンシンターゼ;または、1‐ヒドロキシ‐2‐ブテニル4‐二リン酸シンターゼ、1‐ヒドロキシ‐2‐ブテニル4‐二リン酸レダクターゼ、ブテニル4‐二リン酸イソメラーゼとブタジエンシンターゼ;または、3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸キナーゼ、3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸デカルボキシラーゼ、ブテニル4‐二リン酸イソメラーゼとブタジエンシンターゼ;または、エリトロース‐4‐リン酸レダクターゼ、エリトロース‐4‐リン酸シチジルトランスフェラーゼ、4‐(シチジン5’‐ジホスホ)‐エリトリトールキナーゼとブタジエンシンターゼ;3‐アミノブチリル‐CoAデアミナーゼ、クロトニル‐CoAレダクターゼ(アルコール生成)、クロチルアルコールジホスホキナーゼとブタジエンシンターゼ;または、エリトロースレダクターゼ、4‐(シチジン5’‐ジホスホ)‐エリトリトールキナーゼ、エリトリトール2,4‐シクロ二リン酸シンターゼ、1‐ヒドロキシ‐2‐ブテニル4‐二リン酸レダクターゼ;または、マロニル‐CoA:アセチル‐CoAアシルトランスフェラーゼ、3‐ヒドロキシグルタリル‐CoAレダクターゼ(アルコール生成)、ブテニル4‐二リン酸イソメラーゼとブタジエンシンターゼなど)、あるいは生合成経路のこれ以上の酵素またはタンパク質の任意の組み合わせが、所望されるように、所望の生合成経路の酵素および/またはタンパク質の組み合わせが対応する所望の産物の生産を生じる限り、本明細書に開示されているような本発明の非天然微生物に含まれ得ることが理解される。
本明細書に記載されているようにブタジエンの生合成に加えて、本発明の非天然微生物および方法はまた、互いのさまざまな組み合わせ、および当該分野において周知の他の微生物および方法のさまざまな組み合わせにおいて、他の経路による産物の生合成を実現するために利用され得る。例えば、ブタジエンプロデューサを利用する以外にブタジエンを生産するための代替の1つは、ブタジエン経路中間体をブタジエンへ変換し得る別の微生物の添加を介するものである。このような手順の1つとしては、例えば、ブタジエン経路の中間体を生産する微生物の発酵が挙げられる。ブタジエン経路中間体は、ブタジエン経路の中間体をブタジエンへ変換する第2の微生物についての基質として使用され得る。ブタジエン経路の中間体は、第2の生物の別の培養物へ直接的に添加され得るか、あるいは、ブタジエン経路の中間体のプロデューサの元々の培養物は、これらの微生物から例えば細胞分離によって枯渇され得、次いで、第2の生物の発酵ブロスへの添加は、中間体を精製する工程を行うことなく最終産物を生産するために利用され得る。
他の態様において、本発明の非天然微生物および方法は、例えばブタジエンの生合成を達成するために、幅広くさまざまな副経路に集積され得る。これらの態様において、本発明の所望の産物についての生合成経路は、異なる微生物へ分離され得、異なる微生物は、最終産物を生産するために共培養され得る。このような生合成スキームにおいて、ある微生物の産物は、最終産物が合成されるまで、第2の微生物についての基質である。例えば、ブタジエンの生合成は、ある経路の中間体から別の経路の中間体または産物への変換のための生合成経路を含む微生物を構築することによって達成され得る。あるいは、ブタジエンはまた、同一の容器内において2つの微生物を用いる共培養または共発酵を介して、微生物から生合成的に生産され得る。ここで、第1の微生物は、ブタジエン中間体を生産し、第2の微生物は、その中間体をブタジエンへと変換する。
本明細書で提供されている教示とガイダンスとによって、当業者は、他の微生物、副経路を有する他の非天然微生物の共培養、およびブタジエンを生産するために当該分野にて周知の他の化学的および/または生化学的な手順の組合せと併用して、本発明の非天然微生物および方法には、幅広くさまざまな組合せおよび順列が存在するということを理解し得るであろう。
ブタジエン経路の酵素またはタンパク質についてのコーディング核酸の供給源は、例えば、任意の種を含み、ここで、コードされる遺伝子産物が参照された反応を触媒し得る。このような種としては、原核生物および真核生物(細菌(古細菌、真正細菌、を含む)、真核生物(酵母、植物、昆虫、動物、ヒトを含む哺乳動物、を含む)を含むが、これらに限定されない)が挙げられる。このような供給源についての例示的な種としては、例えば、Escherichia coli、Acidaminococcus fermentans、Acinetobacter baylyi、Acinetobacter calcoaceticus、Acinetobacter sp. ADP1、Acinetobacter sp. Strain M-1、Aquifex aeolicus、Arabidopsis thaliana、Arabidopsis thaliana col、Arabidopsis thaliana col、Archaeoglobus fulgidus DSM 4304、Azoarcus sp. CIB、Bacillus cereus、Bacillus subtilis、Bos Taurus、Brucella melitensis、Burkholderia ambifaria AMMD、Burkholderia phymatum、Campylobacter jejuni、Candida albicans、Candida magnoliae、Chloroflexus aurantiacus、Citrobacter youngae ATCC 29220、Clostridium acetobutylicum、Clostridium aminobutyricum、Clostridium beijerinckii、Clostridium beijerinckii NCIMB 8052、Clostridium beijerinckii NRRL B593、Clostridium botulinum C str. Eklund、Clostridium kluyveri、Clostridium kluyveri DSM 555、Clostridium novyi NT、Clostridium propionicum、Clostridium saccharoperbutylacetonicum、Corynebacterium glutamicum ATCC 13032、Cupriavidus taiwanensis、Cyanobium PCC7001、Dictyostelium discoideum AX4、Enterococcus faecalis、Erythrobacter sp. NAP1、Escherichia coli K12、Escherichia coli str. K-12 substr. MG1655、Eubacterium rectale ATCC 33656、Fusobacterium nucleatum、Fusobacterium nucleatum subsp. nucleatum ATCC 25586、Geobacillus thermoglucosidasius、Haematococcus pluvialis、Haemophilus influenzae、Haloarcula marismortui ATCC 43049、Helicobacter pylori、Homo sapiens、Klebsiella pneumoniae、Lactobacillus plantarum、Leuconostoc mesenteroides、marine gamma proteobacterium HTCC2080、Metallosphaera sedula、Methanocaldococcus jannaschii、Mus musculus、Mycobacterium avium subsp. paratuberculosis K-10、Mycobacterium bovis BCG、Mycobacterium marinum M、Mycobacterium smegmatis MC2 155、Mycobacterium tuberculosis、Mycoplasma pneumoniae M129、Nocardia farcinica IFM 10152、Nocardia iowensis (sp. NRRL 5646)、Oryctolagus cuniculus、Paracoccus denitrificans、Penicillium chrysogenum, Populus alba、Populus tremula x Populus alba、Porphyromonas gingivalis、Porphyromonas gingivalis W83、Pseudomonas aeruginosa、Pseudomonas aeruginosa PAO1、Pseudomonas fluorescens、Pseudomonas fluorescens Pf-5、Pseudomonas knackmussii (B13)、Pseudomonas putida、Pseudomonas putida E23、Pseudomonas putida KT2440、Pseudomonas sp、Pueraria Montana、Pyrobaculum aerophilum str. IM2、Pyrococcus furiosus、Ralstonia eutropha、Ralstonia eutropha H16、Ralstonia eutropha H16、Ralstonia metallidurans、Rattus norvegicus、Rhodobacter spaeroides、Rhodococcus rubber、Rhodopseudomonas palustris、Roseburia intestinalis L1-82、Roseburia inulinivorans DSM 16841、Roseburia sp. A2-183、Roseiflexus castenholzii、Saccharomyces cerevisiae、Saccharopolyspora rythraea NRRL 2338、Salmonella enterica subsp. arizonae serovar、Salmonella typhimurium、Schizosaccharomyces pombe、Simmondsia chinensis、Sinorhizobium meliloti、Staphylococcus , ureus、Streptococcus pneumoniae、Streptomyces coelicolor、Streptomyces griseus subsp. griseus、BRC 13350, Streptomyces sp. ACT-1、Sulfolobus acidocaldarius、Sulfolobus shibatae、Sulfolobus solfataricus、Sulfolobus tokodaii、Synechocystis sp. strain PCC6803、Syntrophus , ciditrophicus、Thermoanaerobacter brockii HTD4、Thermoanaerobacter tengcongensis MB4、Thermosynechococcus elongates、Thermotoga maritime MSB8、Thermus thermophilus、Thermus, hermophilus HB8、Trichomonas vaginalis G3、Trichosporonoides megachiliensis、Trypanosoma brucei、Tsukamurella paurometabola DSM 20162、Yersinia intermedia ATCC 29909、Zoogloea ramigera、Zygosaccharomyces rouxii、Zymomonas mobilis、ならびに、本明細書中に開示される他の例示的な種または対応する遺伝子についての供給源生物として利用できる。しかしながら、現在では、395以上の微生物のゲノム、および種々の酵母、真菌、植物および哺乳動物のゲノム、を含む550種を超える完全なゲノム配列が利用可能である(これらの半分以上がNCBIのような公的なデータベースにおいて利用可能)ので、関連種または遠縁種における1つ以上の遺伝子について、必要なブタジエン生合成活性をコードする遺伝子の同定(例えば、既知の遺伝子の、ホモログ、オルソログ、パラログ、および非パラログ遺伝子の置換を含む。)、および生物間での遺伝的変更の入れ替えは、日常的な作業であり、当該分野において周知である。従って、E.coliのような特定の生物を参照することによって、本明細書中で記載されているブタジエンの生合成を可能にする代謝的変更は、原核生物および真核生物などを含めて、他の微生物に容易に適用され得る。本明細書において提供されている教示とガイダンスとによって、当業者は、特定の生物において例示される代謝的変更は他の生物に均等に適用され得るということを知るであろう。
いくつかの実施例において、例えば、関連しない種において代替のブタジエン生合成経路が存在する場合、ブタジエン生合成は、例えば、参照された反応を置換するために同様であるが同一でない代謝性反応を触媒する、関連しない種からのパラログの外因性発現によって、宿主種に付与され得る。異なる生物間において、代謝性ネットワーク中の特定の相違が存在するので、当業者は、異なる生物間での実際の遺伝子の使用法が異なるかもしれないことを理解する。しかし、本明細書中にて提供されている教示およびガイダンスによって、当業者はまた、目的とする種においてブタジエンを合成する微生物を構築するために、本明細書中に例示されたものへの同種の代謝性変更を用いて、全ての微生物に対して本発明の教示および方法が適用され得ることを理解するであろう。
非天然のブタジエン産生宿主を構築し、かつその発現レベルを試験するための方法は、例えば、当該分野において周知の組換え法および検出法によって実行され得る。このような方法は、例えば以下に記載されていることが見出され得る:例えば、Sambrook et al., Molecular Cloning: A Laboratory Manual, Third Ed., Cold Spring Harbor Laboratory, New York (2001);およびAusubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, Baltimore, MD (1999)。
ブタジエンの産生のための経路に含まれる外因性の核酸配列は、当該分野において周知の技術を用いて宿主細胞へ安定的にまたは一過性に導入され得る。上記技術としては、接合、エレクトロポレーション、化学的形質転換、トランスダクション、トランスフェクション、および超音波形質転換が挙げられるが、これらに限定されない。E.coliまたは他の原核生物細胞における外因性発現のために、真核生物の核酸の遺伝子またはcDNAにおけるいくつかの核酸配列は、標的化シグナル(例えばN末端ミトコンドリア標的化シグナルまたは他の標的化シグナル)をコードし得る。これは、所望される場合、原核生物宿主細胞への形質転換の前に除去され得る。例えば、ミトコンドリアリーダー配列の除去は、E.coliにおいて発現の増加を導いた(Hoffmeister et al., J. Biol. Chem. 280:4329-4338 (2005))。酵母または他の真核生物細胞における外因性発現のために、遺伝子は、リーダー配列を付加することなく細胞質中に発現され得るか、あるいはミトコンドリアまたは他の器官に標的化され得るか、あるいは、例えば宿主細胞に好適なミトコンドリア標的化シグナルまたは分泌シグナルとして好適な標的化配列を付加することにより、分泌に標的化され得る。従って、標的化配列を除去するあるいは含ませるための、核酸配列に対する好適な改変は、望ましい特性を付与するために外因性核酸配列に組み込まれ得るということが理解される。さらに、タンパク質の発現の最適化を達成するために、当該分野において周知の技術を用いて、遺伝子はコドンの最適化に供され得る。
発現ベクターが、例えば本明細書中に例示されているような、1つ以上のブタジエン生合成経路のコーディング核酸を、宿主生物において機能的な発現制御配列に機能を果たすように連結されて含むように構築され得る。本発明の宿主微生物における使用に適用可能な発現ベクターとしては、例えば、プラスミド、ファージベクター、ウイルスベクター、エピソームおよび人工染色体が挙げられ、ベクターおよび選択配列または宿主染色体への安定的な組込みに機能を果たすようにマーカーを含む。さらに、発現ベクターは、1つ以上の選択マーカー遺伝子および適切な発現制御配列を含み得る。選択マーカー遺伝子はまた、例えば、抗生物質または毒素に対する抵抗性、栄養要求性欠損の相補性を提供するもの、あるいは培養培地以外にて必須の栄養素を供給するものが含まれ得る。発現制御配列は、構成的かつ誘導性のプロモータ、転写エンハンサ、転写ターミネータなどを含み得、これらは当該分野において周知である。2つ以上の外因性のコーディング核酸が共発現される場合、両方の核酸が、例えば、単一の発現ベクター中に、あるいは別々の発現ベクター中に挿入され得る。単一のベクターでの発現のために、コーディング核酸は、ある共通の発現制御配列に機能を果たすように連結され得るか、あるいは異なる発現制御配列(ある誘導性プロモータおよびある構成的プロモータなど)に連結され得る。代謝性経路または合成経路に含まれる外因性の核酸配列の形質転換は、当該分野において周知の方法を用いて確認される。このような方法としては、例えば、核酸分析(mRNAのノザンブロッティングあるいはmRNAのポリメラーゼ鎖反応(PCR)増幅)、または遺伝子産物の発現についてのイムノブロッティング、または導入した核酸配列またはその対応する遺伝子産物の発現を試験するに好適な他の分析方法、などが挙げられる。外因性の核酸が所望の産物を生産するために十分な量にて発現されることが、当業者に理解され、当該分野において周知の方法および本明細書中に開示された方法を用いて十分な発現を得るように発現レベルが最適化され得ることが、さらに理解される。
ある態様において本発明は、ブタジエン経路(ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路)を有する微生物を含む非天然微生物を培養することを含む、ブタジエンを生産するための方法を提供する。上記ブタジエン経路は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;クロトン酸レダクターゼ;クロトニル‐CoAレダクターゼ(アルコール生成);グルタコニル‐CoAデカルボキシラーゼ;グルタリル‐CoAデヒドロゲナーゼ;3‐アミノブチリル‐CoAデアミナーゼ;4‐ヒドロキシブチリル‐CoAデヒドラターゼ;またはクロチルアルコールジホスホキナーゼを含む(図2)。ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;およびブタジエンシンターゼを含む(図2、ステップA〜H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む(図2、ステップA〜C、K、F、G、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;ブタジエンシンターゼ;クロトニル‐CoAレダクターゼ(アルコール生成);およびクロチルアルコールジホスホキナーゼを含む(図2、ステップA〜C、K、P、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む(図2、ステップA〜C、I、J、E、F、G、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;クロトン酸レダクターゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップA〜C、I、J、E、P、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエンシンターゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップA〜E、P、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、グルタコニル‐CoAデカルボキシラーゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;およびブタジエンシンターゼを含む(図2、ステップL、D〜H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、グルタコニル‐CoAデカルボキシラーゼ;クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む(図2、ステップL,K,F,G,H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、グルタコニル‐CoAデカルボキシラーゼ;ブタジエンシンターゼ;クロトニル‐CoAレダクターゼ(アルコール生成);およびクロチルアルコールジホスホキナーゼを含む(図2、ステップL、K、P、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、グルタコニル‐CoAデカルボキシラーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む(図2、ステップL、I、J、E、F、G、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、グルタコニル‐CoAデカルボキシラーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;クロトン酸レダクターゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップL、I、J、E、P、H)。
また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエン;グルタコニル‐CoAデカルボキシラーゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップL、C、D、E、P、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、グルタリル‐CoAデヒドロゲナーゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;およびブタジエンシンターゼを含む(図2、ステップM、D〜H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、グルタリル‐CoAデヒドロゲナーゼ;クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む(図2、ステップM、K、F、G、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、グルタリル‐CoAデヒドロゲナーゼ;ブタジエンシンターゼ;クロトニル‐CoAレダクターゼ(アルコール生成);およびクロチルアルコールジホスホキナーゼを含む(図2、ステップM、K、P、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、グルタリル‐CoAデヒドロゲナーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む(図2、ステップM、I、J、E、F、G、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、グルタリル‐CoAデヒドロゲナーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;クロトン酸レダクターゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップM、I、J、E、P、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエンシンターゼ;グルタリル‐CoAデヒドロゲナーゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップM、C、D、E、P、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、3‐アミノブチリル‐CoAデアミナーゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;およびブタジエンシンターゼを含む(図2、ステップN、D〜H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、3‐アミノブチリル‐CoAデアミナーゼ;ブタジエンシンターゼ;クロトニル‐CoAレダクターゼ(アルコール生成);およびクロチルアルコールジホスホキナーゼを含む(図2、ステップN、K、P、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、3‐アミノブチリル‐CoAデアミナーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む(図2、ステップN、I、J、E、F、G、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、3‐アミノブチリル‐CoAデアミナーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;クロトン酸レダクターゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップN、I、J、E、P、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエンシンターゼ;3‐アミノブチリル‐CoAデアミナーゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップN、C、D、E、P、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、4‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;およびブタジエンシンターゼを含む(図2、ステップO、D〜H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、4‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む(図2、ステップO、K、F、G、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、4‐ヒドロキシブチリル‐CoAデヒドラターゼ;ブタジエンシンターゼ;クロトニル‐CoAレダクターゼ(アルコール生成);およびクロチルアルコールジホスホキナーゼを含む(図2、ステップO、K、P、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、4‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロチルアルコールキナーゼ;2‐ブテニル‐4‐リン酸キナーゼ;ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む(図2、ステップO、I、J、E、F、G、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、4‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエンシンターゼ;クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;クロトン酸レダクターゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップO、I、J、E、P、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);ブタジエンシンターゼ;4‐ヒドロキシブチリル‐CoAデヒドラターゼ;およびクロチルアルコールジホスホキナーゼを含む(図2、ステップL、C、D、E、P、H)。
ある態様において本発明は、ブタジエン経路(ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路)を有する微生物を含む非天然微生物を培養することを含む、ブタジエンを生産するための方法を提供する。上記ブタジエン経路は、エリトロース‐4‐リン酸レダクターゼ;エリトリトール‐4‐リン酸シチジリルトランスフェラーゼ;4‐(シチジン5’‐ジホスホ)‐エリトリトールキナーゼ;エリトリトール2,4‐シクロ二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸レダクターゼ;ブテニル4‐二リン酸イソメラーゼ;ブタジエンシンターゼ;エリトロース‐4‐リン酸キナーゼ;エリトロースレダクターゼ;またはエリトリトールキナーゼを含む(図3)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、エリトロース‐4‐リン酸レダクターゼ;エリトリトール‐4‐リン酸シチジリルトランスフェラーゼ;4‐(シチジン5’‐ジホスホ)‐エリトリトールキナーゼ;エリトリトール2,4‐シクロ二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸レダクターゼ;およびブタジエンシンターゼを含む(図3、ステップA〜FおよびH)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、エリトロース‐4‐リン酸レダクターゼ;エリトリトール‐4‐リン酸シチジリルトランスフェラーゼ;4‐(シチジン5’‐ジホスホ)‐エリトリトールキナーゼ;エリトリトール2,4‐シクロ二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸レダクターゼ;ブテニル4‐二リン酸イソメラーゼ;およびブタジエンシンターゼを含む(図3、ステップA〜H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、エリトリトール‐4‐リン酸シチジリルトランスフェラーゼ;4‐(シチジン5’‐ジホスホ)‐エリトリトールキナーゼ;エリトリトール2,4‐シクロ二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸レダクターゼ;ブタジエンシンターゼ;エリトロース‐4‐リン酸キナーゼ;エリトロースレダクターゼ;およびエリトリトールキナーゼを含む(図3、ステップI、J、K、B〜F、H)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、エリトリトール‐4‐リン酸シチジリルトランスフェラーゼ;4‐(シチジン5’‐ジホスホ)‐エリトリトールキナーゼ;エリトリトール2,4‐シクロ二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸シンターゼ;1‐ヒドロキシ‐2‐ブテニル4‐二リン酸レダクターゼ;ブテニル4‐二リン酸イソメラーゼ;ブタジエンシンターゼ;エリトロース‐4‐リン酸キナーゼ;エリトロースレダクターゼ;およびエリトリトールキナーゼを含む(図3、ステップI、J、K、B〜H)。
ある態様において本発明は、ブタジエン経路(ブタジエンを生産するために十分な量にて発現するブタジエン経路酵素をコードしている、少なくとも1つの外因性の核酸を含むブタジエン経路)を有する微生物を含む非天然微生物を培養することを含む、ブタジエンを生産するための方法を提供する。上記ブタジエン経路は、マロニル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;3‐オキソグルタリル‐CoAレダクターゼ(ケトン還元);3‐ヒドロキシグルタリル‐CoAレダクターゼ(アルデヒド生成);3‐ヒドロキシ‐5‐オキソペンタン酸レダクターゼ;3,5‐ジヒドロキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸デカルボキシラーゼ;ブテニル4‐二リン酸イソメラーゼ;ブタジエンシンターゼ;3‐ヒドロキシグルタリル‐CoAレダクターゼ(アルコール生成);3‐オキソグルタリル‐CoAレダクターゼ(アルデヒド生成);3,5‐ジオキソペンタン酸レダクターゼ(ケトン還元);3,5‐ジオキソペンタン酸レダクターゼ(アルデヒド還元);5‐ヒドロキシ‐3‐オキソペンタン酸レダクターゼ;または3‐オキソ‐グルタリル‐CoAレダクターゼ(CoA還元およびアルコール生成)を含む(図4)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、マロニル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;3‐オキソグルタリル‐CoAレダクターゼ(ケトン還元);3‐ヒドロキシグルタリル‐CoAレダクターゼ(アルデヒド生成);3‐ヒドロキシ‐5‐オキソペンタン酸レダクターゼ;3,5‐ジヒドロキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸デカルボキシラーゼ;ブテニル4‐二リン酸イソメラーゼ;およびブタジエンシンターゼを含む(図4、ステップA〜I)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、マロニル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;3,5‐ジヒドロキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸デカルボキシラーゼ;ブテニル4‐二リン酸イソメラーゼ;ブタジエンシンターゼ;3‐オキソグルタリル‐CoAレダクターゼ(アルデヒド生成);3,5‐ジオキソペンタン酸レダクターゼ(アルデヒド還元);および5‐ヒドロキシ‐3‐オキソペンタン酸レダクターゼを含む(図4、ステップA、K、M、N、E、F、G、H、I)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、マロニル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;3‐ヒドロキシ‐5‐オキソペンタン酸レダクターゼ;3,5‐ジヒドロキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸デカルボキシラーゼ;ブテニル4‐二リン酸イソメラーゼ;ブタジエンシンターゼ;3‐オキソグルタリル‐CoAレダクターゼ(アルデヒド生成);および3,5‐ジオキソペンタン酸レダクターゼ(ケトン還元)を含む(図4、ステップA、K、L、D、E、F、G、H、I)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、マロニル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;3,5‐ジヒドロキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸デカルボキシラーゼ;ブテニル4‐二リン酸イソメラーゼ;ブタジエンシンターゼ;5‐ヒドロキシ‐3‐オキソペンタン酸レダクターゼ;および3‐オキソ‐グルタリル‐CoAレダクターゼ(CoA還元およびアルコール生成)を含む(図4、ステップA、O、N、E、F、G、H、I)。また、ある実施形態において、上記方法はブタジエン経路を有する微生物を含み、上記ブタジエン経路は、マロニル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;3‐オキソグルタリル‐CoAレダクターゼ(ケトン還元);3,5‐ジヒドロキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸キナーゼ;3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸デカルボキシラーゼ;ブテニル4‐二リン酸イソメラーゼ;ブタジエンシンターゼ;および3‐ヒドロキシグルタリル‐CoAレダクターゼ(アルコール生成)を含む(図4、ステップA、B、J、E、F、G、H、I)。
ブタジエンの好適な精製および/あるいはブタジエンの生産について試験するためのアッセイは、周知の方法を用いて行われ得る。好適な反復(例えば、三回の培養)は、試験に供される操作された系統の各々について増やされ得る。例えば、操作された生産宿主における産物および副産物の形成がモニタリングされ得る。最終生成物および中間体、ならびに他の有機化合物が、HPLC(高速液体クロマトグラフィ)、GC−MS(ガスクロマトグラフィ−質量分析)、およびLC−MS(液体クロマトグラフィ−質量分析)のような方法、または、当該分野において周知の慣用的な手順を用いる好適な他の分析方法によって分析され得る。発酵ブロスにおける産物の放出はまた、培養上清を用いて試験され得る。副産物および残留グルコースが、例えば、グルコースおよびアルコールについての屈折指標検出器、および、有機酸についてのUV検出器(Lin et al., Biotechnol. Bioeng. 90:775-779 (2005))を用いるHPLCによって、または、当該分野において周知の他の好適な分析法および検出法を用いて、定量される。外因性のDNA配列からの個々の酵素の活性またはタンパク質の活性もまた、当該分野において周知の方法を用いて分析される。典型的な分析方法としては、Manual on Hydrocarbon Analysis(ASTM Manula Series, A.W. Drews, ed., 6th edition, 1998, American Society for Testing and Materials, Baltimore, Maryland)を参照されたい。
ブタジエンは、当該分野において周知のさまざまな方法を用いて培地中の他の構成要素から分離され得る。このような分離方法としては、例えば、抽出手順、ならびに、連続的液体−液体抽出、パーベーパレーション(pervaporation)、膜濾過、膜分離、逆浸透法、電気透析、蒸留、結晶化、遠心分離、抽出濾過、イオン交換クロマトグラフィ、サイズ排除クロマトグラフィ、吸着クロマトグラフィ、および限外濾過を含む方法が挙げられる。これらの方法の全てが当該分野において周知である。
本明細書に記載されている非天然微生物のいずれかは、本発明の生合成産物を生産するためにおよび/または分泌するために培養され得る。例えば、ブタジエンのプロデューサはブタジエンの生合成による生産のために培養され得る。
ブタジエンの生産のために、組換え系統は炭素源および他の必須栄養素を含んだ培地中で培養される。全行程の費用を低減するために発酵槽内の嫌気的状態を維持することが非常に望ましい。このような条件は、例えば、先ず、培地を窒素と共に噴霧すること、次いで、フラスコを隔膜およびクリンプキャップを用いてシールすることによって得られ得る。増殖が嫌気性条件下では観察されない系統のために、制限されたエアレーションのための小さな孔で隔膜に穴を貫通させることによって、微小好気性条件または実質的好気性条件が適用され得る。例示的な嫌気性条件は、従来から記載されており、当該分野において周知である。例えば、米国特許公開US 2009/0047719号(2007年8月10日出願)において、例示的な好気性条件と嫌気性条件とが記載されている。発酵は、本明細書中に記載されたようなバッチ様式、フェドバッチ様式または連続的様式にて行われ得る。
所望される場合、培地のpHは、所望のpHで維持することが必要とされる場合、塩基(例えばNaOHまたは他の塩基)または酸を添加することによって所望のpH(特に中性のpH(例えばpH約7))で維持され得る。増殖速度は、分光光度計(600nm)を用いて光学濃度を測定することによって測定され得、グルコース取り込み速度は炭素源の枯渇を長時間にわたってモニタリングすることによって測定され得る。
増殖培地は、例えば、非天然微生物に対して炭素源を供給し得る任意の炭水化物源を含み得る。上記供給源としては、例えば、グルコース、キシロース、アラビノース、ガラクトース、マンノース、フルクトース、スクロースおよびデンプンなどの糖が挙げられる。炭水化物の他の供給源としては、例えば、再生可能な供給原料およびバイオマスが挙げられる。本発明の方法において供給原料として用いられ得る例示的なバイオマスの型としては、セルロースバイオマス、ヘミセルロースバイオマスおよびリグニン供給原料または供給原料のタンパク質が挙げられる。このようなバイオマス供給原料は、例えば、グルコース、キシロース、アラビノース、ガラクトース、マンノース、フルクトースおよびデンプンのような炭素源として有用な炭水化物基質を含む。本明細書中にて提供される教示およびガイダンスによって、当業者は、上記例示以外の再生可能な供給原料およびバイオマスもまた、ブタジエンを産生するために本発明の微生物の培養に使用され得ることを、理解するであろう。
上述の例示のような再生可能な供給原料に加え、本発明のブタジエン微生物もまた、炭素源としての合成ガスによって増殖するように改変され得る。この特定の態様において、合成ガスまたは他のガス性炭素源を利用するための代謝経路を提供するために、ブタジエン生産生物において、1つ以上のタンパク質または酵素が発現される。
合成ガス(syngas)またはプロデューサガスとしても知られている合成ガス(synthesis gas)は、石炭のガス化、および農作物および農業廃棄物を含むバイオマス材料などの炭素材料のガス化、の主な生産物である。合成ガスは、主に、HおよびCOの混合物であり、上記合成ガスは、石炭、石油、天然ガス、バイオマスおよび廃棄有機物質を含む(これに制限されない)任意の有機供給材料のガス化によって得ることができる。ガス化は、大抵、酸素に対する燃料の比が高い条件下で実行される。また、大部分がHおよびCOであるものの、合成ガスは、微量のCOおよびその他のガスを含み得る。したがって、合成ガスは、CO、さらに加えてCOのようなガス状炭素の費用効率のある資源を提供する。
Wood−Ljungdahl経路は、COおよびHをアセチルCoAおよび酢酸などのその他の生成物への変換を触媒する。また、COおよび合成ガスを利用することができる生物は、大抵、同一の基本的な酵素一式、および、Wood−Ljungdahl経路に含まれる変換を通じて、COおよびCO/H混合物も利用することができる。微生物によるCOの酢酸へのH依存変換は、COもまた同一の生物によって利用されること、および、同一経路が含まれることが示されるよりもかなり前に認められていた。多くのアセトゲン(acetogen)は、必要な還元当量を供給するために水素が存在する限り、CO存在下で成長し、酢酸のような化合物を生成することを示す(例えば、Drake, Acetogenesis, pp. 3-60 Chapman and Hall, New York, (1994)を参照されたい)。このことは、以下の式によってまとめることができる:
2CO+4H+nADP+nPi→CHCOOH+2HO+nATP
したがって、Wood−Ljungdahl経路を有する非天然の微生物は、アセチルCoAおよび他の所望の産物の生産のために、COおよびHの混合物を利用し得る。
Wood−Ljungdahl経路は当該分野において周知であり、以下の2つの分枝に分けることができる12の反応からなる:(1)メチル分枝、および(2)カルボニル分枝。カルボニル分枝が、メチル−THFをアセチル‐CoAへ変換するのに対して、メチル分枝は、合成ガスをメチルテトラヒドロ葉酸(メチル−THF)へ変換する。メチル分枝における反応は、以下の酵素またはタンパク質によって適切に触媒される:フェレドキシンオキシドレダクターゼ、ギ酸デヒドロゲナーゼ、ホルミルテトラヒドロ葉酸シンテターゼ、メテニルテトラヒドロ葉酸シクロデヒドラターゼ、メチレンテトラヒドロ葉酸デヒドロゲナーゼ、およびメチレンテトラヒドロ葉酸レダクターゼ。カルボニル分枝における反応は、以下の酵素またはタンパク質によって適切に触媒される:メチルテトラヒドロ葉酸:コリノイドタンパク質メチルトランスフェラーゼ(例えばAcsE)、コリノイド鉄−硫黄タンパク質、ニッケル−タンパク質アセンブリタンパク質(例えばAcsF)、フェレドキシン、アセチル‐CoAシンセターゼ、一酸化炭素デヒドロゲナーゼ、および、ニッケル−タンパク質アセンブリタンパク質(例えばCooC)。ブタジエン経路を作成するに十分な数のコーディング核酸を導入するために本明細書中に提供された教示およびガイダンスに従えば、少なくとも、宿主生物に存在しないWood−Ljungdahl酵素またはタンパク質をコードする核酸を導入することに関して、同一の操作設計が行われ得ることを、当業者は理解するであろう。従って、改変された生物が完全なWood−Ljungdahl経路を含むように、1つ以上のコーディング核酸を本発明の微生物に導入することによって、合成ガス利用能力が付与される。
一酸化炭素デヒドロゲナーゼおよび/またはヒドロゲナーゼ活性を連結した還元性(逆向き)トリカルボン酸回路もまた、CO、COおよび/またはHをアセチル‐CoAへ、および、酢酸のような他の産物へ、変換することに利用され得る。還元性TCA経路を介して炭素固定し得る生物は、1つ以上の以下の酵素を利用し得る:ATPクエン酸−リアーゼ、クエン酸リアーゼ、アコニターゼ、イソクエン酸デヒドロゲナーゼ、アルファ‐ケトグルタル酸:フェレドキシンオキシドレダクターゼ、スクシニル‐CoAシンテターゼ、スクシニル‐CoAトランスフェラーゼ、フマル酸レダクターゼ、フマラーゼ、リンゴ酸デヒドロゲナーゼ、NAD(P)H:フェレドキシンオキシドレダクターゼ、一酸化炭素デヒドロゲナーゼ、およびヒドロゲナーゼ。具体的には、一酸化炭素デヒドロゲナーゼおよびヒドロゲナーゼによってCOおよび/またはHから抽出される還元当量は、アセチル‐CoAまたは酢酸への還元TCA経路を介したCO固定に利用される。酢酸は、アセチル‐CoAトランスフェラーゼ、酢酸キナーゼ/ホスホトランスアセチラーゼおよびアセチル‐CoAシンテターゼなどの酵素によってアセチル‐CoAに変換され得る。アセチル‐CoAは、ピルビン酸:フェレドキシンオキシドレダクターゼおよび糖新生酵素によって、ブタジエン、グリセルアルデヒド‐3‐リン酸、ホスホエノールピルビン酸、ならびにピルビン酸に変換され得る。ブタジエン経路を生産するために十分な数のコーディング核酸を導入するために、本明細書中に提供された教示およびガイダンスに従って、少なくとも、宿主生物に存在しない還元TCA経路の酵素またはタンパク質をコードする核酸を導入することに関して、同一の操作設計がまた行われ得ることを、当業者は理解するであろう。したがって、改変された生物が完全な還元TCA経路を含むように、1つ以上のコーディング核酸を本発明の微生物に導入することによって、合成ガス利用能力が付与される。
従って、本明細書中に提供された教示およびガイダンスによって、炭水化物のような炭素源によって増殖する場合に本発明の生合成された化合物を分泌する非天然微生物が生産され得ることを、当業者は理解するであろう。このような化合物としては、例えば、ブタジエンおよびブタジエン経路における中間体代謝物のいずれかが挙げられる。所望の化合物または中間体の生合成を達成するために必要とされる酵素の活性またはタンパク質の活性の1つ以上において操作されることは、必要とされることの全てであり、例えば、ブタジエン生合成経路のいくつかまたは全てを包含することを含む。したがって、炭水化物または他の炭素源によって増殖する場合にブタジエンを生産および/または分泌し、炭水化物または他の炭素源に対して増殖する場合にブタジエン経路において見られる中間代謝産物のいずれかを生産および/または分泌する、非天然微生物を本発明は提供する。ブタジエンを生産する本発明の微生物は、中間産物から合成を開始することが可能である。上記中間産物としては、例えば、アセトアセチル‐CoA、3‐ヒドロキシブチリル‐CoA、クロトニル‐CoA、クロトンアルデヒド、クロチルアルコール、2‐ブテニル‐リン酸、2‐ブテニル‐4‐二リン酸、エリトリトール‐4‐リン酸、4‐(シチジン5’‐ジホスホ)‐エリトリトール、2‐ホスホ‐4‐(シチジン5’‐ジホスホ)‐エリトリトール、エリトリトール‐2,4‐シクロ二リン酸、1‐ヒドロキシ‐2‐ブテニル4‐二リン酸、ブテニル4‐二リン酸、2‐ブテニル4‐二リン酸、3‐オキソグルタリル‐CoA、3‐ヒドロキシグルタリル‐CoA、3‐ヒドロキシ‐5‐オキソペンタン酸、3,5‐ジヒドロキシペンタン酸、3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸、3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸、クロトン酸、エリトロース、エリトリトール、3,5‐ジオキソペンタン酸、または5‐ヒドロキシ‐3‐オキソペンタン酸が挙げられる。
本発明の非天然微生物は、本明細書中に例示されるような当該分野において周知の方法を用いて、ブタジエン経路の酵素またはタンパク質をコードする少なくとも1つの核酸を、ブタジエンを生産するために十分な量にて外因性に発現するように構築される。本発明の微生物がブタジエンを生産するために十分な条件下で培養されることが、理解される。本明細書中に提供された教示およびガイダンスにしたがって、本発明の非天然微生物は、ブタジエンの生合成を達成し得、約0.001〜2000mMまたはそれ以上の細胞内濃度を生じる。p−トルエン酸、ブタジエンの細胞内濃度は、大抵の場合、約3〜1500mMであり、特に約5〜1250mMであり、より詳細には約8〜1000mMであり、約10mM、100mM、200mM、500mM、800mMまたはそれ以上を含む。これらの例示した各範囲内の、およびそれ以上の細胞内濃度もまた、本発明の非天然微生物から達成され得る。
いくつかの態様において、培養条件は、嫌気性の増殖条件、または実質的に嫌気性の増殖条件、または維持条件を含む。例示的な嫌気性条件は、以前に記載されており当該分野にて周知のものである。発酵プロセスのための例示的な嫌気性条件は本明細書中に記載されており、例えば、米国特許公開US 2009/0047719号(2007年8月10日出願)に記載されている。これらの条件のいずれか、ならびに当該分野にて周知の嫌気性条件が、非天然微生物とともに使用され得る。このような嫌気性条件または実質的に嫌気性条件の下で、ブタジエンのプロデューサが、細胞内濃度5〜10mMまたはそれ以上、ならびに本明細書中で例示した全ての他の濃度のブタジエンを合成し得る。上記では細胞内濃度について言及したが、ブタジエン生産微生物は、ブタジエンを細胞内において生産し得、および/または培養媒体中に当該産物を分泌し得る、ということが理解される。
ある態様において、ブタジエンまたは任意のブタジエン経路中間体に存在する原子の同位体分布を変えるために、炭素供給原料と、リン酸、アンモニア、硫酸、塩素およびその他のハロゲンなどのその他の細胞取り込み源とが選択され得る。本明細書では、上で列挙されたさまざまな炭素供給原料およびその他の取り込み源をひとまとめとして、「取り込み源」と呼ぶことにする。取り込み源は、産物ブタジエン、または、任意の点から逸脱して生産される任意のブタジエン不純物を含むブタジエン経路中間体に存在する任意の原子に同位体濃縮をもたらし得る。同位体濃縮は、任意の標的原子について達成され得る。任意の標的原子は、例えば、炭素、水素、酸素、窒素、硫黄、リン、塩素または他のハロゲンである。
ある態様において取り込み源は、炭素‐12、炭素‐13、および炭素‐14の比率を変えるために選択され得る。ある態様において取り込み源は、酸素‐16、酸素‐17、および酸素‐18の比率を変えるために選択され得る。ある態様において取り込み源は、水素、重水素、および三重水素(トリチウム)の比率を変えるために選択され得る。ある態様において取り込み源は、窒素‐14、および窒素‐15の比率を変えるために選択され得る。ある態様において取り込み源は、硫黄‐32、硫黄‐33、硫黄‐34、および硫黄‐35の比率を変えるために選択され得る。ある態様において取り込み源は、リン‐31、リン‐32、およびリン‐33の比率を変えるために選択され得る。ある態様において取り込み源は、塩素‐35、塩素‐36、および塩素‐37の比率を変えるために選択され得る。
ある態様において取り込み源の標的同位体比率は、取り込み源の合成的な化学的濃縮を介して得ることができる。そのような同位体が濃縮された取り込み源を商業ベースで購入することも、または実験室で調製することも可能である。ある態様において取り込み源の標的同位体比率は、天然の取り込み源の由来を選択することによって得ることができる。このようなある態様において炭素源は、例えば、炭素‐14が相対的に減少している可能性のある化石燃料由来の炭素源、または、二酸化炭素などの環境中の炭素源、から選択され得る。上記二酸化炭素などの環境中の炭素源は、その石油由来の対照物に比べて炭素‐14をより多く有している可能性がある。
不安定な炭素同位体である炭素‐14または放射性炭素は、地球上の大気中において、凡そ1012個の炭素原子のうちの1個である。炭素‐14の半減期は、およそ5700年である。宇宙線および通常の窒素(14N)を含む核反応によって、超高層大気においてそのストックが補充される。ずっと以前に減衰したため、化石燃料は炭素‐14を含まない。石油燃料を燃焼することは、大気中の炭素‐14を低減させるだろう(ジュースの効果(Suess effect))。実際、樹木の年輪で測定された大気の炭素‐14は、核爆弾の試験によって大気中へ炭素‐14の注入が開始された1850年から1954年の間に、2%から2.5%減少した。
ASTM D6866は、放射性炭素による年代測定を用いた固体、液体、および気体の試料の生物起源内容物(biobased content)を決定するための規格化された分析方法として、米国において開発された。具体的には、ASTM D6866は、生産物にバイオマスを最も多く使用する生産者に対して、調達の際に連邦政府関係機関が優先権を与える(the Farm Security and Rural Investment Act of 2002)ことを要求する法律を満たすように、米国農務省の依頼により開発された。放射性炭素による年代測定のみが生産物の生物起源内容物の決定のために実行可能で正確な技術であることが迅速に確認された。工業的な利用のための放射性炭素による年代測定の作業標準は、2004年に完成し、現在、米国連邦法(7 CFR part 2902)に引用されている。ASTM D6866は、2004年に初めて公布された。それ以来、いくつかのバージョンが発表された。現在活用されている標準規格のバージョンは、2011年4月1日に有効のD6866‐11である。
同位体濃縮は、安定同位体比率質量分析計(SIRMS)および核磁気共鳴による部位特異的天然同位体分率(SNIF-NMR)などの公知技術を用いて、容易に評価される。このような質量分析技術は、液体クロマトグラフィー(LC)、および/または高速液体クロマトグラフィー(HPLC)などの技術と統合させることが可能である。
単量体の生物起源内容物(すなわち、Fmまたはfraction modern)は、加速質量分析器(AMS)により測定された炭素‐14(14C)と炭素‐12(12C)との比によって見積もられる。具体的には、Fraction Modern(Fm)は次の表現から計算される:Fm=(S−B)/(M−B)。ここで、B、S、およびMは、それぞれブランク、試料、および現代対照の14C/12C比である。Fraction Modernは、「現代」からの試料における14C/12C比の偏りの測定である。現代は、δ13VPDB=−19パーミルに正規化されたNBSシュウ酸I(すなわち、SRM 4990b)の放射性炭素濃度(西暦1950年)の95%として規定される。Olsson, The use of Oxalic acid as a Standard. In, Radiocarbon Variations and Absolute Chronology, Nobel Symposium, 12th Proc., John Wiley & Sons, New York (1970)。
AMSの結果は、δ13VPDB=−19パーミルに正規化されたNBSシュウ酸I(SRM 4990b)の比放射能の0.95倍という国際的に合意された定義を用いて計算される。これは、1.176±0.010×10−12という14C/12Cの絶対日(西暦1950年)と等価である。Karlen et al., Arkiv Geofysik, 4:465-471 (1968)。
シュウ酸スタンダード(SRM 4990bまたはHOx 1)は、1955年のテンサイ(sugar beet)の収穫物から調製された。1000lbsのシュウ酸スタンダードが生成されたが、もう市販されていない。別のスタンダードであるシュウ酸IIは、SRM 4990bの在庫が徐々に減少して枯渇し始めたときに調製された。上記シュウ酸IIスタンダード(HOx 2;N.I.S.T名称はSRM 4990 C)は、1977年のフランステンサイ糖蜜(French beet molasses)の収穫物から調製された。1980年代の初頭には、12の実験室のグループが上記2つのスタンダードの比を測定した。シュウ酸IIに対するシュウ酸Iの放射能比は、1.2933±0.001(加重平均)である。Mann, Radiocarbon, 25(2):519-527 (1983)。HOx 2の同位体比は、−17.8パーミルである。ASTM D6866‐11は、現代スタンダードとしてSRM 4990 Cの使用を提案している。Fm=0%は、炭素‐14原子の完全な欠如を表し、したがって、化石(例えば、石油ベース炭素源)を示している。同様に、1950年の爆弾による大気中への炭素‐14の注入に対する補正を行った後のFm=100%は、完全に現代の炭素源を示している。
ASTM D6866に記載されているように、パーセント現代炭素(pMC)は、100%よりも大きくなり得る。なぜならば、ASTM D6866‐11に記載されているように、大気中の炭素‐14をかなり濃縮するという結果を招いた、1950年代の核実験プログラムの効果が持続しながらも減少していくからである。なぜならば、すべての炭素‐14放射能の試料は、爆弾以前(pre-bomb)のスタンダードを基準としているからである。そして、なぜなら、ほとんどすべての新しい生物起源の生産物は爆弾以後(post-bomb)の環境下で生産されているからである。すべてのパーセント現代炭素の値(同位体比の補正後)は、試料の正しい生物起源内容物をよりよく反映するために、0.95倍(2010年以降)されなければならない。103%よりも大きい生物起源内容物は、分析上の誤差が生じたか、または生物起源炭素源が数年古いか、のいずれかを示している。
ASTM D6866は、材料の総有機物内容物に対する生物起源内容物を定量するが、無機炭素およびその他の非炭素含有物質の存在は考慮しない。例えば、ある材料の例およびそれらに対応するASTM D6866の結果は以下に示す通りである:
生産物1:50%がでんぷんベースの原料、50%が水、の液体。生物起源内容物=100%(生産物1は50%の有機内容物を含み、そのフラクションの100%は生物起源である。)
生産物2:50%がでんぷんベースの原料、25%が石油ベース、25%が水、の液体。生物起源内容物=66.7%(生産物2は75%の有機内容物を含むが、そのフラクションの50%のみが生物起源である。)
生産物3:50%がガラス、50%が石油由来のポリエチレン、の固体。生物起源内容物=0%(生産物3は50%の有機内容物を含むが、そ100%が化石源である;ガラスは炭素含有物ではない。)
生産物4:50%がガラス、50%がバイオマス由来のポリエチレン、の固体。生物起源内容物=100%(生産物4は50%の有機内容物を含み、その100%が再生可能である。)
生産物5:50%が大豆ベースの原料、30%が石油ベース、10%が水、10%が無機原料、の液体。生物起源内容物=62.5%(生産物5は80%の有機内容物を含むが、その50%のみが再生可能である。)
再生可能原料の生物起源内容物を計量するために、炭素‐14を用いた年代測定技術を適用することは公知である。Currie et al., Nuclear Instruments and Methods in Physics Research B, 172:281-287 (2000)。例えば、テレフタラート(terephthalate)含有原料における生物起源内容物の定量に、炭素‐14を用いた年代測定が用いられている。Colonna et al., Green Chemistry, 13:2543-2548 (2011)。特に、再生可能な1,3‐プロパンジオールおよび石油由来のテレフタル酸から生成されたポリプロピレンテレフタラート(PPT)ポリマーでは、そのFm値がおおよそ30%(すなわち、ポリマー炭素の3/11が再生可能な1,3‐プロパンジオール由来であり、8/11が化石エンドメンバーであるテレフタル酸由来である)という結果になった。上記のCurrie et al.。一方、再生可能な1,4‐ブタンジオールおよび再生可能なテレフタル酸の双方から生成されたポリブチレンテレフタレートポリマーでは、生物起源内容物が90%を超えるという結果になった。上記、Colonna et al.。
その結果、ある態様において本発明は、大気の炭素取り込み源を反映している、炭素‐12、炭素‐13、および炭素‐14の比を有するブタジエンまたはブタジエン中間体を提供する。例えば、ある実施例においてブタジエンまたはブタジエン中間体は、少なくとも60%、少なくとも65%、少なくとも70%、少なくとも75%、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、少なくとも98%、または100%と同程度のFm値であり得る。このようなある態様において取り込み源は二酸化炭素である。ある態様において本発明は、石油ベースの炭素取り込み源を反映している、炭素‐12、炭素‐13、および炭素‐14の比を有するブタジエンまたはブタジエン中間体を提供する。ある実施例においてブタジエンまたはブタジエン中間体は、10%未満、5%未満、2%未満、または1%未満のFm値であり得る。ある態様において本発明は、大気の炭素取り込み源および石油ベースの炭素取り込み源の組み合わせによって得られる、炭素‐12、炭素‐13、および炭素‐14の比を有するブタジエンまたはブタジエン中間体を提供する。取り込み源のこのような組み合わせは、炭素‐12、炭素‐13、および炭素‐14の比を変化させる1つの手段である。
本明細書中に開示された培養条件および発酵条件に加えて、ブタジエンの生合成を達成するための増殖条件は、培養条件に対する浸透圧保護剤の添加を含み得る。ある態様において、本発明の非天然微生物は、浸透圧保護剤の存在下にて本明細書中に記載されたように維持され、培養され、または発酵され得る。簡単には、浸透圧保護剤は、浸透圧調節物質(osmolyte)として作用する化合物のことであり、本明細書中に記載されるような微生物が浸透圧ストレスから生き延びることを補助する。浸透圧保護剤としては、ベタイン、アミノ酸および糖トレハロースが挙げられるがこれらに限定されない。このようなものの非限定的な例は、グリシンベタイン、プラリンベタイン、ジメチルテチン、ジメチルスルホニオプロピオン酸、3‐ジメチルスルホニオ‐2‐メチルプロピオン酸、ピペコリン酸、ジメチルスルホニオ酢酸、コリン、L−カルニチン、およびエクトインである。ある実施形態において、浸透圧保護剤は、グリシンベタインである。本明細書中に記載の微生物を浸透圧ストレスから保護するために好適な浸透圧保護剤の量および型が、使用される微生物に依存することは、当業者に理解される。培養条件下での浸透圧保護剤の量は、例えば、約0.1mM以下、約0.5mM以下、約1.0mM以下、約1.5mM以下、約2.0mM以下、約2.5mM以下、約3.0mM以下、約5.0mM以下、約7.0mM以下、約10mM以下、約50mM以下、約100mM以下、または約500mM以下であり得る。
培養条件としては、例えば、液体培養手順、および発酵あるいは他の大規模培養手順が挙げられ得る。本明細書中に記載されるように、特に本発明の生合成産物の有用な生産量が、嫌気性条件下または実質的に嫌気性の条件下で取得され得る。
本明細書中に記載されるように、ブタジエンの生合成を達成するためのある例示的増殖条件は、嫌気性培養または発酵培養を含む。特定の態様において、本発明の非天然微生物は、嫌気性条件下または実質的に嫌気性の条件下にて維持され、培養され、または発酵され得る。簡単には、嫌気性条件は、酸素を欠いている環境をいう。実質的に嫌気性の条件は、例えば、培地中に溶解した酸素の濃度が0〜10%飽和を維持するような、培養、バッチ発酵または連続的発酵を含む。実質的に嫌気性の条件はまた、酸素1%未満の雰囲気で維持されたシールされたチャンバの内部の液体培地中または固体寒天上で増殖している、または静止期にある細胞も含む。酸素の割合は、例えば、培地を、N/CO混合物または好適な非酸素ガスで噴霧することによって維持され得る。
本明細書中に記載された培養条件は、スケールアップされ得、ブタジエンを製造するために連続的に増殖され得る。例示的な増殖手順としては、例えばフェドバッチ発酵およびバッチ分離(フェドバッチ発酵および連続的分離または連続的発酵および連続的分離)において利用され得る。これらの手順の全てが当該分野にて周知である。発酵手順は、市販品質のブタジエンの生合成による生産に特に有用である。大抵の場合、そして非連続的な培養手順を用いる場合、ブタジエンの連続的な生産および/またはほぼ連続的な生産は、対数増殖期における増殖を維持するおよび/またはほぼ維持するために十分な栄養素および培地にて本発明の非天然のブタジエン産生微生物を培養することを含む。このような条件下での連続的な培養としては、1日、2日、3日、4日、5日、6日、7日またはそれ以上にわたって増殖させることを含み得る。さらに、連続的な培養は、1週間、2週間、3週間、4週間、5週間またはそれ以上、から数ヶ月までの長期間を含む。あるいは、本発明の生物は、特定の適用に好適である場合、数時間にわたって培養され得る。連続的および/またはほぼ連続的な培養条件はまた、これらの例示的な期間における間隔の全ての時点を含み得ることは、理解されるべきである。さらに、本発明の微生物を培養する時間が、所望の目的のために十分量の産物を生産するために十分な期間にわたることも、理解される。
発酵手順は、当該分野にて周知である。簡単には、ブタジエンの生合成による生産のための発酵は、例えばフェドバッチ発酵およびバッチ分離(フェドバッチ発酵および連続的分離または連続的発酵および連続的分離)において利用され得る。バッチ発酵手順および連続的発酵手順の例は当該分野にて周知である。
実質的な量のブタジエンの連続的生産のための本発明のブタジエンプロデューサを用いる上記発酵手順に加えて、ブタジエンプロデューサが、例えば、産物を他の化合物へ変換するための化学的な合成手順にもまた、同時に供され得るか、または、産物が、発酵培養から分離されて、所望される場合、産物を他の化合物へ変換する化学的変換に、続けて供され得る。
よりよいプロデューサを生成するために、増殖条件を最適化するための代謝性モデリングが利用され得る。モデリングはまた、経路の利用をさらに最適化する遺伝子ノックアウトを設計するために使用され得る(例えば、米国特許公開US 2002/0012939号、US 2003/0224363号、US 2004/0029149号、US 2004/0072723号、US 2003/0059792号、US 2002/0168654号およびUS 2004/0009466号、ならびに米国特許第7,127,379号参照)。モデリング分析は、ブタジエンのより効率的な生産へ向けて代謝をシフトすることによる細胞増殖に対する効果の信頼し得る予測を可能にする。
所望の生成物の生合成に都合よい代謝性の変更を同定および設計するための、コンピューター利用方法は、OptKnockコンピューター利用フレームワークである(Burgard et al., Biotechnol. Bioeng. 84:647-657 (2003))。OptKnockは、遺伝子欠失戦略または遺伝子破壊戦略を示唆する代謝性モデリングおよびシミュレーションプログラムであり、これは、標的生成物を過剰産生する遺伝的に安定な微生物を生じさせる。詳細には、このネットワークは、遺伝子操作を示唆するために微生物の完全な代謝および/またはバイオケミカルのネットワークを試験する。上記遺伝子操作は、所望のバイオケミカルが細胞増殖の必須の副生成物となることを強いる。戦略的に配置した遺伝子欠失または他の機能的な遺伝子破壊を介してバイオケミカル生産を細胞増殖と結合することによって、バイオリアクタ内に長期間置かれた操作された系統に強いられた増殖選択圧は、強制的な増殖結合バイオケミカル生産の結果としてパフォーマンスの改善を導く。最終的には、遺伝子欠失が構築される場合、設計された系統がその野生型系統へ戻る可能性がわずかにある。なぜなら、OptKnockによって選択された遺伝子は、ゲノムから完全に除かれるべきだからである。したがって、このコンピューター利用方法論は、所望の生成物の生合成を導く代替の経路を同定するために使用され得るか、あるいは、所望の生成物の生合成をさらに最適化するために非天然の微生物と組み合わせて使用される。
簡単には、OptKnockは、細胞性代謝をモデリングするためのコンピューター方法およびコンピューターシステムを参照して本明細書中で使用される用語である。OptKnockプログラムは、特定の構成要素をフラックスバランス分析(FBA)モデルに組み込むモデルおよび方法のフレームワークに関する。これらの構成要素は、例えば、質的な動力学的情報、質的な調節情報、および/またはDNAマイクロアレイ実験データを含む。OptKnockはまた、例えば、フラックスバランスを介して得られるフラックスバウンダリを厳しく制限すること、および引き続いて、遺伝子の付加または欠失の存在下での代謝性ネットワークのパフォーマンス制限を探ることによって種々の代謝性問題に対する解決策を算出する。OptKnockコンピューターフレームワークは、モデル処方の構築を可能にする。これは、代謝性ネットワークのパフォーマンス制限の効率的なクエリを可能にし、生じた混合整数線形プログラミング問題を解決するための方法を提供する。本明細書中にてOptKnockというこの代謝性モデリング方法およびシミュレーション方法は、例えば、米国特許公開US 2002/0168654号(2002年1月10日出願)、国際特許出願PCT/US02/00660号(2002年1月10日出願)、および米国特許公開US 2009/0047719号(2007年8月10日出願)に記載される。
生成物の生合成的な生産に都合よい代謝性の変更を同定および設計するための、別のコンピューター利用方法は、SimPheny(登録商標)と称される代謝性モデリングおよびシミュレーションシステムである。このコンピューター方法およびシステムは、例えば、米国特許公開US 2003/0233218号(2002年1月14日出願)、および国際特許出願PCT/US03/18838号(2003年6月13日出願)に記載される。SimPheny(登録商標)は、ネットワークモデルをインシリコで生成するため、および、生物学的システムの化学反応を介して質量、エネルギーまたはチャージのフラックスをシミュレーションするために使用され得、システム中の化学反応に起こり得る機能のいずれかまたは全て含む解決スペースを規定し、これにより、生物学的システムに対して許された活性の範囲を決定する。このアプローチは、制限ベースのモデリングといわれる。なぜなら、解決スペースが、制限(例えば、含まれる反応の公知の化学量論、ならびに反応を介する最大限のフラックスに関連する反応熱力学および性能制限)によって規定されるからである。これらの制限によって規定されるスペースは、表現型の能力、および生物学的システムの挙動またはそのバイオケミカル成分の挙動を決定するために質問され得る。
これらのコンピューターアプローチは、生物学的な現実と一致する。なぜなら、生物学的システムはフレキシブルであり、そして多くの種々の方法において同一の結果に達し得るからである。生物学的システムは、進化メカニズムを介して設計される。これは、全ての生活システムが向き合わねばならない基本的な制約によって制限されている。したがって、制約ベースのモデリング戦略は、これらの一般的な現実を受け入れる。さらに、制約を厳しくすることを介してネットワークモデルにさらなる制限を連続的に強いる能力は、解決スペースのサイズにおける削減を生じ、これにより、物理的パフォーマンスまたは表現型が予測され得る精度を増強する。
本明細書中に提供される教示およびガイダンスによれば、当業者は、代謝性モデリングおよびシミュレーションについての種々のコンピューターフレームワークを適用して、宿主微生物中での所望の化合物の生合成を設計および実行し得る。このような代謝性モデリング方法およびシミュレーション方法としては、例えば、SimPheny(登録商標)およびOptKnockとして上記で例示したコンピューターシステムが挙げられる。本発明を例証するために、いくつかの方法が、モデリングおよびシミュレーションのためのOptKnockコンピューターフレームワークを参照して本明細書中に記載される。当業者は、任意の他の代謝性モデリングへのOptKnockや、当該分野にて周知のシミュレーションのコンピューターフレームワークおよび方法を用いて、代謝性の変更の同定、設計および実行をどのように適用するのかを理解する。
上記方法は、破壊するための代謝性反応の1セットを提供する。このセットまたは代謝性改変の内の各反応を消去することは、生物の増殖期の間に所望の生成物を必須の生成物として生じ得る。反応が公知であるので、ビレベル(bilevel)OptKnock問題に対する解決策はまた、反応セット内の各反応を触媒する1つ以上の酵素をコードする関連遺伝子を提供する。1セットの反応、およびこれらに対応する、各反応に関連する酵素をコードする遺伝子の同定は、一般に自動化プロセスであり、酵素とコード遺伝子との間の関係を有する反応データベースとの反応の相関を介して達成される。
一旦同定されると、所望の生成物の生産を達成するために除去されるべき反応セットは、セット内の各代謝性反応をコードする少なくとも1つの遺伝子の機能的破壊によって、標的細胞または標的器官に関連される。この反応セットの機能的破壊を達成するための1つの特定の有用手段は、各コード遺伝子の欠失による。しかし、特定の例において、他の遺伝的異常(例えば、調節領域(例えばプロモータまたは調節因子のためのcis結合部位)の変異、欠失)によって、あるいは多数の遺伝子座のいずれかにおけるコード配列の短縮によって、その反応を破壊することは有利であり得る。後者の異常は、その遺伝子セットの総欠失よりも少なく生じて、例えば、生成物のカップリングの迅速な評価が望まれる場合または遺伝的転位がほとんど生じていない場合に有用であり得る。
上記のビレベルOptKnock問題は、破壊するためのさらなる反応セット、および生合成(所望の生成物の増殖結合生合成)を生じ得る代謝性改変を導く。上記問題に対するさらなる生産的解決策を同定するために、整数カットと称される最適化方法が実行される。この方法は、各反復にて整数カットとして称されるさらなる制約の組込みを用いて、上記で例示したOptKnock問題を繰り返して解決することによって進行する。
整数カットの制約は、任意の繰り返しにおいて同定された正確に同一の反応セットを選択することから解決手順を効率的に妨げる。これは、増殖するために生成物生合成を必然的に結合する。例えば、以前に同定した増殖結合代謝性改変は、破壊のために反応1、2および3を特徴付け、次いで、引き続く制約が、同一の反応を次の解決策において同時に考慮されることから妨げる。整数カット法は、当該分野にて周知であり、例えば、Burgard et al., Biotechnol. Prog. 17:791-797 (2001)に記載されることが見出され得る。代謝性モデリングおよびシミュレートのためのOptKnockコンピューターフレームワークと組み合わせる使用を参照して本明細書中に記載された方法の全てと同様に、繰り返しコンピューター分析におけるリダンダンシーを低減する整数カット方法はまた、当該分野にて周知のほかのコンピューターフレームワーク(例えばSimPheny(登録商標)を含む)を用いて適用され得る。
本明細書中に例証される方法は、所望の生成物を生合成的に産生する細胞および器官の構成を可能にする。これは、標的バイオケミカル生成物の産生を、同定された遺伝的変更を保有するように操作された細胞または器官の増殖に、不可欠に結合することを含む。したがって、本明細書中に記載されるコンピューター法は、代謝性改変の同定および実施を可能にする。これは、OptKnockまたはSimPheny(登録商標)より選択されるインシリコ法によって同定される。代謝性改変のセットは、例えば、1つ以上の生合成経路の酵素の付加、および/または、1つ以上の代謝性反応の破壊(例えば遺伝子欠失による破壊を含む)を含み得る。
上述したように、OptKnock方法論は、長期間の増殖選択に供される場合にコンピューターによって予測される最大増殖表現型へ向けて変異体微生物ネットワークが進化され得ることを前提に発展させられた。すなわち、このアプローチは、選択圧下にて自己で最適化する生物の能力を利用する。OptKnockフレームワークは、遺伝子欠失組合せの網羅的な算出を可能にする。これは、ネットワーク化学量論に基づいてバイオケミカル産生と細胞増殖との間の結合を強いる。最適な遺伝子/反応ノックアウトの同定は、ビレベル最適化問題の解決を必要とする。上記問題は、活性な反応のセットを選択し、その結果、生じるネットワークについての最適な増殖解決策が目的のバイオケミカルを過剰産生することである(Burgard et al., Biotechnol. Bioeng. 84:647-657 (2003))。
E.coli代謝のインシリコ化学量論モデルを使用して、これまでに例示し以下に記載されるような代謝経路に必須の遺伝子を同定し得る:例えば、米国特許公開 US 2002/0012939号、US 2003/0224363号、US 2004/0029149号、US 2004/0072723号、US 2003/0059792号、US 2002/0168654号、およびUS 2004/0009466号、ならびに米国特許第7,127,379号。本明細書中に開示されるように、OptKnock数学的フレームワークは、ピンポイントの遺伝子欠失に適用され得る。上記欠失は所望の生成物の増殖結合産生を導く。さらに、ビレベルOptKnock問題の解決は、唯一の欠失セットを提供する。意味のある解決策の全て、すなわち、増殖結合産生形成を導くノックアウトの全てのセットを挙げるために、整数カットと称される最適化技術が実行され得る。これは、上述したように、各反復時に、整数カットといわれるさらなる制約の取込みを用いてOptKnock問題を解決することを反復して必要とする。
本明細書で開示されるように、ブタジエン経路の所望の活性をコードする核酸を、宿主に導入し得る。特定の場合において、ブタジエン経路酵素またはブタジエンタンパク質の活性をブタジエンンの生成が増加するように改変することが好ましい。例えば、タンパク質または酵素の活性を増加させる公知の変異をコード核酸分子に導入し得る。さらに、酵素もしくはタンパク質の活性を増加させるため、および/または、阻害活性を減少させるために、最適化された方法を適用し得る。例えば、上記の阻害活性は、ネガティブ制御因子の活性である。
上記の最適化された方法の1つは、指向性進化である。酵素の性質を改良および/または変化させるために、特定の遺伝子を標的とする変異の導入を含む指向性進化は強力なアプローチである。種々の酵素改変体(例えば、>10)の自動スクリーニングを可能にする高感度ハイスループットスクリーニングアッセイを介して、改良および/または変化させた酵素を同定し得る。最適化された特性を有する酵素を産出するために、一般的に、変異誘発およびスクリーニングの反復する巡回を行う。変異のための遺伝子の領域の同定のために役立ち得るコンピューターのアルゴリズムも開発されており、上記アルゴリズムは、発生させスクリーニングするために必要な酵素改変体の数を減少させ得る。多くの指向性進化の技術が、種々の改変体のライブラリーを作製することに効果的であるように開発されている(以下を参照せよ、Hibbert et al., Biomol.Eng 22:11-19 (2005); Huisman and Lalonde, In Biocatalysis in the pharmaceutical and biotechnology industries pgs. 717-742 (2007), Patel (ed.), CRC Press; Otten and Quax. Biomol.Eng 22:1-9 (2005).; and Sen et al., Appl Biochem.Biotechnol 143:212-223 (2007))。これらの方法は、多くの酵素分類に渡る特性の広範囲の改善に適用され、成功している。指向性進化の技術によって改良および/または変化させられた酵素の特性は、例えば:非天然の基質の転化に対する選択性/特異性;粗暴な高温工程に対する温度安定性;低または高pH条件下におけるバイオプロセスに対するpH安定性;高生産力価を達成するための基質または生成物の許容度;非天然の基質を含む拡張した基質の結合を含む結合力(K);生成物、基質または重要な中間生成物による阻害を除去するために、阻害量(Ki);所望のフラックス(flux)まで酵素反応率を増加させるための活性(Kcat);タンパク質の収集量および全体の経路フラックスを増加させるための発現レベル;好気性条件下における空気感受性酵素の操作のための酸素安定性;および酸素が非存在下における好気性酵素の操作に対する嫌気性活性である。
特定の酵素の所望する特性を標的とするための遺伝子の変異および多様化のために開発された例示的な方法をより詳細に以下に記載する。上記の方法は、当該分野の当業者に周知である。ブタジエン経路の酵素またはタンパク質の活性を変化させるまたは最適化させるために、それらの任意のものを使用する。
EpPCR(Pritchard et al., J Theor.Biol. 234:497-509 (2005))は、PCR反応におけるDNAポリメラーゼのフィデリティーを減少させることによって、ランダムな点変異を導入する。上記フィデリティーは、Mn2+イオンの添加、偏りのあるdNTP濃度、または他の条件の変化によって減少させられる。目的の標的遺伝子の変異誘発を制限する5つのステップのクローニング工程は以下を含む。:1)目的の遺伝子のエラープローンPCRによる増幅;2)制限酵素による消化;3)所望のDNAフラグメントのゲル精製;4)ベクターへのライゲーション;5)適当な宿主への遺伝子改変体の形質転換および改良された性能に対するライブラリーのスクリーニング。この方法は、単一の遺伝子において、多様な変異を同時に生じ得、多数の所望の活性を有する可能性のある改変体のスクリーニングに対し有効に成り得る。EpPCRによって多数の変異体を生じ得る、よって、ハイスループットスクリーニングアッセイまたは選択方法(例えば、ロボットを使用した)は、所望の特性を有している変異体を同定するのに有効である。
エラープローンローリングサークル増幅(epRCA)(Fujii et al., Nucleic Acids Res. 32:e145 (2004); and Fujii et al., Nat. Protoc. 1:2493-2497 (2006))は、テンプレートとして全体が環状のプラスミドを使用し、ランダムな6mer(最後の2つのヌクレオチドにエンドヌクレアーゼ耐性チオリン酸が連結している。)を使用してプラスミドを増幅し(ここで、プラスミドはタンデムリピートにて再度環状化される。)、続いて細胞に形質転換するということを除いてepPCRと同様である。Mn2+の濃度を調節することは、幾分、変異率を変化し得る。この技術は、単純なエラープローンを使用し、kbp当たり3〜4変異を有するプラスミドの完全コピーを生成するための単一ステップの方法である。制限酵素の消化または特定のプライマーを必要としない。さらに、一般的にこの方法は、市販の入手可能なキットを利用できる。
DNAシャッフリングまたはファミリーシャッフリング(Stemmer, Proc Natl Acad Sci USA 91:10747-10751 (1994); and Stemmer, Nature 370:389-391 (1994))は、典型的には、ヌクレアーゼ(例えばDNase IまたはEndoV)を用いた、ランダムフラグメントのプールを生成するための2つ以上の改変体遺伝子の消化を含む。上記フラグメントは、DNAポリメラーゼの存在下にてアニーリングおよび伸長のサイクルによってリアセンブリされてキメラ遺伝子のライブラリーを生成する。フラグメントは、お互いに、プライムし、1つのコピーが他のコピーをプライムすると組換えが生じる(テンプレートスイッチ)。この方法は、>1kbのDNA配列を用いて使用され得る。フラグメントのリアセンブリによる変異性の組換えに加えて、この方法は、伸長ステップにおいてエラープローンPCRと同様の確率にて、点変異を導入する。上記の方法は、有害、ランダムおよび偏りのない変異を除去するために使用され得る。
時差伸長(Staggered Extension)(StEP)(Zhao et al., Nat. Biotechnol. 16:258-261 (1998))は、テンプレートのプライミングを行い、続いて、変性および非常に短いアニーリング/伸長の期間(約5秒間)の2ステップPCRの反復サイクルを行う。増殖したフラグメントは、異なるテンプレートにアニールし、さらに伸長する。完全長の配列が作製されるまで繰り返される。テンプレートスイッチは、結果として得られるフラグメントのほとんどが多様な親を有することを意味する。低いフィデリティーのポリメラーゼ(TaqおよびMutazyme)の組み合わせは、逆の変異性のスペクトルのためにエラープローンの偏りを減少させる。
ランダムプライミングリコンビネーション(RPR)において、(ランダムな配列のプライマーを使用して、テンプレートの種々のセグメントに相補的な多くの短いDNAフラグメントを生成する(Shao et al., Nucleic Acids Res 26:681-683 (1998))。epPCRを介した、塩基の結合のミスおよびプライミングのミスが点変異を供給する。短いDNAフラグメントは、相同性に基づいている他の1つにプライムし、再結合させられる。そして、繰り返しの熱サイクルによって、完全長にリアセンブリさせられる。このステップよりも先のテンプレートの除去は、低い親子関係の(low parental)組換えを保証する。この方法は(他のほとんどの方法の様に)、明確な特性が進化するように複数回の反復にわたって行われ得る。この技術は、配列の偏りを回避し、遺伝子の長さに依存せず、増幅のためにごく少量の親DNAを必要とする。
ヘテロ二重鎖リコンビネーションにおいては、線状プラスミドDNAを用いてミスマッチリペアによって修復されたヘテロ二重鎖を形成する(Volkov et al, Nucleic Acids Res. 27:e18 (1999); and Volkov et al., Methods Enzymol. 328:456-463 (2000))。このミスマッチリペアのステップは、少なくとも、特定の変異誘発性を含む。ヘテロ二重鎖は、線状のホモ二重鎖よりも効率的に形質転換させる。この方法は大きな遺伝子およびオペロン全体に対して好適である。
一時的なテンプレートに対するランダムなキメラ誘発(Random Chimeragenesis on Transient Templates)(RACHITT)(Coco et al., Nat. Biotechnol. 19:354-359 (2001))は、一本鎖DNAの、DNase Iフラグメンテーションおよびサイズ分画を使用する。ポリメラーゼの非存在下で、相同のフラグメントを相補的なssDNAの足場に対してハイブリダイズする。任意の重複したしたフラグメントの末端は、エキソヌクレアーゼによって切断される。フラグメント間の隔たりは塞がれ、その後ライゲーションされ、足場に対してハイブリダイズさせる完全長の種々の鎖のプールを供給する。上記プールは、増幅を防止するために、Uを含む。その後、足場は壊され、PCRによって種々の鎖に相補的な新しい鎖が取って代わる。上記方法は、1つの鎖(足場)を含む。プライミングするフラグメントが他の遺伝子に由来している一方で、上記鎖は1つだけの親に由来する。そして、親の足場が選択される。よって、親フラグメントへの再アニーリングは生じない。重複したフラグメントは、エキソヌクレアーゼによって切断される。その他の点においては、これは、概念的に、DNAのシャッフリングおよびStEPと同様である。したがって、兄弟、不活性、シャッフルされない親は存在しない方がよい。この技術は、親遺伝子が少量生成される、または、生成されない場合において利点がある。標準的なDNAシャッフリングより多いクロスオーバーを生じる。
短縮化したテンプレートに対するリコンビナント伸長(Recombined Extension on Truncated templates)(RETT)はフラグメントのプールとして使用される一方向ssDNAフラグメントの存在下で、プライマーから一方向に成長する鎖のテンプレートスイッチを引き起こす(Lee et al., J. Molec. Catalysis 26:119-129 (2003))。エンドヌクレアーゼは、使用しない。一方向ssDNAをランダムプライマーとDNAポリメラーゼとによって生成する、または、エキソヌクレアーゼを用いた一連の欠失体とDNAポリメラーゼとによって生成する。一方向ssDNAはテンプレートに過ぎず、プライマーではない。DNAシャッフリング/RACHITTの酵素の消化の事実のように、ランダムプライミングおよびエキソヌクレアーゼは、配列の偏りを導入しない。非常に短い伸長の代わりに通常のPCRの条件を使用するため、RETTはStEPよりも最適化することが容易であり得る。組換えは、PCRのステップの構成要素のために生じる(直接的なシャッフリングではない)。この方法は、途切れの欠如に起因するStEPよりランダムにも成り得る。
変性オリゴヌクレオチド遺伝子シャッフリング(DOGS)において、変性プライマーを使用して分子間の組換えを制御する(Bergquist and Gibbs, Methods Mol.Biol 352:191-204 (2007); Bergquist et al., Biomol.Eng 22:63-72 (2005); Gibbs et al., Gene 271:13-20 (2001))。これは、親遺伝子を再生するためのDNAシャッフリングのような他の方法が、偏りを制御するために使用され得る。この方法は、選択された遺伝子部分のランダム変異誘発(epPCR)と併用され得る。これは、親配列の再構成を遮るのに好ましい方法に成り得る。エンドヌクレアーゼを必要としない。生成される部分の投入濃度を調整することによって、所望するバックボーンを偏らせ得る。この方法は、制限酵素が消化することなしに関連のない親からのDNAシャッフリングを可能にし、ランダム変異誘発方法の選択を可能にする。
ハイブリッド酵素の生成のための増大した短縮化(Incremental Truncation for the Creation of Hybrid Enzymes)(ITCHY)は、目的の遺伝子または遺伝子フラグメントの1塩基対欠失を有するコンビナトリアルライブラリを生成する(Ostermeier et al., Proc. Natl. Acad. Sci. USA 96:3562-3567 (1999); and Ostermeier et al., Nat. Biotechnol. 17:1205-1209 (1999))。2つの異なる遺伝子の断片において逆方向に、短縮を導入する。これらを一緒にライゲーションして、融合体をクローニングする。この技術は、2つの遺伝子間の相同性を必要としない。ITCHYをDNAシャッフリングと併用する場合、このシステムをSCRATCHY(下記参照)と呼ぶ。上記両方法の主要な利点は、親遺伝子間の相同性を必要としないことである。例えば、E.coliの遺伝子およびヒトの遺伝子間の機能的融合が、ITCHY介して生成された。ITCHYライブラリーが形成されると、全ての可能性のあるクロスオーバーが、捕獲される。
ハイブリッド酵素の生成のためのチオ増大した(Thio−Incremental)短縮化(THIO−ITCHY)は、ホスホチオン酸dNTPを用いて短縮化を生成することを除いてITCHYと同様である(Lutz et al., Nucleic Acids Res 29:E16 (2001))。ITCHYと比較すると、THIO−ITCHYは、最適化することが容易であり得、より再生可能および調整可能なものを提供する。
SCRATCHYは、遺伝子を再結合させるための、ITCHYおよびDNAシャッフリングの2つの方法を結合する(Lutz et al., Proc. Natl. Acad. Sci. USA 98:11248-11253 (2001))。SCRATCHYは、ITCHYおよびDNAシャッフリングの最良の特徴を結合する。初めに、ITCHYは、DNAの相同性に依存せずに遺伝子のフラグメント間の融合の包括的なセットを生成するために使用される。その後、クロスオーバーの数を増やすために、この人工的なファミリーにDNAシャッフリングのステップを実行する。コンピューターの予想を最適化に使用し得る。配列の相同性が80%よりも低い場合、SCRATCHYはDNAシャッフリングよりも効果的である。
ランダムドリフト変位誘発(RNDM)において、epPCRを介して作製した変異に続いて、残存する利用可能な活性をスクリーニング/選択する(Bergquist et al., Biomol. Eng. 22:63-72 (2005))。その後、複数の活性変異体間の融合、または、活性変異体およびある他の所望の親間の融合を有する組換え体を生成するために、これらはDOGSにおいて使用される。偏りのない変異の単離を促進するために設計されている:その目的は残存する触媒活性が、オリジナル遺伝子よりも強いまたは弱いか否かをスクリーニングすることである。スクリーニングが、バックグランド中において活性を検出することができる場合、RNDMはハイスループットアッセイにおいて使用可能である。様々な生成において、RNDMは、DOGSに対し先に使用されている。この技術は、シャッフリングまたは他の一連のステップの前に、活性に対する要求を負わせる;より小さいライブラリーからより高く/より早い改良を得るために、偏りのないドリフトライブラリーを示す。epPCRを使用することが公表されているが、他のラージスケール変異誘発方法が適用され得る。
配列飽和変異誘発(SeSaM)は、ランダム変異誘発方法であり:1)ホスホチオン酸ヌクレオチドのランダム組込みおよび消化を用いてランダムな長さのフラグメントのプールを生成し、上記フラグメントをテンプレートとして用いる2)「ユニバーサル」塩基(例えば、イノシン)の存在下で伸長させる;3)イノシン含有相補体の複製がランダムな塩基の組込みを生じ、結果として変位誘発を生じる(Wong et al., Biotechnol. J. 3:74-82 (2008); Wong et al., Nucleic Acids Res. 32:e26 (2004); and Wong et al., Anal. Biochem. 341:187-189 (2005))。この技術を使用し、簡単な方法によって変異体の大きなライブラリーを2〜3日以内に生成することが可能になる。この技術は、DNAポリメラーゼの変異の偏向性と比較すると方向を持たない。この方法における相違によって、この技術はepPCRを補う(または、代替えとなる)。
合成シャッフリングにおいて、「標的中の遺伝的多様性の全て」をコードするように設計された重複オリゴヌクレオチドを用い、シャッフルした子孫について非常に高い多様性を可能にする(Ness et al., Nat. Biotechnol. 20:1251-1255 (2002))。この技術では、シャッフルされるようにフラグメントを設計し得る。これは、結果として得られる子孫の多様性を増加させることを助ける。より密接な関連配列にて観測される比率に接近する比率で、より離れた関連配列を再結合させるために、配列/コドンの偏向性を設計し得る。さらに、上記の技術は物質的にテンプレート遺伝子を有することを必要としない。
ヌクレオチド交換および切除技術(NexT)は、dUTP組込み、引き続くウラシルDNAグリコシラーゼでの処理、次いでピペリジンでの処理の組合せを使用して、末端でのDNAフラグメント化を実行する(Muller et al., Nucleic Acids Res. 33:e117 (2005))。上記の遺伝子は、プルーフリーディングポリメラーゼを用いたインターナルPCRプライマーを使用してリアセンブリされる。シャッフリングに対するサイズは、dUTP::dTTPの比率を変えることによって直接的に制御可能である。これは、簡易な方法を使用したウラシルの組み込みおよび消化のための末端反応である。他のヌクレオチドアナログ(例えば、8‐オキソ‐グアニン)をこの方法を用いて使用し得る。さらに、上記の技術は非常に短いフラグメント(86bp)を用いてよく機能し、低いエラー率である。この技術において使用されるDNAの化学的な裂開は、非常に少ないシャッフルされていないクローンを生じる。
配列相同性非依存的タンパク質組換え(SHIPREC)において、リンカーを使用して、遠く関連しているかまたは関連していない2つの遺伝子の間での融合を容易にする。ヌクレアーゼ処理を使用し、2つの遺伝子の間で特定の範囲のキメラを生成する。これらの融合は、単一のクロスオーバーハイブリッドのライブラリーを生じる(Sieber et al., Nat. Biotechnol. 19:456-460 (2001))。これは限られたタイプのシャッフリングを生成し、変異誘発のために、分離した工程を必要とする。さらに、相同性は必要ないため、この技術は、2つの関連のない親遺伝子の各々の変異した断片を有するキメラのライブラリーを生成し得る。哺乳類のCP450のN末端領域に融合した細菌のCP450のヘム結合ドメインを用いて、SHIPRECは試験された;これは、より可溶的な酵素において哺乳類の活性を生成した。
遺伝子部位飽和変位誘発(GSSMTM)において、出発物質は、インサートを含むスーパーコイルの二本鎖DNA(dsDNA)プラスミド、および所望の部位の変異において変性させた2つのプライマーを含む(Kretz et al., Methods Enzymol. 388:3-11 (2004)。目的の変異を有するプライマーは、DNAの逆の鎖において同様の配列にアニールする。一般的に、変異はプライマーの中部にあり、約20ヌクレオチドの正確な配列が各側に配置している。プライマーにおける配列は、NNNまたはNNK(コードあり)およびMNN(コードなし)である(N=4つ全て、K=G、T、M=A、C)。伸長後、野生型テンプレーを排除するため、dam‐メチル化DNAを消化するためにDpnIを使用する。この技術は、所定の遺伝子座(1コドン)における全ての可能性のあるアミノ酸の置換を探索する。上記技術は、ノンセンスコドンを有しない単一領域における可能性のある全ての置換の生成を容易にし、可能性のあるアレルのほとんどの同等から近似同等表現物を生じる。この技術は、標的酵素の構造、機能またはドメインについての前もった知識を必要としない。シャッフリング、または、遺伝子リアセンブリが続く場合、この技術は、単一領域の変異の可能性のある全ての組合せを含む組換え体の多様なライブラリーを生成する。この技術の組合せの有用性は、50を超える異なる酵素の進化において、成功していることが実証されており、付与された酵素においては1よりも多い特性に対し進化する。
コンビナトリアルカセット変異誘発(CCM)は、制限された領域を多数のアミノ酸配列変更と置換する短いオリゴヌクレオチドカセットの使用を含む(Reidhaar-Olson et al. Methods Enzymol. 208:564-586 (1991)およびReidhaar-Olson et al. Science 241:53-57 (1988)。この技術によって、2または3領域における同時の置換が可能となる。さらに、上記の方法は、限定された範囲の領域における多様な可能な配列変化、を試験する。この技術は、ラムダ抑制DNA結合ドメインの情報内容を調査するために使用されている。
コンビナトリアルマルチカセット変異誘発(CMCM)は、より大きなプログラムの1部として使用される以外においてはCCMと実質的に同様である。1)高変異率におけるepPCRの使用2)同定適切なスポットおよび適切な領域の同定、そして、その後の3)タンパク質配列スペースの規定された領域をカバーするためにCMCMによる伸長(Reetz et al., Angew. Chem. Int. Ed Engl. 40:3589-3591 (2001)。CCMを用いるように、この方法は、実質的に、標的領域における可能性のある全ての交換を試験する。ランダム変異およびシャッフルされた遺伝子を生成するための方法に沿って使用された場合、それは、多様なシャッフルされたタンパク質を生成する優秀な手段を提供する。このアプローチは、酵素のエナンチオ選択性を51倍に増加させることに成功した。
突然変異誘発株技術(Mutator Strains technique)においては、コンビナトリアルtsミューテータプラスミドを利用し、選択の間のランダムかつ天然の変異頻度を20〜4000×に増加することを可能にし、選択が必要とされない場合、有害な変異の集積をブロックする(Selifonova et al., Appl. Environ. Microbiol. 67:3645-3649 (2001)); Low et al., J. Mol. Biol. 260:359-3680 (1996))。この技術は、DNAポリメラーゼIIIの変異体サブユニットをコードするmutD5遺伝子由来のプラスミドに基づく。このサブユニットは、内因性のDNAポリメラーゼIIIと結合し、上記プラスミドを有する任意の系統においてポリメラーゼIIIのプルーフリーディング能力を損なわせる。広範囲の塩基置換およびフレームシフトの変異が生じる。効果的な使用のために、所望の表現型に達したならば、変異誘発プラスミドを除去した方がよい;これは、温度感受性(ts)の複製起点(41℃にてプラスミドのキュアリングを可能にする)を介して成し遂げられる。変異誘発系統は、大変な時間をかけて探索された(Low et al., J. Mol. Biol. 260:359-3680 (1996)参照)。この技術においては、非常に高率の自発的な変異が観察される。条件の特性によって、所望しないバックグラウンドの変異を最小化する。変異誘発率を強化するためおよび所望する表現型により早く達成するために、この技術を適応進化と結合し得る。
Look−Through変異誘発(LTM)は、選択されたアミノ酸の組合せ変異を評価しかつ最適化する多次元の変異誘発方法である(Rajpal et al., Proc. Natl. Acad. Sci. USA 102:8466-8471 (2005)。可能性のある全てのアミノ酸変換を有するサイトを飽和させるよりもむしろ、アミノ酸のR基の化学的性質の範囲をカバーするために9つのセットが選ばれる。サイト毎のより少ない変換によって、多様なサイトがこのタイプの変異誘発を受ける。この方法を介して、低ナノモーラーからピコモーラーまでの抗体に対する結合親和性における800倍よりも大きい増加を達成した。これは、ランダムな組合せの数を最小化するための合理的なアプローチであり、スクリーニングされるクローンの数を顕著に減少させることによって、改良された特性を見出すための可能性を増加し得る。これは、抗体工学、特に、結合親和性を増加させるため、および/または、解離の減少のために適用されている。この技術は、スクリーニングまたは選択のどちらにでも結合し得る。
遺伝子リアセンブリは、一度に複数の遺伝子に適用され得るか、単一遺伝子のキメラ(複数の変異)の大きなライブラリーを生成するためのDNAシャッフリング方法である(ReassemblyTM(TGRTM))。この技術はVerenium Corporationによって供給される。一般的に、所望の改良に対し表わされる配列空間を照会するために、この技術はウルトラハイスループットスクリーニングとの結合において使用される。この技術は、ホモロジーとは独立した多様な遺伝子の組換えを可能にする。生物情報工学の解析を介して設計されたフラグメントを使用して、クロスオーバーイベントの正確な数および位置は予想され得る。この技術は、実質上の親遺伝子の再形成を伴わず、および、低レベルの不活遺伝子によって、非常に高いレベルの多様性を導く。GSSMTMとの結合において、大きい範囲の変異が改良された活性に対し試験し得る。上記方法は、DNAシャッフリングの「融合」および「好適な調整」を可能にする。例えば、コドンの使用法を最適化し得る。
インシリコタンパク質設計自動化(PDA)は、特定のフォールドを処理する構造的に規定されたタンパク質骨格をアンカリングする最適化アルゴリズムであり、タンパク質エネルギー論の全体を安定化し得るアミノ酸置換についての配列スペースを探索する(Hayes et al., Proc. Natl. Acad. Sci. USA 99:15926-15931 (2002))。この技術は、タンパク質のアミノ酸のバリエーションに対する許容度を探索するため、インシリコにおける立体構造に基づいたエントロピー予想を使用する。統計的な機構が、各々の位置における結合相互作用の計算に適用される。アミノ酸置換に対する構造の許容度は、結合の測定単位である。結局、この技術は、構造的特徴の整合性を維持しながら、タンパク質の特性の所望の改良を生成するために設計されている。上記方法はコンピューター的に評価し、可能性のある配列の改変体(1050)の非常に膨大な数をフィルターリングすることを可能にする。試験のための配列改変体の選択は、もっとも好ましい熱力学に基づく予測と関係がある。この技術を用いて、安定性に連結する見かけの単なる安定性または特性を効果的に向ける。この方法は、治療上の特定のタンパク質において使用され(特に、イムノグロブリンの操作において)、成功している。インシリコの予測は、異常な数の可能性のある改変体の試験を回避する。現存する三次元構造に基づく予測は、仮想的な構造に基づく予測よりも成功し得る。この技術は、多様な同時に生じる変異の標的スクリーンング(指数増加のため実験的技術を用いて全く不可能なもの)を容易に予測し得、可能にする。
反復飽和変異誘発(ISM)は以下を含む。1)酵素改善のための類似部位を選択するための構造/機能の知識を用いること;2)変異誘発法(例えば、Stratagene QuikChange(Stratagene;San Diego CA))を用いて選択した部位で飽和変異誘発を行うこと;3)所望の特性についてスクリーニング/選択すること;および4)改善したクローンを用いること、別の部位で開始して所望の活性が達成されるまで連続して反復すること(Reetz et al., Nat. Protoc. 2:891-903 (2007); and Reetz et al., Angew. Chem. Int. Ed Engl. 45:7745-7751 (2006)))。これは、証明された方法論である。上記の方法論は、所定の位置における可能性のある全ての置換をスクリーニング/選択のために作成することを保証する。
変異誘発について上述した方法のいずれかが、単独でかまたは任意の組合せにて使用され得る。さらに、指向性進化の方法のいずれか1つまたは組合せが、本明細書中に記載されるような適応進化の技術と組み合わせて使用され得る。
本発明の種々の実施形態の活性に実質的に影響を与えない改変もまた、本明細書中で提供される本発明の規定の範囲内に含まれることが理解される。したがって、以下の実施例は、本発明の例が意図とされ、本発明を限定しない。
〔実施例1〕
ブタジエンまたはクロチルアルコールを生成するための経路
一般的な代謝産物の4炭素ジエン(1,3‐ブタジエンまたはクロチルアルコール)への転化に必要な酵素を有する操作された非天然の微生物を使用した、直接的なブタジエン生成またはクロチルアルコール生成のための新規の過程が本明細書にて開示されている。ブタンジエンの直接的な生産への一つの新規の経路は、アルデヒドおよびアルコールデヒドロゲナーゼを用いた還元を介した公知のブタノール経路の代謝産物であるクロトニル‐CoAのクロチルアルコールへの還元を必要とする。クロチルピロリン酸を生成するためのキナーゼを用いたリン酸化およびそれに続くイソプレンシンターゼまたはそれらの改変体を使用したブタジエンの転化が、上記の還元に続く(図2を参照)。別の経路(図3)は、イソプレノイドの生合成のためのよく特徴付けられているDXP経路の変形経路である。この経路においては、基質は2‐メチル基を欠く、そして、ブタジエンシンターゼを介してイソプレンよりもむしろブタジエンを提供する。本明細書に記載しているように指向性進化のような方法を用いて、上記のブタジエンシンターゼをイソプレンシンターゼから得ることができる。最後に、図4は基質として3‐ヒドロキシグルタリル‐CoAを含むブタジエンへの経路を示す。上記3‐ヒドロキシグルタリル‐CoAは、天然のメバロン酸経路の基質である3‐ヒドロキシ‐3‐メチル‐グルタリルCoA(図1を参照)の代用物としてはたらく。図2のステップA‐P、図3のステップA‐Kおよび図4のステップA‐Oのための酵素の候補を以下に提供する。
アセチル‐CoA:アセチル‐CoAアシルトランスフェラ‐ゼ(図2、ステップA)
アセチル‐CoAチオラーゼは、2つのアセチル‐CoAの分子を1つのアセチル‐CoAおよび1つのCoAに転化させる。例示的なアセチル‐CoAチオラーゼ酵素は、E.coli由来のatoB(Martin et al., Nat.Biotechnol 21:796‐802 (2003))、C.acetobutylicum由来のthlAおよびthlB(Hanai et al., Appl Environ Microbiol 73:7814‐7818 (2007); Winzer et al., J.Mol.Microbiol Biotechnol 2:531‐541 (2000))ならびにS.cerevisiae由来のERG10(Hiser et al., J.Biol.Chem. 269:31383‐31389 (1994))の遺伝子産物を含む。
Figure 2014504508
アセトアセチル‐CoAレダクターゼ(図2、ステップB)
アセトアセチル‐CoAの3‐ヒドロキシブチリル‐CoAへの還元を触媒するアセトアセチル‐CoAレダクターゼは、種々のClostridia種において、ブチレートへのアセチル‐CoAの発酵経路に関係しており、詳細に研究されている(Jones et al., Microbiol Rev. 50:484‐524 (1986))。Clostridium acetobutylicum由来の上記酵素(hbdにコードされている)をクローニングし、E. coliにおいて機能的に発現させている(Youngleson et al., J Bacteriol. 171:6800‐6807 (1989))。さらに、E.coliにおける脂肪酸酸化物複合体の2つのサブユニット(fadBおよびfadJにコードされている)は、3‐ヒドロキシアシル‐CoAとして機能する(Binstock et al., Methods Enzymol. 71 Pt C:403‐411 (1981))。さらに、アセトアセチル‐CoAを3‐ヒドロキシブチリル‐CoAに還元することが実証された他の遺伝子の候補は、Zoogloea ramigera由来のphbB(Ploux et al., Eur.J Biochem. 174:177‐182 (1988))およびRhodobacter sphaeroides由来のphaB(Alber et al., Mol.Microbiol 61:297‐309 (2006))である。前者の候補の遺伝子は、NADPH依存性である。上記遺伝子のヌクレオチドの配列は決定されており(Peoples et al., Mol.Microbiol 3:349‐357 (1989))上記遺伝子をE. coliにおいて発現させている。上記遺伝子の基質特異性についての研究によって、アセトアセチル‐CoA以外の基質として3‐オキソプロピオニル‐CoAが受け入れられることを結論として導いた。さらなる遺伝子の候補には、Clostridium kluyveriにおけるHbd1(C末端領域)およびHbd2(N末端領域)(Hillmer and Gottschalk, Biochim. Biophys. Acta 3334:12‐23 (1974))、ならびにBos taurusにおけるHSD17B10(WAKIL et al., J Biol.Chem. 207:631‐638 (1954))が含まれる。
Figure 2014504508
Clostridaの他の種およびMetallosphaera sedulaにおいて、いくつかの類似の酵素が見出されている(Berg et al., Science. 318:1782‐1786 (2007))。
Figure 2014504508
3‐ヒドロキシブチリル‐CoAデヒドラタ‐ゼ(図3、ステップC)
3‐ヒドロキシブチリル‐CoAデヒドラタ‐ゼ(EC 4.2.1.55)(クロトナ‐ゼとも呼ばれる)は、3‐ヒドロキシブチリル‐CoAを可逆的に脱水し、クロトニル‐CoAを生じさせるエノイル‐CoAヒドラターゼである。クロトナーゼ酵素は、ある生物(特に、Clostridial種)において、n‐ブタノール形成に必要である。また、Acidianus属およびMetallosphaera属の好熱酸性古細菌において、上記クロトナーゼ酵素は3‐ヒドロキシプロピオネート/4‐ヒドロキシブチレート回路の1ステップを構成する。後者の遺伝子配列は公知ではないが、C. acetobutylicum(Atsumi et al., Metab Eng. 10:305‐311 (2008); Boynton et al., J Bacteriol. 178:3015‐3024 (1996))、C.kluyveri(Hillmer et al., FEBS Lett. 21:351‐354 (1972))およびMetallosphaera sedula(Berg et al., Science 318:1782‐1786 (2007a))において、クロトナーゼ遺伝子をコードする例示的な遺伝子を見出すことができる。Pseudomonas putidaのエノイル‐CoAヒドラターゼ(echにコードされている)はクロトニル‐CoAの3‐ヒドロキシブチリル‐CoAへの転化を触媒する(Roberts et al., Arch Microbiol. 117:99‐108 (1978))。さらなるエノイル‐CoAヒドラターゼの候補には、P. putidaのphaAおよびphaB、ならびに、P.fluorescens由来のpaaAおよびpaaBがある(Olivera et al., Proc.Natl.Acad.Sci U.S.A 95:6419‐6424 (1998))。最後に、特定のEscherichia coliの遺伝子は、エノイル‐CoAヒドラターゼの機能性が実証された。上記遺伝子は、maoC(Park et al., J Bacteriol. 185:5391‐5397 (2003))、paaF(Ismail et al., Eur.J Biochem. 270:3047‐3054 (2003); Park et al., Appl.Biochem.Biotechnol 113‐116:335‐346 (2004); Park et al., Biotechnol Bioeng 86:681‐686 (2004))およびpaaG(Ismail et al., supra, (2003); Park and Lee, supra, (2004); Park and Yup, supra, (2004))を含む。これらのたんぱく質を以下に特定する。
Figure 2014504508
クロトニル‐CoAレダクターゼ(アルデヒド生成)(図2、ステップD)
種々のアシル‐CoAデヒドロゲナーゼはアシル‐CoAを対応するアルデヒド還元し得る。したがって、それらアシル‐CoAデヒドロゲナーゼはクロトニル‐CoAをクロトンアルデヒドに天然に還元する。または、それらアシル‐CoAデヒドロゲナーゼは、クロトニル‐CoAをクロトンアルデヒドに還元するように操作され得る。上記酵素をコードする例示的な遺伝子は、脂肪アシル‐CoAレダクターゼをコードするAcinetobacter calcoaceticus acr1(Reiser et al., J. Bacteriol. 179:2969‐2975 (1997))、Acinetobacter sp. M‐1脂肪アシル‐CoAレダクターゼ(Ishige et al., Appl.Environ.Microbiol. 68:1192‐1195 (2002))、ならびに、Clostridium kluyveriにおいてsucD遺伝子にコードされたCoA‐依存およびNADP‐依存コハク酸セミアルデヒドデヒドロゲナーゼ((Sohling et al., J Bacteriol. 178:871‐880 (1996); Sohling et al., J. Bacteriol. 178:871‐80 (1996))を含む。P. gingivalisのsucDは、別のコハク酸セミアルデヒドデヒドロゲナーゼである(Takahashi et al., J.Bacteriol. 182:4704‐4710 (2000))。これらのコハク酸セミアルデヒドデヒドロゲナーゼは、1,4‐ブタンジオールの生成経路の一部として、4‐ヒドロキシブチル‐CoAを4‐ヒドロキシブタナルに転化することが参照文献((Burk et al., WO/2008/115840: (2008))に明確に示されている。Pseudomonas spにおいてアセトアルデヒドデヒドロゲナーゼをアシル化する上記酵素(bphGによってコードされている)は、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、イソブチルアルデヒドおよびホルムアルデヒドを酸化およびアシル化することが実証されているように、別の能力を有する酵素でもある(Powlowski et al., J. Bacteriol. 175:377‐385 (1993))。
Figure 2014504508
アシル‐CoAを対応するアルデヒドに転化するさらなる酵素のタイプとして、マロニル‐CoAレダクターゼがある。上記マロニル‐CoAレダクターゼは、マロニル‐CoAをマロン酸セミアルデヒドに転化する。好熱酸性古細菌における3‐ヒドロキシプロピオネート回路を介した独立栄養性の炭素固定において、マロニル‐CoAレダクターゼは重要な酵素である(Berg et al., Science 318:1782‐1786 (2007b); Thauer, 318:1732‐1733 (2007))。上記酵素は、NADPHを補因子として利用し、MetallosphaeraおよびSulfolobus sppにおいて特徴づけられている(Alber et al., J. Bacteriol. 188:8551‐8559 (2006); Hugler et al., J. Bacteriol. 184:2404‐2410 (2002))。上記酵素は、Metallosphaera sedulaにおいてMsed_0709にコードされている(Alber et al., supra, (2006); Berg et al., supra, (2007b))。Sulfolobus tokodaii由来のマロニル‐CoAレダクターゼをコードする遺伝子はクローニングされ、E. coliにおいて異種的に発現させられた(Alber et al., supra, (2006))。これら酵素のアルデヒドデヒドロゲナーゼの機能は、Chloroflexus aurantiacus由来の2機能性のデヒドロゲナ‐ゼと同様であるが、配列の相同性は低い。マロニル‐CoAレダクターゼ酵素の両候補は、アスパラギン酸セミアルデヒドデヒドロゲナーゼと高い配列の相同性を有している。上記アスパラギン酸セミアルデヒドデヒドロゲナーゼは、アスパラティル‐4‐リン酸のアスパラギン酸セミアルデヒドへの還元および同時発生の脱リン酸化を触媒する。Sulfolobus solfataricusおよびSulfolobus acidocaldariusを含む他の生物におけるタンパク質に対する配列の相同性によって、さらなる遺伝子の候補を見出すことができる。さらに、CoAアシル化アルデヒドデヒドロゲナーゼに対する別の候補は、Clostridium beijerinckii由来のald遺伝子である(Toth, Appl. Environ. Microbiol. 65:4973‐4980 (1999)。この酵素は、アセチル‐CoAおよびブチリル‐CoAを対応するアルデヒドに還元することが報告されている。この遺伝子は、Salmonella typhimuriumおよびE.coliのアセトアルデヒドデヒドロゲナーゼをコードするeutEに非常に類似している(Toth, Appl. Environ. Microbiol. 65:4973‐4980 (1999))。これらのたんぱく質を以下に特定する。
Figure 2014504508
クロトンアルデヒドレダクターゼ(アルコール形成)(図2、ステップE)
クロトンアルデヒドレダクターゼ(アルコール形成)活性を示す酵素は、クロトンアルデヒドからクロチルアルコールを形成し得る。次の酵素は、天然にこの活性を有する。または、この活性を示すように操作され得る。アルデヒドのアルコールへの転化を触媒する酵素(例えば、アルコールデヒドロゲナーゼまたは同等のアルデヒドレダクターゼ)をコードする例示的な遺伝子は、C2‐C14に対する中鎖アルコールデヒドロゲナーゼをコードするalrA(Tani et al., Appl.Environ.Microbiol. 66:5231‐5235 (2000))、Saccharomyces cerevisiae由来のADH2(Atsumi et al., Nature 451:86‐89 (2008))、E.coli由来のC(3)よりも長い分子に対して好適なyqhD(Sulzenbacher et al., J. Mol. Biol. 342:489‐502 (2004))、ならびに、C. acetobutylicum由来のブチルアルデヒドをブタノールに転化するbdh Iおよびbdh II(Walter et al., J. Bacteriol. 174:7149‐7158 (1992))を含む。Zymomonas mobilis由来のADH1は、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒドおよびアクロレインを含むいくつかのアルデヒドにおいて活性を有することが実証されている(Kinoshita, Appl. Microbiol. Biotechnol. 22:249‐254 (1985))。Clostridium beijerinckii NCIMB 8052由来のCbei_2181は、クロトンアルデヒドをクロチルアルコ‐ルに転化し得る別の有効なアルコールデヒドロゲナーゼもコードしている。
Figure 2014504508
4‐ヒドロキシブチレーデヒドロゲナーゼ活性(EC 1.1.1.61)を示す酵素も、この種類に分類される。上記酵素は、Ralstonia eutropha(Bravo et al., J. Forensic Sci. 49:379‐387 (2004))、Clostridium kluyveri(Wolff et al., Protein Expr. Purif. 6:206‐212 (1995))およびArabidopsis thaliana(Breitkreuz et al., J.Biol.Chem. 278:41552‐41556 (2003))において特徴づけられている。
Figure 2014504508
クロチルアルコールキナーゼ(図2、ステップF)
クロチルアルコールキナーゼ酵素は、クロチルアルコールのリン酸基からヒドロキシル基への転化を触媒する。以下に記載した上記酵素は、天然に、上記活性を有する。または、この活性を示すように操作され得る。リン酸基のアルコール基への転化を触媒するキナーゼは、EC 2.7.1の酵素分類に属する。
Figure 2014504508
Figure 2014504508
このステップにおいて好適な候補は、3,5‐ジヒドロキシペンタン酸のメチルアナログ(メバロン酸)の末端ヒドロキシル基をリン酸化するメバロン酸キナーゼ(EC 2.7.1.36)である。このステップにおけるいくつかの遺伝子の候補は、S. cerevisiae 由来のerg12、Methanocaldococcus jannaschi由来のmvk、Homo sapeins由来のMVKおよびArabidopsis thaliana col由来のmvkである。
Figure 2014504508
グリセロールキナーゼもグリセロールにおける末端ヒドロキシル基をリン酸化し、グリセロール‐3‐リン酸を形成する。この反応は、Escherichia coli、Saccharomyces cerevisiaeおよびThermotoga maritimaを含む種々の種において生じる。E. coliのグリセロールキナーゼは、ジヒドロキシアセトンおよびグリセルアルデヒドのような代替えの基質を受け入れることが示されている(Hayashi et al., J Biol.Chem. 242:1030‐1035 (1967))。T,maritimeは、2つのグリセロールキナーゼを有する(Nelson et al., Nature 399:323‐329 (1999))。グリセロールキナーゼは、広い範囲の基質特異性を有することが示されている。CransおよびWhitesideは、異なる4つの生物(Escherichia coli、S.cerevisiae、Bacillus stearothermophilusおよびCandida mycoderma)由来のグリセロールキナーゼについて研究を行った(Crans et al., J.Am.Chem.Soc. 107:7008‐7018 (2010); Nelson et al., supra, (1999)))。CransおよびWhitesideは、66の異なるグリセロールのアナログを研究し、上記酵素は1つの末端ヒドロキシル基の位置においてある範囲内の基質を受け入れることができ、メチル基によってC2の水素原子を置換できると結論付けた。興味深いことに、4つの生物に由来する全ての酵素のカイネティックの定数は、非常に類似していた。上記遺伝子の候補は:
Figure 2014504508
ホモセリンキナーゼは、3,5‐ジヒドロキシペンタン酸のリン酸化を導き得る別の可能性のある候補である。この酵素も、E.coli、Streptomyces spおよびS.cerevisiaeを含む種々の生物において存在する。E.coli由来のホモセリンキナーゼは、多数の基質において活性を持つことが示されており、例えば、上記基質はL‐2‐アミノ,1,4‐ブタンジオール,アスパラギン酸セミアルデヒドおよび2‐アミノ‐5‐ヒドロキシバレラートを含む(Huo et al., Biochemistry 35:16180‐16185 (1996); Huo et al., Arch.Biochem.Biophys. 330:373‐379 (1996))。アルファ位置(aipha position)におけるカルボキシル基がエステルまたは、ヒドロキシメチル基によって置換された基質に対して、この酵素は作用し得る。上記遺伝子の候補は:
Figure 2014504508
2‐ブテニル‐4‐リン酸キナーゼ(図2、ステップG)
2‐ブテニル‐4‐リン酸キナーゼ酵素は、リン酸基の2‐ブテニル‐4‐リン酸のリン酸基への転化を触媒する。下記の酵素は、上記活性を天然に有する。または、この活性を示すために操作し得る。リン酸基の別のリン酸基への転化を触媒するキナーザは、EC 2.7.4酵素分類に属する。下記の表は、EC 2.7.4酵素分類における種々の有益なキナーゼ酵素を記載している。
Figure 2014504508
ホスホメバロン酸キナーゼ酵素は、特に重要である。ホスホメバロン酸キナーゼ酵素(EC 2.7.4.2)は、アナログの2‐ブテニル‐4‐リン酸キナーゼへの転化を触媒する。この酵素は、Saccharomyces cerevisiaeにおけるerg8によって(Tsay et al., Mol.Cell Biol. 11:620‐631 (1991))、ならびに、Streptococcus pneumoniae、Staphylococcus aureusおよびEnterococcus faecalisにおけるmvaK2(Doun et al., Protein Sci. 14:1134‐1139 (2005); Wilding et al., J Bacteriol. 182:4319‐4327 (2000))によってコードされている。Streptococcus pneumoniaeおよびEnterococcus faecalisの酵素はクローニングされ、E.coliにおいて特徴づけられた。(Pilloff et al., J Biol.Chem. 278:4510‐4515 (2003); Doun et al., Protein Sci. 14:1134‐1139 (2005))。
Figure 2014504508
ブタジエンシンターゼ(図2、ステップH)
ブタジエンシンターゼは、2‐ブテニル‐4‐二リン酸の1,3‐ブタンジエンへの転化を触媒する。下記の酵素は上記活性を天然に有する。または、この活性を示すように、操作され得る。イソプレンシンターゼは、ジメチルアリル二リン酸のイソプレンへの転化を天然に触媒する。しかし、イソプレンシンターゼは、2‐ブテニル‐4二リン酸からの1,3‐ブタジエンの合成も触媒し得る。イソプレンシンターゼは、Populus alba(Sasaki et al., FEBS Letters, 2005, 579 (11), 2514‐2518)、Pueraria montana(Lindberg et al., Metabolic Eng, 2010, 12 (1), 70‐79; Sharkey et al., Plant Physiol., 2005, 137 (2), 700‐712)およびPopulus tremula x Populus alba(Miller et al., Planta, 2001, 213 (3), 483‐487)を含む種々の生物において見出すことができる。さらなるイソプレンシンターゼ酵素は、(Chotani et al., WO/2010/031079, Systems Using Cell Culture for Production of Isoprene; Cervin et al., US Patent Application 20100003716, Isoprene Synthase Variants for Improved Microbial Production of Isoprene)に記述されている。
Figure 2014504508
クロトニル‐CoAヒドラーゼ、シンターゼ、トランスフェラーゼ(図2、ステップI)
クロトニル‐CoAヒドラーゼは、クロトニル‐CoAのクロトン酸への転化を触媒する。下記の酵素は、天然に上記の活性を有する。または、この活性を示すように操作され得る。3‐ヒドロキシイソブチルリル‐CoAヒドラーゼは、バリンの分解の間における3‐ヒドロキシイソブチルリル‐CoAの3‐ヒドロキシイソブチレートへの転化を効率よく触媒する(Shimomura et al., J Biol Chem. 269:14248-14253 (1994))。この酵素をコードする遺伝子は、Rattus norvegicusのhibch(Shimomura et al., supra; Shimomura et al., Methods Enzymol. 324:229-240 (2000))およびHomo sapiensのhibch(Shimomura et al., supra)を含む。H. sapiensの酵素は、基質として3‐ヒドロキシブチルリル‐CoAおよび3‐ヒドロキシプロピオニル‐CoAも受け入れる(Shimomura et al., supra)。配列相同性による候補の遺伝子は、Saccharomyces cerevisiaeのhibchおよびBacillus cereusのBC_2292を含む。これらのたんぱく質を以下に特定する。
Figure 2014504508
種々の真核生物のアセチル‐CoAヒドロラーゼ(EC 3.1.2.1)は、広い基質特異性を有する。よって、適当な候補酵素の代わりになる。例えば、Rattus norvegicusの脳由来の酵素(Robinson et al., Res. Commun. 71:959-965 (1976))は、ブチリル‐CoA、ヘクサノイル‐CoAおよびマロニル‐CoAと反応し得る。その配列は報告されていないが、エンドウの葉のミトコンドリア由来の酵素も広い基質特異性を有する。上記広い基質特異性は、アセチル‐CoA、プロピオニル‐CoA、ブチリル‐CoA、パルミトイル‐CoA、オレオイル‐CoA、サクシニル‐CoAおよびクロトニル‐CoAにおける活性が実証されている(Zeiher et al., Plant. Physiol. 94:20-27 (1990))。S. cerevisiae由来のアセチル‐CoAヒドラーゼ(ACH1)は、別の候補酵素の代わりになる(Buu et al., J. Biol. Chem. 278:17203-17209 (2003))。これらのたんぱく質を以下に特定する。
Figure 2014504508
別の候補ヒドラーゼは、ヒトのジカルボン酸チオエステラーゼ(acot8)であり、にグルタリル‐CoA、アジピル‐CoA、スベリル‐CoA、セバシル‐CoAおよびドデカンジオイルおいて活性を示す(Westin et al., J Biol. Chem. 280:38125-38132 (2005))。さらに、別の候補ヒドラーゼは、クロゼット(closet)E.coliのホモログ(fesB)であり、広い範囲のCoAチオエステルの加水分解もし得る(Naggert et al., J Biol. Chem. 266:11044-11050 (1991))。類似の酵素がラットの肝臓において特徴づけられている(Deana et al., Biochem. Int. 26:767-773 (1992)))。他の可能性であるE.coliのチオエステルヒドロラーゼは、tesA(Bonner et al., Chem. 247:3123-3133 (1972))、ybgC(Kuznetsova et al., FEMS Microbiol Rev 29:263-279 (2005); and (Zhuang et al., FEBS Lett. 516:161-163 (2002))、paaI(Song et al., J Biol. Chem. 281:11028-11038 (2006))およびybdB(Leduc et al., J Bacteriol. 189:7112-7126 (2007))の遺伝子産物を含む。これらのタンパク質を以下に同定する。
Figure 2014504508
さらに、別の候補ヒドロラーゼは、acidaminococcus fermentans由来のグルタコン酸CoA‐トランスフェラーゼである。グルタリル‐CoA、アセチル‐CoAおよび3‐ブテノイル‐CoAに対する活性を備えるアシル‐CoAへの部位特異的突然変異誘発法によって、この酵素を形質転換した(Mack et al., FEBS.Lett. 405:209-212 (1997))。これは、以下のことを示唆している。スクシニル‐CoA:3‐ケト酸‐CoAトランスフェラーゼおよびアセトアセチル‐CoA:アセチル‐CoAトランスフェラーゼをコードする酵素が、この反応のステップに対する候補としても機能し得るが、それらの機能を変化するために確実な変異を必要とする。これらのたんぱく質を下記に同定する。
Figure 2014504508
クロトニル‐CoAシンターゼは、クロトニル‐CoAのクロトン酸への転化を触媒する。下記の酵素は、天然に上記の活性を有する。または、この活性を示すように操作され得る。候補酵素の1つのADP‐形成アセチル‐CoAシンセターゼ(ACD,EC 6.2.1.13)は、アシル‐CoAエステルの対応する酸への転化と同時に生じるATPの合成とを結合する。広い基質特異性を備える種々の酵素が文献に記載されている。Archaeoglobus fulgidus由来のACD I(AF1211にコードされている)は、種々の直鎖状および側鎖状の基質に作用することが示された。上記基質は、例えば、アセチル‐CoA、プロピオニルアセチル‐CoA、ブチリル‐CoAb、酢酸、プロピオン酸、酪酸、イソ酪酸、イソ吉草酸、コハク酸、フマル酸、酢酸フェニル、インドール酢酸(Musfeldt et al., J Bacteriol 184:636-644 (2002))である。Haloarcula marismortui由来の上記酵素(注釈:スクシニル‐CoAシンターゼ)は、基質としてプロピオン酸、酪酸(butyryate)および側鎖酸(イソ吉草酸およびイソ酪酸)を受け入れる。そして、上記酵素は、順および逆方向において作用することが示されている(Brasen et al., Arch Microbiol 182:277-287 (2004))。超好熱性クレンアーキアのPyrobaculum aerophilum由来のPAE3250にコードされているACDは、アセチル‐CoA、イソブチリル‐CoA(好適な基質)およびフェニルアセチル‐CoAと反応するすべての特徴づけられたACDにおいて広い基質の範囲を有することを示した(Brasen et al., supra)。A.fulgidus、H.marismortuiおよびP.aerophilum由来の上記酵素は全てクローニングされ、機能的に発現させられ、そして、E.coliにおいて特徴づけられている(Musfeldt et al., supra; Brasen et al., supra)これらのたんぱく質を下記に同定する。
Figure 2014504508
別の候補CoAシンセターゼは、スクシニル‐CoAシンセターゼである。E.coliのsucCD遺伝子は、スクシニル‐CoAシンセターゼ複合体を形成する。上記複合体は、1つのATPの付随的(concaminant)消費を伴うコハク酸からのスクシニル‐CoAの形成を天然に触媒する。上記反応は、インビボにおいて可逆的である(Buck et al., Biochem. 24:6245-6252 (1985))。これらのたんぱく質を下記に、同定する。
Figure 2014504508
さらなる例示的なCoA‐リガーゼは以下を含む。ラットのジカルボン酸‐CoAリガーゼ(上記リガーゼの配列は、まだ、同定されていない)(Vamecq et al., Biochemical Journal 230:683-693 (1985))、P.chrysogenum由来の2つの特徴づけられた酢酸フェニル‐CoAリガーゼの両方(Lamas-Maceiras et al., Biochem. J. 395:147-155 (2005); Wang et al., Biochem Biophy Res Commun 360(2):453-458 (2007))、Pseudomonas putida由来の酢酸フェニル‐CoAリガーゼ(Martinez-Blanco et al., J. Biol. Chem. 265:7084-7090 (1990))およびBacilis subtilis由来の6‐カルボキシヘキサン酸‐CoAリガーゼ(Boweret al., J. Bacteriol. 178(14):4122-4130 (1996))。さらなる候補酵素は、Mus musculus由来のアセトアセチル‐CoAシンセターゼ(Hasegawa et al., Biochim Biophys Acta 1779:414-419 (2008))およびHomo sapiens由来のアセトアセチル‐CoAシンセターゼ(Ohgami et al., Biochem Pharmacol 65:989-994 (2003))である。上記酵素は、ATP依存性のアセト酢酸のアセトアセチル‐CoAへの転化を天然に触媒する。これらのたんぱく質を下記に同定する。
Figure 2014504508
クロトニル‐CoAトランスフェラーゼは、クロトニル‐CoAのクロトン酸への転化を触媒する。下記の酵素は、上記活性を天然に有する。または、この活性を示すように操作され得る。種々のトランスフェラーゼは広い特異性を有する。よって、上記トランスフェラーゼはCoA受容体を利用し得る。例えば、上記CoA受容体は、酢酸、コハク酸、プロピオン酸、酪酸、2‐メチルアセト酢酸、3‐ケトヘキサン酸、3‐ケトペンタン酸、吉草酸、クロトン酸、3‐メルカプトプロピオン酸、ビニル酢酸、酪酸、などである。例えば、Roseburia sp.A2−183由来の酵素は、ブチリル‐CoA:酢酸:CoAトランスフェラーゼ活性およびプロピオニル‐CoA:酢酸:CoAトランスフェラーゼ活性を有することが示された(Charrier et al., Microbiology 152, 179-185 (2006))。例えば、Roseburia intestinalis L1−82、Roseburia inulinivorans DSM 16841、Eubacterium rectale ATCC 33656において酷似したホモログを見出し得る。プロピオニル‐CoAトランスフェラーゼ活性を有する別の酵素を、Clostridium propionicumにおいて見出し得る(Selmer et al., Eur J Biochem 269, 372-380 (2002))。この酵素は、CoA受容体をとして、酢酸、(R)‐乳酸、(S)‐乳酸、アクリル酸および酪酸を使用し得る(Selmer et al., Eur J Biochem 269, 372-380 (2002); Schweiger and Buckel, FEBS Letters, 171(1) 79-84 (1984))。例えば、Clostridium novyi NT、Clostridium beijerinckii NCIMB 8052およびClostridium botulinum C str.Eklundにおいて、酷似したホモログを見出し得る。E. coliにおいてYgfhはプロピオニル‐CoA:コハク酸CoAトランスフェラーゼをコードする(Haller et al., Biochemistry, 39(16) 4622-4629)。例えば、Citrobacter youngae ATCC 29220、Salmonella enterica subsp.arizonae serovar、およびYersinia intermedia ATCC 29909において、酷似したホモログを見出しうる。これらのタンパク質を下記に同定する。
Figure 2014504508
さらなる候補酵素は、2つのユニット酵素であり、PseudomonasにおいてpcaIおよびpcaJによってコードされ、上記酵素は3‐オキソアジピル‐CoA/コハク酸トランスフェラーゼ活性を有することが示されている(Kaschabek et al., supra)。ホモロジーに基づいた類似した酵素が、Acinetobacter sp.ADP1(Kowalchuk et al., Gene 146:23-30 (1994))およびStreptomyces coelicolorにおいて存在する。さらなる例示的なスクシニル‐CoA:3:オキソ酸‐CoAトランスフェラーゼが、Helicobacter pylori(Corthesy-Theulaz et al., J.Biol.Chem. 272:25659-25667 (1997))およびBacillus subtilis(Stols et al., Protein.Expr.Purif. 53:396-403 (2007))において存在する。これらのタンパク質を下記に同定する。
Figure 2014504508
CoA受容体として酢酸を利用し得るCoAトランスフェラーゼは、アセトアセチル‐CoAトランスフェラーゼであり、E.coliのatoA(アルファサブユニット)遺伝子およびatoD(ベータサブユニット)遺伝子によってコードされている(Vanderwinkel et al., Biochem.Biophys.Res Commun. 33:902-908 (1968); Korolev et al., Acta Crystallogr.D Biol Crystallogr. 58:2116-2121 (2002))。この酵素も、CoAの一部を種々の側鎖状および直鎖状アシル‐CoA基質から酢酸に移すことが示されており、上記基質は、イソ酪酸(Matthies et al., Appl Environ Microbiol 58:1435-1439 (1992))、吉草酸(Vanderwinkel et al., supra)および酪酸(butanoate)(Vanderwinkel et al., supra)を含む。類似した酵素が、Corynebacterium glutamicum ATCC 13032(Duncan et al., Appl Environ Microbiol 68:5186-5190 (2002))、Clostridium acetobutylicum(Cary et al., Appl Environ Microbiol 56:1576-1583 (1990))およびClostridium saccharoperbutylacetonicum(Kosaka et al., Biosci.Biotechnol Biochem. 71:58-68 (2007))において存在する。これらのタンパク質を下記に同定する。
Figure 2014504508
上記の酵素は、クロトニル‐CoAにおいて所望の活性を示し得る。さらなる例示的なトランスフェラーゼの候補は、Clostridium kluyveriのcat1、cat2およびcat3の遺伝子産物によって触媒され、上記遺伝子産物はスクシニル‐CoA、4‐ヒドロキシブチリル‐CoAおよびブチリル‐CoAトランスフェラーゼ活性の各々を示すことが示されている(Seedorf et al., supra; Sohling et al., Eur.J Biochem. 212:121-127 (1993); Sohling et al., J Bacteriol. 178:871-880 (1996))。類似したCoAトランスフェラーゼ活性も、Trichomonas vaginalis(van Grinsven et al., J.Biol.Chem. 283:1411-1418 (2008))およびTrypanosoma brucei(Riviere et al., J.Biol.Chem. 279:45337-45346 (2004))において存在する。これらのタンパク質を下記に同定する。
Figure 2014504508
嫌気性細菌Acidaminococcus fermentans由来のグルタコン酸CoA‐トランスフェラーゼ(EC 2.8.3.12)酵素は、二酸グルタコニル‐CoA(diacid glutaconyl-CoA)および3‐ブテノイル‐CoAと反応する(Mack et al., FEBS Lett. 405:209-212 (1997))。この酵素をコードする遺伝子は、gctAおよびgctBである。この酵素は、減衰するが、他のCoA誘導体による検出可能な活性を有し、上記誘導体はグルタリル‐CoA、2‐ヒドロキシグルタリル‐CoA、アジピル‐CoAおよびアクリリル‐CoAを含む(Buckel et al., Eur.J.Biochem. 118:315-321 (1981))。上記酵素は、クローニングされ、E.coliにおいて発現させられている(Mack et al., Eur.J.Biochem. 226:41-51 (1994))。これらのタンパク質を下記に同定する。
Figure 2014504508
クロトン酸レダクターゼ(図2、ステップJ)
クロトン酸レダクターゼ酵素は、クロトン酸のクロトンアルデヒドへの転化を触媒し得る。下記の酵素は、上記活性を天然に有する。または、この活性を示すように操作され得る。カルボン酸レダクターゼは、カルボン酸の対応するアルデヒドへのマグネシウム、ATPおよびNADPH依存性の還元を触媒する(Venkitasubramanian et al., J. Biol. Chem. 282:478-485 (2007))。この酵素(carによってコードされる)をクローニングし、E.cpliにおいて機能的に発現させた(Venkitasubramanian et al., J. Biol. Chem. 282:478-485 (2007))。nptの遺伝子産物の発現は、転写後の修飾を介して、上記酵素の活性を改善する。npt遺伝子は、特定のホスホパンテテイントランスフェラーゼ(PPTase)をコードする。上記PPTasは、不活アポ酵素を活性ホロ酵素へ転化する。この酵素の天然の基質はバニリン酸であり、上記酵素は芳香族および脂肪族の基質の広い受け入れを示す(Venkitasubramanian et al., in Biocatalysis in the Pharmaceutical and Biotechnology Industires, ed. R.N. Patel, Chapter 15, pp. 425-440, CRC Press LLC, Boca Raton, FL. (2006))。
Figure 2014504508
さらなるcarおよびnpt遺伝子を、配列の相同性に基づいて同定し得る。
Figure 2014504508
Figure 2014504508
Streptomyces griseusにおいて見出されたさらなる酵素の候補は、griC遺伝子およびgriD遺伝子によってコードされる。griCおよびgriDの両方の欠失は、3‐アミノ‐4‐ヒドロキシ安息香酸の代謝の分路の生成物である細胞外の3‐アセチルアミノ‐4‐ヒドロキシ安息香酸の細胞外の蓄積を誘導するので、この酵素は、3‐アミノ‐4‐ヒドロキシ安息香酸を3‐アミノ‐4‐ヒドロキシベンズアルデヒドに転化すると考えられている(Suzuki, et al., J. Antibiot. 60(6):380-387 (2007))。griCおよびgriDのSGR_665(Nocardia iowensisのnptに配列が類似している酵素)との共発現は、有益に成り得る。
Figure 2014504508
類似した性質を有する酵素(アルファ‐アミノアジピン酸リダクターゼ(AAR,EC1.2.1.31))は、特定の真菌においてリジン生合成経路に関与する。この酵素は、アルファ‐アミノアジピン酸をアルファ‐アミノアジピン酸セミアルデヒドに天然に還元する。アデニル酸のATP依存性形成を介してカルボキシル基が、初めに、活性化される。その後、上記アデニル酸は、NAD(P)Hによって還元され、アルデヒドおよびAMPを生成する。この酵素は、CARの様にマグネシウムを利用し、PPTaseによる活性化を必要とする。AARに対する酵素候補およびそれに対応するPPTaseをSaccharomyces cerevisiae(Morris et al., Gene 98:141-145 (1991))、Candida albicans(Guo et al., Mol. Genet. Genomics 269:271-279 (2003))およびSchizosaccharomyces pombe(Ford et al., Curr. Genet. 28:131-137 (1995))において見出す。S.pombe由来のAARをE.coliにおいて発現させると、有意な活性を示した(Guo et al., Yeast 21:1279-1288 (2004))。Penicillium chrysogenum由来のAARは、代替えの基質としてS‐カルボキシメチル‐L‐システインを受け入れる。しかし、上記AARは、アジペート、グルタミン酸またはジアミノピメリン酸と反応しない(Hijarrubia et al., J. Biol. Chem. 278:8250-8256 (2003))。これまでにP.chrysogenumのPPTaseをコードする遺伝子は、同定されていない。
Figure 2014504508
クロトニル‐CoAレダクターゼ(アルコール形成)(図2、ステップK)
クロトンアルデヒドレダクターゼ(アルコール形成)酵素は、クロトニル‐CoAからクロチルアルコールを形成するために必要な2つの還元ステップを触媒する。アシル‐CoAをアルコールに転化する例示的な2つのステップのオキシドリラクターゼを下記に提供する。上記酵素は、クロトニル‐CoAをクロチルアルコールに天然に転化しうる。または、上述したようにするように操作され得る。これらの酵素は、アセチル‐CoAのような基質をエタノールに転化するもの(例えば、E.coli由来のadhE(Kessler et al., FEBS.Lett. 281:59-63 (1991))およびブチリル‐CoAをブタノールに転化するもの(例えば、C.acetobutylicum由来のadhE2(Fontaine et al., J.Bacteriol. 184:821-830 (2002))を含む。C.acetobutylicum由来のadhE2酵素が、4‐ヒドロキシブチリル‐CoAからBDOを生成することが参照文献(Burk et al., supra, (2008))にて明確に示された。アセチル‐CoAのエタノールへの還元に加えて、Leuconostoc mesenteroidesにおいてadhEにコードされている酵素は、側鎖化合物のイソブチルアルデヒドをイソブチリル‐CoAに酸化することが示された(Kazahaya et al., J.Gen.Appl.Microbiol. 18:43-55 (1972); Koo et al., Biotechnol. Lett. 27:505-510 (2005))。
Figure 2014504508
別の例示的な酵素は、マロニル‐CoAを3‐HPに転化し得る。この活性を有するNADPH依存性酵素は、Chloroflexus aurantiacusにおいて特徴づけられてお、上記酵素は3‐ヒドロキシプロピオン酸回路に関与している(Hugler et al., supra, (2002); Strauss et al., 215:633-643 (1993))。この酵素(300kDaの分子量を有する)は、高い基質特性であり、他の公知のオキシドリラクターゼにたいして低い配列相同性を示す(Hugler et al., supra, (2002))。他の生物が同様な経路を有し得る生物情報学的な根拠があるが(Klatt et al., Environ Microbiol. 9:2067-2078 (2007))、他の生物においてはこの特定の反応を触媒する酵素は見られない。Roseiflexus castenholzii、Erythrobacter sp. NAP1およびマリンガンマプロテオバクテリウム(marine gamma proteobacterium)HTCC2080を含む他の生物における酵素の候補は、配列相同性によって推測され得る。
Figure 2014504508
グルタコニル‐CoAデカルボキシラーゼ(図2、ステップL)
グルタコニル‐CoAデカルボキシラーゼ酵素(グルタミン酸発酵嫌気細菌において特徴づけられている)は、ナトリウムイオン転移デカルボキシラーゼである。上記ナトリウムイオン転移デカルボキシラーゼは、補因子としてビオチンを利用し、4つのサブユニット(アルファ、ベータ、ガンマおよびデルタ)から構成される(Boiangiu et al., J Mol.Microbiol Biotechnol 10:105-119 (2005); Buckel, Biochim Biophys Acta. 1505:15-27 (2001))。上記酵素は、Fusobacterium nucleatum(Beatrix et al., Arch Microbiol. 154:362-369 (1990))およびAcidaminococcus fermentans(Braune et al., Mol.Microbiol 31:473-487 (1999))において特徴づけられている。F.nucleatumのグルタコニル‐CoAデカルボキシラーゼのアルファサブユニット、ベータサブユニット、ガンマサブユニットおよびデルタサブユニットに対するアナログを、S.aciditrophicusにおいて見出す。エノイル‐CoAデヒドロゲナーゼとして注釈される遺伝子(syn_00480、別のGCD)は、予想されるオペロンにおいて、ビオチン‐カルボキシルキャリアー(syn_00479)とグルタコニル‐CoAデカルボキシラーゼアルファサブユニット(syn_0048)との間に配置される。例示的な遺伝子産物のためのタンパク質の配列は、続いて以下に示すGenebankアクセション番号を用いて見出し得る。
Figure 2014504508
グルタリル‐CoAデヒドロゲナーゼ(図2、ステップM)
グルタリル‐CoAデヒドロゲナーゼ(GCD, EC 1.3.99.7およびEC 4.1.1.70)は、グルタリル‐CoAのクロトニル‐CoAへの酸化的脱炭酸を触媒する二機能性酵素である(図3、ステップ3)。二機能性GCD酵素はホモ4量体であり、電子受容体として電子伝達フラボタンパク質を利用する(Hartel et al., Arch Microbiol. 159:174-181 (1993))。芳香族化合物における増殖中のPseudomonas strains KB740およびK172の細胞抽出物において、上記酵素は初めて特徴づけられた(Hartel et al., supra, (1993))。しかし、これらの生物における関連遺伝子は公知でない。グルタリル‐CoAデヒドロゲナーゼ(cgH)をコードする遺伝子および同種の転写制御因子(gcdH)が、Azoarcus sp.CIBにおいて同定された(Blazquez et al., Environ Microbiol. 10:474-482 (2008))。gcdH活性が不足しているAzoarcus系統は、Pseudomonas putida由来の異種性の遺伝子gcdHの同定のために使用される(Blazquez et al., supra, (2008))。Pseudomonas putidaにおける同種の転写制御因子は同定されていない。しかし、locus PP_0157は、Azoarcusの酵素に対して高い配列の相同性(>69%同一性)を有する。さらなるGCD酵素を、Pseudomonas fluorescensおよびParacoccus denitrificansにおいて見出す(Husain et al., J Bacteriol. 163:709-715 (1985))。ヒトのGCDは、詳細にわたり研究され、E.coliにおいて過剰発現され(Dwyer et al., Biochemistry 39:11488-11499 (2000))、結晶化され、活性領域における保存されたグルタミン酸を含む触媒機能が説明されている(Fu et al., Biochemistry 43:9674-9684 (2004))。Syntrophus aciditrophicusにおけるGCDは、クロトン酸における増殖中のCO同化の方向性において作用する(Mouttaki et al., Appl Environ Microbiol. 73:930-938 (2007))。S.aciditrophicusにおける2つのGCD遺伝子が、AzoarcusのGcdH:syn_00480(31%)およびsyn_01146(31%)に対するタンパク質配列の相同性によって同定された。AzoarcusのGcdRに対する明確な相同性は見出されなかった。例示な遺伝子産物に対するタンパク質の配列を、続いて以下に示すGeneBankアクセション番号を使用することによって見出し得る。
Figure 2014504508
3‐アミノブチリル‐CoAデアミナーゼ(図2、ステップN)
3‐アミノブチリル‐CoAは、リジン発酵における中間生成物である。3‐アミノブチリル‐CoAは、トランスアミナーゼまたはアミノ化デヒドロゲナーゼを介したアセトアセチル‐CoAからも形成され得る。この可逆的酵素は、Fusobacterium nucleatum、Porphyromonas gingivalis、Thermoanaerobacter tengcongensisおよび種々の他の生物において存在し、リシンの発酵に関与する種々の遺伝子と共に配置されている(Kreimeyer et al., J Biol Chem, 2007, 282(10) 7191-7197)。
Figure 2014504508
4‐ヒドロキシブチリル‐CoAデヒドラターゼ(図2、ステップO)
種々の酵素は、4‐ヒドロキシブチリル‐CoAのクロトノイル‐CoAへの脱水を天然に触媒する。この変化は、Clostridium aminobutyricumによる4‐アミノ酪酸発酵(Scherf et al., Eur.J Biochem. 215:421-429 (1993))およびにClostridium kluyveriによるコハク酸‐エタノール発酵(Scherf et al., Arch.Microbiol 161:239-245 (1994))にとって必要である。この変化も、古細菌(例えば、Metallosphaera sedula)においては、3‐ヒドロキシプロピオン酸/4‐ヒドロキシ酪酸の無機栄養性二酸化炭素同化経路の一部として重要なステップである(Berg et al., supra, (2007))。4‐ヒドロキシブチリル‐CoAデヒドラターゼの可逆性は、詳しく報告されており(Muh et al., Biochemistry. 35:11710-11718 (1996); Friedrich et al., Angew.Chem.Int.Ed.Engl. 47:3254-3257 (2008); Muh et al., Eur.J.Biochem. 248:380-384 (1997))、平衡定数が、クロトニル‐CoA側において、約4である事が報告されている。
Figure 2014504508
クロチルアルコールジホスホキナーゼ(図2、ステップP)
クロチルアルコールジホスホキナーゼ酵素は、クロチルアルコールにおける二リン酸基のヒドロキシル基への転化を触媒する。下記の酵素は、上記活性を天然に有する。または、この活性を示すように操作され得る。二リン酸基の転化を触媒するキナーゼは、EC 2.7.6酵素分類に属する。下記の表は、EC 2.7.6酵素分類における種々の有効なキナーゼ酵素を記載する。
Figure 2014504508
Escherichia coli(Hove-Jenson et al., J Biol Chem, 1986, 261(15);6765-71)およびMycoplasma pneumoniae M129(McElwain et al, International Journal of Systematic Bacteriology, 1988, 38:417-423)において同定されているリボース‐リン酸ジホスホキナーゼ酵素およびチアミンジホスホキナーゼ酵素は、特に重要である。例示的なチアミンジホスホキナーゼ酵素を、Arabidopsis thalianaにおいて見出す(Ajjawi, Plant Mol Biol, 2007, 65(1-2);151-62)。
Figure 2014504508
Figure 2014504508
エリトロース‐4‐リン酸レダクターゼ(図3、ステップA)
経路のステップAにおいて、エリトロース‐4‐リン酸レダクターゼまたはエリトリトール‐4‐リン酸デヒドロゲナーゼによって、エリトロース‐4‐リン酸をエリトリトール‐4‐リン酸に転化する。エリトロース‐4‐リン酸の還元は、エリトリトールを生成中のLeuconostoc oenosにおいて観察される(Veiga-da-Cunha et al., J Bacteriol. 175:3941-3948 (1993))。NADPHは補因子として同定された(Veiga-da-Cunha et al., supra, (1993))。しかし、エリトロース‐4‐リン酸の遺伝子は同定されなかった。したがって、Leuconostoc oenos由来のエリトロース‐4‐リン酸レダクターゼ遺伝子を同定し得、このステップに適用し得る。さらに、同様な反応を触媒する酵素をこのステップに利用し得る。これらの酵素の例は、1‐デオキシ‐D‐キシルロース‐5‐リン酸レダクトイソメラーゼ(EC1.1.1.267)であり、1‐デオキシ‐D‐キシリロース(xylylose)‐5‐リン酸の2‐C‐メチル‐D‐エリトリトール‐4‐リン酸(ステップAを比較すると、1つの付加的なメチル基を有する)への転化を触媒する。1‐デオキシ‐D‐キシルロース‐5‐リン酸レダクトイソメラーゼをコードするdxrまたはispC遺伝子は、よく研究されている:Escherichia coliおよびMycobacterium tuberculosis由来のDxrタンパク質は精製されて、結晶構造が同定された(Yajima et al., Acta Crystallogr.Sect.F.Struct.Biol.Cryst.Commun. 63:466-470 (2007); Mac et al., J Mol.Biol. 345:115-127 (2005); Henriksson et al., Acta Crystallogr.D.Biol.Crystallogr. 62:807-813 (2006); Henriksson et al., J Biol.Chem. 282:19905-19916 (2007))。改良された活性および変化させたカイネティクスを伴う部位特異的突然変異誘発法によって、Synechocystis sp由来のDxrタンパク質は研究されている(Fernandes et al., Biochim.Biophys.Acta 1764:223-229 (2006); Fernandes et al., Arch.Biochem.Biophys. 444:159-164 (2005))。さらに、Escherichia coli由来のグリセルアルデヒド‐3‐リン酸レダクターゼYghZは、グリセルアルデヒド‐3‐リン酸およびグリセロール‐3‐リン酸間の転化を触媒する(Desai et al., Biochemistry 47:7983-7985 (2008))。上記グリセルアルデヒド‐3‐リン酸レダクターゼYghZも、このステップに適用され得る。次の遺伝子はステップAの転化に使用され得る:
Figure 2014504508
エリトリトール‐4‐リン酸シチジリルトランスフェラーゼ(図3、ステップB)
経路のステップBにおいて、エリトリトール‐4‐リン酸シチジリルトランスフェラーゼまたは4‐(シチジン5’‐ジホスホ)‐エリトリトールシンターゼによって、エリトリトール‐4‐リン酸を4‐(シチジン5’‐ジホスホ)‐エリトリトールに転化する。このステップに対する的確な酵素は、同定されていない。しかし、同様の反応を触媒する酵素をこのステップに適用し得る。例えば、2‐C‐メチル‐D‐エリトリトール4‐リン酸シチジリルトランスフェラーゼまたは4‐(シチジン5’‐ジホスホ)‐2‐C‐メチル‐D‐エリトリトールシンターゼ(EC2.7.7.60)である。2‐C‐メチル‐D‐エリトリトール4‐リン酸シチジリルトランスフェラーゼは、イソプレノイド生合成のためのメチルエリトリトールリン酸経路に存在して、2‐C‐メチル‐D‐エリトリトール4‐リン酸および4‐(シチジン5’‐ジホスホ)‐2‐C‐メチル‐D‐エリトリトール(ステップBの転化を比較すると、余分のメチル基を有する)間の転化を触媒する。2‐C‐メチル‐D‐エリトリトール4‐リン酸シチジリルトランスフェラーゼは、ispDによってコードされ、Escherichia coli IspDの結晶構造が同定された(Kemp et al., Acta Crystallogr.D.Biol.Crystallogr. 57:1189-1191 (2001); Kemp et al., Acta Crystallogr.D.Biol.Crystallogr. 59:607-610 (2003); Richard et al., Nat.Struct.Biol. 8:641-648 (2001))。Mycobacterium tuberculosis H37Rv由来のispD遺伝子はクローニングされて、Escherichia coliにおいて発現させられた。N末端側のHis‐tagを用いて組換えタンパク質を精製した(Shi et al., J Biochem.Mol.Biol. 40:911-920 (2007))。さらに、Streptomyces coelicolorのispD遺伝子は、クローニングされ、E.coliにおいて発現させられた。組換えタンパク質は、物理的および動力学的に特徴づけられた(Cane et al., Bioorg.Med.Chem. 9:1467-1477 (2001))。次の遺伝子は、ステップBの転化に使用され得る。
Figure 2014504508
4‐(シチジン5’‐ジホスホ)‐エリトリトールキナーゼ(図3、ステップC)
経路のステップCにおいて、4‐(シチジン5’‐ジホスホ)‐エリトリトールキナーゼによって、4‐(シチジン5’‐ジホスホ)‐エリトリトールを2‐ホスホ‐4‐(シチジン5’‐ジホスホ)‐エリトリトールに転化する。このステップに対する的確な酵素は、同定されていない。しかし、同様の反応を触媒する酵素をこのステップに適用し得る。例えば、4‐ジホスホシチジル‐2‐C‐メチルエリトリトールキナーゼ(EC2.7.1.148)である。4‐ジホスホシチジル‐2‐C‐メチルエリトリトールキナーゼも、イソプレノイド生合成のためのメチルエリトリトールリン酸経路に存在して、4‐(シチジン5’‐ジホスホ)‐2‐C‐メチル‐D‐エリトリトールおよび2‐ホスホ‐4‐(シチジン5’‐ジホスホ)‐2‐C‐メチル‐D‐エリトリトール(ステップCの転化を比較すると、余分のメチル基を有する)間の転化を触媒する。4‐ジホスホシチジル‐2‐C‐メチルエリトリトールキナーゼは、ispE遺伝子にコードされており、Escherichia coli、Thermus thermophilus HB8およびAquifex aeolicusのIspEの結晶構造が同定された(Sgraja et al., FEBS J 275:2779-2794 (2008); Miallau et al., Proc.Natl.Acad.Sci.U.S.A 100:9173-9178 (2003); Wada et al., J Biol.Chem. 278:30022-30027 (2003))。上記生物由来のispE遺伝子はクローニングされて、発現させられた。特徴づけを行うために組換えタンパク質が精製された。次の遺伝子は、ステップCの転化に使用し得る:
Figure 2014504508
エリトリトール2,4‐シクロ二リン酸シンターゼ(図3、ステップD)
経路のステップDにおいて、エリトリトール2,4‐シクロ二リン酸シンターゼによって、2‐ホスホ‐4‐(シチジン5’‐ジホスホ)‐エリトリトールをエリトリトール2,4‐シクロ二リン酸に転化する。このステップに対する的確な酵素は、同定されていない。しかし、同様の反応を触媒する酵素をこのステップに適用し得る。例えば、2‐C‐メチル‐D‐エリトリトール2,4‐シクロ二リン酸シンターゼ(EC4.6.1.12)である。2‐C‐メチル‐D‐エリトリトール2,4‐シクロ二リン酸シンターゼも、イソプレノイド生合成のためのメチルエリトリトールリン酸経路に存在して、2‐ホスホ‐4‐(シチジン5’‐ジホスホ)‐2‐C‐メチル‐D‐エリトリトールおよび2‐C‐メチル‐D‐エリトリトール‐2,4‐シクロ二リン酸(ステップDの転化を比較すると、余分のメチル基を有する)間の転化を触媒する。2‐C‐メチル‐D‐エリトリトール2,4‐シクロ二リン酸シンターゼは、ispF遺伝子にコードされ、Escherichia coli、Thermus thermophilus、Haemophilus influenzaeおよびCampylobacter jejuniのIspFの結晶構造は、同定された(Richard et al., J Biol.Chem. 277:8667-8672 (2002); Steinbacher et al., J Mol.Biol. 316:79-88 (2002); Lehmann et al., Proteins 49:135-138 (2002); Kishida et al., Acta Crystallogr.D.Biol.Crystallogr. 59:23-31 (2003); Gabrielsen et al., J Biol.Chem. 279:52753-52761 (2004))上記の生物に由来するisp遺伝子はクローニングされて、発現させられた組換えタンパク質は、結晶化のために精製された。次の遺伝子は、ステップDの転化に使用され得る。
Figure 2014504508
1‐ヒドロキシ‐2‐ブテニル4‐二リン酸シンターゼ(図3、ステップE)
図3のステップEは、1‐ヒドロキシ‐2‐ブテニル4‐二リン酸シンターゼによるエリトリトール2,4‐シクロ二リン酸の1‐ヒドロキシ‐2‐ブテニル4‐二リン酸への転化を含む。現在までに、この活性を有する酵素は同定されていない。この転化は、(E)‐4‐ヒドロキシ‐3‐メチルブタ‐2‐エニル‐二リン酸シンターゼ(EC1.17.7.1)による、2‐C‐メチル‐D‐エリトリトール‐2,4‐シクロ二リン酸の1‐ヒドロキシ‐2‐メチル‐2‐(E)‐ブテニル4‐二リン酸への還元に類似している。この酵素は、細菌および植物に見出されるイソプレノイド生合成のための非メバロン酸経路に関係する鉄‐硫黄タンパク質である。E.coliの酵素(ispGにコードされる)を含むほとんどの細菌性の酵素は、電子のドナーとして還元型フェレドキシンまたはフラボドキシンを利用する(Zepeck et al., J Org.Chem. 70:9168-9174 (2005))。好熱性シアノバクテリアThermosynechococcus elongatus BP−1由来の類似性の酵素(gcpEにコードされる)は、E.coliにおいて、異種的に発現されて、特徴づけられた(Okada et al., J Biol.Chem. 280:20672-20679 (2005))。Thermus thermophilusおよびArabidopsis thaliana由来のさらなる酵素の候補は、特徴づけられており、E.coliにおいて発現されている(Seemann et al., J Biol.Inorg.Chem. 10:131-137 (2005); Kollas et al., FEBS Lett. 532:432-436 (2002))。
Figure 2014504508
1‐ヒドロキシ‐2‐ブテニル4‐二リン酸レダクターゼ(図3、ステップF)
1‐ヒドロキシ‐2‐ブテニル4‐二リン酸の同時発生の脱水および還元は、1‐ヒドロキシ‐2‐ブテニル4‐二リン酸レダクターゼ活性を有する酵素によって触媒される(図3、ステップF)。上記酵素は、生成物の混合物(ブテニル4‐二リン酸または2‐ブテニル4‐二リン酸)を形成する。類似性の反応は、イソプレノイドの生合成のための非メバロン酸経路において4‐ヒドロキシ‐3‐メチルブタ‐2‐エニル‐二リン酸レダクターゼ(EC1.17.1.2)によって触媒される。この酵素は、電子のドナーとして還元型フェレドキシンまたはフラボドキシンを利用する鉄‐硫黄タンパク質である。4‐ヒドロキシ‐3‐メチルブタ‐2‐エニル‐二リン酸レダクターゼE.coli(ispHにコードされている)の最大限の活性には、フラボドキシンおよびフラボドキシンレダクターゼの両方が必要である(Wolff et al., FEBS Lett. 541:115-120 (2003); Grawert et al., J Am.Chem.Soc. 126:12847-12855 (2004))。特徴づけられた触媒システムにおいて、還元型フラボドキシンは、NAD(P)+依存性フラボドキシンレダクターゼによって再生させられる。Aquifex aeolicus由来の酵素(lytBにコードされている)は、E.coliにおいてHis−tag付加酵素として発現させられ、特徴づけられた(Altincicek et al., FEBS Lett. 532:437-440 (2002))。植物における類似性の酵素は、Arabidopsis thalianaのhdrにコードされる(Botella-Pavia et al., Plant J 40:188-199 (2004))。
Figure 2014504508
鉄‐硫黄クラスター形成に関与する遺伝子の発現レベルを変化させることは、提案した経路(例えば、図3のステップEおよびステップFにおける必要とされる酵素)における鉄‐硫黄タンパク質の活性において有利な効果を有し得る。E.coliにおいて、鉄‐硫黄を含むタンパク質IspH(図3のステップFに類似している)の過剰発現が、鉄‐硫黄クラスターのアセンブリに含まれるisc領域由来の遺伝子の共発現によって促進させられることが実証された(Grawert et al., J Am.Chem.Soc. 126:12847-12855 (2004))。上記遺伝子クラスターは、icsS、icsU、icsA、hscB、hscAおよびfdxより成る。これらの遺伝子の過剰発現は、鉄‐硫黄タンパク質のアセンブリのパイプライン(鉄‐硫黄タンパク質の機能的発現に必要とされる)の合成の能力を改善することが示された。同様なアプローチを本明細書にも適用し得る。
Figure 2014504508
ブテニル‐4‐二リン酸イソメラーゼ(図3、ステップG)
ブテニル‐4‐二リン酸イソメラーゼは、2‐ブテニル‐4‐二リン酸およびブテニル‐4‐二リン酸の可逆的な相互転換を触媒する。下記の酵素は上記活性を天然に有する。または、この活性を示すように操作され得る。有用な遺伝子は、イソペンエニル(isopenenyl)二リン酸およびジメチルアリル二リン酸を相互転換する酵素をコードするものを含む。これらは、Escherichia coli(Rodriguez-Concepcion et al., FEBS Lett, 473(3):328-332)、Saccharomyces cerevisiae(Anderson et al., J Biol Chem, 1989, 264(32);19169-75)およびSulfolobus shibatae(Yamashita et al, Eur J Biochem, 2004, 271(6);1087-93)由来のイソペンテニル二リン酸イソメラーゼ酵素を含む。E.coliのIdiタンパク質に触媒される異性化の反応機構は、その機構の詳細について特徴づけられている(de Ruyck et al., J Biol.Chem. 281:17864-17869 (2006))。Saccharomyces cerevisiae、Bacillus subtilisおよびHaematococcus pluvialis由来のイソペンテニル二リン酸イソメラーゼ酵素が、E.coliにおいて異種的に発現させられている(Laupitz et al., Eur.J Biochem. 271:2658-2669 (2004); Kajiwara et al., Biochem.J 324 ( Pt 2):421-426 (1997))。
Figure 2014504508
ブタジエンシンターゼ(図3、ステップH)
ブタジエンシンターゼは、2‐ブテニル4‐二リン酸の1,3‐ブタジエンへの転化を触媒する。下記の酵素は上記活性を天然に有する。または、この活性を示すように操作され得る。イソプレンシンターゼは、ジメチルアリル二リン酸のイソプレンへの転化を天然に触媒するが、2‐ブテニル4‐二リン酸からの1,3‐ブタジエンの合成も触媒し得る。Populus alba(Sasaki et al., FEBS Letters, 579 (11), 2514-2518 (2005))、Pueraria montana(indberg et al., Metabolic Eng, , 12(1):70-79 (2010); Sharkey et al., Plant Physiol., 137(2):700-712 (2005))およびPopulus tremula x Populus alba(Miller et al., Planta, 213(3):483-487 (2001))を含む種々の生物において、イソプレンシンターゼを見出し得る。さらなるイソプレンシンターゼ酵素が、(Chotani et al., WO/2010/031079, Systems Using Cell Culture for Production of Isoprene; Cervin et al., US Patent Application 20100003716, Isoprene Synthase Variants for Improved Microbial Production of Isoprene)に記載されている。
Figure 2014504508
エリトロース‐4‐リン酸キナーゼ(図3、ステップI)
経路のステップIにおいて、エリトロース‐4‐リン酸は、エリトロース‐4‐リン酸キナーゼによってエリトロースに転化される。酵母によるエリトリトールの産業上の発酵性生成において、ペントースリン酸経路を介してグルコースは、エリトロース‐4‐リン酸に転化される。エリトロース‐4‐リン酸は、脱リン酸化および還元されてエリトリトールを生成する(Moon et al., Appl.Microbiol Biotechnol. 86:1017-1025 (2010))。よって、多くのこれらのエリトリトールを生成する酵母(例えば、)において、エリトロース‐4‐リン酸キナーゼは存在する。上記酵母は、Trichosporonoides megachiliensis SN−G42(Sawada et al., J Biosci.Bioeng. 108:385-390 (2009))、Candida magnolia(Kohl et al., Biotechnol.Lett. 25:2103-2105 (2003))およびTorula sp.(HAJNY et al., Appl.Microbiol 12:240-246 (1964); Oh et al., J Ind.Microbiol Biotechnol. 26:248-252 (2001))を含む。これまでにエリトロース‐4‐リン酸キナーゼは同定されていない。しかし、このステップに使用され得る広い基質範囲を有する種々のポリオールホスホトランスフェラーゼが存在する。例えば、グリセルアルデヒドおよびグリセルアルデヒド‐3‐リン酸(ステップAを比較すると、1炭素短い)間の可逆的な転化を触媒するトリオースキナーゼ(EC2.7.1.28)である。他の例は、5Cポリオールアルデヒドのリン酸化を触媒するキシルロキナーゼ(EC2.7.1.17)またはアラビノキナーゼ(EC2.7.1.54)を含む。以下の遺伝子は、ステップIに使用され得る。
Figure 2014504508
エリトロースレダクターゼ(図3、ステップJ)
経路のステップJにおいて、エリトロースは、エリトロースリダクターゼによってエリトリトールに転化される。酵母によるエリトリトールの産業上の発酵性生成において、ペントースリン酸経路を介してグルコースは、エリトロース‐4‐リン酸に転化される。エリトロース‐4‐リン酸は、脱リン酸化および還元されてエリトリトールを生成する(Moon et al., supra, (2010))。よって、多くのこれらのエリトリトールを生成する酵母(例えば、)において、エリトロースレダクターゼは存在する。上記酵母は、Trichosporonoides megachiliensis SN−G42(Sawada et al., supra, (2009))、Candida magnolia((Kohl et al., supra, (2003))およびTorula sp.(HAJNY et al., supra, (1964); Oh et al., supra, (2001))を含む。Torula corallina(Lee et al., Biotechnol.Prog. 19:495-500 (2003); Lee et al., Appl.Environ.Microbiol 68:4534-4538 (2002))、Candida magnolia(Lee et al., Appl.Environ.Microbiol 69:3710-3718 (2003))およびTrichosporonoides megachiliensis SN−G42(Sawada et al., supra, (2009))由来のエリトロースレダクターゼが特徴づけられ、精製された。種々のエリトロースレダクターゼ遺伝子がクローン化された。そして、上記遺伝子は、ステップJに適用され得る。以下の遺伝子はステップJの転化に使用され得る:
Figure 2014504508
エリトリトールキナーゼ(図3、ステップK)
経路のステップKにおいて、エリトリトールはエリトリトールキナーゼによってエリトリトール‐4‐リン酸に転化される。エリトリトールキナーゼ(EC2.7.1.27)は、エリトリトールのリン酸化を触媒する。エリトリトールキナーゼは、エリトリトールを利用する細菌(例えば、Brucella abortus(Sperry et al., J Bacteriol. 121:619-630 (1975))において特徴づけられた。Brucella abortusのeryA遺伝子は、Escherichia coliにおいて機能的に発現させられており、生じたeryAは、エリトリトールのエリトリトール‐4‐リン酸へのATP依存性転化を触媒することが示された(Lillo et al., Bioorg.Med.Chem.Lett. 13:737-739 (2003))。以下の遺伝子はステップKの転化に使用され得る。
Figure 2014504508
マロニル‐CoA:アセチル‐CoAアシルトランスフェラーゼ(図4、ステップA)
図4に記載の経路のステップAにおいて、マロニル‐CoAおよびアセチル‐CoAは、マロニル‐CoA:アセチル‐CoAアシルトランスフェラーゼ(ベータケオチオラーゼ(beta‐keothiolase)によって縮合されて3‐オキソグルタリル‐CoAを形成する。これまで、マロニル‐CoAにおいて活性を有する酵素は報告されていないが、この転化に対する好適な候補はベータ‐ケトアジピル‐CoAチオラーゼ(EC2.3.1.174)である。上記酵素は、3‐オキソアジピル‐CoAチオラーゼとも呼ばれ、ベータ‐ケトアジピル‐CoAをスクニシル‐CoAおよびアセチル‐CoAに転化し、芳香族化合物の分解のためのベータ‐ケトアジピル経路の重要な酵素である。Pseudomonas putida(Harwood et al., J Bacteriol. 176:6479-6488 (1994))およびAcinetobacter calcoaceticus(Doten et al., J Bacteriol. 169:3168-3174 (1987))を含む単一の細菌および真菌において、上記酵素は広くに存在している。Pseudomonas strain B13においてpcaFにコードされている遺伝子産物(Kaschabek et al., J Bacteriol. 184:207-215 (2002))、Pseudomonas putida UにおいてphaDにコードされている遺伝子産物(Olivera et al., supra, (1998))、Pseudomonas fluorescens STにおいてpaaEにコードされている遺伝子産物(Di Gennaro et al., Arch Microbiol. 88:117-125 (2007))およびE.coli由来のpaaJにコードされている遺伝子産物(Nogales et al., Microbiology, 153:357-365 (2007))もこの転化を触媒する。種々のベータ‐ケトチオラーゼは、オキソアジピル‐CoA形成の方向づけにおいて重要かつ選択的な活性を示す。上記ベータ‐ケトチオラーゼは、Pseudomonas putida由来のbkt、Pseudomonas aeruginosa PAO1由来のpcaFおよびbkt、Burkholderia ambifaria AMMD由来のbkt、E.coli由来のpaaJならびにP.putida由来のphaDを含む。これらの酵素も、3‐オキソグルリル‐CoA(3‐オキソアジピル‐CoAに構造的に類似している化合物)の合成に使用され得る。
Figure 2014504508
別の適切なベータ‐ケトチオラーゼは、オキソピメロイル‐CoA:グルタリル‐CoAアシルトランスフェラーゼ(EC2.3.1.16)であり、グルタリル‐CoAとアセチル‐CoAとを結合させて、3‐オキソピメロイル‐CoAを形成する。この転化を触媒する酵素は、Ralstonia eutropha(以前は、Alcaligenes eutrophusとして知られていた)において見出され、遺伝子bktBおよびbktCにコードされている(Slater et al., J.Bacteriol. 180:1979-1987 (1998); Haywood et al., FEMS Microbiology Letters 52:91-96 (1988))。BktBタンパク質の配列は公知である;しかし、BktCタンパク質の配列は報告されていない。Rhodopseudomonas palustrisのpimオペロンもベータ‐ケトチオラーゼをコードし(pimBによってコードされる)、ベンゾイル‐CoAの分解下において、この転化を触媒することが予測される(Harrison et al., Microbiology 151:727-736 (2005))。S.aciditrophicusにおけるベータ‐ケトチオラーゼ酵素の候補が、bktBに対する配列の相同性によって同定された(43%同一性、e値=1e−93)。
Figure 2014504508
アセチル‐CoAおよびプロピオニル‐CoAからベータ‐ケトバレリル‐CoAの形成を触媒するベータ‐ケトチオラーゼ酵素は、3‐オキソグルタリル‐Coの形成を触媒し得る。Zoogloea ramigeraは2つのケトチオラーゼを有し、上記のケトチオラーゼはプロピオニル‐CoAおよびアセチル‐CoAからベータ‐ケトバレリル‐CoAを形成し得、R.eutrophaは、この転化も触媒し得るβ酸化ケトチオラーゼを有する(Slater et al., J. Bacteriol, 180:1979-1987 (1998))。これらの遺伝子の配列またはそれらの翻訳されたタンパク質の配列は報告されていない。しかし、R.eutropha、Z.ramigeraまたは他の生物における種々の候補を、R.eutropha由来のbktBに対する配列の相同性に基づいて同定し得る。それらは、以下を含む:
Figure 2014504508
2つのアセチル‐CoA分子をアセトアセチル‐CoAに変換することが公知であるベータ‐ケトチオラーゼ(EC2.1.3.9)をさらなる候補は含む。例示的なアセトアセチル‐CoAチオラーゼ酵素は、E.coli由来のatoB(Martin et al., supra, (2003))、C.acetobutylicum由来のthlAおよびthlB (Hanai et al., supra, (2007); Winzer et al., supra, (2000))ならびにS.cerevisiae由来のERG10(Hiser et al., supra, (1994))の遺伝子産物を含む。
Figure 2014504508
3‐オキソグルタリル‐CoAレダクターゼ(ケトン還元)(図4、ステップB)
図4に示される経路のステップBにおける3‐オキソグルタリル‐CoAから3‐ヒドロキシ基へにおいて、この酵素は3‐オキソ基の還元を触媒する。3‐オキソアシル‐CoAデヒドロゲナーゼ酵素は、3‐オキソアシル‐CoA分子を3‐ヒドロキシアシル‐CoA分子に転化し、上記酵素は、しばしば、脂肪酸ベータ酸化またはフェニル酢酸の異化に関与する。例えば、E.coliにおける2つの脂肪酸酸化複合体のサブユニット(fadBおよびfadJにコードされる)は、3‐ヒドロキシアシル‐CoAデヒドロゲナーゼとして機能する(Binstock et al., Methods Enzymol. 71 Pt C:403-411 (1981))。さらに、Pseudomonas putida UにおいてphaC(Olivera et al., supra, (1998))によってコードされる遺伝子産物およびPseudomonas fluorescens STにおいてpaaC(Di et al., supra, (2007))によってコードされる遺伝子産物は、フェニル酢酸またはスチレンの異化中において、3‐オキソアジピル‐CoAを形成するための3‐ヒドロキシアジピル‐CoAの可逆的な酸化を触媒する。さらに、フェニル酢酸分解オペロンにおいて他の遺伝子に対するE.coliのpaaHにおける隣接域(Nogales et al., supra, (2007))およびpaaHの変異体がフェニル酢酸を生成できないという事実(Ismail et al., supra, (2003))から、E.coliのpaaH遺伝子が3‐ヒドロキシアシル‐CoAデヒドロゲナーゼをコードすることが予想される。
Figure 2014504508
3‐ヒドロキシブチリル‐CoAデヒドロゲナーゼ(アセトアセチル‐CoAレダクターゼとも呼ばれる)は、アセトアセチル‐CoAの3‐ヒドロキシブチリル‐CoAへの可逆的なNAD(P)H依存性の転化を触媒する。この酵素は、種々のClostridiaの種における酪酸に対するアセチル‐CoA発酵経路に関与し、詳細が研究されている(Jones and Woods, supra, (1986))。酵素の候補は、C.acetobutylicum由来のhbd(Boynton et al., J. Bacteriol. 178:3015-3024 (1996))、C.beijerinckii由来のhbd(Colby et al., Appl Environ.Microbiol 58:3297-3302 (1992))およびMetallosphaera sedula由来の幾らかの類似した酵素(Berg et al., supra, (2007))を含む。Clostridium acetobutylicum由来の酵素(hbdによってコードされる)はクローニングされており、E.coliにおいて機能的に発現させられている(Youngleson et al., supra, (1989))。アセトアセチル‐CoAを3‐ヒドロキシブチリル‐CoAへと還元することが実証されたさらに他の遺伝子は、Zoogloea ramigera由来のphbB(Ploux et al., 上掲(1988))およびRhodobacter sphaeroides由来のphaB(Alber et al., 上掲(2006))である。前者の遺伝子は、NADPH依存性である。上記遺伝子のヌクレオチドの配列は決定されており(Peoples et al., 上掲(1989))上記遺伝子はE. coliにおいて発現されている。さらなる遺伝子としては、Clostridium kluyveriにおけるhbd1(C末端領域)およびhbd2(N末端領域)(Hillmer and Gottschalk, Biochim. Biophys. Acta 3334:12-23 (1974))、ならびにBos taurusにおけるHSD17B10(WAKIL et al., 上掲(1954))が含まれる。
Figure 2014504508
3‐ヒドロキシグルタリル‐CoAレダクターゼ(アルデヒド生成)(図4、ステップC)
3‐ヒドロキシグルタリル‐CoAレダクターゼは、3‐ヒドロキシグルタリル‐CoAを3‐ヒドロキシ‐5‐オキソペンタン酸へと還元する。いくつかのアシル‐CoAデヒドロゲナーゼは、アシル‐CoAをその対応するアルデヒドへと還元する(EC 1.2.1)。上記酵素をコードする遺伝子の例としては、脂肪アシル‐CoAレダクターゼをコードするAcinetobacter calcoaceticus acr1(Reiser et al., 上掲(1997))、Acinetobacter sp. M‐1脂肪アシル‐CoAレダクターゼ(Ishige et al., 上掲(2002))、ならびに、Clostridium kluyveriにおいてsucD遺伝子にコードされたCoA‐依存およびNADP‐依存コハク酸セミアルデヒドデヒドロゲナーゼ(Sohling and Gottschalk, 上掲(1996); Sohling and Gottschalk, 上掲(1996))が含まれる。P. gingivalisのsucDは、別のコハク酸セミアルデヒドデヒドロゲナーゼである(Takahashi et al., 上掲(2000))。Pseudomonas spにおいてアセトアルデヒドデヒドロゲナーゼをアシル化する上記酵素(bphGによってコードされている)は、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、イソブチルアルデヒドおよびホルムアルデヒドを酸化およびアシル化することが実証されているように、さらに別の酵素である(Powlowski et al., 上掲(1993))。アセチル‐CoAをエタノールに還元することに加えて、Leuconostoc mesenteroにおいてadhEによってコードされている酵素は、分枝化合物のイソブチルアルデヒドをイソブチリル‐CoAに酸化することが示された(Koo et al., Biotechnol. Lett. 27:505-510 (2005))。ブチルアルデヒドデヒドロゲナーゼは、Clostridium saccharoperbutylacetonicum等の溶媒生成生物(solventogenic organisms)において同様の反応(ブチリル‐CoAからブチルアルデヒドへの変換)を触媒する(Kosaka et al., Biosci.Biotechnol Biochem. 71:58-68 (2007))。
Figure 2014504508
Figure 2014504508
アシル‐CoAをその対応するアルデヒドに変換するさらなる酵素のタイプとして、マロニル‐CoAレダクターゼがある。上記マロニル‐CoAレダクターゼは、マロニル‐CoAをマロン酸セミアルデヒドに変換する。好熱酸性古細菌における3‐ヒドロキシプロピオン酸回路を介した独立栄養性の炭素固定において、マロニル‐CoAレダクターゼは重要な酵素である(Berg et al., 上掲(2007b); Thauer, 上掲(2007))。上記酵素は、NADPHを補因子として利用し、MetallosphaeraおよびSulfolobus sppにおいて特徴づけられている(Alber et al., 上掲(2006); Hugler et al., 上掲(2002))。上記酵素は、Metallosphaera sedulaにおいてMsed_0709にコードされている(Alber et al., 上掲(2006); Berg et al., 上掲(2007b))。Sulfolobus tokodaii由来のマロニル‐CoAレダクターゼをコードする遺伝子はクローニングされ、E. coliにおいて異種的に発現させられた(Alber et al., 上掲(2006))。当該酵素はまた、メチルマロニル‐CoAからその対応するアルデヒドへの変換を触媒することが示されている(WO/2007/141208)。上記酵素のアルデヒドデヒドロゲナーゼの機能性はChloroflexus aurantiacusに由来する二機能性デヒドロゲナーゼと同様であるが、配列の相同性はほとんどない。マロニル‐CoAレダクターゼ酵素の両候補は、アスパラギン酸セミアルデヒドデヒドロゲナーゼと高い配列相同性を有している。上記アスパラギン酸セミアルデヒドデヒドロゲナーゼは、アスパルチル‐4‐リン酸のアスパラギン酸セミアルデヒドへの還元および同時発生の脱リン酸化を触媒する酵素である。Sulfolobus solfataricusおよびSulfolobus acidocaldariusを含む他の生物におけるタンパク質に対する配列の相同性によって、さらなる遺伝子の候補を見出すことができる。アシル‐CoAレダクターゼ(アルデヒド生成)のさらに別の候補は、Clostridium beijerinckii由来のald遺伝子である(Toth et al., Appl. Environ. Microbiol 65:4973‐4980 (1999))。当該酵素は、アセチル‐CoAおよびブチリル‐CoAをそれらの対応するアルデヒドに還元することが報告されている。この遺伝子は、Salmonella typhimuriumおよびE.coliのアセトアルデヒドデヒドロゲナーゼをコードするeutEに非常に類似している(Toth et al., 上掲(1999))。
Figure 2014504508
3‐ヒドロキシ‐5‐オキソペンタン酸レダクターゼ(図4、ステップD)
当該酵素は、3‐ヒドロキシ‐5‐オキソペンタン酸の末端のアルデヒド基をアルコール基へと還元する。アルデヒドからアルコールへの変換を触媒する酵素(例えば、アルコールデヒドロゲナーゼまたは同等のアルデヒドレダクターゼ、1.1.1.a)をコードする遺伝子の例としては、C2‐C14に対する中鎖アルコールデヒドロゲナーゼをコードするalrA(Tani et al., 上掲(2000))、Saccharomyces cerevisiae由来のADH2(Atsumi et al., 上掲(2008))、C(3)よりも長い分子に対して好適なE.coli由来のyqhD(Sulzenbacher et al., 上掲(2004))、ならびに、ブチルアルデヒドをブタノールに変換するC. acetobutylicum由来のbdh Iおよびbdh II(Walter et al., 上掲(1992))が含まれる。yqhDの遺伝子産物は、NADPHを補因子として用いてアセトアルデヒド、マロンジアルデヒド、プロピオンアルデヒド、ブチルアルデヒドおよびアクロレインの還元を触媒する(Perez et al., 283:7346-7353 (2008); Perez et al., J Biol.Chem. 283:7346-7353 (2008))。Zymomonas mobilis由来のadhAの遺伝子産物は、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒドおよびアクロレインを含む多数のアルデヒドにおいて活性を有することが実証されている(Kinoshita et al., Appl. Microbiol. Biotechnol 22:249‐254 (1985))。
Figure 2014504508
4‐ヒドロキシブチレートデヒドロゲナーゼ活性を示す酵素(EC 1.1.1.61)はまた、当該カテゴリーに分類される。上記酵素は、Ralstonia eutropha(Bravo et al., 上掲(2004))、Clostridium kluyveri(Wolff and Kenealy, 上掲(1995))およびArabidopsis thaliana(Breitkreuz et al., 上掲(2003))において特徴づけられている。A. thalianaの酵素はクローニングされ、酵母において特徴づけられた[12882961]。さらに別の遺伝子としては、Geobacillus thermoglucosidasiusに由来するアルコールデヒドロゲナーゼadhIがある(Jeon et al., J Biotechnol 135:127-133 (2008))。
Figure 2014504508
別の酵素の例としては、3‐ヒドロキシイソブチレートからメチルマロン酸セミアルデヒドへの可逆的な酸化を触媒する3‐ヒドロキシイソブチレートデヒドロゲナーゼ(EC 1.1.1.31)がある。当該酵素は、バリン、ロイシンおよびイソロイシンの分解に関与し、細菌、真核生物および哺乳類において同定されている。Thermus thermophilus HB8に由来するP84067によってコードされている酵素は、構造的に特徴づけられている(Lokanath et al., J Mol Biol 352:905-17 (2005))。ヒト3‐ヒドロキシイソブチレートデヒドロゲナーゼの可逆性は、同位体によって標識された基質を用いて実証された(Manning et al., Biochem J 231:481-4 (1985))。当該酵素をコードするさらなる遺伝子としては、Homo sapiens(Hawes et al., Methods Enzymol 324:218-228 (2000))およびOryctolagus cuniculus(Hawes et al., 上掲(2000); Chowdhury et al., Biosci.Biotechnol Biochem. 60:2043-2047 (1996))における3hidh、Pseudomonas aeruginosaにおけるmmsb、ならびにPseudomonas putidaにおけるdhat(Aberhart et al., J Chem.Soc.[Perkin 1] 6:1404-1406 (1979); Chowdhury et al., 上掲(1996); Chowdhury et al., Biosci.Biotechnol Biochem. 67:438-441 (2003))が含まれる。
Figure 2014504508
マロン酸セミアルデヒドから3‐HPへの変換は、他の2つの酵素によっても達成され得る:NADH依存性の3‐ヒドロキシプロピオネートデヒドロゲナーゼおよびNADPH依存性のマロン酸セミアルデヒドレダクターゼ。NADH依存性の3‐ヒドロキシプロピオン酸デヒドロゲナーゼは、細菌および植物におけるプロピオン酸に由来するベータ‐アラニン生合成経路に関与していると考えられている(Rathinasabapathi B., Journal of Plant Pathology 159:671-674 (2002); Stadtman, J.Am.Chem.Soc. 77:5765-5766 (1955))。当該酵素は、これまでいずれの生物においても遺伝子に関連していない。NADPH依存性のマロン酸セミアルデヒドレダクターゼは、独立栄養性のCO固定細菌において可逆的反応を触媒する。酵素活性はMetallosphaera sedulaにおいて検出されているが、遺伝子の同定は知られていない(Alber et al., 上掲(2006))。
3,5‐ジヒドロキシペンタン酸キナーゼ(図4、ステップE)
当該酵素は、図4(ステップE)の3,5‐ジヒドロキシペンタン酸をリン酸化し、3‐ヒドロキシ‐5‐ホスホナートオキシペンタン酸(3H5PP)を形成する。当該変換は、リン酸基からアルコールへのATP依存性の転移を可能にするECクラス2.7.1の酵素によって触媒され得る。
当該ステップにおいて好ましい候補は3,5‐ジヒドロキシペンタン酸のメチルアナログ(メバロン酸)の末端のヒドロキシル基をリン酸化するメバロン酸キナーゼ(EC 2.7.1.36)である。当該ステップにおけるいくつかの遺伝子の候補は、S. cerevisiae 由来のerg12、Methanocaldococcus jannaschi由来のmvk、Homo sapeins由来のMVKおよびArabidopsis thaliana col由来のmvkである。
Figure 2014504508
グリセロールキナーゼもまた、グリセロールにおける末端のヒドロキシル基をリン酸化し、グリセロール‐3‐リン酸を形成する。当該反応は、Escherichia coli、Saccharomyces cerevisiaeおよびThermotoga maritimaを含むいくつかの種において生じる。E. coliのグリセロールキナーゼは、ジヒドロキシアセトンおよびグリセルアルデヒドのような代わりの基質を受け入れることが示されている(Hayashi and Lin, 上掲(1967))。T, maritimeは2つのグリセロールキナーゼを有している(Nelson et al., 上掲(1999))。グリセロールキナーゼは、広い範囲の基質特異性を有することが示されている。CransおよびWhitesideは、異なる4つの生物(Escherichia coli、S.cerevisiae、Bacillus stearothermophilusおよびCandida mycoderma)由来のグリセロールキナーゼについて研究を行った(Crans and Whitesides, 上掲(2010); Nelson et al., 上掲(1999))。CransおよびWhitesideは、66の異なるグリセロールのアナログを研究し、上記酵素は1つの末端ヒドロキシル基の位置において、一連の基質を受け入れることができ、メチル基によってC2の水素原子を置換できると結論付けた。興味深いことに、4つの生物の全てに由来する酵素の反応速度定数は、非常に類似していた。上記遺伝子の候補は:
Figure 2014504508
ホモセリンキナーゼは、3,5‐ジヒドロキシペンタン酸のリン酸化を導き得る別の可能性のある候補である。当該酵素も、E.coli、Streptomyces spおよびS.cerevisiaeを含む多数の生物において存在する。E.coli由来のホモセリンキナーゼは、L‐2‐アミノ、1,4‐ブタンジオール、アスパラギン酸セミアルデヒドおよび2‐アミノ‐5‐ヒドロキシバレラートを含む多数の基質において活性を持つことが示されている(Huo and Viola, 上掲(1996); Huo and Viola, 上掲(1996))。アルファ位置におけるカルボキシル基がエステルまたは、ヒドロキシメチル基によって置換された基質に対して、この酵素は作用し得る。上記遺伝子の候補は以下の遺伝子である:
Figure 2014504508
3H5PPキナーゼ(図4、ステップF)
3H5PPから3H5PDPへのリン酸化は、3H5PPキナーゼによって触媒され得る(図4、ステップF)。ホスホメバロン酸キナーゼ酵素(EC 2.7.4.2)は、メバロン酸経路において類似の変換を触媒する。当該酵素は、Saccharomyces cerevisiaeにおけるerg8によって(Tsay et al., Mol.Cell Biol. 11:620‐631 (1991))、ならびに、Streptococcus pneumoniae、Staphylococcus aureusおよびEnterococcus faecalisにおけるmvaK2(Doun et al., Protein Sci. 14:1134‐1139 (2005); Wilding et al., J Bacteriol. 182:4319‐4327 (2000))によってコードされている。Streptococcus pneumoniaeおよびEnterococcus faecalisの酵素はクローニングされ、E.coliにおいて特徴づけられた。(Pilloff et al., J Biol.Chem. 278:4510‐4515 (2003); Doun et al., Protein Sci. 14:1134‐1139 (2005))。
Figure 2014504508
3H5PDPデカルボキシラーゼ(図4、ステップG)
ブテニル4‐二リン酸は、3H5PDPデカルボキシラーゼによるATP依存性の3H5PDPの脱炭酸反応によって形成される(図4、ステップG)。当該活性を有する酵素はこれまで特徴づけされていないが、同様の反応は、イソプレノイドの生合成のためのメバロン酸経路に関与する酵素であるメバロン酸二リン酸デカルボキシラーゼによって触媒される(EC 4.1.1.33)。当該反応は、Saccharomyces cerevisiaeにおけるMVD1、Homo sapiensにおけるMVD、ならびにStaphylococcus aureusおよびTrypsonoma bruceiにおけるMDDによって触媒される(Toth et al., J Biol.Chem. 271:7895-7898 (1996); Byres et al., J Mol.Biol. 371:540-553 (2007))。
Figure 2014504508
ブテニル4‐二リン酸イソメラーゼ(図4、ステップH)
ブテニル4‐二リン酸イソメラーゼは、2‐ブテニル‐4‐二リン酸およびブテニル‐4‐二リン酸の可逆的な相互変換を触媒する。以下の酵素は、当該活性を天然に有していてもよいし、または当該活性を示すように設計されていてもよい。有用な遺伝子としては、イソペンエニル二リン酸およびジメチルアリル二リン酸を相互変換する酵素をコードしている遺伝子が含まれる。上記酵素としては、Escherichia coli(Rodriguez-Concepcion et al., FEBS Lett, 473(3):328-332)、Saccharomyces cerevisiae(Anderson et al., J Biol Chem, 1989, 264(32);19169-75)およびSulfolobus shibatae(Yamashita et al, Eur J Biochem, 2004, 271(6);1087-93)に由来するイソペンテニル二リン酸イソメラーゼ酵素が含まれる。E.coliのIdiタンパク質によって触媒される異性化の反応機構は、その機構の詳細について特徴づけられている(de Ruyck et al., J Biol.Chem. 281:17864-17869 (2006))。Saccharomyces cerevisiae、Bacillus subtilisおよびHaematococcus pluvialis由来のイソペンテニル二リン酸イソメラーゼ酵素が、E.coliにおいて異種的に発現させられている(Laupitz et al., Eur.J Biochem. 271:2658-2669 (2004); Kajiwara et al., Biochem.J 324 (Pt 2):421-426 (1997))。
Figure 2014504508
ブタジエンシンターゼ(図4、ステップI)
ブタジエンシンターゼは、2‐ブテニル‐4‐二リン酸から1,3‐ブタジエンへの変換を触媒する。下記の酵素は、当該活性を天然に有していてもよいし、または当該活性を示すように設計されていてもよい。イソプレンシンターゼは、ジメチルアリル二リン酸からイソプレンへの変換を天然に触媒するが、2‐ブテニル‐4‐二リン酸からの1,3‐ブタジエンの合成も触媒し得る。Populus alba(Sasaki et al., FEBS Letters, 2005, 579 (11), 2514-2518)、Pueraria montana(Lindberg et al., Metabolic Eng, 12(1):70-79 (2010); Sharkey et al., Plant Physiol., 137(2):700-712 (2005))およびPopulus tremula x Populus alba(Miller et al., Planta, 213(3):483-487 (2001))を含む種々の生物において、イソプレンシンターゼを見出し得る。さらなるイソプレンシンターゼ酵素が、(Chotani et al., WO/2010/031079, Systems Using Cell Culture for Production of Isoprene; Cervin et al., US Patent Application 20100003716, Isoprene Synthase Variants for Improved Microbial Production of Isoprene)に記載されている。
Figure 2014504508
3‐ヒドロキシグルタリル‐CoAレダクターゼ(アルコール生成)(図4、ステップJ)
当該ステップは、3‐ヒドロキシグルタリル‐CoAにおけるアシル‐CoA基からアルコール基への還元を触媒する。アシル‐CoAからアルコールへ変換する二機能性オキシドレダクターゼの例としては、例えば以下のような基質を変換する二機能性オキシドレダクターゼが含まれる:アセチル‐CoAからエタノールへ(例えばE. coliに由来するadhE(Kessler et al., 上掲(1991)))、および、ブチリル‐CoAからブタノールへ(C. acetobutylicumに由来するadhE2(Fontaine et al., 上掲(2002)))。アセチル‐CoAからエタノールへの還元に加えて、Leuconostoc mesenteroidesにおいてadhEにコードされている酵素は、分枝化合物のイソブチルアルデヒドをイソブチリル‐CoAに酸化することが示されている(Kazahaya et al., 上掲(1972); Koo et al., 上掲(2005))。
別の例示的な酵素は、マロニル‐CoAを3‐HPに変換し得る。この活性を有するNADPH依存性酵素は、Chloroflexus aurantiacusにおいて特徴づけられており、当該酵素は3‐ヒドロキシプロピオン酸回路に関与している(Hugler et al., 上掲(2002); Strauss and Fuchs, (1993))。この酵素(300kDaの分子量を有する)は、高度に基質特異的であり、他の公知のオキシドレダクターゼとの配列相同性はほとんどない(Hugler et al., 上掲(2002))。他の生物が同様な経路を有し得る生物情報学的な根拠があるが(Klatt et al., 上掲(2007))、他の生物においてはこの特定の反応を触媒する酵素は見られない。Roseiflexus castenholzii、Erythrobacter sp. NAP1およびマリンガンマプロテオバクテリウムHTCC2080を含む他の生物における酵素の候補は、配列相同性によって推測され得る。
Figure 2014504508
Figure 2014504508
より長鎖のアシル‐CoA分子は、アルコール生成脂肪アシル‐CoAレダクターゼをコードするホホバ(Simmondsia chinensis)FAR等の酵素によって当該アシル‐CoA分子に対応するアルコールへと還元され得る。E. coliにおけるFARの過剰発現は、結果としてFARの活性化および脂肪アルコールの蓄積をもたらす(Metz et al., Plant Physiology 122:635-644 (2000))。
Figure 2014504508
当該ステップを触媒するための別の候補には、3‐ヒドロキシ‐3‐メチルグルタリル‐CoAレダクターゼ(またはHMG‐CoAレダクターゼ)がある。当該酵素は、3‐ヒドロキシ‐3‐メチルグルタリル‐CoAにおけるCoA基をアルコール生成メバロン酸へと還元する。当該ステップにおける遺伝子の候補は以下の遺伝子である:
Figure 2014504508
3‐ヒドロキシ‐3‐メチルグルタリル‐CoAレダクターゼをコードする、Sulfolobus solfataricusのhmgA遺伝子は、クローニングされ、シークエンスされ、E. coliにおいて発現されている(Bochar et al., J Bacteriol. 179:3632-3638 (1997))。S. cerevisiaeはまた、2つのHMG‐CoAレダクターゼを有している(Basson et al., Proc.Natl.Acad.Sci.U.S.A 83:5563-5567 (1986))。上記遺伝子はまた、Arabidopsis thalianaから単離されており、S. cerevisiaeにおいてHMG‐COAレダクターゼ活性を補完することが示されている(Learned et al., Proc.Natl.Acad.Sci.U.S.A 86:2779-2783 (1989))。
3‐オキソグルタリル‐CoAレダクターゼ(アルデヒド生成)(図4、ステップK)
いくつかのアシル‐CoAデヒドロゲナーゼは、アシル‐CoAをその対応するアルデヒドへと還元する能力を有している。従って、上記アシル‐CoAデヒドロゲナーゼは、天然に3‐オキソグルタリル‐CoAを3,5‐ジオキソペンタン酸へと還元してもよいし、または3‐オキソグルタリル‐CoAを3,5‐ジオキソペンタン酸へと還元するように設計されていてもよい。上記酵素をコードする遺伝子の例については、図4、ステップCにおいて議論した。
3,5‐ジオキソペンタン酸レダクターゼ(ケトン還元)(図4、ステップL)
ケトンをヒドロキシル官能基へと変換するいくつかのアルコールデヒドロゲナーゼの例が存在する。上記酵素のうちのE. coliに由来する2つの酵素は、リンゴ酸デヒドロゲナーゼ(mdh)および乳酸デヒドロゲナーゼ(ldhA)によってコードされている。さらに、Ralstonia eutrophaに由来する乳酸デヒドロゲナーゼは、乳酸、2‐オキソブチレート、2‐オキソペンタン酸、および2‐オキソグルタル酸を含む、様々な長さの鎖を有する2‐ケト酸に対して高い活性を示すことが実証されている(Steinbuchel et al., Eur.J.Biochem. 130:329-334 (1983))。アルファ‐ケトアジピン酸からアルファ‐ヒドロキシアジピン酸への変換は、ラットおよびヒトの胎盤にて発見されたことが報告されている酵素である2‐ケトアジピン酸レダクターゼによって触媒され得る(Suda et al., Arch.Biochem.Biophys. 176:610-620 (1976); Suda et al., Biochem.Biophys.Res.Commun. 77:586-591 (1977))。上記ステップのためのさらなる候補としては、ヒトの心臓に由来するミトコンドリアの3‐ヒドロキシブチレートデヒドロゲナーゼ(bdh)があり、クローニングおよび特徴付けされている(Marks et al., J.Biol.Chem. 267:15459-15463 (1992))。上記酵素は、3‐ヒドロキシ酸において作用するデヒドロゲナーゼである。別の例示的なアルコールデヒドロゲナーゼは、C. beijerinckii(Ismaiel et al., J.Bacteriol. 175:5097-5105 (1993))およびT. brockii(Lamed et al., Biochem.J. 195:183-190 (1981); Peretz et al., Biochemistry. 28:6549-6555 (1989))において示されたように、アセトンをイソプロパノールへと変換する。メチルエチルケトンレダクターゼ、または2‐ブタノールデヒドロゲナーゼは、MEKの還元を触媒し、2‐ブタノールを形成する。例示的な酵素は、Rhodococcus ruber(Kosjek et al., Biotechnol Bioeng. 86:55-62 (2004))およびPyrococcus furiosus(van der et al., Eur.J.Biochem. 268:3062-3068 (2001))において見出され得る。
Figure 2014504508
多数の生物が、4‐ヒドロキシ‐2‐ブタノンから1,3‐ブタンジオールへの還元を触媒し得る。上記生物は、なかでもBacillus属、Brevibacterium属、Candida属およびKlebsiella属に属する生物を包含しており、Matsuyama et al. 米国特許第5,413,922号に記載されている。変異型のRhodococcusのフェニルアセトアルデヒドレダクターゼ(Sar268)およびLeifoniaのアルコールデヒドロゲナーゼもまた、上記変換を高収量にて触媒することが示されている(Itoh et al., Appl. Microbiol. Biotechnol. 75(6):1249-1256)。
ホモセリンデヒドロゲナーゼ(EC 1.1.1.13)は、アスパラギン酸セミアルデヒドからホモセリンへのNAD(P)H依存性の還元を触媒する。E. coliを含む多くの生物において、ホモセリンデヒドロゲナーゼは、アスパラギン酸からアスパルチル‐4‐リン酸へのATP依存性の変換も触媒する二機能性酵素である(Starnes et al., Biochemistry 11:677-687 (1972))。上記の機能ドメインは、触媒的に独立しており、リンカー領域によって連結されている(Sibilli et al., J Biol Chem 256:10228-10230 (1981))。また、ドメインは両方とも、トレオニンによるアロステリック阻害を受ける。thrAによってコードされている、E. coliの酵素のホモセリンデヒドロゲナーゼドメインは、アスパラギン酸キナーゼドメインから分離され、特徴付けされ、高い触媒活性およびトレオニンによる阻害の低減を示すことが見出された(James et al., Biochemistry 41:3720-3725 (2002))。上記のことは、例えばLactobacillus plantarum(Cahyanto et al., Microbiology 152:105-112 (2006))およびArabidopsis thalianaのhom1を包含する、他の二機能性トレオニンキナーゼに適用され得る。S. cerevisiaeにおけるhom6(Jacques et al., Biochim Biophys Acta 1544:28-41 (2001))およびLactobacillus plantarum(Cahyanto et al., 上掲(2006))におけるhom2によってコードされている単機能性のホモセリンデヒドロゲナーゼは、E. coliにおいて機能的に発現され、特徴付けされている。
Figure 2014504508
3,5‐ジオキソペンタン酸レダクターゼ(アルデヒド還元)(図4、ステップM)
いくつかのアルデヒド還元型レダクターゼは、アルデヒドをその対応するアルコールへと還元することができる。従って、上記レダクターゼは、天然に3,5‐ジオキソペンタン酸を5‐ヒドロキシ‐3‐オキソペンタン酸へと還元してもよいし、または3,5‐ジオキソペンタン酸を5‐ヒドロキシ‐3‐オキソペンタン酸へと還元するように設計されていてもよい。上記酵素をコードする遺伝子の例は、図4のステップ5において議論されている。
5‐ヒドロキシ‐3‐オキソペンタン酸レダクターゼ(図4、ステップN)
いくつかのケトン還元型レダクターゼは、ケトンをその対応するヒドロキシル基へと還元することができる。従って、上記レダクターゼは、天然に5‐ヒドロキシ‐3‐オキソペンタン酸を3,5‐ジオキソペンタン酸へと還元してもよいし、または5‐ヒドロキシ‐3‐オキソペンタン酸を3,5‐ジオキソペンタン酸へと還元するように設計されていてもよい。上記酵素をコードする遺伝子の例は、図4のステップLにおいて議論されている。
3‐オキソ‐グルタリル‐CoAレダクターゼ(CoA還元およびアルコール生成)(図4、ステップO)
3‐オキソ‐グルタリル‐CoAレダクターゼ(CoA還元およびアルコール生成)酵素は、3‐オキソ‐グルタリル‐CoAから5‐ヒドロキシ‐3‐オキソペンタン酸を形成するために必要とされる2つの還元ステップを触媒する。アシル‐CoAをアルコールへと変換する2ステップのオキシドレダクターゼの例は図4のステップJにおいて提示されている。上記酵素は、天然に3‐オキソ‐グルタリル‐CoAを5‐ヒドロキシ‐3‐オキソペンタン酸へと変換してもよいし、3‐オキソ‐グルタリル‐CoAを5‐ヒドロキシ‐3‐オキソペンタン酸へと変換するように設計されていてもよい。
〔実施例2〕
クロチルアルコールからのブタジエンの化学的生成
クロチルアルコールをブタジエンへと変換するための典型的なプロセスにおいて、クロチルアルコールは、そのもの自体または溶媒に溶かして、および、蒸気の存在下または非存在下で、反応槽または反応管の内部で40〜400℃の範囲にまで加熱された、固体の非有機性、有機性、または金属含有性の脱水触媒に通され、水の除去およびブタジエンのガスとしての放出が行われる。上記ブタジエンのガスは液化され(ブタジエンのbp=−4.4℃)、さらなる処理、保存、または利用のためにリザーバに集められる。典型的な触媒は、モリブデン酸ビスマス、リン酸塩‐リン酸、酸化セリウム、カオリン‐酸化鉄、カオリン‐リン酸、シリカ‐アルミナ、およびアルミナである。典型的なプロセスの処理能力は、0.1〜20,000kg/hの範囲である。典型的な溶媒は、トルエン、へプタン、オクタン、エチルベンゼン、およびキシレンである。
本願の全体において、様々な刊行物が参照されている。当該刊行物の全体的な開示(GenBankおよびGI番号の公開を含む)は、本発明に関連する技術の状況をより完全に記載するために、本願の明細書において参照によって引用されている。本発明は、上記の例を参照して記載されているが、本発明の精神から離れることなく、種々の変更が行われてもよいことは理解されるべきである。
イソプレノイドおよびテルペンの天然経路を示している。ここに示された基質を産物に変換する酵素は、(A)アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ、(B)ヒドロキシメチルグルタリル‐CoAシンターゼ、(C)3‐ヒドロキシ‐3‐メチルグルタリル‐CoAレダクターゼ(アルコール生成)、(D)メバロン酸キナーゼ、(E)ホスホメバロン酸キナーゼ、(F)ジホスホメバロン酸デカルボキシラーゼ、(G)イソペンテニル‐二リン酸イソメラーゼ、(H)イソプレンシンターゼを含んでいる。 アセチル‐CoA、グルタコニル‐CoA、グルタリル‐CoA、3‐アミノブチリル‐CoA、あるいは4‐ヒドロキシブチリル‐CoAから、クロチルアルコールを経由して、ブタジエンの生産を行う例示的な経路を示している。ここに示された基質を産物に変換する酵素は、(A)アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ、(B)アセトアセチル‐CoAレダクターゼ、(C)3‐ヒドロキシブチリル‐CoAデヒドラターゼ、(D)クロトニル‐CoAレダクターゼ(アルデヒド生成)、(E)クロトンアルデヒドレダクターゼ(アルコール生成)、(F)クロチルアルコールキナーゼ、(G)2‐ブテニル‐4‐リン酸キナーゼ、(H)ブタジエンシンターゼ、(I)クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、クロトニル‐CoAトランスフェラーゼ、(J)クロトン酸レダクターゼ、(K)クロトニル‐CoAレダクターゼ(アルコール生成)、(L)グルタコニル‐CoAデカルボキシラーゼ、(M)グルタリル‐CoAデヒドロゲナーゼ、(N)3‐アミノブチリル‐CoAデアミナーゼ、(O)4‐ヒドロキシブチリル‐CoAデヒドラターゼ、(P)クロチルアルコールジホスホキナーゼを含んでいる。 エリトロース‐4‐リン酸からブタジエンの生産を行う例示的な経路を示している。ここに示された基質を産物に変換する酵素は、(A)エリトロース‐4‐リン酸レダクターゼ、(B)エリトリトール‐4‐リン酸シチジリルトランスフェラーゼ、(C)4‐(シチジン5’‐ジホスホ)‐エリトリトールキナーゼ、(D)エリトリトール2,4‐シクロ二リン酸シンターゼ、(E)1‐ヒドロキシ‐2‐ブテニル4‐二リン酸シンターゼ、(F)1‐ヒドロキシ‐2‐ブテニル4‐二リン酸レダクターゼ、(G)ブテニル4‐二リン酸イソメラーゼ、(H)ブタジエンシンターゼ、(I)エリトロース‐4‐リン酸キナーゼ、(J)エリトロースレダクターゼ、(K)エリトリトールキナーゼを含んでいる。 マロニル‐CoAとアセチル‐CoAとからブタジエンの生産を行う例示的な経路を示している。ここに示された基質を産物に変換する酵素は、(A)マロニル‐CoA:アセチル‐CoAアシルトランスフェラーゼ、(B)3‐オキソグルタリル‐CoAレダクターゼ(ケトン還元)、(C)3‐ヒドロキシグルタリル‐CoAレダクターゼ(アルデヒド生成)、(D)3‐ヒドロキシ‐5‐オキソペンタン酸レダクターゼ、(E)3,5‐ジヒドロキシペンタン酸キナーゼ、(F)3H5PPキナーゼ、(G)3H5PDPデカルボキシラーゼ、(H)ブテニル4‐二リン酸イソメラーゼ、(I)ブタジエンシンターゼ、(J)3‐ヒドロキシグルタリル‐CoAレダクターゼ(アルコール生成)、(K)3‐オキソグルタリル‐CoAレダクターゼ(アルデヒド生成)、(L)3,5‐ジオキソペンタン酸レダクターゼ(ケトン還元)、(M)3,5‐ジオキソペンタン酸レダクターゼ(アルデヒド還元)、(N)5‐ヒドロキシ‐3‐オキソペンタン酸レダクターゼ、(O)3‐オキソ‐グルタリル‐CoAレダクターゼ(CoA還元およびアルコール生成)を含んでいる。化合物の略号は、3H5PP(3‐ヒドロキシ‐5‐ホスホナトオキシペンタン酸)、および3H5PDP(3‐ヒドロキシ‐5‐[ヒドロキシ(ホスホノオキシ)ホスホリル]オキシペンタン酸)を含んでいる。

Claims (44)

  1. ブタジエンを生産するためのプロセスであって、
    (a)クロチルアルコールを生産する非天然微生物を、十分な量の栄養および培地中で発酵培養する工程;および、
    (b)上記非天然微生物の培養により生産されたクロチルアルコールをブタジエンへ変換する工程、を含む、
    ことを特徴とするプロセス。
  2. 上記工程(b)は、触媒存在下における化学的脱水によって行われる、
    ことを特徴とする請求項1に記載のプロセス。
  3. 上記非天然微生物は、クロチルアルコール経路を含み、上記クロチルアルコール経路は、クロチルアルコールを生産するために十分な量にて発現するクロチルアルコール経路酵素をコードしている、少なくとも1つの外因性の核酸を含み、
    上記クロチルアルコール経路は、
    アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;クロトン酸レダクターゼ;クロトニル‐CoAレダクターゼ(アルコール生成);グルタコニル‐CoAデカルボキシラーゼ;グルタリル‐CoAデヒドロゲナーゼ;3‐アミノブチリル‐CoAデアミナーゼ;または4‐ヒドロキシブチリル‐CoAデヒドラターゼを含む、
    ことを特徴とする請求項1に記載のプロセス。
  4. 上記微生物は、2つの外因性の核酸を含み、
    上記2つの外因性の核酸は、それぞれクロチルアルコール経路酵素をコードしていることを特徴とする請求項3に記載のプロセス。
  5. 上記微生物は、3つの外因性の核酸を含み、
    上記3つの外因性の核酸は、それぞれクロチルアルコール経路酵素をコードしていることを特徴とする請求項3に記載のプロセス。
  6. 上記微生物は、4つの外因性の核酸を含み、
    上記4つの外因性の核酸は、それぞれクロチルアルコール経路酵素をコードしていることを特徴とする請求項3に記載のプロセス。
  7. 上記クロチルアルコール経路は、
    アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む、ことを特徴とする請求項3に記載のプロセス。
  8. 上記クロチルアルコール経路は、
    アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項3に記載のプロセス。
  9. 上記クロチルアルコール経路は、
    アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む、
    ことを特徴とする請求項3に記載のプロセス。
  10. 上記クロチルアルコール経路は、
    グルタコニル‐CoAデカルボキシラーゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項3に記載のプロセス。
  11. 上記クロチルアルコール経路は、
    グルタコニル‐CoAデカルボキシラーゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項3に記載のプロセス。
  12. 上記クロチルアルコール経路は、
    グルタコニル‐CoAデカルボキシラーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む、
    ことを特徴とする請求項3に記載のプロセス。
  13. 上記クロチルアルコール経路は、
    グルタリル‐CoAデヒドロゲナーゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項3に記載のプロセス。
  14. 上記クロチルアルコール経路は、
    グルタリル‐CoAデヒドロゲナーゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項3に記載のプロセス。
  15. 上記クロチルアルコール経路は、
    グルタリル‐CoAデヒドロゲナーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む、
    ことを特徴とする請求項3に記載のプロセス。
  16. 上記クロチルアルコール経路は、
    3‐アミノブチリル‐CoAデアミナーゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項3に記載のプロセス。
  17. 上記クロチルアルコール経路は、
    3‐アミノブチリル‐CoAデアミナーゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項3に記載のプロセス。
  18. 上記クロチルアルコール経路は、
    3‐アミノブチリル‐CoAデアミナーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む、
    ことを特徴とする請求項3に記載のプロセス。
  19. 上記クロチルアルコール経路は、
    4‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項3に記載のプロセス。
  20. 上記クロチルアルコール経路は、
    4‐ヒドロキシブチリル‐CoAデヒドラターゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項3に記載のプロセス。
  21. 上記クロチルアルコール経路は、
    4‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む、
    ことを特徴とする請求項3に記載のプロセス。
  22. 上記少なくとも1つの外因性の核酸は、異種性の核酸であることを特徴とする請求項3に記載のプロセス。
  23. 上記非天然微生物は、実質的に嫌気性である培養媒体中に存在することを特徴とする請求項3に記載のプロセス。
  24. クロチルアルコール経路を含む非天然微生物であって、
    上記クロチルアルコール経路は、クロチルアルコールを生産するために十分な量にて発現するクロチルアルコール経路酵素をコードしている、少なくとも1つの外因性の核酸を含み、
    上記クロチルアルコール経路は、
    アセチル‐CoA;アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;クロトン酸レダクターゼ;クロトニル‐CoAレダクターゼ(アルコール生成);グルタコニル‐CoAデカルボキシラーゼ;グルタリル‐CoAデヒドロゲナーゼ;3‐アミノブチリル‐CoAデアミナーゼ;または、4‐ヒドロキシブチリル‐CoAデヒドラターゼを含む、
    ことを特徴とする非天然微生物。
  25. 上記微生物は、2つの外因性の核酸を含み、
    上記2つの外因性の核酸は、それぞれクロチルアルコール経路酵素をコードしていることを特徴とする請求項24に記載の微生物。
  26. 上記微生物は、3つの外因性の核酸を含み、
    上記3つの外因性の核酸は、それぞれクロチルアルコール経路酵素をコードしていることを特徴とする請求項24に記載の微生物。
  27. 上記微生物は、4つの外因性の核酸を含み、
    上記4つの外因性の核酸は、それぞれクロチルアルコール経路酵素をコードしていることを特徴とする請求項24に記載の微生物。
  28. 上記クロチルアルコール経路は、
    アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成):およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項24に記載の微生物。
  29. 上記クロチルアルコール経路は、
    アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項24に記載の微生物。
  30. 上記クロチルアルコール経路は、
    アセチル‐CoA:アセチル‐CoAアシルトランスフェラーゼ;アセトアセチル‐CoAレダクターゼ;3‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む、
    ことを特徴とする請求項24に記載の微生物。
  31. 上記クロチルアルコール経路は、
    グルタコニル‐CoAデカルボキシラーゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項24に記載の微生物。
  32. 上記クロチルアルコール経路は、
    グルタコニル‐CoAデカルボキシラーゼ;およびクロトニル‐CoAレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項24に記載の微生物。
  33. 上記クロチルアルコール経路は、
    グルタコニル‐CoAデカルボキシラーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む、
    ことを特徴とする請求項24に記載の微生物。
  34. 上記クロチルアルコール経路は、
    グルタリル‐CoAデヒドロゲナーゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項24に記載の微生物。
  35. 上記クロチルアルコール経路は、
    グルタリル‐CoAデヒドロゲナーゼおよびクロトニル‐CoAレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項24に記載の微生物。
  36. 上記クロチルアルコール経路は、
    グルタリル‐CoAデヒドロゲナーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む、
    ことを特徴とする請求項24に記載の微生物。
  37. 上記クロチルアルコール経路は、
    3‐アミノブチリル‐CoAデアミナーゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項24に記載の微生物。
  38. 上記クロチルアルコール経路は、
    3‐アミノブチリル‐CoAデアミナーゼおよびクロトニル‐CoAレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項24に記載の微生物。
  39. 上記クロチルアルコール経路は、
    3‐アミノブチリル‐CoAデアミナーゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む、
    ことを特徴とする請求項24に記載の微生物。
  40. 上記クロチルアルコール経路は、
    4‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトニル‐CoAレダクターゼ(アルデヒド生成);およびクロトンアルデヒドレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項24に記載の微生物。
  41. 上記クロチルアルコール経路は、
    4‐ヒドロキシブチリル‐CoAデヒドラターゼおよびクロトニル‐CoAレダクターゼ(アルコール生成)を含む、
    ことを特徴とする請求項24に記載の微生物。
  42. 上記クロチルアルコール経路は、
    4‐ヒドロキシブチリル‐CoAデヒドラターゼ;クロトンアルデヒドレダクターゼ(アルコール生成);クロトニル‐CoAヒドロラーゼ、クロトニル‐CoAシンテターゼ、またはクロトニル‐CoAトランスフェラーゼ;およびクロトン酸レダクターゼを含む、
    ことを特徴とする請求項24に記載の微生物。
  43. 上記少なくとも1つの外因性の核酸は、異種性の核酸であることを特徴とする請求項24に記載の微生物。
  44. 上記非天然微生物は、実質的に嫌気性である培養媒体中に存在することを特徴とする請求項24に記載の微生物。
JP2013552630A 2011-02-02 2012-02-02 ブタジエンの生合成のための微生物および方法 Active JP5960729B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161438947P 2011-02-02 2011-02-02
US61/438,947 2011-02-02
PCT/US2012/023632 WO2012106516A1 (en) 2011-02-02 2012-02-02 Microorganisms and methods for the biosynthesis of butadiene

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016124920A Division JP2016192974A (ja) 2011-02-02 2016-06-23 ブタジエンの生合成のための微生物および方法

Publications (3)

Publication Number Publication Date
JP2014504508A true JP2014504508A (ja) 2014-02-24
JP2014504508A5 JP2014504508A5 (ja) 2015-03-26
JP5960729B2 JP5960729B2 (ja) 2016-08-02

Family

ID=46603080

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2013552630A Active JP5960729B2 (ja) 2011-02-02 2012-02-02 ブタジエンの生合成のための微生物および方法
JP2016124920A Pending JP2016192974A (ja) 2011-02-02 2016-06-23 ブタジエンの生合成のための微生物および方法
JP2018122381A Pending JP2018166514A (ja) 2011-02-02 2018-06-27 ブタジエンの生合成のための微生物および方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2016124920A Pending JP2016192974A (ja) 2011-02-02 2016-06-23 ブタジエンの生合成のための微生物および方法
JP2018122381A Pending JP2018166514A (ja) 2011-02-02 2018-06-27 ブタジエンの生合成のための微生物および方法

Country Status (12)

Country Link
US (4) US9321701B2 (ja)
EP (1) EP2670852A4 (ja)
JP (3) JP5960729B2 (ja)
KR (1) KR20140145935A (ja)
CN (2) CN103459602B (ja)
AU (1) AU2012212118B2 (ja)
BR (1) BR112013019811A2 (ja)
CA (1) CA2826293A1 (ja)
MX (1) MX348334B (ja)
MY (2) MY162964A (ja)
SG (1) SG192614A1 (ja)
WO (1) WO2012106516A1 (ja)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155382A1 (en) 2008-06-17 2009-12-23 Genomatica, Inc. Microorganisms and methods for the biosynthesis of fumarate, malate, and acrylate
KR20110097951A (ko) 2008-12-16 2011-08-31 게노마티카 인코포레이티드 합성가스와 다른 탄소원을 유용 제품으로 전환시키기 위한 미생물 및 방법
US8420375B2 (en) 2009-06-10 2013-04-16 Genomatica, Inc. Microorganisms and methods for carbon-efficient biosynthesis of MEK and 2-butanol
CN109136161A (zh) 2009-12-10 2019-01-04 基因组股份公司 合成气或其他气态碳源和甲醇转化为1,3-丁二醇的方法和有机体
CA2797409C (en) * 2010-05-05 2019-12-24 Genomatica, Inc. Microorganisms and methods for the biosynthesis of butadiene
EP2670852A4 (en) * 2011-02-02 2017-04-26 Genomatica, Inc. Microorganisms and methods for the biosynthesis of butadiene
CN107254492A (zh) 2011-06-17 2017-10-17 英威达技术有限责任公司 产生1,3‑丁二烯的方法
US9422578B2 (en) 2011-06-17 2016-08-23 Invista North America S.A.R.L. Methods for biosynthesizing 1,3 butadiene
US9169486B2 (en) 2011-06-22 2015-10-27 Genomatica, Inc. Microorganisms for producing butadiene and methods related thereto
BR112014008061A2 (pt) * 2011-10-19 2017-04-11 Scientist Of Fortune Sa método para a produção enzimática de butadieno
WO2013071074A1 (en) * 2011-11-11 2013-05-16 Invista North America S.A. R.L. Methods of producing butadiene
EP2925871A1 (en) 2012-11-28 2015-10-07 Invista Technologies S.A R.L. Methods for biosynthesis of isobutene
CN105143457B (zh) 2012-12-07 2018-10-30 环球生物能源公司 发酵生产烃
BR112015013188A2 (pt) 2012-12-07 2017-07-11 Global Bioenergies método de fermentação otimizado
JP2014161252A (ja) * 2013-02-22 2014-09-08 Sekisui Chem Co Ltd 組換え細胞
EP2971021A4 (en) 2013-03-15 2016-12-21 Genomatica Inc MICROORGANISMS AND METHODS FOR PRODUCING BUTADIENE AND RELATED COMPOUNDS BY ASSIMILATING FORMAT
US10294496B2 (en) 2013-07-19 2019-05-21 Invista North America S.A.R.L. Methods for biosynthesizing 1,3 butadiene
EP3030668A1 (en) 2013-08-05 2016-06-15 Invista Technologies S.A R.L. Methods for biosynthesis of isobutene
EP3030667A2 (en) 2013-08-05 2016-06-15 Invista Technologies S.a r.l. Methods for biosynthesis of isoprene
PL3077501T3 (pl) 2013-12-03 2022-01-31 Genomatica, Inc. Mikroorganizmy i sposoby poprawy wydajności produktu na metanolu z użyciem syntezy acetylo-coa
EP3087174B1 (en) 2013-12-27 2020-05-13 Genomatica, Inc. Methods and organisms with increased carbon flux efficiencies
BR112016029382A2 (pt) 2014-06-16 2017-10-17 Invista Tech Sarl processo para a produção de glutarato e éster metílico de ácido glutárico
EP3164495B1 (en) 2014-07-03 2024-02-28 Genomatica, Inc. Microorganisms for producing 4c-5c compounds with unsaturation and methods related thereto
WO2016007196A1 (en) * 2014-07-07 2016-01-14 Cobalt Technologies, Inc. Biomass conversion to butadiene
EP3741865B1 (en) 2014-09-18 2024-03-13 Genomatica, Inc. Non-natural microbial organisms with improved energetic efficiency
CN104298866B (zh) * 2014-09-30 2017-06-06 杭州电子科技大学 一种克劳斯硫磺回收过程中反应炉动态建模方法
WO2016066873A1 (es) 2014-10-30 2016-05-06 Abengoa Research, S.L. Óxidos mixtos que comprenden magnesio y boro, y su uso como catalizadores para producir precursores de butadieno
WO2016066869A1 (es) 2014-10-30 2016-05-06 Abengoa Research, S.L. Catalizador microporoso con encapsulación selectiva de óxidos metálicos útil para producir precursores de butadieno
CN107108397B (zh) * 2015-02-23 2021-07-27 维尔萨利斯股份公司 用于生产二烯烃的方法
CN107750276A (zh) 2015-04-09 2018-03-02 基因组股份公司 用于改进巴豆醇生产的工程化微生物和方法
US10941454B2 (en) 2015-05-30 2021-03-09 Genomatica, Inc. Vinylisomerase-dehydratases, alkenol dehydratases, linalool dehydratases and crotyl alcohol dehydratases and methods for making and using them
WO2017035141A2 (en) * 2015-08-24 2017-03-02 White Dog Labs, Inc. Microbial organisms for converting acetyl-coa into crotyl alcohol and methods for producing crotyl alcohol
CN115322261A (zh) 2015-10-30 2022-11-11 基因组股份公司 甲醇脱氢酶融合蛋白
KR101929631B1 (ko) 2016-12-20 2018-12-14 서강대학교산학협력단 미생물 발효를 이용한 1,3-부타디엔의 제조 방법
EA201891926A1 (ru) * 2017-02-03 2019-04-30 Киверди, Инк. Микроорганизмы и искусственные экосистемы для производства белка, продуктов питания и полезных побочных продуктов из субстратов c1
WO2019006257A1 (en) 2017-06-30 2019-01-03 Invista North America .S.A.R.L. METHODS, SYNTHETIC HOSTS AND REAGENTS FOR HYDROCARBON BIOSYNTHESIS
WO2019006255A1 (en) 2017-06-30 2019-01-03 Invista North America S.A.R.L. METHODS, MATERIALS, SYNTHETIC HOSTS AND REAGENTS FOR HYDROCARBON BIOSYNTHESIS AND DERIVATIVES
EP3660156A4 (en) 2017-07-24 2021-03-31 Riken DECARBOXYLASE AND METHOD FOR PRODUCING UNSATURATED HYDROCARBONS USING THE SAME
US11505809B2 (en) 2017-09-28 2022-11-22 Inv Nylon Chemicals Americas Llc Organisms and biosynthetic processes for hydrocarbon synthesis
US20210079334A1 (en) 2018-01-30 2021-03-18 Genomatica, Inc. Fermentation systems and methods with substantially uniform volumetric uptake rate of a reactive gaseous component
WO2020006058A2 (en) 2018-06-26 2020-01-02 Genomatica, Inc. Engineered microorganisms with g3p---> 3pg enzyme and/or fructose-1,6-bisphosphatase including those having synthetic or enhanced methylotrophy
JP2024511854A (ja) 2021-04-01 2024-03-15 シントス ドボリ 7 スプウカ ズ オグラニザツィーノン オトゥポビエジャルノシチョン エタノールとアセトアルデヒドとの混合物から1,3-ブタジエンを生産するための断熱的に実施されるプロセス

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044960A1 (en) * 2008-03-03 2010-04-22 Joule Biotechnologies, Inc. Ethanol production by microorganisms

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB525198A (en) 1938-03-21 1940-08-23 Melle Usines Sa Improvements in or relating to the preparation of di-olefines
DE68923805T2 (de) 1988-04-27 1995-12-07 Daicel Chem Verfahren zur herstellung von optisch aktivem 1,3-butanediol.
US5849970A (en) 1995-06-23 1998-12-15 The Regents Of The University Of Colorado Materials and methods for the bacterial production of isoprene
AU3482200A (en) 1999-02-02 2000-08-25 Bernhard Palsson Methods for identifying drug targets based on genomic sequence data
AU2002239855B2 (en) 2001-01-10 2006-11-23 The Penn State Research Foundation Method and system for modeling cellular metabolism
US7127379B2 (en) 2001-01-31 2006-10-24 The Regents Of The University Of California Method for the evolutionary design of biochemical reaction networks
US20030059792A1 (en) 2001-03-01 2003-03-27 Palsson Bernhard O. Models and methods for determining systemic properties of regulated reaction networks
US20030224363A1 (en) 2002-03-19 2003-12-04 Park Sung M. Compositions and methods for modeling bacillus subtilis metabolism
JP2005521929A (ja) 2002-03-29 2005-07-21 ジェノマティカ・インコーポレイテッド ヒト代謝モデルおよび方法
US7856317B2 (en) 2002-06-14 2010-12-21 Genomatica, Inc. Systems and methods for constructing genomic-based phenotypic models
AU2003256480B2 (en) 2002-07-10 2008-03-06 The Penn State Research Foundation Method for determining gene knockout strategies
WO2004035009A2 (en) 2002-10-15 2004-04-29 The Regents Of The University Of California Methods and systems to identify operational reaction pathways
DE102006025821A1 (de) 2006-06-02 2007-12-06 Degussa Gmbh Ein Enzym zur Herstellung von Mehylmalonatsemialdehyd oder Malonatsemialdehyd
CN105936887A (zh) 2007-03-16 2016-09-14 基因组股份公司 用于1,4-丁二醇和其前体生物合成的组合物和方法
US7947483B2 (en) 2007-08-10 2011-05-24 Genomatica, Inc. Methods and organisms for the growth-coupled production of 1,4-butanediol
SG192545A1 (en) 2008-04-23 2013-08-30 Danisco Us Inc Isoprene synthase variants for improved microbial production of isoprene
BRPI0915749A2 (pt) * 2008-07-08 2018-07-10 Opx Biotechnologies Inc métodos, composições e sistemas para produção biossintética de 1,4-butanodiol
BRPI0918453A2 (pt) 2008-09-15 2019-12-17 Danisco Us Inc sistemas usando cultura de células para a produção de isopreno
CN102625846B (zh) * 2009-04-30 2016-08-03 基因组股份公司 用于生产1,3-丁二醇的生物
US20120276606A1 (en) 2009-10-30 2012-11-01 Daicel Corporation Recombinant microorganisms with 1,3-butanediol-producing function and uses thereof
CA2797409C (en) * 2010-05-05 2019-12-24 Genomatica, Inc. Microorganisms and methods for the biosynthesis of butadiene
WO2012081723A1 (ja) * 2010-12-17 2012-06-21 三菱化学株式会社 合成経路作成装置、合成経路作成方法及び合成経路作成プログラムならびに3-ヒドロキシプロピオン酸、クロトニルアルコールおよびブタジエンの製造方法
EP2670852A4 (en) * 2011-02-02 2017-04-26 Genomatica, Inc. Microorganisms and methods for the biosynthesis of butadiene
US9169486B2 (en) * 2011-06-22 2015-10-27 Genomatica, Inc. Microorganisms for producing butadiene and methods related thereto

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044960A1 (en) * 2008-03-03 2010-04-22 Joule Biotechnologies, Inc. Ethanol production by microorganisms

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016002166; Progress in Biotechnology vol.15, 1998, pp.619-624 *

Also Published As

Publication number Publication date
MY179664A (en) 2020-11-11
EP2670852A4 (en) 2017-04-26
SG192614A1 (en) 2013-09-30
MY162964A (en) 2017-07-31
MX348334B (es) 2017-06-07
JP2018166514A (ja) 2018-11-01
JP5960729B2 (ja) 2016-08-02
CN106191132A (zh) 2016-12-07
US20170044572A1 (en) 2017-02-16
KR20140145935A (ko) 2014-12-24
EP2670852A1 (en) 2013-12-11
US20190048366A1 (en) 2019-02-14
MX2013008988A (es) 2014-03-21
US9321701B2 (en) 2016-04-26
WO2012106516A1 (en) 2012-08-09
US20120225466A1 (en) 2012-09-06
US20210147881A1 (en) 2021-05-20
AU2012212118A1 (en) 2013-05-02
JP2016192974A (ja) 2016-11-17
CN103459602B (zh) 2016-08-10
AU2012212118B2 (en) 2015-11-12
BR112013019811A2 (pt) 2017-02-21
CA2826293A1 (en) 2012-08-09
CN103459602A (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
US20210147881A1 (en) Microorganisms and methods for the biosynthesis of butadiene
US20220025411A1 (en) Microorganisms and methods for the biosynthesis of butadiene
US10006055B2 (en) Microorganisms for producing butadiene and methods related thereto
AU2013203173B2 (en) Microorganisms and methods for the biosynthesis of butadiene
AU2019204872A1 (en) Microorganisms and methods for the biosynthesis of butadiene
AU2013202445A1 (en) Microorganisms and methods for the biosynthesis of butadiene

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160623

R150 Certificate of patent or registration of utility model

Ref document number: 5960729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250