WO2016066869A1 - Catalizador microporoso con encapsulación selectiva de óxidos metálicos útil para producir precursores de butadieno - Google Patents

Catalizador microporoso con encapsulación selectiva de óxidos metálicos útil para producir precursores de butadieno Download PDF

Info

Publication number
WO2016066869A1
WO2016066869A1 PCT/ES2015/070546 ES2015070546W WO2016066869A1 WO 2016066869 A1 WO2016066869 A1 WO 2016066869A1 ES 2015070546 W ES2015070546 W ES 2015070546W WO 2016066869 A1 WO2016066869 A1 WO 2016066869A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
zeolite
reaction
alcohol
knax
Prior art date
Application number
PCT/ES2015/070546
Other languages
English (en)
French (fr)
Inventor
Daniel Resasco
Tu Pham
Lu Zhang
Jimmy Alexander FARIA ALBANESE
Maria Pilar RUIZ RAMIRO
Original Assignee
Abengoa Research, S.L.
The Board Of Regents Of The University Of Oklahoma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Research, S.L., The Board Of Regents Of The University Of Oklahoma filed Critical Abengoa Research, S.L.
Publication of WO2016066869A1 publication Critical patent/WO2016066869A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/106Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/082X-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/087X-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/103X-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/163X-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • C07C45/74Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups combined with dehydration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/38Base treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y

Definitions

  • This invention relates to microporous catalysts, their preparation and their uses, and in particular refers to the incorporation of clusters (clusters) of metal oxides in cation exchange zeolites, a method for preparing them and their use in the production of chemical intermediates useful for the production of olefins and diolefins.
  • Olefins and diolefins are chemical intermediates in the production of polymers and synthetic rubbers, which are widely used in the automotive industry as vulcanizable rubbers.
  • 1,3-butadiene is among the key monomers used in the large-scale production of polymers that are traditionally obtained by cracking with high temperature steam or catalytic cracking in fluidized bed (FCC) of naphtha.
  • FCC fluidized bed
  • the demand for 1,3-butadiene in 201 1 is estimated to be 10.26 MT and is expected to grow at a compound annual growth rate (CAGR) of 3.9% from 201 1-2020, to reach 14, 54 TMT in 2020.
  • CAGR compound annual growth rate
  • butadiene is mainly produced by steam cracking of paraffinic hydrocarbons (naphtha cracking), which represents the production of more than 95% of the world supply of butadiene.
  • 1,3-butadiene can be produced by dehydrogenation of n-butane and n-butene using any of the Catadiene or Oxo-D procedures developed by Lummus Technologies and others (United States Patents N No. 2,376,323, 2,554,054, 4,504,692, 6,187,984, 7,417,173, 2009/0292153, and 201 1/0245568 A1).
  • n-butanes as raw material, it is possible that the reaction units work for a longer time without catalyst regeneration, with higher butadiene yields.
  • n-butane requires the use of higher temperatures in order to observe reasonable reaction rates, which increases the energy costs of the process.
  • n-butene is much more reactive, so that the reactor can operate at lower temperatures.
  • the rapid rates of coke deposition in the catalyst increase the frequency of the regeneration cycles.
  • the reactor has to be oversized since steam is added to the raw material to reduce the partial pressure of the C4 products and reduce the deactivation rates.
  • inert solids are added to the reactor bed to recover the heat released during regeneration, in which the coke deposited on the catalyst surface is separated by combustion (see Chauvel, A., Lefevre, G. Petrochemical processes: 1 Synthesis-gas derivatives and major hydrocarbons, Edition Technip, Paris 1985). Due to these limitations the industrial exploitation of these technologies is rather scarce.
  • 1,3-Butadiene can also be produced, using genetically modified microorganisms, from ethanol or other renewable raw materials.
  • butanediol which can be further dehydrated to 1,3-butadiene
  • U.S. documents 8,129,156 and 8,178,327 describe the metabolic pathways that can be designed and prepared by recombinant engineering to achieve biosynthesis of 4- hydroxybutanoic acid and downstream products such as 1,4-butanediol.
  • the second approach consists in the direct biosynthesis of 1,3-butadiene through the introduction of one or more nucleic acids that encode an enzyme in the butadiene pathway.
  • US-A-2012/0225466 demonstrates that these metabolically modified Escherichia coli can also be subjected to an evolution of adaptation to further increase the biosynthesis of butadiene.
  • sugars can be transformed into butanol by fermentation using specific microorganisms. Then, the alcohol is dehydrated using an acid catalyst to produce butenes.
  • US-A-20100216958 describes the use of this reaction intermediate as a raw material for the production of 1,3-butadiene by dehydrogenation or for use as a final product for the synthesis of rubbers. Although these are promising strategies, the technology is in an early stage of development and typically expensive microorganisms and slow product formation speeds complicate their production on an industrial scale.
  • 1,3-butadiene from ethanol has important advantages.
  • the conversion of ethanol into 1,3-butadiene has been demonstrated on an industrial scale since the 1920s, and the first example was published by Sergey Lebedev using a variety of metal oxide catalysts (SV Lebedev, French Patent No. 665917 (1929 ), SV Lebedev, Great Britain Patent No.
  • the two-stage procedure specifically the Ostromislensky procedure was demonstrated on an industrial scale by Carbide and Carbon Chemicals Corporation (US 2,403,742 and 2,421, 361).
  • the dehydrogenation of ethanol to acetaldehyde is carried out in the first stage, and then the mixture of ethanol-acetaldehyde reacts further to produce crotonaldehyde and crotyl alcohol, which in turn can be converted into 1,3-butadiene.
  • a copper chromite catalyst was used in the dehydrogenation stage while in the second stage the tantalum, zirconium or niobium oxides deposited on silica were used.
  • the total yield of butadiene in this procedure varies from 23-44% based on acetaldehyde, and the catalyst is periodically regenerated due to coke formation.
  • the disadvantages of the existing methods include: the low partial pressures of ethanol used in the process lead to an increase in reactor size, there is a rapid deactivation of the catalyst, and the butadiene yield is low.
  • heavier hydrocarbons often contain more than four carbon atoms. Therefore, alternative methods of obtaining butadiene with high selectivity and yield using stable catalysts are of greatest interest.
  • zeolite catalysts have also been described in scientific publications, sometimes in connection with certain chemical reactions, such as:
  • WO2013125389A1 describes a catalyst for the production of butadiene from ethanol, which is prepared by mixing an oxide of a metal from groups 4-13 of the periodic table (component A) and magnesium oxide (component B) using a binding component (component C) which can be a zeolite.
  • component A oxide of a metal from groups 4-13 of the periodic table
  • component B magnesium oxide
  • component C binding component which can be a zeolite.
  • the Si0 2 / Al 2 0 3 molar ratio of the zeolite is 12 or more, and the content of component B is between 20 to 95%.
  • Document CN101462044B describes a catalyst for the production of crotonaldehyde, which is prepared by taking a compound consisting of an oxide of an alkaline earth metal and a molecular sieve or alumina as a carrier, and loading the oxide according to an impregnation method, wherein said Molecular sieve can be HZSM-5, ⁇ - ⁇ , HY, USY or a yttrium molecular sieve. Therefore, it would be highly desirable to develop catalytic compositions that exhibit high selectivity along with high yield in the reactions involved in the production of 1,3-butadiene, as well as in methods for producing chemical intermediates useful in the production of 1 , 3-butadiene, and methods for preparing said compositions. Summary
  • one of the objectives of the present invention is to provide cation exchange zeolites with metal oxide clusters having basic character incorporated therein. Another objective is to provide methods for preparing them, as well as methods for converting hydroxyl-containing molecules into unsaturated alpha-beta aldehydes and unsaturated alpha-beta alcohols and the subsequent production of olefins and diolefins, using these catalysts. More particularly, an object of the invention is to provide cation exchange zeolites with basic metal oxide clusters incorporated therein, which optimize the key intermediate stage in the process of producing olefins and diolefins from hydroxyl-containing molecules. .
  • Figure 1 a) Schematic view of the incorporation of a cluster (grouping) of metal oxides on the super boxes and b) selective conversion of acetaldehyde / ethanol into faujasite-type zeolites, where X is the counterion of the cation precursor used during the ion exchange, M is the cation exchanged with the cations of zeolite A, and e and z are the oxidation state of cation M and anion X, respectively.
  • Figure 3 Process flow diagram for the conversion of ethanol into butadiene.
  • Figure 4 Molar concentration of product after 3 h reaction of the mixtures of ethanol and acetaldehyde with a molar ratio of 9.6: 1, 0 to 130 ° C and 2.07 MPa of N 2 for KNaX (red) , NaY (green), and K-chabazita (blue).
  • the mass of the catalyst is 400 mg.
  • the figure on the left shows the molar concentration of C4 and heavier products and the figure on the right shows 1,1,1-diethoxyethane.
  • Figure 5 Molar concentration of product after 3 h of reaction of the mixtures of ethanol and acetaldehyde with a molar ratio of 9.6: 1, 0 to 130 ° C and 2.07 MPa of N 2 for KNaX (red) and NaX (green).
  • the mass of the catalyst is 400 mg.
  • Figure 6 Conversion and selectivity after 3 h reaction of the mixtures of ethanol and acetaldehyde with a molar ratio of 9.6: 1, 0 to 130 ° C and 2.07 MPa of N 2 for synthesized KNaX (blue) , MgO incorporated on the synthesized KNaX (red), the Mg content being 3.14% by weight.
  • the mass of the catalyst is 400 mg
  • Figure 8 Product selectivity in terms of moles of carbon for KNaX with MgO incorporated, NaX with MgO incorporated, NaY with MgO incorporated and MgO, as a function of the conversion level of acetaldehyde during the reaction of ethanol and acetaldehyde mixtures in a molar ratio of 9.6: 1, 400 mg of catalyst, 180 ° C and 2.07 MPa of N 2 .
  • Figure 9 Comparison of product yield between KNaX with MgO incorporated with a Mg content of 3.14% by weight, and a physical mixture of KNaX and MgO in equivalent concentration after 3 h of reaction of the ethanol and acetaldehyde mixtures in a molar ratio of 9.6: 1. The reactions were carried out at 180 ° C, 2.07 MPa of N 2 , 150 rpm, and 400 mg of catalyst.
  • Figure 10 Selectivity for KNaX carbon with MgO incorporated with a Mg content of 3.14% by weight without washing of KOH and with washing of KOH (pH 10).
  • the reaction time was 3 h and the reactant was a mixture of ethanol and acetaldehyde in a molar ratio of 9.6: 1.
  • the reactions were carried out at 180 ° C, 2.07 MPa of N 2 , 150 rpm, and 400 mg of catalyst.
  • One of the objects of the invention is directed to a method for converting hydroxyl-containing molecules, such as alcohols of less than C4 and particularly ethanol, into unsaturated alpha-beta aldehydes and unsaturated alpha-beta alcohols, such as crotonaldehyde and crotyl alcohol. With high conversion and selectivity. If crotyl alcohol is produced (which can be easily dehydrated to butadiene) with high selectivity this will lead to an increase in butadiene production.
  • hydroxyl-containing molecules such as alcohols of less than C4 and particularly ethanol
  • a zeolite-based catalyst useful for obtaining alpha-beta unsaturated aldehydes, alpha-beta unsaturated alcohols or mixtures thereof from alcohols and / or aldehydes.
  • the catalyst has the general formula: wherein M 1 is a transition metal selected from the list but not limited to: Os, Ir, Pt, Au, Ga, Mg, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn , Y, Zr, Nb, Cd, La, Sn, Hf, Ta, W, Re, Al, Ce and Cs, preferably Mg, Zn, Zr, Ti and Sn, and more preferably Mg and Zn,
  • w is the oxidation state of M1
  • M2 and M3 are alkali metals independently selected from the list but not limited to: Na, K, Li, Rh, Cs, preferably K and Na,
  • n is between 77 and 96, preferably between 77 and 86.
  • y y x are the oxidation states of M2 and M3, respectively;
  • Si / Al molar ratio of the zeolite varies between 1 and 5; preferably between 1 and 2, and more preferably about 1, and the concentration of M1 in the catalyst varies between 1 and 10% by weight, preferably between 2 and 5% by weight, and more preferably around 3.14% by weight .
  • a suitable catalyst for producing alpha-beta unsaturated aldehydes, alpha-beta unsaturated alcohols or mixtures thereof from molecules. containing hydroxyl, said catalyst being a microporous aluminosilicate of the zeolite faujasite type of cation exchange having clusters of metal oxides incorporated therein.
  • a method is provided for preparing the catalyst mentioned above, which comprises the steps of:
  • a) dissolve in an aqueous solvent at least one cation precursor selected from the group consisting of Os +4 , lr +4 , Pt +4 , Au +3 , Ga +3 , Mg 2+ , Si +4 , Ti +4 , V +5 , Cr +3 , Mn +4 , Fe +3 , Fe +2 , Co +2 , Ni +2 , Cu +2 Zn +2 , Y +3 , Zr +4 , Nb +5 , Cd + 2 , La +3 , Sn +4 , Hf +4 , Ta +5 , W +6 , Re +7 , Al +3 ,
  • step b) mixing a certain amount of a zeolite with the aqueous solution of step a) to allow ionic exchange between the cations within the zeolite and the solution cations;
  • said cation precursor is selected from the group consisting of OsCI 4 , lrCI 4 , PtCI 4 , AuCI 3 , GaCI 3 , MgO, SiO 2 , TiO 2 , V 2 0 5 , Cr 2 0 3 , Mn0 2 , Fe 2 0 3 , FeO, CoO, NiO, ZnO, Y 2 0 3 , Zr0 2 , Nb 2 0 5 , CdO, La 2 0 3 , Sn0 2 , Hf0 2 , Ta 2 0 5 , W0 3 , Re 2 0 7 , Al 2 0 3 , Ce0 2 and Cs 2 0, preferably MgO, ZnO, ZrO, Ti0 2 and Sn0 2 .
  • the washing operation of step c) is performed with water, NaOH, KOH or NH 4 OH in any combination, and filtration is performed until the filtrate has a pH between 6-8.
  • the drying operation of step d) is performed at a temperature selected from the range of 100 to 150 ° C, more preferably 120 ° C, for a period of time ranging from 8 to 24 hours, more preferably during approximately 12 hours
  • the calcining operation of step d) is performed at a temperature in the range of 300 to 500 ° C, more preferably about 400 ° C for a period of time ranging from 1 to 4 hours, more preferably 1 to 2 hours
  • a method for obtaining an olefin and / or diolefin which comprises the steps of:
  • step b) dehydrate an unsaturated alpha-beta alcohol obtained in step a) to produce at least one olefin and / or diolefin.
  • the method comprises the next intermediate stage between stages (a) and
  • said at least one alcohol is an alcohol containing from 2 to 6 carbon atoms, in any combination.
  • the alcohol is selected from the group of C 2 to C 6 alcohols or any combination thereof.
  • said at least one aldehyde is an aldehyde containing from 2 to 6 carbon atoms.
  • the aldehyde is selected from the group of aldehydes C 2 to C 6 , or any combination thereof.
  • alcohol and aldehyde are compounds having the same number of carbons.
  • the unsaturated alpha-beta alcohol is crotyl alcohol.
  • the unsaturated alpha-beta aldehyde is crotonaldehyde and the diolefin is 1,3-butadiene.
  • the reaction is carried out at a pressure ranging from 1 to 3 MPa, preferably from 1.9 to 2.1 MPa and more preferably at 2.07 MPa, and at a temperature that preferably ranges from 100 to 300 ° C, more preferably 150 to 200 ° C and more preferably 180 ° C.
  • the alcohol is ethanol and the aldehyde is acetaldehyde.
  • the following zeolites were used: NaX zeolite provided by Aldrich Chemical Company, conventional KNaX zeolite and conventional NaY zeolite. Next, the methods for obtaining the conventional KNaX zeolite and the conventional NaY zeolite are described herein.
  • a planting solution was prepared according to the gel molar composition: 15.6Na 2 0: 1, 0AI 2 O3: 16 SiO 2 : 312H 2 O. After dissolving 2.1 g of NaOH in 10.43 g of water, they then added 0.51 g of sodium aluminate and 1132 g of sodium silicate. The mixture was stirred for 10 min until a homogeneous clear solution was obtained. It was allowed to stand at room temperature for 48 hours and then it was ready for use.
  • the solution was subdivided and placed in several bottles of Teflon. Crystallization was performed at 100 ° C for 10 h. The sample was obtained by separating the solid phase from the liquid phase and washed carefully with distilled water until the pH of the mother liquor reached a value between 7 and 9.
  • MgO was incorporated into the parental zeolites mentioned above, by the procedures that follow.
  • Mg 2+ ions were introduced into the parental zeolite by ion exchange in 2 g of the parental sample with 100 ml of 0.1 M solution of Mg (N0 3 ) 2 at room temperature for 20 to 30 hours, preferably for 23 to 27 hours and more preferably for 24 h.
  • concentration of the Mg (N0 3 ) 2 solution By increasing or decreasing the concentration of the Mg (N0 3 ) 2 solution , the amount of the cations introduced into the zeolite structure can be controlled.
  • the zeolite sample containing Mg 2+ ions was washed with 100 ml_ of aqueous KOH or NaOH solution for 20 min at room temperature.
  • the concentration of the basic solution was 0.01 to 3 M. This value was changed accordingly when the concentration of the cation solution was changed.
  • the sample containing Mg (OH) 2 was collected by filtration, followed by washing until the pH value of the filtrate was around 7.
  • Example 1 Synthesis of KNaX with encapsulation of Mg at 3.14% by weight without washing with KOH
  • the Mg 2+ ions were introduced into the parental zeolite by ion exchange of 2 g of the parental sample with 100 mL of 0.1 M solution of Mg (N0 3 ) 2 at room temperature for 24 h. After careful filtration and washing with distilled water, and drying at 120 ° C overnight, the zeolite sample containing Mg 2+ ions was then calcined in air at 400 ° C for 1 h.
  • Example 2 Synthesis of KNaX with encapsulation of Mg at 3.14% by weight with washing with KOH
  • First Mg2 + ions were introduced into the zeolite by ion exchange parental 2 g of the parent sample with 100 ml_ of solution 0 1 M of Mg (N0 3) 2 at room temperature for 24 h. After careful filtration and washing with distilled water, and drying at 120 ° C overnight, the zeolite sample containing Mg 2+ ions was washed with 100 ml_ of 0.1 M aqueous solution of KOH for 20 min at room temperature .
  • the structure of the catalysts developed in the present invention has been rigorously characterized using AI 27 -NMR.
  • Figure 2 presents the results obtained from the solid-state nuclear magnetic resonance of Aluminum (AI 27 -NMR) on the KNaX, NaX, and NaY faujasite zeolites, with MgO incorporated.
  • This information is critical to characterize the chemical environment of Al in the catalyst structure. For example, it is possible to identify a major resonance peak at 61 ppm, which corresponds to Al in the tetrahedral configuration in the faujasite structure. The shape and position of this peak did not change when the Mg concentration increased indicating that most of the Al is in the zeolite structure. However, when the Mg concentration increased from 1.30% by weight to 4.17% by weight, a weak peak appeared at 9 ppm.
  • the liquid phase catalytic tests for aldol condensation of acetaldehyde with ethanol on the catalysts described above were carried out in a 50 ml stainless steel autoclave reactor (Parr Corporation), which is equipped with an impeller, temperature and pressure controllers, and a sampling unit.
  • the reaction temperature was 130 and 180 ° C, and the pressure was 2.07 MPa.
  • the measured amount of catalyst was mixed with acetaldehyde and ethanol and placed in the reactor vessel. Once the reactor was sealed, it was purged with N 2 at 2.07 MPa, and heated to the desired reaction temperature. Mechanical agitation was set at 150 rpm. At this point, the reaction began.
  • Figure 3 presents the flow chart of a possible process configuration that can be used for the production of renewable butadiene from ethanol.
  • the alcohol-containing stream (7) can either be added directly to a first reactor (2) or pretreated in the protective bed (guard bed) (1) to produce a high alcohol stream purity (8).
  • the first reactor (2) the alcohol is selectively converted to an aldehyde.
  • the first reactor (2) operates under conditions such that the effluent stream (9) is a mixture of alcohol and aldehyde with a molar ratio of alcohol to aldehyde of at least 3: 1.
  • the reactor can operate in conversions higher and then the effluent stream (9) can be added in combination with a fraction of the alcohol-containing stream (7).
  • the first reactor (2) can be put out of circuit if the alcohol-containing stream (7) is added in combination with a stream of raw material aldehyde (14) to a second reactor (3).
  • the alcohol and aldehyde streams are converted into the second reactor (3) using the catalyst [6] to produce a mixture of unsaturated alpha-beta alcohols and aldehydes, in particular crotonaldehyde and crotyl alcohol (stream 10).
  • the mixtures of unreacted ethanol and unsaturated alpha-beta alcohols and aldehydes are separated in the fractionation unit (4), in which the stream of unreacted alcohol (13) and acetaldehyde are recycled back to the first reactor ( 2).
  • stream 1 1 is added to unit 5, in which the crotyl alcohol is dehydrated, to produce renewable butadiene with high purity (stream 12).
  • the described procedure employs a cascade-reactor configuration that makes it possible to selectively convert the alcohol-containing raw material into diolefins by separating the stages of dehydrogenation, aldol condensation / hydride transfer, and dehydration in three reaction stages.
  • the greatest advantage is that it is possible to selectively optimize the reaction conditions for each of the procedures by reducing the yield losses.
  • ethanol derived from biomass is a valuable fuel additive obtained by means of enzymatic hydrolysis and fermentation procedures with a fairly high production cost. Therefore, maximizing the yield of the desired product in any ethanol recovery strategy is crucial for the economic profitability of the process.
  • the proposed procedure is an alternative that allows the production of other chemical compounds of added value in addition to the diolefins depending on the catalysts used and the operating conditions.
  • the severity or reaction time of the second reactor (3) can be increased to produce higher molecular weight polyunsaturated aldehydes, and aromatic oxygenates.
  • by modifying the Lewis acidity of the catalyst, that is by increasing the boron oxide content it is possible to increase the selectivity towards acetalization and esterification products.
  • the simplicity and versatility of this approach makes this strategy very advantageous in the conversion of highly reactive molecules derived from biomass.
  • the catalyst [6] used in the first reactor (2) is a KNaX low silica faolite zeolite with an atomic ratio of Si to Al about 1 that has been modified with the addition of basic metal oxides, in particular MgO, Zr0 2, Mn0 2, ZnO, Ce0 2, Cs 2 0 and Ti0 2 , which are catalytically active for the selective conversion of acetaldehyde and ethanol into crotonaldehyde and crotyl alcohol.
  • basic metal oxides in particular MgO, Zr0 2, Mn0 2, ZnO, Ce0 2, Cs 2 0 and Ti0 2 , which are catalytically active for the selective conversion of acetaldehyde and ethanol into crotonaldehyde and crotyl alcohol.
  • Figure 5 presents the results obtained for the reaction of the mixtures of ethanol and acetaldehyde at molar ratios of 9.6: 1 on KNaX and NaX faujasite zeolites after 3 h of reaction at 130 ° C, 2.07 MPa of N 2 , 400 mg of catalyst and 150 rpm of stirring.
  • Figure 6 shows the product molar concentrations after 3 h of reaction of mixtures of ethanol and acetaldehyde with a molar ratio of 9.6: 1.0 at 130 ° C and 2.07 MPa of N 2 for the synthesized KNaX ( blue) and the MgO incorporated on the synthesized KNaX (red) with a Mg content of 3.14% by weight on 400 mg of catalyst.
  • the catalytic activity of KNaX zeolites with MgO incorporated with a Mg content of 3.14% by weight is twice as high as that of the parental KNaX faujasite zeolite.
  • the Mg content in the KNaX zeolite with incorporated MgO was modified by changing the concentration of Mg (N0 3 ) 2 used in the synthesis.
  • ICP-MS inductively coupled plasma mass spectroscopy
  • the total number of cations (Na, K, and Mg) versus the number of Al atoms in the zeolite (column 4, Table 2) is essential for the determination of excess Mg atoms that can form MgO in large quantities over the surface, which is responsible for the overcondensation of ethanol and acetaldehyde. It is important to note that when the concentration is 1.30% by weight this ratio is 0.93, indicating that the number of cations is almost the same as the number of aluminum atoms. The greater the number of aluminum atoms in the structure, the greater the number of oxygen anions that must be compensated for by Na, K, and Mg cations. Therefore, it is critical to keep the Mg content below 3% by weight in order to avoid the formation of MgO in large quantities that reduces the formation of C4 products.
  • Table 1 Composition analysis of the different catalyst samples in percentage by weight of Al, Si, Na, K, and Mg obtained by ICP-MS.
  • Table 2 Molar ratios of Si, Al, K, and Mg obtained from the results of the ICP-MS of the different catalysts.
  • Figure 8 shows the product selectivity as a function of the degree of acetaldehyde conversion observed during the conversion of mixtures of ethanol and acetaldehydes on KNaX with MgO incorporated, NaX with MgO incorporated, NaY with MgO incorporated.
  • conventional MgO was included in the experiments.
  • the KNaX zeolite catalyst with MgO incorporated is the material with the highest selectivity above 75% in acetaldehyde conversions of around 80%.
  • the conventional MgO catalyst showed few selectivities (-45%) at similar levels of acetaldehyde conversion (-90%) indicating that the incorporation of MgO into KNaX faujasites is a unique system that makes possible the maximization of products C4 (crotonaldehyde, crotyl alcohol, and 3-hydroxy-butanal).
  • Figure 9 shows the yield of the products obtained after 3 h of reaction of the mixtures of ethanol and acetaldehyde at a molar ratio of 9.6: 1 at 180 ° C, 2.07 MPa, 150 rpm using 400 mg of catalyst including; KNaX with MgO incorporated with a Mg content of 3.14% by weight and the physical mixture of KNaX and MgO in equivalent concentration.
  • Figure 10 summarizes the carbon selectivity obtained for KNaX with MgO incorporated with a Mg content of 3.14% by weight without washing of KOH and with washing of KOH (pH 10). These reactions were carried out at 180 ° C, 2.07 MPa of N 2 , 150 rpm, and 400 mg of catalyst. The reaction time was 3 h and the reactant was a mixture of ethanol and acetaldehyde in a molar ratio of 9.6: 1. The washing operation was performed after the ion exchange of the KNaX with a solution containing Mg 2+ cations using 100 ml of 0.1 M aqueous solution of KOH at room temperature.
  • This step is necessary for the separation of excess Mg (OH) 2 in the KNaX zeolite.
  • the sample containing Mg (OH) 2 was collected by filtration, followed by washing with deionized water until the pH value of the filtrate was around 7.
  • the resulting zeolite sample with MgO incorporated in the structure was obtained.
  • the procedure followed for the catalyst without washing of KOH was the same with the exception that the washing step with KOH was not performed.
  • Example 3 Production of crotonaldehyde and crotyl alcohol using the KNaX catalyst with MgO incorporated, with a Mg content of 3.14% by weight, with washing of KOH
  • the liquid phase catalytic tests for aldolic condensation of acetaldehyde with ethanol were performed in a 50 ml stainless steel autoclave reactor (Parr Corporation), which is equipped with an impeller, temperature and pressure controllers, and a sampling unit.
  • the reaction temperature was 180 ° C and the pressure was 2.07 MPa.
  • Example 4 Production of crotonaldehyde and crotyl alcohol using the KNaX catalyst with MgO incorporated, with a Mg content of 3.14% by weight, without washing of KOH
  • the liquid phase catalytic tests for aldol condensation of acetaldehyde with ethanol were performed in a 50 ml stainless steel autoclave reactor (Parr Corporation), which is equipped with an impeller, temperature and pressure controllers, and a sampling unit.
  • the reaction temperature was 180 ° C and the pressure was 2.07 MPa.
  • Example 5 Production of crotonaldehyde and crotyl alcohol using the KNaX catalyst
  • the liquid phase catalytic tests for aldol condensation of acetaldehyde with ethanol were performed in a 50 ml stainless steel autoclave reactor (Parr Corporation), which is equipped with an impeller , temperature and pressure controllers, and a sampling unit.
  • the reaction temperature was 180 ° C and the pressure was 2.07 MPa.
  • 400 mg of KNaX catalyst was mixed with 20 ml of ethanol and 2 ml of acetaldehyde (9.6: 1 molar ratio) and placed inside the reactor vessel. Once the reactor was sealed, it was purged with N2 and then pressurized to 2.03 MPa.
  • Comparative Example 6 Production of crotonaldehyde and crotyl alcohol using a physical mixture of MgO and KNaX catalyst in a mass ratio of 1: 9
  • the reactor was sealed, it was purged with N2 and then pressurized to 2.07 MPa. The temperature was increased to 180 ° C under mechanical stirring (150 rpm). At this point, the reaction began. After 3 h of reaction the heating was stopped and the reactor was cooled. Liquid products were filtered and analyzed using gas chromatography (GC). GC-MS was used for product identification and GC-FID for quantification. The chemical standards involved were used to obtain the response factors.
  • GC-MS gas chromatography
  • Example 7 Production of octatriennial using KNaX catalyst with MgO incorporated, with a Mg content of 3.14% by weight, with washing of KOH
  • the liquid phase catalytic tests for the aldol condensation of crotonaldehyde in isopropanol were performed in a 50 ml stainless steel autoclave reactor (Parr Corporation), which is equipped with an impeller, temperature and pressure controllers, and a sampling unit.
  • the reaction temperature was 180 ° C and the pressure was 2.07 MPa.
  • 400 mg of KNaX was mixed with MgO incorporated with a Mg content of 3.14% by weight with 20 ml of isopropanol and 2 ml of crotonaldehyde and placed inside the reactor vessel. Once the reactor was sealed, it was purged with N2 and then pressurized to 2.07 MPa.
  • Example 8 Production of octatriennial using KNaX catalyst
  • the liquid phase catalytic tests for the aldol condensation of crotonaldehyde in isopropanol were performed in a 50 ml stainless steel autoclave reactor (Parr Corporation), which is equipped with an impeller, temperature and pressure controllers, and a sampling unit.
  • the reaction temperature was 180 ° C and the pressure was 2.07 MPa.
  • 400 mg of KNaX was mixed with 20 ml of isopropanol and 2 ml of crotonaldehyde and placed inside the reactor vessel. Once the reactor was sealed, it was purged with N2 and then pressurized to 2.07 MPa. The temperature was increased to 180 ° C under mechanical stirring (300 rpm). At this point, the reaction began.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

Un catalizador que comprende una zeolita de intercambio catiónico con clústers de óxidos metálicos incorporados a ella, un método de preparación de la misma y su uso en la producción de crotonaldehído y alcohol crotílico, que pueden ser fácilmente deshidratados a butadieno.

Description

Catalizador microporoso con encapsulacion selectiva de óxidos metálicos útil para producir precursores de butadieno
Campo técnico
Esta invención se refiere a catalizadores microporosos, a su preparación y a sus usos, y en particular se refiere a la incorporación de clústers (agrupamientos) de óxidos metálicos en zeolitas de intercambio catiónico, a un método para la preparación de los mismos y a su uso en la producción de intermedios químicos útiles para la producción de olefinas y diolefinas. Antecedentes
Las olefinas y diolefinas son intermedios químicos en la producción de polímeros y cauchos sintéticos, que se utilizan ampliamente en la industria automotriz como cauchos vulcanizables. Por ejemplo, el 1 ,3-butadieno está entre los monómeros clave utilizados en la producción a gran escala de polímeros que se obtienen tradicionalmente por craqueo (cracking) con vapor a alta temperatura o craqueo catalítico en lecho fluidificado (FCC) de la nafta. Se estima que la demanda de 1 ,3-butadieno en 201 1 fue de 10,26 TMT y se espera que crezca a una tasa de crecimiento anual compuesto (CAGR) de 3,9 % de 201 1 -2020, hasta alcanzar 14,54 TMT en 2020. Actualmente, el butadieno es producido principalmente por el craqueo con vapor de hidrocarburos parafínicos (cracking de nafta), que representa la producción de más del 95 % del suministro mundial de butadieno.
Además de por el craqueo de la nafta, el 1 ,3-butadieno se puede producir por deshidrogenación de n-butano y n-buteno empleando cualquiera de los procedimientos Catadiene u Oxo-D desarrollados por Lummus Technologies y otros (Patentes de Estados Unidos N° 2.376.323, 2.554.054, 4.504.692, 6.187.984, 7.417.173, 2009/0292153, y 201 1/0245568 A1). En el caso de utilizar n-butanos como materia prima es posible que las unidades de reacción funcionen durante un tiempo más prolongado sin regeneración del catalizador, con más altos rendimientos de butadieno. Sin embargo, el n-butano requiere el uso de temperaturas más altas con el fin de observar velocidades de reacción razonables, lo que incrementa los costes de energía del proceso. En contraste, el n-buteno es mucho más reactivo, de modo que el reactor puede funcionar a temperaturas más bajas. No obstante, las rápidas velocidades de deposición de coque en el catalizador incrementan la frecuencia de los ciclos de regeneración. Además, en ambos casos el reactor tiene que estar sobredimensionado ya que se añade vapor a la materia prima para disminuir la presión parcial de los productos C4 y reducir las tasas de desactivación. También, se añaden sólidos inertes al lecho del reactor para recuperar el calor liberado durante la regeneración, en la que el coque depositado sobre la superficie del catalizador se separa por combustión (véase Chauvel, A., Lefevre, G. Petrochemical processes: 1 Synthesis-gas derivatives and major hydrocarbons, Edition Technip, París 1985). Debido a estas limitaciones la explotación industrial de estas tecnologías es más bien escasa.
El 1 ,3-butadieno se puede producir también, utilizando microorganismos modificados genéticamente, a partir de etanol u otras materias primas renovables. En un enfoque, es posible preparar butanodiol (que se puede deshidratar adicionalmente a 1 ,3-butadieno) suministrando azúcar a una cepa de Escherichia coli preparada por ingeniería genética. Los documentos U.S. 8.129.156 y 8.178.327 describen las rutas metabólicas que se pueden diseñar y preparar por ingeniería recombinante para conseguir la biosíntesis de ácido 4- hidroxibutanoico y aguas abajo productos tales como 1 ,4-butanodiol. El segundo enfoque, consiste en la biosíntesis directa de 1 ,3-butadieno mediante la introducción de uno o más ácidos nucleicos que codifican una enzima de la ruta del butadieno. El documento US-A- 2012/0225466 demuestra que estas Escherichia coli modificadas metabólicamente se pueden someter también a una evolución de adaptación para aumentar adicionalmente la biosíntesis de butadieno. En un enfoque similar, los azúcares se pueden transformar en butanol mediante la fermentación utilizando microorganismos específicos. Después, se deshidrata el alcohol utilizando un catalizador ácido para producir butenos. El documento US-A-20100216958 describe el uso de este intermedio de reacción como materia prima para la producción de 1 ,3-butadieno mediante deshidrogenación o para utilizarlo como un producto final para la síntesis de cauchos. Aunque estas son estrategias prometedoras, la tecnología está en una fase inicial de desarrollo y los microorganismos típicamente costosos y las velocidades lentas de formación de producto complican su producción a escala industrial.
Alternativamente, la producción de 1 ,3-butadieno a partir de etanol tiene importantes ventajas. En primer lugar, el empleo de bio-etanol como materia prima reducirá tanto el impacto ambiental como la dependencia de las reservas limitadas de petróleo. En segundo lugar, la producción de etanol a partir de materias primas renovables, tales como la biomasa (p. ej. caña de azúcar, maíz, rastrojo de maíz, paja de trigo), ha sido demostrada satisfactoriamente a escala industrial utilizando técnicas de hidrólisis y fermentación enzimáticas, y se ha alcanzado un importante desarrollo de la tecnología a través de la modificación genética, la optimización del proceso, y la ingeniería molecular. La conversión de etanol en 1 ,3-butadieno ha sido demostrada a escala industrial desde la década de 1920, y el primer ejemplo fue publicado por Sergey Lebedev utilizando una variedad de catalizadores de óxidos metálicos (S.V. Lebedev, patente francesa N° 665917 (1929), S.V. Lebedev, patente de Gran Bretaña N° 331482 (1930), S.V. Lebedev, Zhurnal Obshchei Khimii 3 698 (1933)). Asimismo, este concepto se demostró en Estados Unidos a escala industrial en una o dos etapas de conversión. La primera fue desarrollada inicialmente por Dal Inc. (US 2,357,855), Universal Oil Products (UOP) (US 2,374,433), y Rohm & Hass Company (US 2,423,951 y 2,436,125). En este caso, se utilizaron diversos tipos de catalizadores incluyendo sílice-óxidos de magnesio-cromo, óxidos de magnesio, mezcla de metales (Cu, Au, Ag) y óxidos metálicos (óxidos de titanio, magnesio, zirconio o tantalio). Por otro lado, el procedimiento de dos etapas, concretamente el procedimiento de Ostromislensky fue demostrado a escala industrial por Carbide and Carbón Chemicals Corporation (US 2,403,742 y 2,421 ,361). En esta estrategia, la deshidrogenación de etanol a acetaldehído se realiza en la primera etapa, y después la mezcla de etanol-acetaldehído reacciona adicionalmente para producir crotonaldehído y alcohol crotílico, que a su vez se pueden convertir en 1 ,3-butadieno. Se utilizó un catalizador de cromito de cobre en la etapa de deshidrogenación mientras que en la segunda etapa se utilizaron los óxidos de tantalio, zirconio o niobio depositados sobre sílice. El rendimiento total de butadieno en este procedimiento varía de 23-44 % basado en el acetaldehído, y el catalizador se regenera periódicamente debido a la formación de coque.
Los inconvenientes de los métodos existentes incluyen: las bajas presiones parciales de etanol utilizadas en el proceso llevan a un aumento del tamaño del reactor, hay una rápida desactivación del catalizador, y el rendimiento de butadieno es bajo. Además, entre los productos secundarios se encuentran a menudo hidrocarburos más pesados que contienen más de cuatro átomos de carbono. Por lo tanto, son del mayor interés los métodos alternativos para obtener butadieno con alta selectividad y rendimiento que utilicen catalizadores estables. Por otro lado, los catalizadores de zeolita también han sido descritos en las publicaciones científicas, en ocasiones en conexión con ciertas reacciones químicas, como por ejemplo:
El documento WO2013125389A1 describe un catalizador para la producción de butadieno a partir de etanol, que se prepara mezclando un óxido de un metal de los grupos 4-13 de la tabla periódica (componente A) y óxido de magnesio (componente B) usando un componente de unión (componente C) que puede ser una zeolita. La relación molar Si02/Al203 de la zeolita es 12 o más, y el contenido del componente B está entre 20 a 95 %.
El documento CN101462044B describe un catalizador para la producción de crotonaldehído, que se prepara tomando un compuesto constituido por un óxido de un metal alcalino-térreo y un tamiz molecular o alúmina como portador, y cargando el óxido según un método de impregnación, en donde dicho tamiz molecular puede ser HZSM-5, Η-β, HY, USY o un tamiz molecular de itrio. Por lo tanto, sería altamente deseable el desarrollo de composiciones catalíticas que presenten una alta selectividad junto con un alto rendimiento en las reacciones implicadas en la producción de 1 ,3-butadieno, así como en métodos para producir intermedios químicos útiles en la producción de 1 ,3-butadieno, y métodos para preparar dichas composiciones. Sumario
Consecuentemente, uno de los objetivos de la presente invención se dirige a proporcionar zeolitas de intercambio catiónico con clústers de óxidos metálicos que tienen carácter básico incorporados a las mismas. Otro objetivo se dirige a proporcionar métodos para preparar las mismas, así como métodos para convertir moléculas que contienen hidroxilo en aldehidos alfa-beta insaturados y alcoholes alfa-beta insaturados y la subsiguiente producción de olefinas y diolefinas, utilizando estos catalizadores. Más particularmente, un objetivo de la invención es proporcionar zeolitas de intercambio catiónico con clústers de óxidos metálicos con carácter básico incorporados a las mismas, las cuales optimizan la etapa intermedia clave en el procedimiento de producción de olefinas y diolefinas a partir de moléculas que contienen hidroxilo.
Breve descripción de los dibujos
Figura 1 : a) Vista esquemática de la incorporación de un clúster (agrupamiento) de óxidos metálicos sobre las supercajas y b) conversión selectiva de acetaldehído/etanol en zeolitas tipo faujasitas, donde X es el contraion del precursor de cationes utilizado durante el intercambio iónico, M es el catión intercambiado con los cationes de la zeolita A, e y y z son el estado de oxidación del catión M y del anión X, respectivamente.
Figura 2: Espectros NMR de las zeolitas faujasitas NaY, NaX y KNaX con MgO incorporado. En las zeolitas KNaX con MgO incorporado se incluyen diferentes contenidos de Mg (A=1 ,30
% en peso, B=3, 14 % en peso, C=3,08 % en peso, D=4, 17 % en peso). Figura 3: Diagrama de flujo de proceso para la conversión de etanol en butadieno.
Figura 4: Concentración molar de producto después de 3 h de reacción de las mezclas de etanol y acetaldehído con una relación molar de 9,6: 1 ,0 a 130 °C y 2,07 MPa de N2 para la KNaX (rojo), NaY (verde), y K-chabazita (azul). La masa del catalizador es 400 mg. La figura de la izquierda muestra la concentración molar de C4 y productos más pesados y la figura de la derecha muestra el 1 , 1-dietoxietano. Figura 5: Concentración molar de producto después de 3 h de reacción de las mezclas de etanol y acetaldehído con una relación molar de 9,6: 1 ,0 a 130 °C y 2,07 MPa de N2 para la KNaX (rojo) y NaX (verde). La masa del catalizador es 400 mg.
Figura 6: Conversión y selectividad después de 3 h de reacción de las mezclas de etanol y acetaldehído con una relación molar de 9,6: 1 ,0 a 130 °C y 2,07 MPa de N2 para la KNaX sintetizada (azul), MgO incorporado sobre la KNaX sintetizada (rojo) siendo el contenido de Mg de 3,14 % en peso. La masa del catalizador es 400 mg
Figura 7: Rendimiento de producto como función del contenido de Mg en las zeolitas KNaX con MgO incorporado (A=1 ,30 % en peso, B=3, 14 % en peso, C=3,08 % en peso, D=4, 17 % en peso) para la reacción de mezclas de etanol y acetaldehído con una razón molar de 9,6: 1 ,0 hacia crotonaldehído y alcohol crotílico a 180 °C y 2,07 MPa de N2 y 300 mg de catalizador Figura 8: Selectividad de producto en términos de moles de carbono para KNaX con MgO incorporado, NaX con MgO incorporado, NaY con MgO incorporado y MgO, como una función del nivel de conversión del acetaldehído durante la reacción de las mezclas de etanol y acetaldehído en una relación molar de 9,6: 1 , 400 mg de catalizador, 180 °C y 2,07 MPa de N2.
Figura 9: Comparación del rendimiento de producto entre KNaX con MgO incorporado con un contenido de Mg de 3, 14 % en peso, y una mezcla física de KNaX y MgO en concentración equivalente después de 3 h de reacción de las mezclas de etanol y acetaldehído en una relación molar de 9,6: 1. Las reacciones se llevaron a cabo a 180 °C, 2,07 MPa de N2, 150 rpm, y 400 mg de catalizador. Figura 10: Selectividad para el carbono de KNaX con MgO incorporado con un contenido de Mg de 3, 14 % en peso sin lavado de KOH y con lavado de KOH (pH 10). El tiempo de reacción fue de 3 h y el reactante fue una mezcla de etanol y acetaldehído en una relación molar de 9,6: 1. Las reacciones se llevaron a cabo a 180 °C, 2,07 MPa de N2, 150 rpm, y 400 mg de catalizador.
Descripción detallada
Uno de los objetivos de la invención se dirige a un método para convertir las moléculas que contienen hidroxilo, tales como alcoholes de menos de C4 y particularmente etanol, en aldehidos alfa-beta insaturados y alcoholes alfa-beta insaturados, tales como crotonaldehído y alcohol crotílico con alta conversión y selectividad. Si se produce alcohol crotílico (que se puede deshidratar fácilmente a butadieno) con alta selectividad esto llevará a un aumento de la producción de butadieno.
En un primer aspecto, se proporciona un catalizador basado en zeolita útil para obtener aldehidos alfa-beta insaturados, alcoholes alfa-beta insaturados o mezclas de los mismos a partir de alcoholes y/o de aldehidos. El catalizador tiene la fórmula general:
Figure imgf000007_0001
en la que M 1 es un metal de transición seleccionado de la lista pero no limitado a: Os, Ir, Pt, Au, Ga, Mg, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Cd, La, Sn, Hf, Ta, W, Re, Al, Ce y Cs, preferiblemente Mg, Zn, Zr, Ti y Sn, y más preferiblemente Mg y Zn,
w es el estado de oxidación de M1 ,
M2 y M3 son metales alcalinos seleccionados independientemente de la lista pero no limitados a: Na, K, Li, Rh, Cs, preferiblemente K y Na,
n está entre 77 y 96, preferiblemente entre 77 y 86.
y y x son los estados de oxidación de M2 y M3, respectivamente;
en donde la relación molar Si/Al de la zeolita varía entre 1 y 5; preferiblemente entre 1 y 2, y más preferiblemente alrededor de 1 , y la concentración de M1 en el catalizador varía entre 1 y 10 % en peso, preferiblemente entre 2 y 5 % en peso, y más preferiblemente alrededor de 3,14 % en peso.
En particular, se proporciona un catalizador adecuado para producir aldehidos alfa-beta insaturados, alcoholes alfa-beta insaturados o mezclas de los mismos a partir de moléculas que contienen hidroxilo, siendo dicho catalizador un aluminosilicato microporoso del tipo zeolita faujasita de intercambio catiónico que tiene clústers de óxidos metálicos incorporados al mismo. En un segundo aspecto, se proporciona un método para preparar el catalizador mencionado antes, que comprende las etapas de:
a) disolver en un disolvente acuoso al menos un precursor de cationes seleccionado del grupo que consiste en Os+4, lr+4, Pt+4, Au+3, Ga+3, Mg2+, Si+4, Ti+4, V+5, Cr+3, Mn+4, Fe+3, Fe+2, Co+2, Ni+2, Cu+2 Zn+2, Y+3, Zr+4, Nb+5, Cd+2, La+3, Sn+4, Hf+4, Ta+5, W+6, Re+7, Al+3,
Ce+4 y Cs+;
b) mezclar una cantidad determinada de una zeolita con la solución acuosa de la etapa a) para permitir el intercambio iónico entre los cationes dentro de la zeolita y los cationes de la solución;
c) filtrar y lavar la zeolita de intercambio catiónico obtenida en la etapa b) para eliminar el exceso de cationes de la superficie de la zeolita; y
d) secar y calcinar la zeolita de intercambio catiónico obtenida en la etapa c) al aire para separar el exceso de agua y para producir la zeolita con clústers de óxidos metálicos encapsulados en ella. En algunas realizaciones, dicho precursor del catión se selecciona del grupo que consiste en OsCI4, lrCI4, PtCI4, AuCI3, GaCI3, MgO, SiO2, TiO2, V205, Cr203, Mn02, Fe203, FeO, CoO, NiO, ZnO, Y203, Zr02, Nb205, CdO, La203, Sn02, Hf02, Ta205, W03, Re207, Al203, Ce02 y Cs20, preferiblemente MgO, ZnO, ZrO, Ti02 y Sn02, y más preferiblemente MgO y ZnO. En algunas realizaciones, la etapa a) se realiza a temperatura ambiente durante 20 a 30 horas, preferiblemente durante 23 a 27 horas y más preferiblemente durante 24 h.
En algunas realizaciones, la operación de lavado de la etapa c) se realiza con agua, NaOH, KOH o NH4OH en cualquier combinación, y la filtración se realiza hasta que el filtrado tenga un pH entre 6-8.
En algunas realizaciones, la operación de secado de la etapa d) se realiza a una temperatura seleccionada del intervalo de 100 a 150 °C, más preferiblemente 120 °C, durante un período de tiempo que varía de 8 a 24 horas, más preferiblemente durante aproximadamente 12 horas. En algunas realizaciones, la operación de calcinación de la etapa d) se realiza a una temperatura en el intervalo de 300 a 500 °C, más preferiblemente alrededor de 400 °C durante un período de tiempo que varía de 1 a 4 horas, más preferiblemente de 1 a 2 horas. En un tercer aspecto, se proporciona un método para obtener una olefina y/o diolefina, que comprende las etapas de:
(a) pasar una corriente de materia prima, que comprende al menos un alcohol y/o un aldehido al interior de al menos una unidad de reacción provista con el catalizador citado antes, en una cantidad suficiente para transformar al menos una porción de dicha corriente de materia prima en una corriente que comprende al menos un alcohol alfa- beta insaturado y/o un aldehido alfa-beta insaturado; y
(b) deshidratar un alcohol alfa-beta insaturado obtenido en la etapa a) para producir al menos una olefina y/o diolefina.
Opcionalmente, el método comprende la siguiente etapa intermedia entre las etapas (a) y
(b):
a') reciclar el aldehido alfa-beta insaturado y/o el alcohol y el aldehido sin reaccionar a la unidad de reacción.
En ciertas realizaciones, dicho al menos un alcohol es un alcohol que contiene de 2 a 6 átomos de carbono, en cualquier combinación. En otras palabras, el alcohol se selecciona del grupo de alcoholes C2 a C6 o cualquier combinación de los mismos.
En otras realizaciones, dicho al menos un aldehido es un aldehido que contiene de 2 a 6 átomos de carbono. En otras palabras, el aldehido se selecciona del grupo de aldehidos C2 a C6, o cualquier combinación de los mismos. En una realización preferida el alcohol y el aldehido son compuestos que tienen el mismo número de carbonos.
Más preferiblemente: 100 y 300 °C, preferiblemente entre 150 y 200 °C, lo más preferiblemente a 180 °C.
En otras realizaciones más, el alcohol alfa-beta insaturado es alcohol crotílico. En realizaciones adicionales, el aldehido alfa-beta insaturado es crotonaldehído y la diolefina es 1 ,3-butadieno. En otras realizaciones adicionales, la reacción se lleva a cabo a una presión que varía de 1 a 3 MPa, preferiblemente de 1 ,9 a 2, 1 MPa y más preferiblemente a 2,07 MPa, y a una temperatura que varía preferiblemente de 100 a 300 °C, más preferiblemente de 150 a 200 °C y más preferiblemente a 180 °C. En realizaciones preferidas, el alcohol es etanol y el aldehido es acetaldehído.
Las realizaciones citadas antes se pueden combinar entre sí en cualquier combinación posible. En el Esquema 1 , se describe el esquema de reacción observado durante la reacción de etanol y acetaldehído cuando se utilizan las zeolitas faujasitas de intercambio catiónico que tienen clústers de óxidos metálicos incorporados a las mismas, descritas en la presente memoria. Se puede observar que durante la reacción de etanol y acetaldehído, pueden tener lugar varias rutas de competición, incluyendo condensación aldólica, acetalización, reacción de Tishchenko, polimerización, reacción de Tishchenko seguida por reducción. Por lo tanto, con el fin de maximizar el crotonaldehído y el alcohol crotílico es crítico modular la acidez que es responsable de la acetalización, la reacción de Tishchenko, y la reducción así como la basicidad responsable de la condensación aldólica y de las reacciones de polimerización.
Figure imgf000011_0001
Esquema 1. Esquema de reacción observado durante la reacción de etanol y acetaldehído. Parte experimental Preparación del catalizador
Como muestras parentales para preparar los catalizadores según la invención, se utilizaron las siguientes zeolitas: zeolita NaX proporcionada por Aldrich Chemical Company, zeolita KNaX convencional y zeolita NaY convencional. A continuación, en esta memoria, se describen los métodos para obtener la zeolita KNaX convencional y la zeolita NaY convencional.
Zeolita KNaX convencional
Se sintetizó por el método descrito por Kuhl G.H. Zeolites, 1987, Vol 7, page 451 ; La composición inicial molar del gel fue 5,5Na2O:1 ,65K2O:1 ,0Al2O3:2,2SiO2: 122H2O. Los reactivos utilizados fueron aluminato de sodio, hidróxido de sodio, hidróxido de potasio, y silicato de sodio. Un procedimiento típico fue el siguiente: se mezclaron 7,4 g de hidróxido de potasio, 1 1 ,67 g de hidróxido de sodio, y 35,3 g de agua y se sometieron a agitación vigorosa durante unos 5 min. Al mismo tiempo, se mezclaron 6,56 g de aluminato de sodio y 20 g de agua y se añadieron a la primera solución después de haber sido agitados durante 10 min. Después, se añadió finalmente una mezcla que contenía 19,9 g de silicato de sodio y 20 g de agua. La solución resultante se agitó en primer lugar a temperatura ambiente durante 10 min y después se transfirió a frascos de teflón, que se taparon y sellaron con películas de parafina. Se realizó la cristalización en primer lugar a 70 °C durante 3 h y después a 100 °C durante 2 h. Una vez terminada la cristalización, se sacaron los frascos de la estufa y se filtró el producto de cada uno de ellos. Se lavó la fase sólida utilizando agua destilada hasta que el pH de las aguas madres fue de 9 u 11. La muestra sintetizada de este modo se señaló como KNaX (pH=9 u 11). Se calcinó a 400 °C durante 2 h antes de los ensayos de catálisis.
Zeolita NaY convencional
Se sintetizó por el procedimiento descrito en la patente de Estados Unidos N° 3.639.099. Se preparó una solución de siembra según la composición molar del gel: 15,6Na20: 1 ,0AI2O3: 16SiO2:312H2O. Después de disolver 2, 1 g de NaOH en 10,43 g de agua, se añadieron entonces 0,51 g de aluminato de sodio y 1 1 ,32 g de silicato de sodio. Se agitó la mezcla durante 10 min hasta que se obtuvo una solución límpida homogénea. Se dejó en reposo a temperatura ambiente durante 48 h y entonces estuvo lista para su uso.
Para sintetizar NaY, se mezclaron en primer lugar 1 ,67 g de sulfato de aluminio, 28,30 g de silicato de sodio, y 1 1 ,99 g de agua. Después de agitar la mezcla durante 10 min, se añadieron entonces 5 g de la solución de siembra así preparada y finalmente se añadieron
1 ,64 g de aluminato de sodio. Se agitó la solución final a temperatura ambiente durante 1 h.
Una vez que se hubo obtenido la homogeneidad, se subdividió la solución y se puso en varios frascos de teflón. Se realizó la cristalización a 100 °C durante 10 h. Se obtuvo la muestra mediante la separación de la fase sólida de la fase líquida y se lavó cuidadosamente con agua destilada hasta que el pH de las aguas madres alcanzó un valor entre 7 y 9.
Incorporación del óxido metálico en las zeolitas parentales
Se incorporó MgO en las zeolitas parentales mencionadas antes, por los procedimientos que siguen. En primer lugar, se introdujeron los iones Mg2+ en la zeolita parental mediante intercambio de iones en 2 g de la muestra parental con 100 mi de solución 0,1 M de Mg(N03)2 a temperatura ambiente durante 20 a 30 horas, preferiblemente durante 23 a 27 horas y más preferiblemente durante 24 h. Mediante el aumento o disminución de la concentración de la solución de Mg(N03)2, se puede controlar la cantidad de los cationes introducidos en la estructura de la zeolita. Después de filtración y lavado cuidadoso con agua destilada, y secado de 100 a 150 °C, más preferiblemente 120 °C, durante 8 a 12 horas, p. ej. durante una noche, se lavó la muestra de zeolita que contenía iones Mg2+ con 100 ml_ de solución acuosa de KOH o NaOH durante 20 min a temperatura ambiente. La concentración de la solución básica era de 0,01 a 3 M. Se cambió este valor consecuentemente cuando se cambió la concentración de la solución del catión. La muestra que contiene Mg(OH)2 se recogió por filtración, seguida por lavado hasta que el valor del pH del filtrado fue de alrededor de 7. Secando la muestra a una temperatura en el intervalo de 100 a 150 °C, más preferiblemente 120 °C, durante 6 h y calcinándola a una temperatura en el intervalo de 300 a 500 °C, más preferiblemente 400 °C, durante 1 a 4 h, más preferiblemente 1 a 2 horas, se obtuvo la muestra de zeolita resultante con MgO incorporado en la estructura. Los materiales resultantes retuvieron la misma estructura cristalina de la zeolita parental mientras que el óxido metálico se estabiliza dentro de las supercajas de la zeolita. La Figura 1 presenta una vista esquemática del procedimiento descrito anteriormente.
La preparación de los catalizadores se ilustra además en los siguientes ejemplos no limitantes. Ejemplo 1 : Síntesis de KNaX con encapsulación de Mg al 3, 14 % en peso sin lavado con KOH
Para incorporar el 3, 14% de Mg en la zeolita KNaX sin lavar, se usó la 'Zeolita KNaX convencional' mencionada anteriormente como muestra parental, a pH=9. En primer lugar se introdujeron los iones Mg2+ en la zeolita parental mediante intercambio iónico de 2 g de la muestra parental con 100 mL de solución 0, 1 M de Mg(N03)2 a temperatura ambiente durante 24 h. Después de filtración y lavado cuidadoso con agua destilada, y secado a 120 °C durante la noche, la muestra de zeolita que contenía iones Mg2+ se calcinó entonces al aire a 400 °C durante 1 h. Ejemplo 2: Síntesis de KNaX con encapsulación de Mg al 3, 14 % en peso con lavado con KOH
Para incorporar el 3, 14% de Mg en la zeolita KNaX con lavado, se usó la 'Zeolita KNaX convencional' mencionada anteriormente como muestra parental, a pH=9. En primer lugar se introdujeron los iones Mg2+ en la zeolita parental mediante intercambio iónico de 2 g de la muestra parental con 100 ml_ de solución 0, 1 M de Mg(N03)2 a temperatura ambiente durante 24 h. Después de filtración y lavado cuidadoso con agua destilada, y secado a 120 °C durante la noche, la muestra de zeolita que contenía iones Mg2+ se lavó con 100 ml_ de solución acuosa 0, 1 M de KOH durante 20 min a temperatura ambiente. La muestra que contenía Mg(OH)2 se recogió por filtración, seguido por lavado hasta que el valor de pH del filtrado fue de alrededor de 7. Secando la muestra a 120 °C durante 6 h y calcinándola al aire a 400 °C durante 1 h, se obtuvo la muestra de zeolita resultante con MgO incorporado en la estructura. Caracterización del catalizador
La estructura de los catalizadores desarrollados en la presente invención ha sido rigurosamente caracterizada empleando AI27-NMR.
27AI-NMR
La Figura 2 presenta los resultados obtenidos de la resonancia magnética nuclear en estado sólido de Aluminio (AI27-NMR) sobre las zeolitas faujasitas KNaX, NaX, y NaY, con MgO incorporado. Esta información es crítica para caracterizar el entorno químico de Al en la estructura del catalizador. Por ejemplo, es posible identificar un pico principal de resonancia a 61 ppm, que corresponde al Al en la configuración tetraédrica en la estructura de la faujasita. La forma y posición de este pico no cambió cuando aumentó la concentración de Mg indicando que la mayor parte del Al está en la estructura de la zeolita. Sin embargo, cuando aumentó la concentración de Mg desde 1 ,30 % en peso hasta 4, 17 % en peso apareció un pico débil a 9 ppm. Este pico correspondía a átomos de Al coordinados octaédricamente sobre Al203 amorfo, lo que aumentó con la concentración del Mg en la KNaX con MgO incorporado. Este resultado indica que durante el intercambio iónico de las zeolitas KNaX y KNaY una fracción del Al de la zeolita migró a la superficie externa. Estos clústers indeseados de Al203 se pueden separar de la superficie del catalizador con tratamiento en solución de NaOH como se demuestra en la muestra llamada MgO-KNaX- NaOH de la Figura 2. En las zeolitas lavadas con NaOH se separa el aluminio de fuera de la estructura, dejando la superficie limpia. De este modo es posible llevar a cabo las reacciones catalíticas dentro de la zeolita. Medidas de la actividad catalítica
Los ensayos catalíticos en fase líquida para la condensación aldólica de acetaldehído con etanol sobre los catalizadores descritos antes, se realizaron en un reactor autoclave de acero inoxidable de 50 mi (Parr Corporation), que está equipado con un impulsor, controladores de temperatura y presión, y una unidad de muestreo. La temperatura de reacción fue de 130 y 180 °C, y la presión fue 2,07 MPa. En un experimento típico, la cantidad medida de catalizador se mezcló con acetaldehído y etanol y se puso en el vaso del reactor. Una vez sellado el reactor, se purgó con N2 a 2,07 MPa, y se calentó hasta la temperatura de reacción deseada. Se fijó la agitación mecánica a 150 rpm. En este punto, empezó la reacción. En todos los experimentos, la concentración inicial de acetaldehído se mantuvo constante a 1 ,6 mol/L. Después de un cierto tiempo de calentamiento, se paró la reacción por enfriamiento rápido. Las muestras de producto líquido se filtraron y se analizaron utilizando cromatografía de gases (GC). La GC-MS se utilizó para la identificación del producto y la GC-FID para la cuantificación. Los estándares químicos implicados se utilizaron para obtener los factores de respuesta.
La Figura 3 presenta el diagrama de flujo de una posible configuración de procedimiento que se puede emplear para la producción de butadieno renovable a partir de etanol. En esta figura, se muestra que la corriente que contiene alcohol (7) puede ser o bien añadida directamente a un primer reactor (2) o bien pretratada en el lecho protector (guard bed) (1) para producir una corriente de alcohol de alta pureza (8). Después, en el primer reactor (2) el alcohol se convierte selectivamente en un aldehido. El primer reactor (2) funciona en condiciones tales que la corriente efluente (9) es una mezcla del alcohol y del aldehido con una relación molar de alcohol a aldehido de al menos 3: 1. En una configuración diferente el reactor puede funcionar en conversiones más altas y después la corriente efluente (9) se puede añadir en combinación con una fracción de la corriente que contiene alcohol (7). Alternativamente, se puede poner fuera de circuito el primer reactor (2) si la corriente que contiene alcohol (7) se añade en combinación con una corriente de aldehido materia prima (14) a un segundo reactor (3). Las corrientes de alcohol y aldehido se convierten en el segundo reactor (3) empleando el catalizador [6] para producir una mezcla de alcoholes y aldehidos alfa-beta insaturados, en particular crotonaldehído y alcohol crotílico (corriente 10). Después, las mezclas de etanol sin reaccionar y alcoholes y aldehidos alfa-beta insaturados se separan en la unidad de fraccionamiento (4), en la que la corriente de alcohol sin reaccionar (13) y de acetaldehído se reciclan de nuevo al primer reactor (2). Finalmente, la corriente 1 1 se añade a la unidad 5, en la cual el alcohol crotílico se deshidrata, para producir butadieno renovable con alta pureza (corriente 12).
El procedimiento descrito emplea una configuración de cascada-reactor que hace posible la conversión selectiva de la materia prima que contiene alcohol en diolefinas mediante la separación de las etapas de deshidrogenación, condensación aldólica/transferencia de hidruros, y deshidratación en tres etapas de reacción. En esta estrategia la mayor ventaja es que es posible optimizar selectivamente las condiciones de reacción para cada uno de los procedimientos reduciendo las pérdidas de rendimiento. Es importante mencionar que el etanol derivado de la biomasa es un aditivo valioso del fuel obtenido mediante los procedimientos de hidrólisis y fermentación enzimática con un coste de producción bastante elevado. Por lo tanto, la maximización del rendimiento del producto deseado en cualquier estrategia de valorización de etanol es crucial para la rentabilidad económica del procedimiento. En adición, el procedimiento propuesto es una alternativa que permite la producción de otros compuestos químicos de valor añadido en adición a las diolefinas dependiendo de los catalizadores empleados y de las condiciones de operación. Por ejemplo, se puede aumentar la severidad o el tiempo de reacción del segundo reactor (3) para producir aldehidos poliinsaturados de peso molecular más alto, y oxigenatos aromáticos. También, modificando la acidez de Lewis del catalizador, es decir aumentando el contenido de óxido de boro, es posible aumentar la selectividad hacia productos de acetalización y esterificación. La simplicidad y versatilidad de este enfoque hace que esta estrategia sea muy ventajosa en la conversión de moléculas altamente reactivas derivadas de la biomasa. El catalizador [6] empleado en el primer reactor (2) es una zeolita faujasita baja en sílice KNaX con una relación atómica de Si a Al alrededor de 1 que ha sido modificada con la adición de óxidos metálicos con carácter básico, en particular MgO, Zr02, Mn02, ZnO, Ce02, Cs20 y Ti02, que son catalíticamente activos para la conversión selectiva de acetaldehído y etanol en crotonaldehído y alcohol crotílico. Introduciendo clústers de óxidos metálicos dentro de las supercajas de la zeolita es posible combinar la alta actividad de condensación aldólica del óxido metálico con el confinamiento dentro de la zeolita, lo que evita la formación de los productos de condensación grandes, y es posible minimizar la trimerización y tetramerización. La conversión y rendimiento de los productos se calcularon empleando las ecuaciones 1 a 7.
Figure imgf000017_0001
Las características de NaY y KNaX se compararon con el catalizador comercial K- Chabazita. La Figura 4 muestra los resultados obtenidos de la reacción de mezclas de etanol y acetaldehído a relaciones molares de 9,6: 1 sobre las tres zeolitas después de 3 h de reacción a 130 °C, 2,07 MPa de N2, 400 mg de catalizador y 150 rpm de agitación. Estos experimentos demostraron que la formación de productos C4 (crotonaldehído, alcohol crotílico, y 3-hidroxi-butanal, véase el Esquema 1) en las zeolitas, aumenta siguiendo la tendencia KNaX > NaY > K-CHA. Se obtuvo la concentración más alta para la zeolita KNaX con valores alrededor de 0, 17 mol/L, mientras que la chabazita (K-CHA) presentó un rendimiento más bajo con concentraciones inferiores a 0,003 mol/L. La formación de los productos de condensación C4 depende de la basicidad de los átomos de oxígeno en la estructura y del tamaño de las cajas dentro de la zeolita. En el caso de K-CHA el tamaño de la caja es solamente 6,7
Figure imgf000017_0002
en comparación con los 12 Á de la supercaja de las zeolitas X e Y. Este efecto de confinamiento en la K-CHA genera un impedimento esférico para la formación de productos de condensación C4 que explica los bajos rendimientos de productos C4. Sin embargo, en las cajas más grandes (supercajas) de las zeolitas X e Y es posible formar productos de condensación más grandes que explican los rendimientos más altos de productos C4 para NaY y KNaX. En la última, se observó una mejora adicional en la formación de productos C4 principalmente debida a los dos átomos de oxígeno más básicos en la estructura cuando están presentes K y Na así como la concentración más alta de cationes en comparación con la NaY. En contraste, la formación de los productos de acetalización fue más alta en la zeolita Chabazita (1 mol/L), lo que probablemente es debido a la acidez de Lewis más alta de este catalizador en comparación con los KNaX y NaY.
La Figura 5 presenta los resultados obtenidos para la reacción de las mezclas de etanol y acetaldehído a relaciones molares de 9,6:1 sobre zeolitas faujasitas KNaX y NaX después de 3 h de reacción a 130 °C, 2,07 MPa de N2, 400 mg de catalizador y 150 rpm de agitación. Estos experimentos demostraron que con la utilización de cationes más grandes con una polarizabilidad más alta (p. ej. K) en combinación con los iones Na pequeños, es posible mejorar la formación de los productos C4 (crotonaldehído, alcohol crotílico, y 3-hidroxi- butanal). También, ajusfando el número de cationes por caja en las zeolitas es posible catalizar selectivamente la dimerización de aldehido C2 a la vez que se minimizan las reacciones de acetalización. Esto se corrobora cuando se comparan las concentraciones de productos C4 y 1 ,2-dietoxietano después de reacción de las zeolitas KNaX (relación Si/Al ~1) y NaX (relación Si/Al ~ 1 ,5). En la primera, las concentraciones de productos C4 y 1 ,2- dietoxietano estaban alrededor de 0, 18 y 0,2 M, mientras que en la NaX estos valores fueron 0,05 y 1 M, respectivamente. La Figura 6 presenta las concentraciones molares de producto después de 3 h de reacción de mezclas de etanol y acetaldehído con una relación molar de 9,6: 1 ,0 a 130 °C y 2,07 MPa de N2 para la KNaX sintetizada (azul) y el MgO incorporado sobre la KNaX sintetizada (rojo) con un contenido de Mg de 3, 14 % en peso sobre 400 mg de catalizador. Aquí, se puede observar que la actividad catalítica de las zeolitas KNaX con MgO incorporado con un contenido de Mg de 3, 14 % en peso, es dos veces más alta que la de la zeolita faujasita KNaX parental. Este resultado indica que incorporando el clúster de óxidos metálicos con un óxido metálico de carácter básico de Br0nsted sobre las zeolitas que contienen cationes es posible mejorar notablemente la actividad catalítica del catalizador. Además, la selectividad para los productos C4 (crotonaldehído, alcohol crotílico, y 3-hidroxi-butanal) se aumenta con la incorporación del MgO a las zeolitas faujasitas KNaX, lo que es crítico en la aplicación industrial de este tipo de catalizadores para la revalorización de etanol en butadieno ya que la rentabilidad económica del procedimiento es altamente dependiente del coste de la materia prima, alrededor del 80 % de los costes totales de operación. Por lo tanto, es sumamente importante reducir las pérdidas de carbono durante el procedimiento de conversión. Con el fin de optimizar la selectividad y actividad del catalizador, el contenido de Mg en la zeolita KNaX con MgO incorporado se modificó cambiando la concentración de Mg(N03)2 empleada en la síntesis. La Figura 7 muestra los rendimientos de los productos y la conversión del acetaldehído obtenidos en la reacción de las mezclas de etanol y acetaldehído a relaciones molares de 9,6:1 sobre zeolitas faujasitas KNaX con MgO incorporado con diferente contenido en Mg (A=1 ,30 % en peso, B=3, 14 % en peso, C=3,08 % en peso, D=4,17 % en peso) después de 3 h de reacción a 180 °C, 2,07 MPa de N2, 300 mg de catalizador y 150 rpm de agitación. Estos resultados indican que a bajas concentraciones de Mg (A=1 ,30 % en peso) la selectividad del catalizador para los productos C4 (crotonaldehído, alcohol crotílico, y 3-hidroxi-butanal) es baja (27,7 %) y en el 57,9 % de conversión de acetaldehído. Por otro lado, a concentraciones de Mg de alrededor de 3,14 % en peso (B=3,14 % en peso) la selectividad y actividad del catalizador aumenta notablemente alcanzando el 73,3 % de rendimiento para los productos C4 y el 63,8 % de conversión de acetaldehído. El aumento del contenido de Mg por encima del 3 % en peso afecta negativamente a la selectividad de los catalizadores debido a la formación de MgO en grandes cantidades sobre la superficie de la faujasita microporosa favoreciendo la formación de productos de condensación aldólica más pesados (aldehidos C6 y C8). Como resultado las zeolitas con contenidos de Mg de 3,08 % en peso y 4, 17 % en peso (C y D) dieron un rendimiento del 31 ,5 y 39,5 % de productos C6+C8, respectivamente.
Esta observación se confirma por los resultados de la espectroscopia de masas con plasma acoplado inductivamente (ICP-MS) de los diferentes catalizadores, que están contenidos en las tablas 1 y 2. En la Tabla 2 se resumen las relaciones de Mg, K, y Na frente a átomos de Si y Al. Esta información es crítica para identificar las composiciones y relaciones a las que la actividad catalítica y la selectividad del catalizador es óptima para la producción de los productos C4 (crotonaldehído, alcohol crotílico, y 3-hidroxi-butanal). El número total de cationes (Na, K, y Mg) frente al número de átomos de Al en la zeolita (columna 4, Tabla 2) es esencial para la determinación del exceso de átomos de Mg que pueden formar MgO en grandes cantidades sobre la superficie, que es responsable de la sobrecondensación de etanol y acetaldehído. Es importante observar que cuando la concentración es 1 ,30 % en peso esta relación es 0,93, lo que indica que el número de cationes es casi el mismo que el número de átomos de aluminio. Cuanto mayor es el número de átomos de aluminio en la estructura, mayor es el número de aniones de oxígeno que deben ser compensados por cationes Na, K, y Mg. Por lo tanto, es crítico mantener el contenido de Mg por debajo del 3 % en peso con el fin de evitar la formación de MgO en grandes cantidades que reduce la formación de los productos C4.
Figure imgf000020_0001
Tabla 1 : Análisis de composición de las diferentes muestras de catalizadores en porcentaje en peso de Al, Si, Na, K, y Mg obtenido por ICP-MS. Las letras A, B, C, y D después de MgO-KNaX, se refieren al diferente contenido de Mg; A=1 ,30 % en peso, B=3,14 % en peso, C=3,08% en peso, D=4, 17 % en peso
Figure imgf000020_0002
Tabla 2: Relaciones molares de Si, Al, K, y Mg obtenidas de los resultados de la ICP-MS de los diferentes catalizadores. Las letras A, B, C, y D después de MgO-KNaX se refieren al diferente contenido de Mg A=1 ,30 % en peso, B=3, 14 % en peso, C=3,08 % en peso, D=4,17 % en peso.
Con el fin de comprobar el efecto del tipo de zeolita faujasita sobre la zeolita con MgO incorporado, se analizó un conjunto de zeolitas con MgO incorporado incluyendo las KNaX, NaX, y NaY. en cuanto a la reacción de la mezcla de etanol:acetaldehído a relaciones molares de 9,6: 1 después de 3 h de reacción, 180 °C, 2,07 MPa de N2, 300 mg de catalizador, y 150 rpm de agitación. La Figura 8 muestra la selectividad de producto en función del grado de conversión de acetaldehído observado durante la conversión de mezclas de etanol y acetaldehídos sobre KNaX con MgO incorporado, NaX con MgO incorporado, NaY con MgO incorporado. Con fines de comparación se incluyó MgO convencional en los experimentos. Aquí, es posible ordenar los catalizadores según su selectividad y actividad hacia la producción de moléculas C4 del siguiente modo; KNaX con MgO incorporado > NaX con MgO incorporado > NaY con MgO incorporado >MgO. El catalizador de zeolita KNaX con MgO incorporado es el material con la selectividad más alta por encima del 75 % en las conversiones de acetaldehído de alrededor del 80 %. En contraste, el catalizador de MgO convencional presentó escasas selectividades (-45 %) a niveles similares de conversión de acetaldehído (-90 %) indicando que la incorporación de MgO en las faujasitas KNaX es un sistema único que hace posible la maximización de los productos C4 (crotonaldehído, alcohol crotílico, y 3-hidroxi-butanal).
La Figura 9 muestra el rendimiento de los productos obtenidos después de 3 h de reacción de las mezclas de etanol y acetaldehído a una relación molar de 9,6: 1 a 180 °C, 2,07 MPa, 150 rpm empleando 400 mg de catalizador incluyendo; KNaX con MgO incorporado con un contenido de Mg de 3, 14 % en peso y la mezcla física de KNaX y MgO en concentración equivalente. Estos resultados indican que la elevada selectividad y conversión de la KNaX con MgO incorporado con un contenido de Mg de 3, 14 % en peso, con valores alrededor de 75 % y 60 %, respectivamente, no se observa cuando se emplea la mezcla física de los dos componentes. En contraste, se observa una selectividad más alta hacia los productos de condensación aldólica C6 y C8 cuando se usa una mezcla física de catalizador de MgO convencional y zeolitas KNaX convencionales. Este resultado indica que el efecto sinérgico de los clústers de MgO incorporados sobre KNaX es crítico para la maximización de los productos C4.
En la figura 10 se resume la selectividad de carbono obtenida para KNaX con MgO incorporado con un contenido de Mg de 3, 14 % en peso sin lavado de KOH y con lavado de KOH (pH 10). Estas reacciones se llevaron a cabo a 180 °C, 2,07 MPa de N2, 150 rpm, y 400 mg de catalizador. El tiempo de reacción fue de 3 h y el reactante fue una mezcla de etanol y acetaldehído en una relación molar de 9,6:1. La operación de lavado se realizó después del intercambio iónico de la KNaX con una solución que contenía cationes Mg2+ utilizando 100 mi de solución acuosa 0, 1 M de KOH a temperatura ambiente. Esta etapa es necesaria para la separación del exceso de Mg(OH)2 en la zeolita KNaX. Después del lavado con KOH, se recogió la muestra que contenía Mg(OH)2 por filtración, seguida por lavado con agua desionizada hasta que el valor de pH del filtrado fue de alrededor de 7. Por secado de la muestra a 120 °C durante 6 h y calcinación de la misma a 400 °C durante 1 h, se obtuvo la muestra resultante de zeolita con MgO incorporado en la estructura. El procedimiento seguido para el catalizador sin lavado de KOH fue el mismo con la excepción de que no se realizó la etapa de lavado con KOH. Los resultados de la figura 10 demostraron que en el caso de la KNaX con MgO incorporado no lavada, la conversión de acetaldehído fue más baja que en el caso de la KNaX lavada con KOH con valores de 59,82 y 74,63 %, respectivamente. Además, la selectividad de carbono del catalizador de KNaX con MgO incorporado no lavado con KOH fue más alta hacia el 1 , 1 -dietoxietano (72,38 %), mientras que en el caso del catalizador lavado con KOH la selectividad para el producto de acetalización (1 , 1-dietoxietano) disminuyó a 4,93 %. Esto va acompañado de una reducción del rendimiento de crotonaldehído (23,07 %) para las muestras no lavadas con KOH en comparación con los altos rendimientos observados en el caso de catalizador lavado con KOH (69,39 %). Estas diferencias se relacionan con la gran concentración de MgO que se ha formado en la superficie externa del catalizador. Esto hace que los sitios ácidos de Lewis en KNaX están disponibles para las reacciones de acetalización, lo que aumenta la formación de 1 , 1-dietoxietano. Esto se asemeja a la KNaX parental, en la cual la reacción de acetalización domina la selectividad con valores alrededor de 76,95 % (Figura 6). Por el contrario, la KNaX con MgO incorporado con lavado de KOH ha reducido la acidez de Lewis de la KNaX de modo significativo, ya que el MgO baja la acidez de los sitios ácidos de Lewis K+ y Na+.
La invención se ilustra adicionalmente con los siguientes ejemplos no limitantes.
Ejemplo 3: Producción de crotonaldehído y alcohol crotílico empleando el catalizador KNaX con MgO incorporado, con un contenido de Mg de 3,14 % en peso, con lavado de KOH Los ensayos catalíticos en fase líquida para la condensación aldólica de acetaldehído con etanol se realizaron en un reactor autoclave de acero inoxidable de 50 mi (Parr Corporation), que está equipado con un impulsor, controladores de temperatura y presión, y una unidad de muestreo. La temperatura de reacción fue de 180 °C y la presión fue 2,07 MPa. En este experimento, 400 mg de catalizador KNaX con MgO incorporado con un contenido de Mg de 3, 14 % en peso, se mezclaron con 20 mi de etanol y 2 mi de acetaldehído (relación molar 9,6: 1) y se pusieron dentro del vaso del reactor. Una vez sellado el reactor, se purgó con N2 y después se presurizó a 2,07 MPa. Se aumentó la temperatura hasta 180 °C bajo agitación mecánica (150 rpm). En este punto, empezó la reacción. Después de 3 h de reacción se paró el calentamiento y se enfrió el reactor. Los productos líquidos se filtraron y se analizaron utilizando cromatografía de gases (GC). La GC-MS se utilizó para la identificación del producto y la GC-FID para la cuantificación. Los estándares químicos implicados se utilizaron para obtener los factores de respuesta. La conversión de acetaldehído después de la reacción fue del 63,83 % y las selectividades para los diferentes productos fueron las siguientes; acetato de etilo 1 ,26 %, 1 , 1 -dietoxietano 14,04 %, crotonaldehído 68,20 %, alcohol crotílico 0 %, 3-hidroxi-butanal 5,15 %, mezcla de productos C6 8,57 %, mezcla de productos C8 2,79 %.
Ejemplo 4: Producción de crotonaldehído y alcohol crotílico empleando el catalizador KNaX con MgO incorporado, con un contenido de Mg de 3,14% en peso, sin lavado de KOH Los ensayos catalíticos en fase líquida para la condensación aldólica de acetaldehído con etanol se realizaron en un reactor autoclave de acero inoxidable de 50 mi (Parr Corporation), que está equipado con un impulsor, controladores de temperatura y presión, y una unidad de muestreo. La temperatura de reacción fue de 180 °C y la presión fue 2,07 MPa. En este experimento, 400 mg de catalizador KNaX con MgO incorporado con un contenido de Mg de 3, 14 % en peso, se mezclaron con 20 mi de etanol y 2 mi de acetaldehído (relación molar 9,6: 1) y se pusieron dentro del vaso del reactor. Una vez sellado el reactor, se purgó con N2 y después se presurizó a 2,07 MPa. Se aumentó la temperatura hasta 180 °C bajo agitación mecánica (150 rpm). En este punto, empezó la reacción. Después de 3 h de reacción se paró el calentamiento y se enfrió el reactor. Los productos líquidos se filtraron y se analizaron utilizando cromatografía de gases (GC). La GC-MS se utilizó para la identificación del producto y la GC-FID para la cuantificación. Los estándares químicos implicados se utilizaron para obtener los factores de respuesta. La conversión de acetaldehído después de la reacción fue del 59,82 % y las selectividades para los diferentes productos fueron las siguientes; acetato de etilo 2,49 %, 1 , 1 -dietoxietano 72,38 %, crotonaldehído 23,09 %, alcohol crotílico 0,00 %, 3-hidroxi-butanal 2,05 %, mezcla de productos C6 0,00 %, mezcla de productos C8 0,00 %.
Ejemplo 5: Producción de crotonaldehído y alcohol crotílico empleando el catalizador KNaX Los ensayos catalíticos en fase líquida para la condensación aldólica de acetaldehído con etanol se realizaron en un reactor autoclave de acero inoxidable de 50 mi (Parr Corporation), que está equipado con un impulsor, controladores de temperatura y presión, y una unidad de muestreo. La temperatura de reacción fue de 180 °C y la presión fue 2,07 MPa. En este experimento, se mezclaron 400 mg de catalizador KNaX con 20 mi de etanol y 2 mi de acetaldehído (relación molar 9,6: 1) y se pusieron dentro del vaso del reactor. Una vez sellado el reactor, se purgó con N2 y después se presurizó a 2,03 MPa. Se aumentó la temperatura hasta 180 °C bajo agitación mecánica (150 rpm). En este punto, empezó la reacción. Después de 12 h de reacción se paró el calentamiento y se enfrió el reactor. Los productos líquidos se filtraron y se analizaron utilizando cromatografía de gases (GC). La GC-MS se utilizó para la identificación del producto y la GC-FID para la cuantificación. Los estándares químicos implicados se utilizaron para obtener los factores de respuesta. La conversión de acetaldehído después de la reacción fue del 57,58 % y las selectividades para los diferentes productos fueron las siguientes; acetato de etilo 2,27 %, 1 , 1 -dietoxietano 76,95 %, crotonaldehído 18,31 %, alcohol crotílico 0,00 %, 3-hidroxi-butanal 2,47 %, mezcla de productos C6 0,00 %, mezcla de productos C8 0,00 %.
Ejemplo comparativo 6: Producción de crotonaldehído y alcohol crotílico empleando una mezcla física de MgO y catalizador KNaX en una relación de masas de 1 :9
Los ensayos catalíticos en fase líquida para la condensación aldólica de acetaldehído con etanol se realizaron en un reactor autoclave de acero inoxidable de 50 mi (Parr Corporation), que está equipado con un impulsor, controladores de temperatura y presión, y una unidad de muestreo. La temperatura de reacción fue de 180 °C y la presión fue 2,07 MPa. En este experimento, 400 mg de una mezcla física de MgO obtenido de Sigma-Aldrich (98 %) y de catalizador KNaX sintetizado como se ha descrito previamente bajo 'Zeolita KNaX convencional' (relación de masas 9: 1) se mezclaron con 20 mi de etanol y 2 mi de acetaldehído (relación molar 9,6: 1) y se pusieron dentro del vaso del reactor. Una vez sellado el reactor, se purgó con N2 y después se presurizó a 2,07 MPa. Se aumentó la temperatura hasta 180 °C bajo agitación mecánica (150 rpm). En este punto, empezó la reacción. Después de 3 h de reacción se paró el calentamiento y se enfrió el reactor. Los productos líquidos se filtraron y se analizaron utilizando cromatografía de gases (GC). La GC-MS se utilizó para la identificación del producto y la GC-FID para la cuantificación. Los estándares químicos implicados se utilizaron para obtener los factores de respuesta. La conversión de acetaldehído después de la reacción fue del 71 ,86 % y las selectividades para los diferentes productos fueron las siguientes; acetato de etilo 1 ,75 %, 1 , 1 -dietoxietano 0,28 %, crotonaldehído 46,51 %, alcohol crotílico 5,74 %, 3-hidroxi-butanal 8, 19 %, mezcla de productos C6 16,50 %, mezcla de productos C8 21 ,02 %. Los resultados demostraron que una mezcla sólo física de MgO y KNaX produce resultados mucho menos satisfactorios que una zeolita similar en la que los clústers de MgO se incorporan dentro de las cajas de zeolita. En el caso de la mezcla física, la actividad del MgO en la reacción de condensación aldólica controla la selectividad del procedimiento. Esto aumenta la producción de moléculas de condensación aldólica más pesadas de C6 y C8, que no se observan cuando el MgO está encapsulado dentro de la zeolita ya que el confinamiento impide estéricamente la formación de moléculas grandes. Por lo tanto, el efecto de la encapsulación se pierde en el caso de la mezcla física ya que el MgO está en la fase libre sin el efecto del confinamiento. Ejemplo 7: Producción de octatrienal empleando catalizador KNaX con MgO incorporado, con un contenido de Mg de 3, 14% en peso, con lavado de KOH
Los ensayos catalíticos en fase líquida para la condensación aldólica de crotonaldehído en isopropanol se realizaron en un reactor autoclave de acero inoxidable de 50 mi (Parr Corporation), que está equipado con un impulsor, controladores de temperatura y presión, y una unidad de muestreo. La temperatura de reacción fue de 180 °C y la presión fue 2,07 MPa. En este experimento, se mezclaron 400 mg de KNaX con MgO incorporado con un contenido de Mg de 3,14% en peso con 20 mi de isopropanol y 2 mi de crotonaldehído y se pusieron dentro del vaso del reactor. Una vez sellado el reactor, se purgó con N2 y después se presurizó a 2,07 MPa. Se aumentó la temperatura hasta 180 °C bajo agitación mecánica (300 rpm). En este punto, empezó la reacción. Después de 2 h de reacción se paró el calentamiento y se enfrió el reactor. Los productos líquidos se filtraron y se analizaron utilizando cromatografía de gases (GC). La GC-MS se utilizó para la identificación del producto y la GC-FID para la cuantificación. Los estándares químicos implicados se utilizaron para obtener los factores de respuesta. El rendimiento total de productos tras la reacción fue del 51 ,8 % y los rendimientos para los diferentes productos fueron los siguientes: alcohol crotílico y 3-buten-ol 1 %, 3-hidroxi-butanal 5,8 %, butanol 0,0%, butanal 1 ,1 %, tolualdehído 6,3%, 2,4,6-octatrienal 31 ,7%, otros 5,9%. Los resultados mostraron que el KNaX con MgO incorporado, con un contenido de Mg de 3, 14% en peso, produce 2,4,6- octatrienal con una selectividad de 61 ,2%, mientras que la selectividad para el tolualdehído fue 12,2%.
Ejemplo 8: Producción de octatrienal empleando catalizador KNaX
Los ensayos catalíticos en fase líquida para la condensación aldólica de crotonaldehído en isopropanol se realizaron en un reactor autoclave de acero inoxidable de 50 mi (Parr Corporation), que está equipado con un impulsor, controladores de temperatura y presión, y una unidad de muestreo. La temperatura de reacción fue de 180 °C y la presión fue 2,07 MPa. En este experimento, se mezclaron 400 mg de KNaX con 20 mi de isopropanol y 2 mi de crotonaldehído y se pusieron dentro del vaso del reactor. Una vez sellado el reactor, se purgó con N2 y después se presurizó a 2,07 MPa. Se aumentó la temperatura hasta 180 °C bajo agitación mecánica (300 rpm). En este punto, empezó la reacción. Después de 2 h de reacción se paró el calentamiento y se enfrió el reactor. Los productos líquidos se filtraron y se analizaron utilizando cromatografía de gases (GC). La GC-MS se utilizó para la identificación del producto y la GC-FID para la cuantificación. Los estándares químicos implicados se utilizaron para obtener los factores de respuesta. El rendimiento total de productos tras la reacción fue del 17 % y los rendimientos para los diferentes productos fueron los siguientes: alcohol crotílico y 3-buten-ol 1 ,2%, 3-hidroxi-butanal 5,8 %, butanol 0,0%, butanal 0%, tolualdehído 6,7%, 2,4,6-octatrienal 2,8%, otros 0,5%. Los resultados mostraron que el KNaX produce 2,4,6-octatrienal con una selectividad de 16,5%, mientras que la selectividad para el tolualdehído fue 39,4%.

Claims

REIVINDICACIONES
1. Un catalizador basado en zeolita de la fórmula general:
Figure imgf000027_0001
en donde M1 es un metal de transición seleccionado de Os, Ir, Pt, Au, Ga, Mg, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu Zn, Y, Zr, Nb, Cd, La, Sn, Hf, Ta, W, Re, Al, Ce y Cs,
w es el estado de oxidación de M1 ,
M2 y M3 son metales alcalinos seleccionados independientemente de Na, K, Li, Rh y Cs, n está entre 77-96,
y y x son los estados de oxidación de M2 y M3 respectivamente,
en donde la relación molar Si/Al de la zeolita varía entre 1 y 5 y la concentración de M 1 en el catalizador varía entre 1 y 10 % en peso.
2. El catalizador según la reivindicación 1 , en donde la concentración de M1 en el catalizador varía entre 1 y 5 % en peso.
3. El catalizador según cualquiera de las reivindicaciones anteriores, en donde la concentración de M1 en el catalizador varía de 2 a 5 % en peso.
4. El catalizador según cualquiera de las reivindicaciones anteriores, en donde la concentración de M1 en el catalizador es aproximadamente 3,14 % en peso.
5. El catalizador según cualquiera de las reivindicaciones anteriores, en donde M1 se selecciona de Mg, Zn, Zr, Ti y Sn.
6. El catalizador según la reivindicación 5, en donde M1 se selecciona de Mg y Zn.
7. El catalizador según cualquiera de las reivindicaciones anteriores, en donde n está entre 77-86.
8. El catalizador según cualquiera de las reivindicaciones anteriores, en donde M2 y M3 se seleccionan independientemente de K y Na.
9. El catalizador según cualquiera de las reivindicaciones anteriores, en donde la zeolita es una zeolita faujasita KY, NaY, KNaY o KNaX.
10. El catalizador según cualquiera de las reivindicaciones anteriores, en donde la relación molar Si/Al de la zeolita está entre 1 y 2.
1 1. El catalizador según cualquiera de las reivindicaciones anteriores, en donde la relación molar Si/Al de la zeolita es alrededor de 1.
12. Un método para preparar un catalizador, que comprende las etapas de:
a) disolver en un disolvente acuoso al menos un precursor de cationes seleccionado del grupo que consiste en Os+4, lr+4, Pt+4, Au+3, Ga+3, Mg2+, Si+4, Ti+4, V+5, Cr+3, Mn+4, Fe+3, Fe+2, Co+2, Ni+2, Cu+2 Zn+2, Y+3, Zr+4, Nb+5, Cd+2, La+3, Sn+4, Hf+4, Ta+5, W+6, Re+7, Al+3, Ce+4 y Cs+' b) mezclar una cantidad determinada de una zeolita con la solución acuosa de la etapa a) para permitir el intercambio iónico entre los cationes de dentro de la zeolita y los cationes de la solución,
c) filtrar y lavar la zeolita de intercambio catiónico obtenida en la etapa b) para eliminar el exceso de cationes de la superficie de la zeolita, y
d) secar y calcinar la zeolita de intercambio catiónico obtenida en etapa c) al aire para separar el exceso de agua y para producir la zeolita con clústers de óxidos metálicos encapsulados en ella.
13. El método según la reivindicación 12, en donde dicho al menos un precursor de cationes se selecciona del grupo que consiste en OsCI4, lrCI4, PtCI4, AuCI3, GaCI3, MgO, Si02, Ti02, V205, Cr203, Mn02, Fe203, FeO, CoO, NiO, ZnO, Y203, Zr02, Nb205, CdO, La203, Sn02, Hf02, Ta205, W03, Re207, Al203, Ce02 y Cs20.
14. El método según la reivindicación 13, en donde dicho al menos un precursor de cationes se selecciona del grupo que consiste en MgO, ZnO, Zr02 y Ti02.
15. El método según la reivindicación 14, en donde dicho al menos un precursor de cationes se selecciona de MgO y ZnO.
16. El método según cualquiera de las reivindicaciones 12 a 15, en donde la zeolita se selecciona del grupo que consiste en zeolitas faujasitas KY, NaY, KNaY y KNaX.
17. El método según cualquiera de las reivindicaciones 12 a 16, en donde la etapa a) se realiza a temperatura ambiente durante 20-30 horas.
18. El método según la reivindicación 17, en donde la etapa a) se realiza a temperatura ambiente durante 23-27 horas.
19. El método según la reivindicación 18, en donde la etapa a) se realiza a temperatura ambiente durante 24 horas.
20. El método según cualquiera de las reivindicaciones 12 a 19, en donde la operación de lavado en la etapa c) se realiza con al menos un disolvente seleccionado de agua, KOH, NaOH y NH4OH, en cualquier combinación.
21. El método según cualquiera de las reivindicaciones 12 a 20, en donde la operación de lavado en la etapa c) se realiza repetidamente hasta que el filtrado tenga un valor de pH en el intervalo de 6-8.
22. El método según cualquiera de las reivindicaciones 12 a 21 , en donde la operación de secado en la etapa d) se realiza a una temperatura en el intervalo de 100 °C a 150 °C.
23. El método según cualquiera de las reivindicaciones 12 a 22, en donde la operación de secado en la etapa d) se realiza durante 8 a 24 horas.
24. El método según cualquiera de las reivindicaciones 12 a 23, en donde la operación de secado en la etapa d) se realiza a una temperatura de aproximadamente 120 °C durante 12 horas.
25. El método según cualquiera de las reivindicaciones 12 a 24, en donde la operación de calcinación en la etapa d) se realiza a una temperatura en el intervalo de 300 a 500 °C.
26. El método según cualquiera de las reivindicaciones 12 a 25, en donde la operación de calcinación en la etapa d) se realiza durante 1 a 4 horas.
27. El método según cualquiera de las reivindicaciones 12 a 26, en donde la operación de calcinación en la etapa d) se realiza a una temperatura de aproximadamente 400 °C durante aproximadamente 1 a 2 horas.
28. Un método para obtener una olefina y/o diolefina, que comprende las etapas de:
(a) pasar una corriente de materia prima, que comprende al menos un alcohol y/o aldehido al interior de al menos una unidad de reacción provista con el catalizador de la reivindicación 1 , en una cantidad suficiente para transformar al menos una porción de dicha corriente de materia prima en una corriente que comprende al menos un alcohol alfa-beta insaturado y/o un aldehido alfa-beta insaturado, y
(b) deshidratar un alcohol alfa-beta insaturado obtenido en la etapa a) para producir al menos una olefina y/o diolefina.
29. El método según la reivindicación 28, en donde el método comprende además la siguiente etapa entre las etapas (a) y (b):
a') reciclar el aldehido alfa-beta insaturado sin reaccionar y/o el alcohol alfa-beta insaturado sin reaccionar a la unidad de reacción.
30. El método según la reivindicación 28 o 29, en donde dicho al menos un alcohol y/o aldehido contenido en la corriente de materia prima es acetaldehído y dicho al menos un aldehido alfa-beta insaturado y/o alcohol alfa-beta insaturado es crotonaldehído.
31. El método según cualquiera de las reivindicaciones 28 a 30, en donde dicho al menos un alcohol y/o aldehido contenido en la corriente de materia prima es etanol y dicho al menos un aldehido alfa-beta insaturado y/o alcohol alfa-beta insaturado es alcohol crotílico.
32. El método según cualquiera de las reivindicaciones 28 a 31 , en donde la olefina y/o diolefina es 1 ,3-butadieno.
33. El método según cualquiera de las reivindicaciones 28 a 32, en donde la reacción se lleva a cabo a una temperatura que varía de 100 a 300 °C.
34. El método según la reivindicación 33, en donde la reacción se lleva a cabo a una temperatura que varía de 150 a 200 °C.
35. El método según la reivindicación 34, en donde la reacción se lleva a cabo a una temperatura de aproximadamente 180 °C.
36. El método según cualquiera de las reivindicaciones 28 a 35, en donde la reacción se lleva a cabo a una presión que varía de 1 a 3 MPa.
37. El método según la reivindicación 36, en donde la reacción se lleva a cabo a una presión que varía de 1 ,9 a 2, 1 MPa.
38. El método según la reivindicación 37, en donde la reacción se lleva a cabo a una presión de aproximadamente 2,07 MPa.
PCT/ES2015/070546 2014-10-30 2015-07-13 Catalizador microporoso con encapsulación selectiva de óxidos metálicos útil para producir precursores de butadieno WO2016066869A1 (es)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462072547P 2014-10-30 2014-10-30
US62/072,547 2014-10-30
ESP201431595 2014-10-30
ES201431595 2014-10-30

Publications (1)

Publication Number Publication Date
WO2016066869A1 true WO2016066869A1 (es) 2016-05-06

Family

ID=55856652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070546 WO2016066869A1 (es) 2014-10-30 2015-07-13 Catalizador microporoso con encapsulación selectiva de óxidos metálicos útil para producir precursores de butadieno

Country Status (1)

Country Link
WO (1) WO2016066869A1 (es)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106824259A (zh) * 2016-12-21 2017-06-13 南开大学 用于乙醇转化制1,3‑丁二烯的催化剂的制备及使用方法
CN107899581A (zh) * 2017-11-07 2018-04-13 万华化学集团股份有限公司 一种负载于SiO2微球上的镍催化剂的制备方法及其应用
CN107986381A (zh) * 2017-12-02 2018-05-04 延海平 一种共掺杂的TiO2光催化剂降解废水的工艺
CN108940306A (zh) * 2018-06-25 2018-12-07 广东工业大学 一种有序多孔PtCu/CeO2催化剂及其制备方法和应用
WO2019004318A1 (ja) * 2017-06-27 2019-01-03 トヨタ自動車株式会社 クラスター担持多孔質担体及びその製造方法
CN109225140A (zh) * 2018-10-10 2019-01-18 常州良福朗清生物科技有限公司 一种改性除甲醛沸石及其制备方法
CN109833907A (zh) * 2017-11-29 2019-06-04 中国科学院大连化学物理研究所 一种具备储放氨性能的低温耐硫焦炉烟气脱硝催化剂
CN110560155A (zh) * 2019-09-17 2019-12-13 大连理工大学 一种由生物乙醇一步法直接生产丙烯的复合型催化剂的制备方法及应用
CN110668462A (zh) * 2019-11-15 2020-01-10 林卿 一种快速合成纳米Fe3O4@NaY磁性复合材料的方法

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR665917A (fr) 1928-12-15 1929-09-25 Procédé pour obtenir des dioléfines directement des alcools
GB331482A (en) 1929-01-30 1930-06-30 Serge Vassiliewitsch Lebedev Improvements in or relating to the preparation of diolefines directly from alcohols
US2357855A (en) 1941-12-15 1944-09-12 Szukiewicz Waclaw Method for producing butadiene
US2374433A (en) 1942-06-08 1945-04-24 Universal Oil Prod Co Production of butadiene
US2376323A (en) 1942-01-02 1945-05-22 Phillips Petroleum Co Process of two-stage catalytic dehydrogenation of paraffin hydrocarbons to diolefin
US2403742A (en) 1943-09-09 1946-07-09 Carbide & Carbon Chem Corp Process for making butadiene
US2421361A (en) 1942-09-29 1947-05-27 Carbide & Carbon Chem Corp Process for making diolefins
US2423951A (en) 1944-08-30 1947-07-15 Rohm & Haas Catalytic process for the production of butadiene and catalyst therefor
US2436125A (en) 1944-08-30 1948-02-17 Rohm & Haas Silica-zirconia catalysts and method of preparation
US2554054A (en) 1949-01-04 1951-05-22 Phillips Petroleum Co Process for producing butadiene
US3405074A (en) * 1963-12-27 1968-10-08 Exxon Research Engineering Co Magnesium-containing crystalline zeolites
US3639099A (en) 1970-08-13 1972-02-01 Grace W R & Co Preparation of high-silica faujasite
US3773690A (en) * 1970-04-09 1973-11-20 Bayer Ag Zeolite adsorbents
US4504692A (en) 1983-03-14 1985-03-12 Japan Synthetic Rubber Co., Ltd. Process for producing 1,3-butadiene
US6187984B1 (en) 1998-12-29 2001-02-13 Phillips Petroleum Company Dehydrogenation of n-butane to butenes
US20020009404A1 (en) * 1999-05-21 2002-01-24 Zeochem Llc Molecular sieve adsorbent-catalyst for sulfur compound contaminated gas and liquid streams and process for its use
US6409800B1 (en) * 2000-08-28 2002-06-25 The Boc Group, Inc. Temperature swing adsorption process
US7417173B2 (en) 2004-11-12 2008-08-26 Basf Aktiengesellschaft Method for producing butadiene from n-butane
US20090292153A1 (en) 2008-05-20 2009-11-26 Nova Chemicals (International) S.A Oxydative dehydrogenation of paraffins
US20100216958A1 (en) 2009-02-24 2010-08-26 Peters Matthew W Methods of Preparing Renewable Butadiene and Renewable Isoprene
CN101462044B (zh) 2009-01-12 2011-05-11 中国石化扬子石油化工有限公司 一种生产巴豆醛用的催化剂
US20110245568A1 (en) 2008-07-22 2011-10-06 Fina Technology, Inc. Dehydrogenation Reactions of N-Butene to Butadiene
US8129156B2 (en) 2008-09-10 2012-03-06 Genomatica, Inc. Microorganisms for the production of 1,4-butanediol
US20120225466A1 (en) 2011-02-02 2012-09-06 Genomatica, Inc. Microorganisms and methods for the biosynthesis of butadiene
WO2013125389A1 (ja) 2012-02-20 2013-08-29 株式会社ダイセル 1,3-ブタジエンの製造方法

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR665917A (fr) 1928-12-15 1929-09-25 Procédé pour obtenir des dioléfines directement des alcools
GB331482A (en) 1929-01-30 1930-06-30 Serge Vassiliewitsch Lebedev Improvements in or relating to the preparation of diolefines directly from alcohols
US2357855A (en) 1941-12-15 1944-09-12 Szukiewicz Waclaw Method for producing butadiene
US2376323A (en) 1942-01-02 1945-05-22 Phillips Petroleum Co Process of two-stage catalytic dehydrogenation of paraffin hydrocarbons to diolefin
US2374433A (en) 1942-06-08 1945-04-24 Universal Oil Prod Co Production of butadiene
US2421361A (en) 1942-09-29 1947-05-27 Carbide & Carbon Chem Corp Process for making diolefins
US2403742A (en) 1943-09-09 1946-07-09 Carbide & Carbon Chem Corp Process for making butadiene
US2423951A (en) 1944-08-30 1947-07-15 Rohm & Haas Catalytic process for the production of butadiene and catalyst therefor
US2436125A (en) 1944-08-30 1948-02-17 Rohm & Haas Silica-zirconia catalysts and method of preparation
US2554054A (en) 1949-01-04 1951-05-22 Phillips Petroleum Co Process for producing butadiene
US3405074A (en) * 1963-12-27 1968-10-08 Exxon Research Engineering Co Magnesium-containing crystalline zeolites
US3773690A (en) * 1970-04-09 1973-11-20 Bayer Ag Zeolite adsorbents
US3639099A (en) 1970-08-13 1972-02-01 Grace W R & Co Preparation of high-silica faujasite
US4504692A (en) 1983-03-14 1985-03-12 Japan Synthetic Rubber Co., Ltd. Process for producing 1,3-butadiene
US6187984B1 (en) 1998-12-29 2001-02-13 Phillips Petroleum Company Dehydrogenation of n-butane to butenes
US20020009404A1 (en) * 1999-05-21 2002-01-24 Zeochem Llc Molecular sieve adsorbent-catalyst for sulfur compound contaminated gas and liquid streams and process for its use
US6409800B1 (en) * 2000-08-28 2002-06-25 The Boc Group, Inc. Temperature swing adsorption process
US7417173B2 (en) 2004-11-12 2008-08-26 Basf Aktiengesellschaft Method for producing butadiene from n-butane
US20090292153A1 (en) 2008-05-20 2009-11-26 Nova Chemicals (International) S.A Oxydative dehydrogenation of paraffins
US20110245568A1 (en) 2008-07-22 2011-10-06 Fina Technology, Inc. Dehydrogenation Reactions of N-Butene to Butadiene
US8129156B2 (en) 2008-09-10 2012-03-06 Genomatica, Inc. Microorganisms for the production of 1,4-butanediol
US8178327B2 (en) 2008-09-10 2012-05-15 Genomatica, Inc. Microorganisms for the production of 1,4-butanediol
CN101462044B (zh) 2009-01-12 2011-05-11 中国石化扬子石油化工有限公司 一种生产巴豆醛用的催化剂
US20100216958A1 (en) 2009-02-24 2010-08-26 Peters Matthew W Methods of Preparing Renewable Butadiene and Renewable Isoprene
US20120225466A1 (en) 2011-02-02 2012-09-06 Genomatica, Inc. Microorganisms and methods for the biosynthesis of butadiene
WO2013125389A1 (ja) 2012-02-20 2013-08-29 株式会社ダイセル 1,3-ブタジエンの製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHAUVEL, A.; LEFEVRE, G.: "Petrochemical processes: 1 Synthesis-gas derivatives and major hydrocarbons", 1985, TECHNIP
DANIEL G. LAHR ET AL: "Oxidation of H 2 and CO over Ion-Exchanged X and Y Zeolites", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 129, no. 11, 24 February 2007 (2007-02-24), US, pages 3420 - 3425, XP055220125, ISSN: 0002-7863, DOI: 10.1021/ja0671520 *
DOSKOCIL E J ET AL: "Spectroscopic Characterization and Catalytic Activity of Zeolite X Containing Occluded Alkali Species", JOURNAL OF CATALYSIS, ACADEMIC PRESS, DULUTH, MN, US, vol. 188, no. 2, 10 December 1999 (1999-12-10), pages 353 - 364, XP004443023, ISSN: 0021-9517, DOI: 10.1006/JCAT.1999.2676 *
KUHL G.H., ZEOLITES, vol. 7, 1987, pages 451
S.V. LEBEDEV, ZHURNAL OBSHCHEI KHIMII, vol. 3, 1933, pages 698

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106824259A (zh) * 2016-12-21 2017-06-13 南开大学 用于乙醇转化制1,3‑丁二烯的催化剂的制备及使用方法
CN110494216A (zh) * 2017-06-27 2019-11-22 丰田自动车株式会社 簇载持多孔载体及其制造方法
US11673126B2 (en) 2017-06-27 2023-06-13 Toyota Jidosha Kabushiki Kaisha Cluster-supporting porous carrier and method for producing same
WO2019004318A1 (ja) * 2017-06-27 2019-01-03 トヨタ自動車株式会社 クラスター担持多孔質担体及びその製造方法
CN110494216B (zh) * 2017-06-27 2022-10-18 丰田自动车株式会社 簇载持多孔载体及其制造方法
JP7068432B2 (ja) 2017-06-27 2022-05-16 トヨタ自動車株式会社 クラスター担持多孔質担体及びその製造方法
JPWO2019004318A1 (ja) * 2017-06-27 2019-11-07 トヨタ自動車株式会社 クラスター担持多孔質担体及びその製造方法
JP2021058886A (ja) * 2017-06-27 2021-04-15 トヨタ自動車株式会社 クラスター担持多孔質担体及びその製造方法
CN107899581A (zh) * 2017-11-07 2018-04-13 万华化学集团股份有限公司 一种负载于SiO2微球上的镍催化剂的制备方法及其应用
CN109833907B (zh) * 2017-11-29 2021-10-15 中国科学院大连化学物理研究所 一种具备储放氨性能的低温耐硫焦炉烟气脱硝催化剂
CN109833907A (zh) * 2017-11-29 2019-06-04 中国科学院大连化学物理研究所 一种具备储放氨性能的低温耐硫焦炉烟气脱硝催化剂
CN107986381A (zh) * 2017-12-02 2018-05-04 延海平 一种共掺杂的TiO2光催化剂降解废水的工艺
CN108940306A (zh) * 2018-06-25 2018-12-07 广东工业大学 一种有序多孔PtCu/CeO2催化剂及其制备方法和应用
CN108940306B (zh) * 2018-06-25 2021-02-12 广东工业大学 一种有序多孔PtCu/CeO2催化剂及其制备方法和应用
CN109225140A (zh) * 2018-10-10 2019-01-18 常州良福朗清生物科技有限公司 一种改性除甲醛沸石及其制备方法
CN110560155A (zh) * 2019-09-17 2019-12-13 大连理工大学 一种由生物乙醇一步法直接生产丙烯的复合型催化剂的制备方法及应用
CN110668462B (zh) * 2019-11-15 2021-06-01 林卿 一种快速合成纳米Fe3O4@NaY磁性复合材料的方法
CN110668462A (zh) * 2019-11-15 2020-01-10 林卿 一种快速合成纳米Fe3O4@NaY磁性复合材料的方法

Similar Documents

Publication Publication Date Title
WO2016066869A1 (es) Catalizador microporoso con encapsulación selectiva de óxidos metálicos útil para producir precursores de butadieno
KR101217957B1 (ko) 결정질 실리케이트 상에서의 알코올의 탈수
JP6084963B2 (ja) 1,3−ブタジエンの製造方法
KR101227221B1 (ko) 에탄올로부터의 올레핀의 제조 방법
US11136276B2 (en) Single-stage method of butadiene production
JP2011511037A (ja) 不活性成分の存在下でのアルコールの脱水
ES2914251T3 (es) Proceso para producir dienos
RU2656599C2 (ru) Способ карбонилирования диметилового эфира
WO2015173780A1 (en) Process for the production of alkenols and use thereof for the production of 1,3-butadiene
ES2819698T3 (es) Procedimiento de deshidratación de monoalcoholes mediante el uso de un aluminosilicato cristalino modificado
TW201343620A (zh) 醋酸及甲醚之製造方法
EA007767B1 (ru) Производство олефинов
JP2011148720A (ja) ブタジエンの製造方法
CN105268471A (zh) 萘烷基化催化剂的制备方法
WO2009063177A1 (en) Process for producing triptane
JP2017510556A (ja) 脱水‐加水分解方法およびそのための触媒
US4918249A (en) Silicometallate molecular sieves and their use as catalysts in oxidation of alkanes
KR20150067247A (ko) 붕소 제올라이트에 기초하는 촉매의 제조
US5146029A (en) Olefin interconversion by shape selective catalysis
Zheng Conversion of 2, 3-butanediol over bifunctional catalysts
CN112844355B (zh) 一种催化生物乙醇制备乙烯和丙烯的催化剂及工艺与应用
WO2023007676A1 (ja) 1,3-ブタジエン用合成触媒及びその製造方法、並びに1,3-ブタジエンの製造方法
US5364980A (en) Process for the production of unsymmetrical tert-dialkyl ethers
KR101585471B1 (ko) 2,6-디아이소프로필나프탈렌 제조용 개질 촉매, 그 제조방법 및 상기 개질 촉매를 이용하여 2,6-디아이소프로필나프탈렌의 제조방법
WO2016125578A1 (ja) 1,3-ブタジエンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15747495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15747495

Country of ref document: EP

Kind code of ref document: A1