JP2014204618A - 電磁アクチュエータ - Google Patents

電磁アクチュエータ Download PDF

Info

Publication number
JP2014204618A
JP2014204618A JP2013080731A JP2013080731A JP2014204618A JP 2014204618 A JP2014204618 A JP 2014204618A JP 2013080731 A JP2013080731 A JP 2013080731A JP 2013080731 A JP2013080731 A JP 2013080731A JP 2014204618 A JP2014204618 A JP 2014204618A
Authority
JP
Japan
Prior art keywords
displacement
iron core
suction
thrust
cores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013080731A
Other languages
English (en)
Other versions
JP6144090B2 (ja
Inventor
樋 口 俊 郎
Toshiro Higuchi
口 俊 郎 樋
裕 之 難波江
Hiroyuki Nabae
裕 之 難波江
橋 晃 次 高
Koji Takahashi
橋 晃 次 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Weld Co Ltd
Original Assignee
Tokyo Weld Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Weld Co Ltd filed Critical Tokyo Weld Co Ltd
Priority to JP2013080731A priority Critical patent/JP6144090B2/ja
Priority to KR1020140030330A priority patent/KR101558940B1/ko
Priority to TW103111257A priority patent/TWI533567B/zh
Priority to US14/246,713 priority patent/US9281111B2/en
Priority to CN201410138093.4A priority patent/CN104104203B/zh
Priority to EP14001287.3A priority patent/EP2790194B1/en
Publication of JP2014204618A publication Critical patent/JP2014204618A/ja
Application granted granted Critical
Publication of JP6144090B2 publication Critical patent/JP6144090B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/13Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using electromagnetic driving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Electromagnets (AREA)

Abstract

【課題】広い範囲の変位に渡って、ある大きさ以上の十分な推力を確保する。
【解決手段】変位拡大点をもつ電磁アクチュエータ1は、間隙5を形成する2面2as、2bsを有するとともに磁性体からなる変位拡大機構1Aと、変位拡大機構1Aに設けられたコイル6とを備えている。コイル6に電流を流すことにより磁性体に磁束を生じさせ、2面2as、2bs間に吸引力を生じさせる。この2面2as、2bs間の吸引力により、変位拡大点を変位させる。
【選択図】図6

Description

本発明は、変位拡大機構を含む電磁アクチュエータに係り、とりわけ広い範囲の変位にわたって、ある大きさ以上の十分な推力を確保することができ、全体を小型化することができる電磁アクチュエータに関する。
従来から、電磁吸引力を用いた電磁アクチュエータが知られている。従来技術による電磁アクチュエータを構成する電磁吸引力発生機構を図20(a)(b)(c)に示す。図20(a)は電磁吸引力発生機構101の正面図である。電磁吸引力発生機構101は、断面形状が略四角形となる鉄等の磁性体から成り、同一方向に略平行に伸びる一対の吸引鉄心102a、102bの一端が磁力発生鉄心103で接続されて「コの字形」に形成されている。
そして、磁力発生鉄心103の周囲には、銅線等の導電性を有する線材からなる巻線104が巻回されている。吸引鉄心102a、102bの他端は平面形状をなす吸着面102as、102bsとなっている。ここで図20(b)は図20(a)の矢印A101方向矢視図であり、図20(c)は図20(a)の矢印B101方向矢視図である。また、図20(b)、(c)においては、巻線104は省略してある。図20(b)、(c)に示すように、吸引鉄心102a、102bの断面積と、磁力発生鉄心103の断面積は略同一となっている。
この電磁吸引力発生機構101を利用した電磁アクチュエータ111を図21に示す。図21に示す電磁アクチュエータ111において、図示されない保持機構により、電磁吸引力発生機構101の吸着面102as、102bsが略垂直となるように保持され、この電磁吸引力発生機構101の吸着面102as、102bsに対向する位置に僅かな間隙105だけ離間して可動鉄片106が実線のように配置されている。ここで可動鉄片106の一側の面106s1と吸着面102as、102bsとの間の間隙105の長さはx101である。
可動鉄片106の他側の面106s2はワイヤ107aによりバネ108の一端に接続され、バネ108の他端はワイヤ107bを介して壁面109に接続されている。可動鉄片106の面106s1、106s2は略垂直となっており、電磁吸引力発生機構101の吸着面102as、102bsと、これらに対向する可動鉄片106の面106s1は、略平行である。
次に電磁アクチュエータ111の作用について、図21を用いて以下に説明する。巻線104に電圧を印加すると巻線104に電流が供給され、磁力発生鉄心103→吸引鉄心102a→間隙105→可動鉄片106→間隙105→吸引鉄心102b→磁力発生鉄心103のように構成された磁気回路に磁束が発生して増加させる。このため、吸着面102as、102bsから間隙105を介して、可動鉄片106の面106s1に対する吸引力を生じる。このとき可動鉄片106はバネ108が伸びて図21における破線のように吸着面102as、102bs側に変位して、面106s1は吸着面102as、102bsに吸着される。ここで間隙105の長さは略0となる。
この場合、可動鉄片106は図示しない案内ガイド、あるいは平行バネにより案内され、略垂直の姿勢を維持しながら移動する。このため可動鉄片106の移動中、可動鉄片106の面106s1と電磁吸引力発生機構101の吸着面102as、102bsとは常に平行を保つことができる。
次に、巻線104に印加された電圧を遮断すると、供給されていた電流が消失して上述の磁気回路の磁束を減少させる。そして、可動鉄片106はバネ108の付勢力により面106s1が吸着面102as、102bsから離間して、図21に示す実線の位置、すなわち面106s1と吸着面102as、102bsとの間隙105の長さがx101となる位置に復帰する。このように、電磁吸引力発生機構101を用いて可動鉄片106に発生する変位はx101である。
このような電磁アクチュエータ111には、以下の問題点がある。図21において、巻線104に供給する電流を一定にした時に、変位x101の値を横軸にとり、当該変位を発生させる際に可動鉄片106が電磁吸引力発生機構101から受ける吸引力すなわち推力を縦軸にとり、両者の関係を表したグラフを図22に一点鎖線で示す。図22から明らかなように、変位が小さい場合には推力は十分に大きいが、変位が大きくなると推力は急速に小さくなる。
このため、図21における間隙の長さx101(変位)が大きい場合には、可動鉄片106が電磁吸引力発生機構101から受ける吸引力すなわち推力が、間隙の長さx101(変位)が小さい場合に比べて著しく低下する。図21において、可動鉄片106の面106s1と電磁吸引力発生機構101の吸着面102as、102bsとが最も離れた箇所においては、可動鉄片106に加わる推力はきわめて小さい。
このような場合、この推力を用いて何らかの作用、例えば振動発生を実現しようとすると、その振動力が著しく低下する。すなわち図22に示すようにこのような従来技術による電磁アクチュエータ111において、十分に大きい推力を得るためには、変位を極めて小さい値に限定しなくてはならないことになる。これを改善して、大きい変位に対する推力を十分に大きくするためには、図21に示す電磁吸引力発生機構101の巻線104に供給する電流を大きくしなくてはならず、このため巻線104の電流供給回路を構成する電子部品として、大電流対応の部品を使用する必要がある。このことは、当該回路のコストアップあるいは大規模化を招くことになり、好ましくない。さらに、全体が一体化されていないため、電磁吸引力発生機構101、可動鉄片106、ワイヤ107a、107bおよびバネ108等の各部を個別に製造してから接続したり配置することになり、製造工程が煩雑になる。
本発明はこのような点を考慮してなされたものであり、変位の増加に対する推力の著しい低下を抑制することができ、広範囲に渡って変位しても推力の変動幅を小さくすることができ、かつ全体として小型化することによって製造を容易にすることができる電磁アクチュエータを提供することを目的とする。
本発明は、変位拡大点をもつ電磁アクチュエータにおいて推力発生部を有する磁性体を含む変位拡大機構と、磁性体を含む変位拡大機構に設けられ、磁性体に磁束を生じさせるコイルとを備え、コイルに電流を流すことにより磁性体に磁束を生じさせて推力発生部からの推力により変位拡大点を変位させることを特徴とする電磁アクチュエータである。
本発明は、推力発生部は、間隙を形成する2面からなることを特徴とする電磁アクチュエータである。
本発明は、変位拡大機構は、環状部分と、環状部分内に配置されその間に間隙を形成する少なくとも一対の変位部分とを有することを特徴とする電磁アクチュエータである。
本発明は、環状部分の一部は弾性部材からなることを特徴とする電磁アクチュエータである。
本発明は、コイルは一対の変位部分のうち一方の変位部分に設けられていることを特徴とする電磁アクチュエータである。
本発明は、環状部分内にその間に間隙を形成する二対以上の変位部分が設けられていることを特徴とする電磁アクチュエータである。
以上のように本発明によれば、変位の増加に対する推力の著しい低下を抑制することができ、広範囲に渡って変位しても推力の変動幅を小さくすることができ、かつ装置全体を小型化することができる。
図1(a)(b)は、磁気回路のモデルを示す図。 図2は、図1の磁気回路を電気回路に置換した図。 図3は、図1の磁気回路における変位と推力の関係を表したグラフ。 図4(a)(b)(c)は、本発明の第1の実施形態による電磁アクチュエータを示す図。 図5は、図4(a)の領域P0の拡大図。 図6は、図4(a)の拡大図。 図7は、図6の領域P1の拡大図。 図8(a)(b)(c)は、本発明の第2の実施形態による電磁アクチュエータを示す図。 図9は、図8(a)の領域P21の拡大図。 図10は、図8(a)の領域P22の拡大図。 図11は、図8(a)の拡大図。 図12は、図11の領域P21の拡大図。 図13は、図11の領域P22の拡大図。 図14は、図11における領域Qの拡大図。 図15は、第2の実施形態における変位と推力の関係を表したグラフ。 図16は、第2の実施形態における変位と電流の関係を表したグラフ。 図17は、第1の実施形態における変形例を示す図。 図18は、第2の実施形態における第1の変形例を示す図。 図19は、第2の実施形態における第2の変形例を示す図。 図20(a)(b)(c)は、従来技術による電磁吸引力発生機構を示す図。 図21は、従来技術による電磁アクチュエータを示す図。 図22は、従来技術による電磁アクチュエータにおける変位と推力の関係を表したグラフ。
第1の実施の形態
以下、図面を参照して本発明の実施の形態について説明する。
図1乃至図10は本発明の第1の実施の形態を示す図である。
まず本発明の基本原理となる磁気回路のモデルおよびその変位対推力の特性について説明する。
図1(a)(b)に磁気回路のモデルを示す。ここで図1(a)は磁気回路のモデルを示す図であり、図1(b)は磁気回路に変位拡大機構を付加したモデルを示す図である。磁性体Mcは断面積Smをもち、この磁性体Mcは、長さXgの間隙Gを形成するとともに環状に形成されており、その全長はXmである。
図示されていないが、磁性体Mcには導電体からなる巻線が巻回されており、巻線の両端に電圧Vを印加すると巻線に電流Iが供給されて磁性体Mcが磁化する。この場合、磁性体Mcと間隙Gとにより、磁気回路M0が構成される。図1(a)の磁気回路M0を電気回路に置換した図を図2に示す。この電気回路は、磁気回路M0に印加される磁位差Fに磁性体Mcの磁気抵抗Rmと間隙Gの磁気抵抗Rgとを直列に接続した形状である。
直列接続された磁気抵抗Rmと磁気抵抗Rgの合成抵抗をRとすると、磁性体Mcの透磁率をμ、間隙Gの透磁率をμ0(空気の透磁率)として、
Figure 2014204618
となる。これより、磁束Φは、図2において磁位差Fを磁気抵抗Rで除して、
Figure 2014204618
と求められる。ここに、式(2)の導出にあたって、磁位差Fは、巻線数Nと電流Iを用いて
Figure 2014204618
と表せることを利用している。
次に、図1において、磁気回路M0の作用により、間隙Gの両側に対向する面間に働く吸引力すなわち推力Fgを求める。磁性体Mcに巻回される巻線はインダクタとして作用するので、そこに蓄えられる磁気エネルギーUm、すなわち電源がなす仕事を求める。電源電圧をV、巻線に流れる電流をI、巻線のインダクタンスをLとすると、
Figure 2014204618
ここで、
Figure 2014204618
すなわち
Figure 2014204618
であることから、
Figure 2014204618
となる。よって、式(4)を変形して、
Figure 2014204618
となる。ここに、磁位差F、磁気抵抗Rについて、
Figure 2014204618
であるから、
式(6)を用いて式(5)を変形して、
Figure 2014204618
となる。この磁気エネルギーの変化分が、外部へ、または外部からの力学的な仕事となる。今、図1における間隙Gの長さXg方向をX方向として、このX方向のみの仕事を考える。X方向に働く力すなわち、間隙Gの両側の面間に作用する吸引力をFxとすると、力学的なエネルギーUdは、
Figure 2014204618
である。よって、エネルギー変化によって生じる力は、
Figure 2014204618
と書くことができる。Udの変化はUmの変化によるものであるから、式(8)より
Figure 2014204618
となる。これが、間隙Gの両側の面間に作用する吸引力すなわち推力である。式(9)に式(6)および式(1)を適用して変形すると、
Figure 2014204618
ただし、
Figure 2014204618
である。式(10)は、間隙Gの長さ、すなわち変位Xgと推力Fxの関係を示しており、推力Fxは変位Xgの2乗に反比例している。ここで、本発明の基本構成である梃子の原理を用いた変位拡大機構を図1の磁気回路に付加することを考える。すなわち図1(b)に示すように、支点F0を介して変位XgをA倍に拡大してXとするのである。これを式で示すと、変位Xgと推力Fxの関係を示す式(10)に対して、図1(b)に示すようにA倍の変位拡大(変位拡大率A)を行うことになる。変位拡大後における式(10)の変位Xgは、A倍に拡大された変位(図3における変位X)に置き換えられる。また、変位拡大後における式(10)の推力Fxは、変位拡大前の間隙Gの長さXgにおける推力の
Figure 2014204618
に減少した推力に置き換えられる。変位拡大機構が変位および推力に与える上記の拡大および減少を考慮して、式(10)を変位拡大後の推力FAを表す式に書き換えると、式(10)においてXgをA倍に拡大された後の変位Xとみなして、これを変位拡大前の値に換算するために
Figure 2014204618
し、その変位拡大前の変位における推力Fxを
Figure 2014204618
すればよい。すなわち、変位拡大後の力FAは、
Figure 2014204618
と表すことができる。
ここで、式(10)および式(11)を用いて、電流Iを同一にした場合の変位Xgと推力FおよびFAの関係を比較する。
上述のように、式(10)は変位拡大を行わない場合の変位Xgと推力Fの関係を表し、式(11)は変位拡大を行った場合の変位Xgと推力FAの関係を表している。横軸に変位をとり、縦軸に推力をとって、式(10)および式(11)をグラフにしたものを図3に示す。
図3において、一点鎖線は式(10)を表し、実線は式(11)を表す。変位がある値Xt以上の場合には、変位拡大を行った時の推力が行わない場合の推力より大きく、ある値Xt以下の場合には、その逆になる。
なお、図3における一点鎖線のグラフは、図22に示した電磁アクチュエータ111における変位と推力の関係のグラフと同様の形状であるが、これは、図22に示す電磁アクチュエータ111においては変位拡大を実施していないためである。
図3に示すように、変位がXtより大きい範囲においては、変位拡大を行うことにより、同じ変位における推力が大きくなり、逆に、変位がXtより小さい範囲においては、変位拡大を行うことにより、同じ変位における推力が小さくなる。これは、変位拡大を行うことにより、Xtよりも大きい変位における急激な力の低下を抑制して、広い範囲の変位にわたって、推力の変動幅を小さくしていることに他ならない。また、これにより、利用したい広い範囲の変位にわたって、ある大きさ以上の十分な推力を確保することが可能となる。
すなわち、上述のように、間隙Gの長さ、すなわち変位Xgと推力Fxとの関係では、推力Fxは変位Xgの2乗に反比例しているため、電磁アクチュエータに対して変位拡大をしない場合、変位Xgが小さくなると、推力Fxが大きく増加し、変位Xgが大きくなると推力Fxが極端に減少する。
本実施例の形態においては、電磁アクチュエータに対してA倍に変位拡大をすることにより、変位拡大をしない場合に比べて変位XgはA倍となり、推力Fxは1/A倍となるので、推力Fxと変位Xgとの関係は図3に示すように、より平坦化されることになる。
以上の説明は、電流Iが同一の場合の変位と推力の関係についてのものである。ところで、電磁力においては、供給電流と推力は単純増加の関係にある。そのため、変位がXtより大きい時の推力の低下を抑制するということ、つまり同じ電流を供給した際に、より大きい推力を実現することができるということは、変位がXtより大きい時に、より小さい電流の供給によって同じ大きさの推力を得ることができるということである。
このことはある程度より大きい変位における推力を得る際に、電流供給回路を構成する電子部品として、大電流対応の部品を使用する必要がなくなるということであり、当該回路のコストアップあるいは大規模化を防止することが可能となる。
次に以上の原理に基づいて、図1の磁気回路に変位拡大機構を付加した形態、すなわち変位拡大機構を組み合わせた本発明による電磁アクチュエータについて、図4(a)(b)(c)および図5により説明する。
ここで、図4(a)は電磁アクチュエータを示す正面図、図4(b)は図4(a)のA1方向矢視図、図4(c)は図4(a)のB1方向矢視図である。また図5は図4(a)の領域P0の拡大図である。
図4(a)(b)(c)および図5に示すように、電磁アクチュエータ1は後述する変位点(作用点)L1をもっている。このような電磁アクチュエータ1は、その間に間隙5を形成する対向する2面2as、2bsをもつとともに、四角形断面をもつ磁性体からなる変位拡大機構1Aと、磁性体からなる変位拡大機構1Aに設けられ、変位拡大機構1Aに磁束を生じさせるコイル(巻線)6とを備え、コイル6に電流を流すことにより、磁性体からなる変位拡大機構1Aに磁束を生じさせて2面2as、2bs間の間隙(推力部)5の長さx1を変化させて、変位点L1を変位させる。
なお、変位拡大機構1Aが四角形断面をもつ磁性体からなる例を示したが、これに限らず変位拡大機構1Aは円形断面をもっていてもよく、五角形断面をもっていてもよく、さらに六角形断面あるいは他の多角形断面をもっていてもよい。
次に変位拡大機構1Aについて述べる。変位拡大機構1Aは弾性部材からなる一対の支持鉄心3a、3bと、一対の支持鉄心3a、3bの両側に位置するとともに弾性部材からなる一対の可動鉄心4a、4bと、各支持鉄心3a、3bから内側へ延びるとともに間隙5を形成する対向する2面2as、2bsを含む吸引鉄心2a、2bとを有している。このうち、支持鉄心3a、3bと可動鉄心4a、4bとにより環状部1Bが構成され、吸引鉄心2a、2bは一対の変位部分1Cとなる。
次に変位拡大機構1Aの各構成部材の関係を更に述べる。吸引鉄心2aの一端に支持鉄心3aの中点が接続されて「T字形」を形成している。同様に吸引鉄心2aと同一形状の吸引鉄心2bの一端に支持鉄心3aと同一形状の支持鉄心3bの中点が接続されて「T字形」を形成する。また吸引鉄心2aおよび吸引鉄心2bのそれぞれの他端の面が対向し、支持鉄心3a、3bの両端に可動鉄心4a、4bが接続されている。
この場合、可動鉄心4a、4bは、いずれも吸引鉄心2a、2bの反対側、すなわち電磁アクチュエータ1の外側に向けて、わずかに凸形に湾曲している。
上述のように支持鉄心3a、3bおよび可動鉄心4a、4bにより、環状部1Bが構成されている。また、上述のように吸引鉄心2a、2bの対向する面は、僅かな間隙5を形成する2面2as、2bsとなっており、間隙5の長さはx1となっている。そして、吸引鉄心2aの周囲には、銅線等の導電性を有する線材からなる巻線6が巻付けられている。
ところで、図4(b)、(c)においては、巻線6は省略してあるが、図4(b)、(c)に示すように、吸引鉄心2a、2bの断面積と、支持鉄心3a、3bの断面積は略同一である。また、可動鉄心4a、4bの断面積は、吸引鉄心2a、2bの断面積の略1/2である。また、図4(a)の領域P0の拡大図を示す図5において、吸引鉄心2a、2bの対向する面2as、2bsの位置をそれぞれ2a1、2b1とすると、面2asと2bsとの間には、2a1と2b1との距離がx1となるような間隙5が形成されている。
次にこのような構成からなる本実施の形態の作用について、図6および図7を用いて説明する。
ここで図6は図4(a)の拡大図である。コイル(巻線)6の両端に図示されない電圧源を接続して電圧を印加すると巻線6に電流が供給される。この場合、吸引鉄心2a→支持鉄心3a→可動鉄心4a→支持鉄心3b→吸引鉄心2b→間隙5→吸引鉄心2aのように磁束が通る第1の磁気回路が形成され、また吸引鉄心2a→支持鉄心3a→可動鉄心4b→支持鉄心3b→吸引鉄心2b→間隙5→吸引鉄心2aのように磁束が通る第2の磁気回路が形成されて、第1の磁気回路および第2の磁気回路の磁束が増加する。
このように、変位拡大機構1Aは支持鉄心3a、3bおよび可動鉄心4a、4bにより構成された磁束が通る磁気回路を形成する。そして、上述した磁気回路は、図5に示すように、磁性体からなる吸引鉄心2a、2bの面2as、2bsにより形成された間隙5を含む。このため、間隙(推力部)5を介して、面2asと面2bsの間に吸引力(推力)が生じる。このとき、支持鉄心3a、3bおよび可動鉄心4a、4bがいずれも弾性部材からなるため、図5において吸引鉄心2a、2bの対向する面2asと面2bsとの間に生じる吸引力は、面2asと面2bsとを近接させる。この様子を、図6の領域P1の拡大図として、図7に示す。
図6において巻線6に電流が流れていない状態においては、図7において、吸引鉄心2a、2bの対向する面2asと面2bsの位置はそれぞれ2a1、2b1であり、その間の距離はx1である。これは、図5と同じである。この状態を、図7において実線で示す。
次に、上述のように図6において巻線6に電流が流れると、図7において、吸引鉄心2a、2bの対向する面2asと面2bsの間に吸引力が作用し、面2asと面2bsの位置はそれぞれ2a2、2b2に近接し、間隙5は小さくなる。この状態において、面2asと面2bsの間の距離はx2である。この状態を、図7において破線で示す。すなわち、図6において巻線6に電流が流れない状態から流れる状態に変化することにより、図7において、面2asと面2bsのそれぞれについて、C1で示す変位が発生する。
この状態から、図6における巻線6に印加された電圧を遮断すると、上述の磁気回路の磁束は減少する。これによって、面2asと面2bsの間に作用していた吸引力が消失する。このとき、支持鉄心3a、3bおよび可動鉄心4a、4bは弾性部材からなるため、図7において、吸引鉄心2a、2bの対向する面2asと面2bsの位置はそれぞれ2a1、2b1に復帰する。
この場合、復帰後の間隙5は、図6において巻線6に電流が流れない状態、すなわち磁束が発生していない状態と同一になり、面2asと面2bsの間の距離はx1となる。
以上のように、電磁アクチュエータ1において吸引鉄心2a、2bの対向する面2asと面2bsに発生する変位はそれぞれC1となる。
ここで吸引鉄心2a、2bの対向する面2asと面2bsに発生するそれぞれの変位C1については、図6の領域P1にも実線と破線により記載してある。
このように、本実施の形態においては、巻線6に供給された電流が消失して磁束が消失すると、変位拡大機構1Aを構成する支持鉄心3a、3bおよび可動鉄心4a、4bの吸引鉄心2a、2bが復帰する。このため、吸引鉄心2a、2bを復帰させるため別個の弾性体を配置する必要がなく、変位拡大機構1A全体の小型化および低コスト化をはかることができる。
次に、図6を用いて、上記の変位C1を拡大する作用について説明する。
図6に示す領域P1において、吸引鉄心2a、2bの対向する面2asと面2bsに、破線で示すようにC1の長さの変位が発生するが、この変位は吸引鉄心2a、2bの他端に生じたものである。このため、吸引鉄心2a、2bの一端に中間点が接続された支持鉄心3a、3bにも、同一方向にC1の長さの変位を生じる。この様子を、支持鉄心3aについても吸引鉄心2aと同様に変位を示す破線およびC1の記載により表現している(図6参照)。この支持鉄心3aの変位C1は、支持鉄心3aおよびその両端に接続された可動鉄心4a、4bにより拡大される。ここで、支持鉄心3aと支持鉄心3bは上下対称に配置されているため、全体として、支持鉄心3a、3bおよび可動鉄心4a、4bにより変位拡大のためのリンク機構が構成されている。
その原理について、図6において、変位拡大機構1Aを構成する支持鉄心3a、3bおよび可動鉄心4a、4bにリンク機構を適用して説明する。リンク機構は、支持鉄心3aと可動鉄心4bの接続点であるL11、可動鉄心4bの中点であるL12、可動鉄心4bと支持鉄心3bの接続点であるL13、支持鉄心3bと可動鉄心4aの接続点であるL14、可動鉄心4aの中点であるL15、可動鉄心4aと支持鉄心3aの接続点であるL16の6つのリンク接続点をもち、これらのリンク接続点L11、L12、L13、L14、L15およびL16はこの順に右回りに配置されている。そして、各リンク接続点L11、L12、L13、L14、L15およびL16の間を接続するバーB11、B12、B13、B14、B15、B16が、図6に示すように、やはりこの順に右回りに配置されている。これらのリンク接続点およびバーの中で、リンク接続点L11、L12および両者を接続するバーB11により構成されるグループ1、リンク接続点L12、L13および両者を接続するバーB12により構成されるグループ2、リンク接続点L14、L15および両者を接続するバーB14により構成されるグループ3、リンク接続点L15、L16および両者を接続するバーB15により構成されるグループ4という4つのグループにより、それぞれ同一の変位拡大のためのリンク機構が構成されている。
すなわち、変位拡大のためのリンク機構は環状に構成されている。これらのリンク機構を構成するグループのうち、グループ1を例にとって変位拡大のためのリンク機構の作用について説明を行う。。なお、グループ2はグループ1と上下対称配置であり、グループ4およびグループ3はそれぞれグループ1およびグループ2と左右対称配置である。よって、ここではグループ1を用いて作用の説明を行い、残り3つのグループの作用は全く同様であるため、それらの作用の説明は省略する。
変位拡大のためのリンク機構は、梃子の原理によって小さい変位を大きい変位に拡大する作用を有する。すなわち、リンク機構には、梃子の3つの要素である力点、支点、作用点がある。図6において、上記グループ1に属するリンク接続点L11は力点E1として作用する。すなわち、巻線6に電流を供給した際に生じる支持鉄心3aの変位C1により、リンク接続点L11には間隙5に向かう変位G11が、図6における矢印の方向に生じる。次に、リンク接続点L11から水平方向かつ可動鉄心4bが凸形に湾曲している方向に伸ばした直線Le11と、リンク接続点L12から垂直方向に支持鉄心3a側に伸ばした直線Le12との交点をF1とすると、F1が支点となる。そして、リンク接続点L12が作用点L1となり、そこには、リンク接続点L11すなわち力点E1に生じた変位G11を梃子の原理によって拡大した変位G12が、可動鉄心4bが凸形に湾曲している方向に生じる。
ここで可動鉄心4bの中点は、可動鉄心4bが凸形に湾曲している方向に長さD1だけ変位する。この様子を、図6の可動鉄心4bに、支持鉄心3aと同様に変位を示す破線およびD1として示す。
この場合、長さC1と長さD1の比が変位拡大率である。その変位拡大率は、以下のようにして求めることができる。力点E1から垂直に作用点L1方向に引いた直線をS1とし、直線S1とバーB11、すなわち力点E1と作用点L1とを結ぶ直線とのなす角をθ1とし、バーB11の長さをl1とすると、変位拡大率A1は、支点F1から作用点L1までの長さと、支点F1から力点E1までの長さの比であるから、
Figure 2014204618
となる。上述のようなグループ2、3、4の位置関係から、グループ2、3、4についても同様の説明が成り立つ。ここに、リンク接続点L12すなわち作用点L1は、グループ1とグループ2に共通であるため、そこに生じる変位は、グループ1とグループ2の両方の変位拡大機構により生じる変位D1と同一となる。
可動鉄心4a側のリンクL15についても同様である。
このように本実施の形態によれば、吸引鉄心2a、2bの対向する2面2as、2bs間の間隙5の長さを変化させることにより、この間隙5の長さの変化を支持鉄心3a、3bおよび可動鉄心4a、4bによって拡大させ、変化点(作用点)L1において、大きな変位を生じさせることができる。
この場合、利用したい広い範囲の変位にわたって、ある大きさ以上の十分な推力を確保することができ、また変位が大きい場合でも、より小さい電流の供給によって十分に大きい推力を得ることができる。これによって、電流供給回路を構成する電子部品として、大電流対応の部品を使用する必要がなくなり、当該回路のコストアップあるいは大規模化を防止することが可能となる。さらに、磁気回路の磁束を減少させると、変位拡大機構1Aを構成する支持鉄心3a、3bおよび可動鉄心4a、4bの弾性力により、吸引鉄心2a、2bを復帰させている。このため、吸引鉄心2a、2bの復帰を目的とした弾性体を別途配置する必要がなく、機構全体の小型化および低コスト化をはかることができる。また、変位拡大機構1A全体が一体化された構造であるため、例えば金型を用いて全体を1つの工程で製造することができるため、製造が容易である。
第2の実施の形態
次に図8乃至図16により本発明の第2の実施の形態について説明する。
ここで、図8(a)は電磁アクチュエータを示す正面図、図8(b)は図8(a)のA2方向矢視図、図8(c)は図8(a)のB2方向矢視図である。また図9は図8(a)の領域P21の拡大図である。また図10は図8(a)の領域P22の拡大図である。
図8(a)(b)(c)および図9に示すように、電磁アクチュエータ21は後述する変位点(作用点)L1をもっている。このような電磁アクチュエータ21は、その間に間隙25a、25bを形成する対向する2面22as、22bsおよび2面22cs、22dsをもつとともに、四角形断面をもつ磁性体からなる変位拡大機構21Aと、磁性体からなる変位拡大機構21Aに設けられ、変位拡大機構21Aに磁束を生じさせるコイル(巻線)26a、26cとを備え、コイル26a、26cに電流を流すことにより、磁性体からなる変位拡大機構21Aに磁束を生じさせて2面22as、22bs間および2面22cs、22ds間の間隙25a、25cの長さx21、x22を変化させて、変位点を変位させる。
次に変位拡大機構21Aについて述べる。変位拡大機構21Aは弾性部材からなる一対の支持鉄心23a、23bと、一対の支持鉄心23a、23bの両側に位置する一対の可動鉄心24a、24bと、各支持鉄心23a、23bから内側へ延びるとともに間隙25aを形成する対向する2面22as、22bsを含む一対の吸引鉄心22a、22bと、各支持鉄心23a、23bから内側へ延びるとともに間隙25cを形成する対向する2面22cs、22dsを含む一対の吸引鉄心22c、22dとを有している。
このうち、支持鉄心23a、23bと可動鉄心24a、24bにより環状部1Bが構成され、2対の吸引鉄心22a、22b、吸引鉄心22c、22dは変位部分21Cを構成する。
次に変位拡大機構21Aの各構成部分の関係を更に述べる。吸引鉄心22a、22cのそれぞれの一端に支持鉄心23aの中間点が接続されて「II字形」を形成している。同様に吸引鉄心22a、22cと同一形状の吸引鉄心22b、22dの一端に支持鉄心23aと同一形状の支持鉄心23bの中間点が接続されて「II字形」を形成する。また吸引鉄心22a、22cおよび吸引鉄心22b、22dのそれぞれの他端の面がそれぞれ対向し、支持鉄心23a、23bの両端に可動鉄心24a、24bが接続されている。
この場合、可動鉄心24a、24bは、それぞれがいずれも吸引鉄心22a、22bおよび22c、22dの反対側、すなわち電磁アクチュエータ21の外側に向けて、わずかに凸形に湾曲している。
そして、可動鉄心24a、24bはいずれもその湾曲方向に対して厚く形成されている部分と薄く形成されている部分を交互に接続した形状を有している。可動鉄心24aが支持鉄心23aに接続される部分は薄く形成された可動鉄心薄部24an1である。そこから可動鉄心24aを支持鉄心23bに向けて、厚く形成された可動鉄心厚部24aw1が連結され、さらに可動鉄心厚部24awlに支持鉄心23bに向かって順次可動鉄心薄部24an2、可動鉄心厚部24aw2、可動鉄心薄部24an3、可動鉄心厚部24aw3、可動鉄心薄部24an4が接続され、可動鉄心薄部24an4は支持鉄心23bに連結されている。
同様に、可動鉄心24bが支持鉄心23aに接続される部分は薄く形成された可動鉄心薄部24bn1である。そこから可動鉄心24bを支持鉄心23bに向けて、厚く形成された可動鉄心厚部24bw1が連結され、さらに可動鉄心厚部24bwlに支持鉄心23bに向かって順次可動鉄心薄部24bn2、可動鉄心厚部24bw2、可動鉄心薄部24bn3、可動鉄心厚部24bw3、可動鉄心薄部24bn4が連結され、可動鉄心薄部24bn4は支持鉄心23bに連結されている。
上述のように支持鉄心23a、23bおよび可動鉄心24a、24bにより、環状部21Bが構成されている。また、上述のように吸引鉄心22a、22bおよび22c、22dの対向する面は僅かな間隙25a、25cを形成する面22as、22bs、面22cs、22dsとなっており、間隙25a、25cの長さはいずれもx21となっている。そして、吸引鉄心22a、22cの周囲には、銅線等の導電性を有する線材からなる巻線26a、26cがそれぞれ巻付けられている。
ところで図8(b)、(c)においては、巻線26a、26cは省略してあるが、図8(b)、(c)に示すように、吸引鉄心22a、22b、22c、22dの断面積と、支持鉄心23a、23bの断面積は略同一である。また、図8(a)の領域P21、P22の拡大図をそれぞれ示す図9、図10において、吸引鉄心22a、22bの対向する面22as、22bsの位置をそれぞれ22a1、22b1とすると、面22asと22bsとの間には、22a1と22b1との距離がx21となるような間隙25aが形成されている。同様に、図10に示すように、吸引鉄心22c、22dの対向する面22cs、22dsの位置をそれぞれ22c1、22d1とすると、面22csと22dsとの間には、22c1と22d1との距離がx21となるような間隙25cが形成されている。
次にこのような構成からなる本実施の形態の作用について、図11乃至図13を用いて説明する。
ここで図11は図8(a)の拡大図である。コイル(巻線)26a、26cの両端に図示されない電圧源をそれぞれ接続して電圧を印加すると、巻線26a、26cに電流が供給される。この場合、吸引鉄心22a→支持鉄心23a→吸引鉄心22c→間隙25c→吸引鉄心22d→支持鉄心23b→吸引鉄心22b→間隙25a→吸引鉄心22aのように磁束が通る磁気回路が形成されて磁気回路の磁束が増加する。このように、変位拡大機構21Aは、支持鉄心23a、23bおよび可動鉄心24a、24bにより構成された磁束が通る磁気回路を構成されている。そして、上述した磁気回路は、図9、図10に示すように、磁性体からなる吸引鉄心22a、22bの面22as、22bsにより形成された間隙(推力部)25a、および吸引鉄心22c、22dの面22cs、22dsにより形成された間隙(推力部)25cを含む。このため、間隙25aを介して、面22asと面22bsとの間に吸引力(推力)が生じるとともに、間隙25cを介して面22csと面22dsとの間に吸引力を生じる。このとき、支持鉄心23a、23bおよび可動鉄心24a、24bがいずれも弾性部材からなるため、吸引鉄心22a、22bの対向する面22asと面22bsおよび吸引鉄心22c、22dの対向する面22csと面22dsとの間に生じる吸引力は、面22asと面22bsおよび面22csと面22dsとを近接させる。
この様子を、図11の領域P21、P22の拡大図として、図12、図13に示す。図11において巻線26a、26cに電流が流れていない状態においては、図12において、吸引鉄心22a、22bの対向する面22asと、面22bsの位置はそれぞれ22a1、22b1であり、その間の距離はx21である。これは、図9と同じである。この状態を、図12において実線で示す。
次に、上述のように図11において巻線26a、26cに電流が流れると、図12において、吸引鉄心22a、22bの対向する面22asと面22bsの間に吸引力が作用し、面22asと面22bsの位置はそれぞれ22a2、22b2に近接し、間隙25aは小さくなる。この状態において、面22asと面22bsの間の距離はx22である。この状態を、図12において破線で示す。すなわち、図11において巻線26a、26cに電流が流れない状態から流れる状態に変化することにより、図12において、面22asと面22bsのそれぞれについて、C2で示す変位が発生する。
この状態から、図11における巻線26a、26cに印加された電圧を遮断すると、供給されていた電流が消失して上述の磁気回路の磁束を減少させる。これによって、面22asと面22bsの間に作用していた吸引力が消失する。このとき、支持鉄心23a、23bおよび可動鉄心24a、24bは弾性部材からなるため、図12において、吸引鉄心22a、22bの対向する面22asと面22bsの位置はそれぞれ22a1、22b1に復帰する。
この場合、復帰後の間隙25aは、図11において巻線26a、26cに電流が流れない状態、すなわち磁束が発生していない状態と同一になり、面22asと面22bsの間の距離はx1となる。
以上のように電磁アクチュエータ21において、吸引鉄心22a、22bの対向する面22asと面22bsに発生する変位はそれぞれC2となる。また、図13に示す吸引鉄心22c、22dの間隙25cに変位C2を生じる過程も、図12の場合と同様である。以上説明した、吸引鉄心22a、22bの対向する面22asと面22bsおよび吸引鉄心22c、22dの対向する面22csと面22csに発生する変位C2については、図11の領域P21、P22にも実線と破線により記載してある。
このように、本実施形態によれば、巻線26a、26cに供給された電流が消失して磁束を減少させると、変位拡大機構21Aを構成する支持鉄心23a、23bおよび可動鉄心24a、24bの弾性力により吸引鉄心22a、22b、22c、22dが復帰する。このため、吸引鉄心22a、22b、22c、22dを復帰させるため別個の弾性体を配置する必要がなく、変位拡大機構21A全体の小型化および低コスト化をはかることができる。
次に、図11を用いて、上記の変位C2を拡大する作用について説明する。
図11に示す領域P21において、吸引鉄心22a、22bの対向する面22asと面22bsに、破線で示すようにC2の長さの変位が発生するが、この変位は吸引鉄心22a、22bの他端に生じたものである。このため、吸引鉄心22a、22bの一端に中間点が接続された支持鉄心23a、23bにも、同一方向にC2の長さの変位を生じる。この様子を、支持鉄心23aについても吸引鉄心22aと同様に変位を示す破線およびC2の記載により表現している(図11参照)。この支持鉄心23aの変位C2は、支持鉄心23aおよびその両端に接続された可動鉄心24a、24bにより拡大される。ここで、支持鉄心23aと支持鉄心23bは上下対称に配置されているため、全体として、支持鉄心23a、23bおよび可動鉄心24a、24bにより変位拡大のためのリンク機構が構成されている。
その原理について、図11において、変位拡大機構21Aを構成する支持鉄心23a、23bおよび可動鉄心24a、24bにリンク機構を適用して説明する。リンク機構は、支持鉄心23aと可動鉄心薄部24bn1の接続点であるL21、可動鉄心薄部24bn2の略中点であるL22、可動鉄心薄部24bn3の略中点であるL23、可動鉄心薄部24bn4と支持鉄心23bの接続点であるL24、支持鉄心23bと可動鉄心薄部24an4の接続点であるL25、可動鉄心薄部24an3の略中点であるL26、可動鉄心薄部24an2の略中点であるL27、可動鉄心薄部24an1と支持鉄心23aの接続点であるL28の8つのリンク接続点をもち、これらのリンク接続点L21、L22、L23、L24、L25、L26、L27、L28はこの順に右回りに配置されている。そして、各リンク接続点L21、L22、L23、L24、L25、L26、L27、L28間を接続するバーB21、B22、B23、B24、B25、B26、B27、B28が、図11に示すように、やはりこの順に右回りに配置されている。
これらのリンク接続点およびバーの中で、リンク接続点L21、L22および両者を接続するバーB21により構成されるグループ1、リンク接続点L23、L24および両者を接続するバーB23により構成されるグループ2、リンク接続点L25、L26および両者を接続するバーB25により構成されるグループ3、リンク接続点L27、L28および両者を接続するバーB27により構成されるグループ4という4つのグループにより、それぞれ同一の変位拡大のためのリンク機構が構成されている。
すなわち、変位拡大のためのリンク機構は環状に構成されている。これらのリンク機構を構成するグループのうち、グループ1の拡大図、すなわち図11における領域Qの拡大図を図14示し、図11および図14を用いてグループ1の変位拡大のためのリンク機構の作用について説明する。なお、グループ2はグループ1と上下対称配置であり、グループ4およびグループ3はそれぞれグループ1およびグループ2と左右対称配置である。よって、ここではグループ1を用いて作用の説明を行い、残り3つのグループの作用は全く同様であるため、それらの作用の説明は省略する。
図6の場合と同様に、図11において、上記グループ1に属するリンク接続点L21は力点E2(図14)として作用する。すなわち、巻線26a、26bに電圧を印加した際に生じる支持鉄心23aの変位C2により、リンク接続点L21には間隙25cに向かう変位G21が、図14における矢印の方向に生じる。次に、図11において、リンク接続点L21から水平方向かつ可動鉄心24bが凸形に湾曲している方向に伸ばした直線(図14におけるLe21)と、リンク接続点L22から垂直方向に支持鉄心23a側に伸ばした直線(図14におけるLe22)との交点をF2(図14)とすると、F2が支点となる。そして、リンク接続点L22が作用点L2(図14)となり、そこには、図14に示すように、リンク接続点L21すなわち力点E2に生じた変位G21を梃子の原理によって拡大した変位G22が、図11において可動鉄心24bが凸形に湾曲している方向に生じる。
ここでリンク接続点L22は、図11において可動鉄心24bが凸形に湾曲している方向に変位する(図11におけるD2)。
この場合、図11における長さC2と長さD2の比が変位拡大率である。その変位拡大率は、以下のようにして求めることができる。図14において、力点E2から垂直に作用点L2方向に引いた直線をS2とし、直線S2とバーB21、すなわち力点E2と作用点L2とを結ぶ直線とのなす角をθ2とし、バーB21の長さをl2とすると、変位拡大率A2は、支点F2から作用点L2までの長さと、支点F2から力点E2までの長さの比であるから、
Figure 2014204618
となる。
上述のようなグループ2、3、4の位置関係から、グループ2、3、4についても同様の説明が成り立つ。
ここに、図11において、グループ1の作用点であるリンク接続点L22と、グループ2の作用点であるL23の中点である動作点L2yを考えると、動作点L2yは可動鉄心24bの中点である。そのため、この動作点L2yに、リンクL22およびリンクL23と同一の変位D2を生成することになる。可動鉄心24a側のリンク接続点L26、リンク接続点L27、可動鉄心24aの中点である動作点L2xについても同様である。
ところで、図8(a)に示すように、可動鉄心24a、24bは湾曲方向、すなわち変位する方向に対して、厚く形成されている部分と薄く形成されている部分を交互に接続した形状を有している。このため。第1の実施形態における図1の電磁アクチュエータ1の可動鉄心4a、4bに比べると、薄く形成されている部分が存在することによって、拡大後の変位によって容易に動くことができることができる。
他方、可動鉄心24a、24bはこのように薄く形成された部分が多い、すなわち断面積の小さい部分が多いために、可動鉄心24a、24bを磁束が通る磁気回路として考えた場合には、磁気抵抗が大きくなってしまうことも考えられる。
この場合は図9において、間隙25aの両側に対向する面22as、22bsの間および図10において、間隙25cの両側に対向する面22cs、22dsの間に十分な吸引力を生じるだけの磁束を、可動鉄心24a、24bを含む磁気回路のみによって発生させることが困難になる。それを補うために、断面積の大きい吸引鉄心22a、22b、22c、22dを含む磁気回路を構成して、上記の面の間に十分な吸引力を生じるだけの磁束量を確保することができる。すなわち、変位拡大機構21Aを構成する支持鉄心23a、23bおよび可動鉄心24a、24bのうちの一部である支持鉄心23a、23bを、主要な磁気回路として使用する。
ここで、上記の図3と同様に、第2の実施形態における変位と推力の関係を表したグラフを図15に示す。ここで、図15に示すグラフは、本実施の形態における一例を示すものである。同一の電流を供給した条件のもとで、一点鎖線が変位拡大なしの場合で、実線が変位拡大ありの場合である。一点鎖線と実線とが交差する変位である250μmよりも変位が大きい場合には、変位拡大ありの場合の推力が大きくなり、250μmよりも変位が小さい場合には、その逆になる。
そして、変位拡大ありの場合には、広い範囲の変位における推力の変動幅を小さくしており、利用したい広い範囲の変位にわたって、ある大きさ以上の十分な推力を確保することが可能となる。
また、第2の実施形態における変位と電流の関係を表したグラフを図16に示す。ここで、図16に示すグラフは、本実施の形態の一例を示すものである。同一の推力を得る条件のもとで、一点鎖線が変位拡大なしの場合で、実線が変位拡大ありの場合である。一点鎖線と実線とが交差する変位である250μmよりも変位が大きい場合には、変位拡大ありの場合の電流が小さくなり、250μmよりも変位が小さい場合には、その逆になる。これは、上述のように、変位拡大ありの場合には、ある程度より大きい変位における推力を得る際に、電流供給回路を構成する電子部品として、大電流対応の部品を使用する必要がなくなるということであり、当該回路のコストアップあるいは大規模化を防止することが可能となることを意味する。
本発明の変形例
次に本発明の変形例について説明する。
上記第1の実施形態の説明においては、図4(a)の吸引鉄心2aの周囲に巻線6が巻回されているとしたが、図17のように、巻線6を巻回する位置は吸引鉄心2bの周囲であっても良い。
また、上記第2の実施形態の説明においては、図8(a)の吸引鉄心22a、22cの周囲にそれぞれ巻線26a、26cが巻回されているとしたが、図18のように、巻線26a、26cを巻回する位置はそれぞれ吸引鉄心22b、22dの周囲であっても良い。あるいは、図19のように、支持鉄心23aにおける吸引鉄心22aと22cの間の部分の周囲と、支持鉄心23bにおける吸引鉄心22bと22dの間の部分の周囲とに、それぞれ巻線26aおよび巻線26cを巻回しても良い。
また、以上の説明においては、変位拡大機構1A、21Aは環状に形成されているが、変位拡大機構1A、21Aの形状は、少なくともその一部を磁束が通る磁気回路によって構成されていれば、必ずしも環状でなくてもよい。
また、上記の実施の形態においては、磁気回路は磁性体の2面が対向する間隙を有する例を示したが、変位拡大機構1A、21Aの少なくとも一部を磁束が通る磁気回路の作用によって推力を発生する機構は、磁気回路の途中に形成された磁性体の2面が対向する間隙に限定されるものではない。
1A、21A 変位拡大機構
2a、2b、22a、22b、22c、22d、102a、102b 吸引鉄心
3a、3b、23a、23b 支持鉄心
4a、4b、24a、24b 可動鉄心
24an1、24an2、24an3、24an4 可動鉄心薄部
24bn1、24bn2、24bn3、24bn4 可動鉄心薄部
24aw1、24aw2、24aw3 可動鉄心厚部
24bw1、24bw2、24bw3 可動鉄心厚部
5、25a、25c、105 間隙
6、26a、26c、104 巻線
101 従来技術による電磁吸引力発生機構
103 磁力発生鉄心
106 可動鉄片
107a、107b ワイヤ
108 バネ
109 壁面
111 従来技術による電磁アクチュエータ
Mo 磁気回路
Mc 磁性体
G 間隙

Claims (6)

  1. 変位拡大点をもつ電磁アクチュエータにおいて
    推力発生部を有する磁性体を含む変位拡大機構と、
    磁性体を含む変位拡大機構に設けられ、磁性体に磁束を生じさせるコイルとを備え、
    コイルに電流を流すことにより磁性体に磁束を生じさせて推力発生部からの推力により変位拡大点を変位させることを特徴とする電磁アクチュエータ。
  2. 推力発生部は、間隙を形成する2面からなることを特徴とする電磁アクチュエータ。
  3. 変位拡大機構は、環状部分と、環状部分内に配置されその間に間隙を形成する少なくとも一対の変位部分とを有することを特徴とする請求項2記載の電磁アクチュエータ。
  4. 環状部分の一部は弾性部材からなることを特徴とする請求項3記載の電磁アクチュエータ。
  5. コイルは一対の変位部分のうち一方の変位部分に設けられていることを特徴とする請求項3または4記載の電磁アクチュエータ。
  6. 環状部分内にその間に間隙を形成する二対以上の変位部分が設けられていることを特徴とする請求項3乃至5のいずれか記載の電磁アクチュエータ。
JP2013080731A 2013-04-08 2013-04-08 電磁アクチュエータ Active JP6144090B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013080731A JP6144090B2 (ja) 2013-04-08 2013-04-08 電磁アクチュエータ
KR1020140030330A KR101558940B1 (ko) 2013-04-08 2014-03-14 전자 액추에이터
TW103111257A TWI533567B (zh) 2013-04-08 2014-03-26 Electromagnetic actuator
US14/246,713 US9281111B2 (en) 2013-04-08 2014-04-07 Electromagnetic actuator
CN201410138093.4A CN104104203B (zh) 2013-04-08 2014-04-08 电磁致动器
EP14001287.3A EP2790194B1 (en) 2013-04-08 2014-04-08 Electromagnetic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013080731A JP6144090B2 (ja) 2013-04-08 2013-04-08 電磁アクチュエータ

Publications (2)

Publication Number Publication Date
JP2014204618A true JP2014204618A (ja) 2014-10-27
JP6144090B2 JP6144090B2 (ja) 2017-06-07

Family

ID=50478138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013080731A Active JP6144090B2 (ja) 2013-04-08 2013-04-08 電磁アクチュエータ

Country Status (6)

Country Link
US (1) US9281111B2 (ja)
EP (1) EP2790194B1 (ja)
JP (1) JP6144090B2 (ja)
KR (1) KR101558940B1 (ja)
CN (1) CN104104203B (ja)
TW (1) TWI533567B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220011325A (ko) * 2020-07-21 2022-01-28 주식회사 엠플러스 전자석 구조를 갖는 선형 진동 액츄에이터

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6241938B2 (ja) * 2014-02-26 2017-12-06 樋口 俊郎 グリッパ機構および移動機構
FR3028662B1 (fr) * 2014-11-14 2016-12-16 Hager-Electro Sas Actionneur electromagnetique a bobines multiples
US10295028B2 (en) * 2016-07-26 2019-05-21 Blockwise Engineering Llc Linear actuator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142284A (ja) * 1984-08-03 1986-02-28 Nec Kansai Ltd 変位拡大装置
JPS647605A (en) * 1987-06-30 1989-01-11 Tokyo Gas Co Ltd Solenoid actuator
JP2000502210A (ja) * 1995-12-15 2000-02-22 ザ・ペン・ステイト・リサーチ・ファウンデイション 金属―電気活性セラミック複合変換器
US6465936B1 (en) * 1998-02-19 2002-10-15 Qortek, Inc. Flextensional transducer assembly and method for its manufacture
JP2007274793A (ja) * 2006-03-30 2007-10-18 Akita Prefecture アクチュエータ
JP2008527962A (ja) * 2005-01-04 2008-07-24 コアクティヴ・ドライヴ・コーポレイション 振動デバイス
JP2011502461A (ja) * 2007-10-25 2011-01-20 マサチューセッツ インスティテュート オブ テクノロジー 歪増幅器及び方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3295808A (en) * 1965-04-16 1967-01-03 James E Webb Parallel motion suspension device
DE2553189C3 (de) 1975-11-27 1978-05-18 Karl Ing.(Grad.) 4040 Neuss Weinhold Vorrichtung zum lösbaren Befestigen von Schlauch- oder Rohrenden
DE3336991A1 (de) * 1983-10-11 1985-05-02 Endress U. Hauser Gmbh U. Co, 7867 Maulburg Vorrichtung zur feststellung und/oder ueberwachung eines vorbestimmten fuellstands in einem behaelter
US4845451A (en) * 1987-07-23 1989-07-04 Mitsubishi Mining & Cement Co., Ltd. Electromagnet
US5410206A (en) 1993-04-06 1995-04-25 New Focus, Inc. Piezoelectric actuator for optical alignment screws
JPH09117721A (ja) * 1994-09-28 1997-05-06 Seiko Instr Inc 振動モジュール
DE19517630C2 (de) * 1995-05-13 1997-10-09 Metzeler Gimetall Ag Aktiver Schwingungstilger
DE29713167U1 (de) 1997-07-24 1998-11-19 Fev Motorentech Gmbh & Co Kg Elektromagnetischer Aktuator mit elastisch verformbarem Anker
CN1277625C (zh) * 1998-02-06 2006-10-04 并木精密宝石株式会社 电磁式驱动器及其安装构造
DE19839464C2 (de) * 1998-08-29 2001-07-05 Contitech Formteile Gmbh Elektrodynamischer Aktuator mit schwingendem Feder-Masse-System
JP2000217326A (ja) * 1999-01-26 2000-08-04 Matsushita Electric Works Ltd 振動アクチュエ―タ
US6548938B2 (en) 2000-04-18 2003-04-15 Viking Technologies, L.C. Apparatus having a pair of opposing surfaces driven by a piezoelectric actuator
US6608541B2 (en) * 2001-09-28 2003-08-19 Shicoh Engineering Co., Ltd. Electromagnetic actuator
JP2003154315A (ja) * 2001-11-22 2003-05-27 Matsushita Electric Ind Co Ltd 振動リニアアクチュエータ
JP2004048955A (ja) * 2002-07-15 2004-02-12 Denshi Seiki:Kk 直動型変位拡大機構及びその作製方法
KR100549880B1 (ko) * 2003-07-05 2006-02-06 엘지이노텍 주식회사 진동장치 구조
JP2005039147A (ja) 2003-07-18 2005-02-10 Smc Corp 低速駆動可能なリニアアクチュエータ
US7288861B1 (en) * 2004-03-06 2007-10-30 Motran Industries Inc. Inertial actuator with multiple flexure stacks
WO2006083295A1 (en) * 2004-06-10 2006-08-10 Lord Corporation A method and system for controlling helicopter vibrations
TWM261629U (en) * 2004-08-27 2005-04-11 Tricore Corp Improved return structure of core bar for electromagnetic valve
US7550880B1 (en) * 2006-04-12 2009-06-23 Motran Industries Inc Folded spring flexure suspension for linearly actuated devices
US8129870B1 (en) * 2009-08-04 2012-03-06 Pusl Kenneth E Asymmetric folded spring flexure suspension system for reciprocating devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142284A (ja) * 1984-08-03 1986-02-28 Nec Kansai Ltd 変位拡大装置
JPS647605A (en) * 1987-06-30 1989-01-11 Tokyo Gas Co Ltd Solenoid actuator
JP2000502210A (ja) * 1995-12-15 2000-02-22 ザ・ペン・ステイト・リサーチ・ファウンデイション 金属―電気活性セラミック複合変換器
US6465936B1 (en) * 1998-02-19 2002-10-15 Qortek, Inc. Flextensional transducer assembly and method for its manufacture
JP2008527962A (ja) * 2005-01-04 2008-07-24 コアクティヴ・ドライヴ・コーポレイション 振動デバイス
JP2007274793A (ja) * 2006-03-30 2007-10-18 Akita Prefecture アクチュエータ
JP2011502461A (ja) * 2007-10-25 2011-01-20 マサチューセッツ インスティテュート オブ テクノロジー 歪増幅器及び方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220011325A (ko) * 2020-07-21 2022-01-28 주식회사 엠플러스 전자석 구조를 갖는 선형 진동 액츄에이터
KR102452760B1 (ko) 2020-07-21 2022-10-11 주식회사 엠플러스 전자석 구조를 갖는 선형 진동 액츄에이터

Also Published As

Publication number Publication date
KR101558940B1 (ko) 2015-10-08
US20140300435A1 (en) 2014-10-09
TW201448423A (zh) 2014-12-16
JP6144090B2 (ja) 2017-06-07
US9281111B2 (en) 2016-03-08
KR20140121770A (ko) 2014-10-16
EP2790194B1 (en) 2016-12-21
TWI533567B (zh) 2016-05-11
CN104104203A (zh) 2014-10-15
EP2790194A1 (en) 2014-10-15
CN104104203B (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6241938B2 (ja) グリッパ機構および移動機構
JP6144090B2 (ja) 電磁アクチュエータ
US8729992B2 (en) Electromagnetic actuator device
JP2018137920A (ja) 振動モータ
US10381911B2 (en) Linear motor, magnet unit, and stage device
CN109149899A (zh) 直线电动机
JP6064748B2 (ja) 発電装置
JP2019195052A (ja) コイル部品
JP6732686B2 (ja) リニアモータ、ステージ装置
US9887611B2 (en) Linear motor
JPWO2019008021A5 (ja)
JP2009516088A (ja) 特に靴下編機等の選択装置のための磁気アクチュエータ
JP2015089189A (ja) リニアモータ
KR102168401B1 (ko) 중력보상 구동부
US11075028B2 (en) Impact actuator with 2-degree of freedom and impact controlling method
KR101256166B1 (ko) 저소음 솔레노이드 장치
KR100472829B1 (ko) 보이스코일 모터 및 그 설계방법
JP2020089181A (ja) 偏平型ボイスコイルモータ
JP2022163388A (ja) 可変インダクタの制御方法
KR101331931B1 (ko) 리니어 액추에이터
WO2016051855A1 (ja) リニアモータ
JP2019192791A (ja) コイル部品
JP2016103601A (ja) リアクトル
JP2003032992A (ja) 単極形リニア直流モータ
JP2015115136A (ja) 電磁リレー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170510

R150 Certificate of patent or registration of utility model

Ref document number: 6144090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250