JP2014194187A - ルーツ型圧縮機 - Google Patents

ルーツ型圧縮機 Download PDF

Info

Publication number
JP2014194187A
JP2014194187A JP2013071005A JP2013071005A JP2014194187A JP 2014194187 A JP2014194187 A JP 2014194187A JP 2013071005 A JP2013071005 A JP 2013071005A JP 2013071005 A JP2013071005 A JP 2013071005A JP 2014194187 A JP2014194187 A JP 2014194187A
Authority
JP
Japan
Prior art keywords
rotor
hollow portion
driven
wall portion
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013071005A
Other languages
English (en)
Inventor
Tatsuyuki Hoshino
辰幸 星野
Tsutomu Nasuda
勉 奈須田
Daisuke Masaki
大輔 正木
Shinji Matsunaga
真治 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2013071005A priority Critical patent/JP2014194187A/ja
Publication of JP2014194187A publication Critical patent/JP2014194187A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】ロータの軽量化と、中空部とロータ室との間のシール性の向上を併せて実現できるルーツ型圧縮機の提供にある。
【解決手段】一対の回転軸としての駆動軸23、従動軸31と、各々複数の葉48、59を有し、相互に噛合される一対のロータとしての駆動側ロータ13および従動側ロータ14と、駆動側ロータ13および従動側ロータ14を収容するロータ室28を有するハウジングと、を備え、駆動側ロータ13は、複数の葉48、48の各々に形成された中空部52と、中空部52を区画するとともに駆動側ロータ13の外郭を形成するロータ壁部と、を備えたルーツ型圧縮機10において、ロータ壁部は、駆動側ロータ13の長径線MLを基準として、長径線MLより駆動側ロータ13の回転方向先行側の前壁部53と、回転方向後行側の後壁部54とを備え、後壁部54は前壁部53より肉厚である。
【選択図】 図2

Description

この発明は、ルーツ型圧縮機に関し、特に中空のロータを有するルーツ型圧縮機に関する。
従来のルーツ型圧縮機としては、例えば、特許文献1に開示されたルーツ型圧縮機が知られている。
特許文献1に開示されたルーツ型圧縮機では、駆動軸及び従動軸がケーシング内に画成されたロータ室を貫通しており、ロータ室内にて駆動軸に第1のロータが、従動軸に第2のロータがそれぞれ固定されている。
第1のロータは、駆動軸の両側にそれぞれ配置されると共に駆動軸の軸方向に延びる一対の中空部を有しており、ロータの外郭を形成する壁部にそれぞれ中空部とロータ室とを連通する連通部が形成されている。
同様に、第2のロータは、従動軸の両側にそれぞれ配置されると共に従動軸の軸方向に延びる一対の中空部を有しており、ロータの外郭を形成する壁部にそれぞれ中空部とロータ室とを連通する連通部が形成されている。
このルーツ型圧縮機によれば、ロータの軸方向端面とケーシングの内壁面との間隙から水分が中空部内に浸入しても、ロータの回転により中空部内の水分はロータの回転方向に対して中空部の後端方向へと流される。
そして、中空部の後端位置に形成されている連通部を通ってロータ室へと排出される。
ロータ室へ排出された水分は、さらに、ロータ室の吐出ポートから外部へと排出される。
従って、中空のロータ内部に溜まった水分の凍結により起動することができなくなるという不具合を防止することができるとしている。
また、ロータの外周面に倣う中空部が形成されているため、ロータの軽量化が図られている。
特開2005−155408号公報
特許文献1に開示されたルーツ型圧縮機では、ロータに中空部が形成されているためロータの軽量化が図られているものの、中空部の周囲に形成されている壁部の肉厚が薄くなり過ぎると、中空部とロータ室との間のシール性が低下するおそれがある。
中空部とロータ室との間のシール性が低下する場合、高圧空間から中空部へ作動流体が漏洩するとともに中空部の作動流体が低圧空間に漏洩し、圧縮効率が低下する。
本発明は上記の問題点に鑑みてなされたもので、本発明の目的は、ロータの軽量化と、中空部とロータ室との間のシール性の向上を併せて実現できるルーツ型圧縮機の提供にある。
上記の課題を解決するために、本発明は、一対の回転軸と、各々複数の葉を有し、前記回転軸とともに回転するように前記回転軸に連結され、相互に噛合される一対のロータと、前記一対のロータを収容するロータ室を有するハウジングと、を備え、前記ロータは、前記複数の葉の各々に形成された中空部と、該中空部を区画するとともに前記ロータの外郭を形成するロータ壁部と、を備えたルーツ型圧縮機において、前記ロータ壁部は、前記ロータの長径線を基準として、前記長径線より前記ロータの回転方向先行側の前壁部と、回転方向後行側の後壁部とを備え、前記後壁部は前記前壁部より肉厚であることを特徴とする。
本発明では、中空部がロータ室における高圧空間側に位置するとき、中空部と低圧空間とは前壁部より肉厚の後壁部により隔てられ、中空部の作動流体は低圧空間へ漏洩し難い。
また、中空部がロータ室における低圧空間側に位置するとき、中空部と高圧空間とは前壁部より肉厚の後壁部により隔てられ、高圧空間の作動流体は中空部へ漏洩し難い。
従って、本発明によれば、ロータに中空部が形成されていることから、ロータの軽量化を図るとともに中空部とロータ室との間のシール性を向上させることができ、圧縮効率の低下を抑制することができる。
また、上記のルーツ型圧縮機において、前記中空部は、前記ロータの長径線を基準として、前記ロータの回転方向先行側のみに形成される構成としてもよい。
この場合、ロータの形状は、ロータの回転方向先行側の中空部により高圧空間から漏洩する作動流体を回収し、回転方向後行側の後壁部により作動流体の漏洩を防止するために適した形状である。
また、上記のルーツ型圧縮機において、前記中空部と前記ロータ室を連通する連通路が、前記葉の長径線より前記ロータの回転方向先行側に形成されている構成としてもよい。
この場合、中空部を区画するロータ壁部は、中空部における水を回転方向先行側に形成された連通路に導き易くすることができ、連通路を通じて水をロータ室へ排出することができる。
本発明によれば、ロータの軽量化と、中空部とロータ室との間のシール性の向上を併せて実現できるルーツ型圧縮機を提供することができる。
本発明の実施形態に係るルーツ型圧縮機の横断面図である。 図1におけるA−A線の矢視図である。 (a)は変形例に係るルーツ型圧縮機の駆動側ロータの正面図であり、(b)は(a)におけるB−B線矢視図である。 別例に係る三葉形のロータを備えたルーツ型圧縮機の正面図である。
以下、本発明の実施形態に係るルーツ型圧縮機を図面に基づいて説明する。
本実施形態のルーツ型圧縮機(以下「圧縮機」と表記する)は、燃料電池システムにおいて水素ガスを循環させる水素ポンプとして使用される。
図1に示す圧縮機10のハウジングは、電動モータ11が収容されるモータハウジング12と、一対のロータ(駆動側ロータ13と従動側ロータ14)が収容されるロータハウジング15と、タイミングギヤ16が収容されるギヤハウジング17を備えている。
モータハウジング12は、筒状のモータハウジング体18と、モータハウジング体18に接合され、ロータハウジング15に固定される固定ハウジング体19とを備えている。
モータハウジング体18および固定ハウジング体19によりモータ室20が形成され、モータ室20には電動モータ11が収容されている。
電動モータ11は、モータハウジング体18の内壁に沿って取り付けられる円筒状のステータ21と、ステータ21の内部に配置されたロータ22を備えている。
ロータ22の中心には駆動軸23が貫通して固定されている。
モータハウジング体18には、駆動軸23の電動モータ11側の端部を支持する軸受24が備えられている。
駆動軸23の電動モータ11側の端部と反対側となるギヤハウジング17側の端部は、ロータハウジング15を貫通し、ギヤハウジング17付近に達している。
ロータハウジング15は、第1ロータハウジング体25と、第1ロータハウジング体25に接合される第2ロータハウジング体26を備えている。
第1ロータハウジング体25と第2ロータハウジング体26はボルト27により相互に固定され、ロータハウジング15内のロータ室28を形成する。
図2に示すように、ロータ室28は圧縮機10の正面からみて繭型形である。
第1ロータハウジング体25は作動流体を吸入する吸入口29および作動流体を吐出する吐出口30を備えている。
ロータ室28には駆動軸23に固定された駆動側ロータ13が収容されている。
ロータハウジング15には駆動軸23と平行となるように従動軸31が支持されており、ロータ室28には従動軸31に固定された従動側ロータ14が収容されている。
ロータ室28には、駆動側ロータ13、従動側ロータ14およびロータハウジング15により作動空間が形成される。
駆動軸23および従動軸31は、一対の回転軸に相当する。
第1ロータハウジング体25は、駆動軸23を挿通する軸孔32と従動軸31を挿通する軸孔33を備えている。
駆動軸23側の軸孔32には、駆動軸23のギヤハウジング17側の部位を支持する軸受34と、作動流体のロータ室28からの漏洩を防止する軸封部材35が装着されている。
従動軸31側の軸孔33には、従動軸31のギヤハウジング17側の部位を支持する軸受36と、作動流体のロータ室28からの漏洩を防止する軸封部材37が装着されている。
第2ロータハウジング体26は、駆動軸23を挿通する軸孔38と従動軸31のモータハウジング12側の端部を挿通する軸孔39を備えている。
駆動軸23側の軸孔38には駆動軸23の中間部を支持する軸受40と、作動流体のロータ室28からモータ室20への作動流体の漏洩を防止する軸封部材41が装着されている。
従動軸31側の軸孔39には従動軸31の電動モータ11側の端部を支持する軸受42と、作動流体のロータ室28から外部への漏洩を防止する軸封部材43が装着されている。
本実施形態では、従動軸31の軸孔39の電動モータ11側は固定ハウジング体19により塞がれている。
駆動軸23は、モータハウジング体18に設けた軸受24と、第1ロータハウジング体25に設けた軸受34と、第2ロータハウジング体26に設けた軸受40によりハウジングに対して回転自在である。
従動軸31は、第1ロータハウジング体25に設けた軸受36および第2ロータハウジング体26に設けた軸受42によりハウジングに対して回転自在である。
駆動軸23には駆動側ロータ13が連結固定されているが、駆動側ロータ13の軸心と駆動軸23の軸心Pは一致しており、駆動側ロータ13と駆動軸23とは同軸となっている。
従動軸31には、従動側ロータ14が連結固定されているが、従動側ロータ14の軸心と従動軸31の軸心Qは一致し、従動側ロータ14と従動軸31は同軸となっている。
なお、図1、図2では、駆動軸23の軸心をPとし、従動軸31の軸心をQとして表記する。
第1ロータハウジング体25には、ギヤハウジング17が接合されている。
ギヤハウジング17および第1ロータハウジング体25はタイミングギヤ16を収容するギヤ室44を形成する。
タイミングギヤ16は、駆動軸23の端部に固定される駆動側ギヤ45と、駆動側ギヤ45と噛合し、従動軸31の端部に固定される従動側ギヤ46と、により構成されている。
ギヤ室44には、駆動側ギヤ45および従動側ギヤ46が収容されている。
駆動側ギヤ45と従動側ギヤ46が噛合して駆動軸23の回転を従動軸31に伝達するから、タイミングギヤ16は従動軸31を駆動軸23の回転方向と反対方向へ同期回転させる機能を有する。
次に、駆動側ロータ13および従動側ロータ14について詳しく説明する。
図2に示すように、駆動側ロータ13および従動側ロータ14を軸心方向から見ると駆動側ロータ13および従動側ロータ14は繭型状の輪郭を持つ。
駆動側ロータ13および従動側ロータ14は2つの葉を備えたいわゆる二葉形のロータであり、相互に噛合される一対のロータに相当する。
まず、駆動側ロータ13について説明すると、駆動側ロータ13は駆動軸23が挿入される貫通孔47を備えている。
駆動軸23の径方向において貫通孔47の両側には葉48、48が形成されている。
駆動側ロータ13は、駆動軸23の軸心P方向と平行に延在する外周面49を備えている。
外周面49は、撥水性材料であるフッ素樹脂がコーティングされている。
外周面49には、外周面49において軸心Pから最も離れた位置となる頂点部50と、外周面49において軸心Pに最も近い位置となる底点部51が設定されている。
頂点部50および底点部51は、駆動側ロータ13において回転中心となる軸心Pを間にしてそれぞれ2箇所づつ設定されている。
頂点部50は葉48の頂端部に相当し、底点部51は、駆動側ロータ13における葉48と葉48との間となる中間部に相当する。
本実施形態では、図2において軸心Pから頂点部50までを結ぶ直線(葉48の中心線)を長径線MLとし、軸心Pから底点部51まで結ぶ直線を短径線MSとすると、長径線MLと短径線MSとは直角を成す。
また、短径線MSを境として駆動側ロータ13の一方の葉48および他方の葉48では、長径線MLを境にして回転方向先行側となるロータ先行部が設定され、長径線MLを境にして回転方向後行側となるロータ後行部が設定される。
駆動側ロータ13の葉48には中空部52が形成されている。
図2に示すように、本実施形態の中空部52は、駆動側ロータ13のロータ先行部にのみ形成されている。
中空部52は駆動側ロータ13の軸方向にわたって形成されている。
駆動側ロータ13は、駆動側ロータ13の外郭を形成するロータ壁部を備えており、ロータ壁部は駆動側ロータ13のロータ先行部に形成される前壁部53と、駆動側ロータ13のロータ後行部に形成される後壁部54を有する。
前壁部53の回転方向の肉厚は、外周面49に沿ってほぼ一定に設定されている。
前壁部53は、外周面49に倣うように形成される内壁面55を有している。
後壁部54は、ロータ後行部にわたって形成されており、前壁部53よりも肉厚である。
後壁部54は長径線MLにほぼ沿って形成される内壁面56を有している。
後壁部54の内壁面56は、葉48の長径方向に延在するように長径線MLにほぼ沿って形成されており、軸心P側から頂点部50側へ向けて延在する。
中空部52を形成する内壁面55、56には、撥水性材料であるフッ素樹脂がコーティングされている。
本実施形態では、中空部52とロータ室28を連通する連通路57が前壁部53に形成されている。
連通路57は、葉59の長径線MLより駆動側ロータ13の回転方向先行側に形成されており、頂点部50の近傍に位置している。
また、連通路57は、駆動側ロータ13のギヤハウジング17側の端面において前壁部53を切り欠くことにより形成されている。
連通路57は、前壁部53において長径線MLを基準として回転方向に角度Eの範囲となる位置に形成されていればよく、より頂点部50に近い位置に形成されることが好ましい。
角度Eの範囲は、具体的には、0°<E<5°とすればよい。
また、連通路57の通路断面積は、駆動時において中空部52に存在する水が効率的に通過できるように設定されていればよい。
連通路57と駆動側ロータ13の長径線ML間の角度Eが0度より大きく5度より小さい角度であれば、遠心力が作用し易く、中空部52内の水を駆動側ロータ13の長径方向の先端側へ導き易い。
因みに、角度Eが0度以下であれば、連通路57より排出された水は、駆動側ロータ13の頂端部より回転方向後行側にのみ送られることになり、駆動側ロータ13の頂端部とハウジングとのシールに寄与することが困難となる。
また、角度Eが5度以上であれば、連通路57により排出された水は、駆動側ロータ13の頂端部以外にも拡散し、駆動側ロータ13の頂端部に集中して水を送ることが困難となる。
特に、本実施形態では、内壁面56が駆動側ロータ13の葉48の径方向に延在する。
このため、角度Eが大き過ぎると、内壁面56と連通路57との間に形成される凹部に中空部52の水が溜まり、中空部52から排出され難くなる。
角度Eが5度より小さい角度であれば、凹部に水が溜まり難く、内壁面56から連通路57へ水が移動し易い。このため、角度Eは5度より小さいことが好ましい。
なお、図示はされないが、軸方向においてモータハウジング12側からギヤハウジング17側へ向かうほど中空部52の断面積が僅かに拡大するように、葉48の先端側の内壁面55が外周面49側へ接近する位置に形成されている。
これは、駆動側ロータ13の回転時に中空部52の水が軸方向において内壁面55に沿って連通路57に集約され易くするためである。
次に、従動側ロータ14について説明するが、従動側ロータ14の構成は駆動側ロータ13と基本的に同一である。
従動側ロータ14は従動軸31が挿入される貫通孔58を備えている。
従動軸31の径方向において貫通孔58の両側には葉59、59が形成されている。
従動側ロータ14は、従動軸31の軸心Q方向と平行に延在する外周面60を備えている。
外周面60には、撥水性材料であるフッ素樹脂がコーティングされている。
外周面60には、外周面60において軸心Qから最も離れた位置となる頂点部61と、外周面60において軸心Qに最も近い位置となる底点部62が設定されている。
頂点部61および底点部62は、従動側ロータ14において回転中心となる軸心Qを間にしてそれぞれ2箇所づつ設定されている。
頂点部61は葉59の頂端部に相当し、底点部62は、従動側ロータ14における葉59と葉59との間となる中間部に相当する。
本実施形態では、図2において軸心Qから頂点部61までを結ぶ直線(葉59の中心線)を長径線NLとし、軸心Qから底点部62まで結ぶ直線を短径線NSとすると、長径線NLと短径線NSとは直角を成す。
また、短径線NSを境として従動側ロータ14の一方の葉59および他方の葉59では、従動側ロータ14において長径線NLを境にして回転方向先行側となるロータ先行部が設定され、長径線NLを境にして回転方向後行側となるロータ後行部が設定される。
従動側ロータ14の葉59には中空部63が形成されている。
図2に示すように、本実施形態の中空部63は、従動側ロータ14のロータ先行部にのみ形成されている。
中空部63は従動側ロータ14の軸方向にわたって形成されている。
従動側ロータ14は、従動側ロータ14の外郭を形成するロータ壁部を備えており、ロータ壁部は従動側ロータ14のロータ先行部に形成される前壁部64と、従動側ロータ14のロータ後行部に形成される後壁部65を有する。
前壁部64の回転方向の肉厚は、外周面60に沿ってほぼ一定に設定されている。
前壁部64は、外周面60に倣うように形成される内壁面66を有している。
後壁部65は、ロータ後行部にわたって形成されており、前壁部64よりも肉厚である。
後壁部65は長径線NLにほぼ沿って形成される内壁面67を有している。
後壁部65の内壁面67は、葉59の長径方向に延在するように長径線NLにほぼ沿って形成されており、軸心Q側から頂点部61側へ向けて延在する。
中空部63を形成する内壁面66、67には、撥水性材料であるフッ素樹脂がコーティングされている。
本実施形態では、中空部63とロータ室28を連通する連通路68が前壁部64に形成されている。
連通路68は、葉59の長径線NLより従動側ロータ14の回転方向先行側に形成されており、頂点部61の近傍に位置している。
また、連通路68は、従動側ロータ14のギヤハウジング17側の端面において前壁部64を切り欠くことにより形成されている。
連通路68は、前壁部64において長径線MLを基準として回転方向に角度Fの範囲となる位置に形成されていればよく、より頂点部61に近い位置に形成されることが好ましい。
角度Fの範囲は、角度Eと同様に、0°<F<5°とすればよい。
連通路68の通路断面積は中空部63に存在する水が効率的に通過できるように設定されていればよい。
連通路68と従動側ロータ14の長径線NL間の角度Fが0度より大きく5度より小さい角度であれば、遠心力が作用し易く、中空部63内の水を従動側ロータ14の長径方向の先端側へ導き易い。
因みに、角度Fが0度以下であれば、連通路68より排出された水は、従動側ロータ14の頂端部より回転方向後行側にのみ送られることになり、従動側ロータ14の頂端部とハウジングとのシールに寄与することが困難となる。
また、角度Fが5度以上であれば、連通路68により排出された水は、従動側ロータ14の頂端部以外にも拡散し、従動側ロータ14の頂端部に集中して水を送ることが困難となる。
特に、本実施形態では、内壁面67が従動側ロータ14の葉59の径方向に延在する。
このため、角度Fが大き過ぎると、内壁面67と連通路68との間に形成される凹部に中空部63の水が溜まり、中空部63から排出され難くなる。
角度Fが5度より小さい角度であれば、凹部に水が溜まり難く、内壁面67から連通路68へ水が移動し易い。このため、角度Fは5度より小さいことが好ましい。
なお、図示はされないが、軸方向においてモータハウジング12側からギヤハウジング17側へ向かうほど中空部63の断面積が僅かに拡大するように、葉59の先端側の内壁面66が外周面60側へ接近する位置に形成されている。
これは、従動側ロータ14の回転時に中空部63の水が軸方向において連通路68に集約され易くするためである。
駆動側ロータ13と従動側ロータ14は90度の位相で相互に噛合する。
図2に示す状態では、駆動側ロータ13の一方の頂点部50が第1ロータハウジング体25と接近して対向し、駆動側ロータ13の他方の頂点部50が、従動側ロータ14の一方の底点部62と対向している。
駆動側ロータ13の一方の底点部51は吸入口29と連通する低圧側の作動空間を臨み、駆動側ロータ13の他方の底点部51は吐出口30と連通する高圧側の作動空間を臨んでいる。
従動側ロータ14の2つの頂点部61は第1ロータハウジング体25と接近して対向している。
従動側ロータ14の他方の底点部62は、第1ロータハウジング体25と従動側ロータ14により囲まれた空間部を臨んでいる。
次に、本実施形態に係る圧縮機10の動作について説明する。
電動モータ11により駆動軸23が回転すると、駆動側ギヤ45が回転して従動側ギヤ46が回転する。
従動側ギヤ46とともに従動軸31が駆動軸23とは反対方向へ同期回転する。
駆動軸23と従動軸31が互いに異なる方向へ回転することにより、ロータ室28における駆動側ロータ13、従動側ロータ14が互いに反対方向へ回転する。
駆動側ロータ13、従動側ロータ14の回転により吸入口29から作動流体がロータ室28へ吸入されるとともに、ロータ室28において形成される作動空間の作動流体は吐出口30から吐出される。
圧縮機10の運転時においては、駆動側ロータ13と従動側ロータ14の回転に伴い、吸入口29と連通する作動空間は吸入圧となり、吐出口30と連通する圧縮過程にある作動空間は吐出圧となる。
従って、吸入口29と連通する作動空間は低圧空間であり、吐出口30と連通する圧縮過程にある作動空間は高圧空間である。
駆動側ロータ13の連通路57が低圧空間と連通するとき、中空部52は低圧空間と同じ圧力となり、駆動側ロータ13の連通路57が高圧空間と連通するとき、中空部52は高圧空間と同じ圧力となる。
また、従動側ロータ14の連通路68が低圧空間と連通するとき、中空部63は低圧空間と同じ圧力となり、従動側ロータ14の連通路68が高圧空間と連通するとき、中空部63は高圧空間と同じ圧力となる。
圧縮機10の運転時において高圧空間における作動流体に含まれる水はロータハウジング15と駆動側ロータ13の前壁部53との軸方向におけるクリアランスを通じて中空部52に進入する。
また、中空部63において作動流体に含まれる水分が結露により生じる。
従動側ロータ14の中空部63についても中空部52と同様に水が進入したり、結露により水が生じたりする。
駆動側ロータ13が高速で回転されている状態では、中空部52に存在する水は遠心力を受けて、駆動側ロータ13の長径方向の先端側へ移動する。
従動側ロータ14の中空部63に存在する水も同様に長径方向の先端側へ移動する。
中空部52の水が遠心力を受けて移動する際、湾曲して傾斜面となっている内壁面55とともに長径方向に延在する内壁面56は水の連通路57への移動を助長し、中空部52に存在する水を連通路57へ移動し易くする。
連通路57へ移動した水は、連通路57を通じて中空部52からロータ室28へ排出され、ロータ室28へ排出された水は駆動側ロータ13の前壁部53から後壁部54へ移動し、駆動側ロータ13の外周面49とロータハウジング15との間のクリアランスに入り込み、駆動側ロータ13とロータハウジング15との間をシールする。
中空部52からロータ室28へ排出された水が駆動側ロータ13とロータハウジング15との間のクリアランスに入り込み、駆動側ロータ13とロータハウジング15との間をシールするから、駆動側ロータ13とロータハウジング15とのシール性が向上する。
従動側ロータ14においても中空部63に存在する水は連通路68からロータ室28へ排出され、従動側ロータ14の外周面60とロータハウジング15との間のクリアランスに入り込み、従動側ロータ14とロータハウジング15との間をシールする。
従動側ロータ14においても、従動側ロータ14とロータハウジング15とのシール性が向上する。
本実施形態では、中空部52の内壁面55、56がフッ素樹脂によりコーティングされているため、遠心力を受ける水が連通路57へより移動しやすい。
また、中空部63の内壁面66、67がフッ素樹脂によりコーティングされているため、遠心力を受ける水が連通路68へより移動しやすい。
駆動側ロータ13の連通路57がロータ室28における高圧空間と連通するとき、中空部52の作動流体はロータ室28の低圧空間へ漏洩しようとする。
本実施形態では、中空部52とロータ室28の低圧空間との間には、前壁部53と比べてロータ室28までの距離が大きな後壁部54が位置するため、作動流体はロータハウジング15と後壁部54との軸方向におけるクリアランスを通って漏洩し難い。
従動側ロータ14においても、中空部63とロータ室28の低圧空間との間には、前壁部64と比べてロータ室28までの距離が大きな後壁部65が位置するため、作動流体はロータハウジング15と後壁部65との軸方向におけるクリアランスを通って漏洩し難い。
また、図2では、駆動側ロータ13の一方の葉48はロータハウジング15と対向し、他方の葉48は従動側ロータ14と対向する。
一方の葉48では中空部52が高圧空間側に位置し、連通路57は高圧空間と連通しているため、一方の葉48の中空部52は高圧となる。
他方の葉48では、従動側ロータ14の底点部62に駆動側ロータ13の頂点部50が対向する状態にある。
従動側ロータ14に対向する駆動側ロータ13の葉48では、中空部52が低圧空間側に位置し、連通路57は従動側ロータ14の外周面60と対向する状態となる。
従動側ロータ14に対向する駆動側ロータ13の葉48における中空部52の圧力は、吐出圧と吸入圧の中間の圧力(中間圧)となっている。
そして、連通路57が低圧空間と連通すると、中空部52の圧力は低圧空間と同じになる。
中空部52の圧力が中間圧となる理由は、中空部52が駆動側ロータ13の回転によって、高圧空間側から低圧空間側へ移動する際に、中空部52から低圧空間側へ作動流体が徐々に洩れて圧力が少しずつ低下するためである。
従って、中空部52が高圧空間側から低圧空間側へ移動するとき、中空部52の圧力が急激に低下して変動することはない。
なお、連通路57が従動側ロータ14に対向する状態であって、中空部52が低圧空間側に位置するとき、中空部52と高圧空間と間には、前壁部53と比べてロータ室28までの距離が大きな後壁部54が位置する。
このため、高圧空間の作動流体はロータハウジング15と後壁部54との軸方向におけるクリアランスを通って中空部52へ漏洩し難い。
また、従動側ロータ14の中空部63についても、駆動側ロータ13の中空部52と同様に、高圧空間側から低圧空間側へ移動する際に、中空部63から低圧空間側へ作動流体が徐々に洩れて圧力が少しずつ低下して中間圧となる。
本実施形態の圧縮機10は以下の作用効果を奏する。
(1)中空部52(63)がロータ室28における高圧空間側に位置するとき、中空部52と低圧空間とは前壁部53(64)より肉厚の後壁部54(65)により隔てられ、中空部52(63)の作動流体は低圧空間へ漏洩し難い。また、中空部52(63)がロータ室28における低圧空間側に位置するとき、中空部52(63)と高圧空間とは前壁部53(64)より肉厚の後壁部54(65)により隔てられ、高圧空間の作動流体は中空部52(63)へ漏洩し難い。従って、駆動側ロータ13(従動側ロータ14)の軽量化を図るとともに中空部52(63)とロータ室28との間のシール性を向上させることができ、圧縮効率の低下を抑制することができる。
(2)駆動側ロータ13(従動側ロータ14)の形状は、駆動側ロータ13(従動側ロータ14)の回転方向先行側の中空部52(63)により高圧空間から漏洩する作動流体を回収し、回転方向後行側の後壁部54(65)により作動流体の漏洩を防止するために適した形状であり、圧縮機10に採用することにより、作動流体の漏洩を抑制して、圧縮効率の低下を抑制することができる。
(3)中空部52(63)を区画する前壁部53(64)および後壁部54(65)は、中空部52(63)における水を回転方向先行側に形成された連通路57(66)に導き易くすることができ、連通路57(66)を通じて水をロータ室28へ排出することができる。
(4)中空部52(63)から排出された水が駆動側ロータ13(従動側ロータ14)とロータハウジング15との間のクリアランスに入り込み、駆動側ロータ13(従動側ロータ14)とロータハウジング15との間をシールすることから、駆動側ロータ13(従動側ロータ14)とロータハウジング15とのシール性を向上させることができる。
(5)中空部52(63)における内壁面55(66)、56(67)は撥水性材料であるフッ素樹脂によりコーティングされている。このため、駆動側ロータ13(従動側ロータ14)の回転時において中空部52(63)の水はコーティングされた内壁面55(66)、56(67)に沿って流れ易く、中空部52(63)に残存し難くなる。また、水が中空部52(67)において凍結しても、氷が内壁面55(66)、56(67)から剥離しやすく、凍結による駆動側ロータ13(従動側ロータ14)の起動不良を回避することができる。
(6)連通路57(68)と駆動側ロータ13(従動側ロータ14)の長径線ML(NL)間の角度E(F)が0度より大きく5度より小さい角度であれば、遠心力が作用し易く、中空部52(63)内の水を駆動側ロータ13(従動側ロータ14)の長径方向の先端側へ導き易い。特に、本実施形態では、内壁面56(67)が駆動側ロータ13(従動側ロータ14)の葉48(59)の径方向に延在する。このため、角度E(F)が5度より小さい角度であれば、内壁面56(67)と連通路57(68)との間に形成される凹部に水が溜まり難く、内壁面56(67)から連通路57(68)へ水が移動し易い。
なお、上記の実施形態は、本発明の一実施形態を示すものであり、本発明は、上記の実施形態に限定されるものではなく、下記のように発明の趣旨の範囲内で種々の変更が可能である。
○ 上記の実施形態では、中空部は、ロータの長径線を基準として、ロータの回転方向先行側のみに形成されるとしたが、この限りではない。例えば、中空部はロータの回転方向先行側だけではなく、中空部の一部がロータの回転方向後行側に形成されてもよい。少なくとも、回転方向後行側の後壁部がロータの回転方向先行側の前壁部よりも肉厚であれば中空部の位置は特に限定されない。
○ 上記の実施形態では、中空部とロータ室を連通する連通路が形成され、連通路が葉の長径線よりロータの回転方向の先行側に形成されているとしたが、連通路は必須の要件ではない。例えば、中空部が形成されても中空部とロータ室とを積極的に連通する連通路を備えていないロータとしてもよい。この場合もロータの軽量化を図るとともに中空部とロータ室との間のシール性を向上させることができ、圧縮効率の低下を抑制することができる。
○ 上記の実施形態では、ロータハウジングとのクリアランスを形成する駆動側ロータ、従動側ロータの端面に切り欠きを設けて連通路を形成したが、例えば、図3(a)、図3(b)に示す変形例のように、連通路72を貫通孔としてもよい。図3(b)に示すように、連通路72は、駆動側ロータ13の外周面49における軸方向の中間付近にて径方向へ貫通して形成されている。また、中空部71における内壁面73は端面側から軸方向の中心へ向かうにつれて中空部71の断面積が拡大するように、葉48の先端側の内壁面が外周面49側へ接近する位置に形成されている。この場合、駆動側ロータ13の軸方向の中間付近に設けた連通路72に水を集約し易くなる。また、連通路72が中空部71から外周面49における軸方向の中間部に貫通する貫通孔であるから、外周面49とロータハウジング15との間のクリアランスに水を軸方向にわたって供給し易くなり、シール性を向上させることができる。なお、図示はしないが従動側ロータ14についても駆動側ロータ13と同様に貫通孔による連通路とすればよい。
○ 上記の実施形態では、ルーツ型圧縮機として燃料電池システムにおいて水素ガスを循環させる水素ポンプを例示としたが、本発明のルーツ型圧縮機は燃料電池システムの水素ポンプ以外の各種用途に適用してもよい。
○ 上記の実施形態では、各ロータの軸心が水平となる横置き型のルーツ型圧縮機としたが、横置きに限定されない。例えば、ルーツ型圧縮機をロータの軸心が鉛直方向となる縦置きとしてもよく、あるいは、ロータの軸心が傾斜するようにルーツ型圧縮機を設置してもよい。
○ 上記の実施形態では、中空部における内壁面を撥水性材料によりコーティングしたが必ずしもコーティングしなくてもよい。また、内壁面をコーティングする場合であっても、後壁部の内壁面にのみ撥水性材料をコーティングするなど、部分的にコーティングするようにしてもよい。
○ 上記の実施形態では、一対のロータが二葉形のロータとしたが、本発明は二葉形のロータを備えるルーツ型圧縮機に限定されない。例えば、図4に示すように、三葉形のロータ81、82を備えたルーツ型圧縮機80に本発明を適用してもよい。ロータ81は駆動側のロータであり、ロータ82は従動側のロータである。この場合もロータ81の3つの葉83に中空部84がそれぞれ形成されている。中空部84とロータ室28を連通する連通路89が設けられている。ロータ81のロータ先行部に前壁部85が形成され、ロータ81のロータ後行部に後壁部86が形成されている。前壁部85は内壁面87を有し、後壁部86は内壁面88を有する。ロータ81に設けた駆動軸23の軸心Pから頂点部90までを結ぶ直線(葉83の中心線)を長径線MLとし、軸心Pから底点部91まで結ぶ直線を短径線MSとする。長径線MLと短径線MSとは60度の角度を成す。内壁面88は長径線MLに沿って延在している。連通路89は、駆動軸23の径方向に延在し、ロータ81の長径線MLに対してロータ81の回転方向先行側に形成される。なお、従動側のロータであるロータ82についてもロータ81と同様にロータ82の3つの葉92に中空部93をそれぞれ形成している。中空部93とロータ室28を連通する連通路98が設けられている。ロータ82のロータ先行部に前壁部94が形成され、ロータ82のロータ後行部に後壁部95が形成されている。前壁部94は内壁面96を有し、後壁部95は内壁面97を有する。ロータ82に設けた従動軸31の軸心Qから頂点部99までを結ぶ直線(葉92の中心線)を長径線NLとし、軸心Qから底点部100まで結ぶ直線を短径線NSとする。長径線NLと短径線NSとは60度の角度を成す。後壁部95の内壁面97は長径線NLに沿って延在している。連通路98は、従動軸31の径方向に延在し、ロータ82の長径線NLに対してロータ82の回転方向先行側に形成される。ルーツ型圧縮機80によれば、ロータ81(82)に中空部84(93)が形成されていることから、ロータ81(82)の軽量化を図るとともに中空部84(93)とロータ室28との間のシール性を向上させることができ、圧縮効率の低下を抑制することができる。また、中空部84(93)の水の排出と、ロータ81(82)とハウジングとの間のシール性を向上させることができる。
10、70、80 ルーツ型圧縮機
11 電動モータ
12 モータハウジング
13 駆動側ロータ
14 従動側ロータ
15 ロータハウジング
16 タイミングギヤ
23 駆動軸
25 第1ロータハウジング体
26 第2ロータハウジング体
28 ロータ室
31 従動軸
44 ギヤ室
45 駆動側ギヤ
46 従動側ギヤ
48、59、83、92 葉
50、61、90、99 頂点部
51、62、91、100 底点部
52、63、84、93 中空部
53、64、85、94 前壁部
54、65、86、95 後壁部
55、56、66、67、73、87、88、96、97 内壁面
57、68、72、89、98 連通路
P 軸心(駆動軸)
Q 軸心(従動軸)
ML 長径線
MS 短径線
NL 長径線
NS 短径線

Claims (3)

  1. 一対の回転軸と、
    各々複数の葉を有し、前記回転軸とともに回転するように前記回転軸に連結され、相互に噛合される一対のロータと、
    前記一対のロータを収容するロータ室を有するハウジングと、を備え、
    前記ロータは、前記複数の葉の各々に形成された中空部と、該中空部を区画するとともに前記ロータの外郭を形成するロータ壁部と、を備えたルーツ型圧縮機において、
    前記ロータ壁部は、前記ロータの長径線を基準として、前記長径線より前記ロータの回転方向先行側の前壁部と、回転方向後行側の後壁部とを備え、
    前記後壁部は前記前壁部より肉厚であることを特徴とするルーツ型圧縮機。
  2. 前記中空部は、前記ロータの長径線を基準として、前記ロータの回転方向先行側のみに形成されることを特徴とする請求項1記載のルーツ型圧縮機。
  3. 前記中空部と前記ロータ室を連通する連通路が、前記葉の長径線より前記ロータの回転方向先行側に形成されていることを特徴とする請求項2に記載のルーツ型圧縮機。
JP2013071005A 2013-03-29 2013-03-29 ルーツ型圧縮機 Pending JP2014194187A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013071005A JP2014194187A (ja) 2013-03-29 2013-03-29 ルーツ型圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013071005A JP2014194187A (ja) 2013-03-29 2013-03-29 ルーツ型圧縮機

Publications (1)

Publication Number Publication Date
JP2014194187A true JP2014194187A (ja) 2014-10-09

Family

ID=51839578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013071005A Pending JP2014194187A (ja) 2013-03-29 2013-03-29 ルーツ型圧縮機

Country Status (1)

Country Link
JP (1) JP2014194187A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106499629A (zh) * 2016-11-04 2017-03-15 西安航空动力控制科技有限公司 一种罗茨风机转子组件
JP2018168714A (ja) * 2017-03-29 2018-11-01 株式会社豊田自動織機 燃料電池用水素循環ポンプ
CN108799111A (zh) * 2018-01-09 2018-11-13 中国石油大学(华东) 一种不对称罗茨转子
CN109372749A (zh) * 2018-11-06 2019-02-22 西安理工大学 一种罗茨鼓风机转子端面密封结构
JPWO2020234947A1 (ja) * 2019-05-17 2020-11-26
CN113202663A (zh) * 2021-05-06 2021-08-03 南京信息职业技术学院 一种汽车发动机用进气增压装置及汽车发动机

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106499629A (zh) * 2016-11-04 2017-03-15 西安航空动力控制科技有限公司 一种罗茨风机转子组件
JP2018168714A (ja) * 2017-03-29 2018-11-01 株式会社豊田自動織機 燃料電池用水素循環ポンプ
CN108799111A (zh) * 2018-01-09 2018-11-13 中国石油大学(华东) 一种不对称罗茨转子
CN108799111B (zh) * 2018-01-09 2023-09-22 中国石油大学(华东) 一种不对称罗茨转子
CN109372749A (zh) * 2018-11-06 2019-02-22 西安理工大学 一种罗茨鼓风机转子端面密封结构
JPWO2020234947A1 (ja) * 2019-05-17 2020-11-26
WO2020234947A1 (ja) * 2019-05-17 2020-11-26 樫山工業株式会社 真空ポンプ
KR20210132194A (ko) * 2019-05-17 2021-11-03 가시야마고교가부시끼가이샤 진공펌프
CN113795674A (zh) * 2019-05-17 2021-12-14 樫山工业株式会社 真空泵
JP7201275B2 (ja) 2019-05-17 2023-01-10 樫山工業株式会社 真空ポンプ
KR102610990B1 (ko) * 2019-05-17 2023-12-06 가시야마고교가부시끼가이샤 진공펌프
CN113202663A (zh) * 2021-05-06 2021-08-03 南京信息职业技术学院 一种汽车发动机用进气增压装置及汽车发动机

Similar Documents

Publication Publication Date Title
JP2014194187A (ja) ルーツ型圧縮機
CN210599412U (zh) 叶片旋转式压缩机
US9546658B2 (en) Gas pump with a sealing oil groove
JP5447149B2 (ja) ベーンポンプ
CN102338087A (zh) 罗茨式流体机械
CN102251969B (zh) 旋叶式压缩机
EP2871366B1 (en) Rotary compressor
KR20090077294A (ko) 스크롤 압축기의 축방향 실링 장치
JP2014194186A (ja) ルーツ型圧縮機
AU2008365244B2 (en) Liquid ring pump with gas scavenge device
CN215292888U (zh) 旋转式压缩机
JP7350180B2 (ja) ポンプ装置及び車両
CN212055120U (zh) 叶片旋转式压缩机
US8282347B2 (en) Impeller and centrifugal pump including the same
CN212106257U (zh) 叶片回转式压缩机
CN110131160B (zh) 一种变排量叶片泵
JP2013072362A (ja) 圧縮機
KR102608742B1 (ko) 로터리 압축기
KR20130029959A (ko) 로터리 베인 압축기
JP2019027372A (ja) 圧縮機
JP6123488B2 (ja) ロータリ式圧縮機
KR200395686Y1 (ko) 소방차용 진공펌프
JP4232705B2 (ja) スイング圧縮機
KR20210109473A (ko) 회전 날개 펌프
JPH0139916Y2 (ja)