JP2014166673A - 表面被覆切削工具とその製造方法 - Google Patents
表面被覆切削工具とその製造方法 Download PDFInfo
- Publication number
- JP2014166673A JP2014166673A JP2013158524A JP2013158524A JP2014166673A JP 2014166673 A JP2014166673 A JP 2014166673A JP 2013158524 A JP2013158524 A JP 2013158524A JP 2013158524 A JP2013158524 A JP 2013158524A JP 2014166673 A JP2014166673 A JP 2014166673A
- Authority
- JP
- Japan
- Prior art keywords
- coating layer
- hard coating
- tool base
- tool
- grain size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
【解決手段】工具基体とターゲット間に所定の磁場を印加することにより、(a)AlとTiとSiの複合窒化物層からなる硬質被覆層であって、該層においてAlとTiとSiの合量に占めるTiの含有割合は0.3〜0.5、Siの含有割合は0.01〜0.1(但し、いずれも原子比)であり、(b)上記表面被覆切削工具の逃げ面上の刃先から100μm離れた位置までの範囲においては、硬質被覆層は粒状結晶組織を有し、硬質被覆層表面の粒状結晶粒の平均粒径は0.2〜0.5μmであり、工具基体と硬質被覆層の界面における粒状結晶粒の平均粒径は、硬質被覆層表面の粒状結晶粒の平均粒径より0.02〜0.1μm小さく、粒径が0.15μm以下の結晶粒が占める結晶粒径長割合は20%以下であり、好ましくは、硬質被覆層中のクラック占有率は0.3〜1.0である。
【選択図】図3
Description
そして、上記従来の被覆工具は、例えば、図1に示すように、アークイオンプレーティング装置に工具基体を装入し、ヒータで工具基体を500℃の温度に加熱した状態で、アノード電極と所定組成のAl−Ti−Si合金がセットされたカソード電極との間に、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、2Paの反応雰囲気とし、一方、上記工具基体には、−100Vのバイアス電圧を印加した条件で、前記工具基体の表面に、上記(Al,Ti,Si)N層を蒸着形成することにより製造し得ることも知られている。
例えば、特許文献3には、すくい面での被覆層の欠損を抑制して耐欠損性を向上させ、また、逃げ面における耐摩耗性を向上させた被覆工具として、被覆層を柱状結晶で構成し、すくい面における被覆層厚は逃げ面での被覆層厚よりも薄く、被覆層表面側の上層領域の平均結晶幅が、被覆層基体側の下層領域の平均結晶幅よりも大きい2つの層領域にて構成し、すくい面での被覆層厚に対する上層領域の厚みの比率が、逃げ面での被覆層厚に対する上層領域の厚みの比率よりも小さく、すくい面での柱状結晶の平均結晶幅が逃げ面での柱状結晶の平均結晶幅より小さい被覆工具(エンドミル)が記載されている。
また、例えば、特許文献4には、耐摩耗性と靭性とを両立させたとともに、基材との密着性にも優れた被膜を備えた被覆工具として、基材上に形成された被膜は、第1被膜層を含み、該第1被膜層は、微細組織領域と粗大組織領域とを含み、該微細組織領域は、それを構成する化合物の平均結晶粒径が10〜200nmであり、かつ該第1被膜層の表面側から該第1被膜層の全体の厚みに対して50%以上の厚みとなる範囲を占めて存在し、かつ−4GPa以上−2GPa以下の範囲の応力である平均圧縮応力を有し、該第1被膜層は、その厚み方向に応力分布を有しており、その応力分布において2つ以上の極大値または極小値を持ち、それらの極大値または極小値は厚み方向表面側に位置するものほど高い圧縮応力を有する被覆工具が記載されている。
上記従来の被覆工具においては、ある程度の耐チッピング性、耐欠損性、耐摩耗性の改善は図り得るものの、これをステンレス鋼などの一段と厳しい切削加工に用いた場合には、チッピングが発生しやすく、あるいは、摩耗損傷が大きくなり、これを原因として、比較的短時間で使用寿命に至るのが現状である。
「(1) 炭化タングステン基超硬合金で構成された工具基体の表面に、平均層厚が2〜10μmの硬質被覆層を蒸着形成した被覆工具において、
(a)硬質被覆層は、AlとTiとSiの複合窒化物層からなり、かつ、該層においてAlとTiとSiの合量に占めるTiの含有割合は0.3〜0.5、Siの含有割合は0.01〜0.1(但し、いずれも原子比)であり、
(b)上記被覆工具の逃げ面上の刃先から100μm離れた位置までの範囲においては、硬質被覆層は粒状結晶組織を有し、さらに、硬質被覆層表面の粒状結晶粒の平均粒径は0.2〜0.5μmであり、また、工具基体と硬質被覆層の界面における粒状結晶粒の平均粒径は、硬質被覆層表面の粒状結晶粒の平均粒径より0.02〜0.1μm小さく、しかも、粒径が0.15μm以下の結晶粒が占める結晶粒径長割合は20%以下であることを特徴とする被覆工具。
(2) 上記被覆工具の刃先角度をα度とし、該α度の角度範囲内の切れ刃先端のコーナー部の硬質被覆層中に形成されている連続クラックの占有角度をβ度とした場合、クラック占有率β/αが0.3〜1.0であることを特徴とする前記(1)に記載の被覆工具。
(3) 炭化タングステン基超硬合金で構成された工具基体の表面に、平均層厚が2〜10μmの硬質被覆層を蒸着形成した表面被覆切削工具の製造方法であって、アノード電極と、Al−Ti−Si合金からなるターゲットと、上記ターゲットの背面側に設けられた磁力発生源を備えるアークイオンプレーティング装置内に、炭化タングステン基超硬合金からなる工具基体を装入する基体装入工程と、上記工具基体上にAlとTiとSiの複合窒化物層からなる硬質被覆層を蒸着形成する蒸着工程とを備え、上記蒸着工程は、上記アークイオンプレーティング装置内に窒素ガスを導入するガス導入工程と、上記ターゲットと上記工具基体の間に、上記磁力発生源により、積算磁力が40〜150mT×mmの範囲内となる磁場を印加する印加工程と、上記工具基体にバイアス電圧を印加しつつ、上記ターゲットと上記アノード電極との間にアーク放電を発生させる放電工程と、上記工具基体を上記アークイオンプレーティング装置内で自転および公転させる自公転工程とを有し、上記工具基体が上記ターゲットに最接近した際には、上記工具基体の逃げ面の一部又は全部と上記ターゲットの上記工具基体側の面が水平となるように上記工具基体は支持されることを特徴とする前記(1)または(2)に記載の表面被覆切削工具の製造方法。」
に特徴を有するものである。
(a)硬質被覆層の種別、平均層厚:
この発明の硬質被覆層は、AlとTiとSiの複合窒化物層((Al,Ti,Si)N層)からなる。
上記(Al,Ti,Si)N層は、Al成分が高温硬さと耐熱性を向上させ、Ti成分が高温靭性、高温強度を向上させ、Siには高温硬さと耐熱塑性変形性を向上させる作用があることから、高温硬さ、耐熱性、高温強度にすぐれた硬質被覆層として既によく知られている。
本発明では、AlとTiとSiとの合量に占めるTiの含有割合(原子比、以下同じ)が0.3未満では、六方晶結晶構造の割合が増加するため硬さが低下し、一方、AlとTiとSiとの合量に占めるTiの含有割合(原子比)が0.5を越えると、耐熱性の低下を招き、その結果、偏摩耗の発生、熱塑性変形の発生等により耐摩耗性が劣化するようになることから、AlとTiとSiとの合量に占めるTiの含有割合(原子比)は、0.3〜0.5であることが必要である。
また、AlとTiとSiとの合量に占めるSiの含有割合(原子比)が0.01未満では、硬さが十分でなく耐摩耗性の向上効果を期待することはできず、一方、AlとTiとSiとの合量に占めるSiの含有割合(原子比)が0.1を越えると、硬さが大きくなりすぎて切削加工時にチッピングを発生し易くなることから、AlとTiとSiとの合量に占めるSiの含有割合(原子比)は、0.01〜0.1であることが必要である。
また、(Al,Ti,Si)N層からなる硬質被覆層の平均層厚は、2μm未満では、すぐれた耐摩耗性を長期に亘って発揮することができず、工具寿命短命の原因となり、一方、その平均層厚が10μmを越えると、膜が自己破壊し易くなることから、その平均層厚は2〜10μmとすることが必要である。
本発明では、上記(Al,Ti,Si)N層からなる硬質被覆層を粒状結晶として成膜し、さらに、硬質被覆層表面における結晶粒の平均結晶粒径(以下、単に「表面粒径」という)を0.2〜0.5μmとし、一方、工具基体と硬質被覆層の界面における硬質被覆層の結晶粒の平均結晶粒径(以下、単に「界面粒径」という)を、表面粒径より0.02〜0.1μm小さい値として成膜し、表面粒径と界面粒径とがそれぞれ異なる平均結晶粒径範囲となるように硬質被覆層の結晶組織構造を形成するように成膜する。
ここで、「工具基体と硬質被覆層の界面における硬質被覆層の結晶粒」とは、硬質被覆層内における工具基体と硬質被覆層の界面から厚さ0.5μmの硬質被覆層内部の領域に形成されている結晶粒を意味し、また、「硬質被覆層表面における結晶粒」とは、硬質被覆層の表面から深さ0.5μmの領域に形成されている結晶粒を意味する。
また、ここで「粒状結晶」とはアスペクト比が1以上6以下の結晶粒を意味する。アスペクト比は、結晶粒断面で最も長い直径(長辺)とそれに垂直な直径(短辺)の長さの比を、長辺を分子、短辺を分母として算出するものとする。
硬質被覆層表面における結晶粒の平均結晶粒径(表面粒径)が0.2μm未満であると、層中に含有する粒界が多くなるため、切削加工時に相対的に粒内よりも脆い粒界部分での破壊が生じやすく、耐摩耗性が悪化する。一方、表面粒径が0.5μmを超えると、層中に含有する粒界が少ないために、切削加工時に局所的に粒界に負荷がかかりやすくクラックが発生した場合に進展しやすく、耐チッピング性が悪化する。そのため、切削加工時に長期の使用にわたって十分な耐摩耗性、または耐チッピング性を発揮することができなくなることから、表面粒径は0.2〜0.5μmと定めた。
工具基体と硬質被覆層の界面における硬質被覆層の結晶粒の平均結晶粒径(界面粒径)については、表面粒径よりも0.02〜0.1μmだけ小さい値とすることが必要であるが、その技術的な理由は、表面粒径より0.1μmを超えて界面粒径が小さい場合には、硬質被覆層表面と界面の領域の平均粒径の差に起因して、切削加工時に表面と界面の領域での耐摩耗性の差が反映して、切削加工時に摩耗やチッピングがしやすくなり、切削性能が悪化する問題が生じる。
一方、界面粒径と表面粒径との差が0.02μm以内である場合には、表面と界面で粒径が同等であることに起因して耐摩耗性が同等となり、切削を行った際に、耐摩耗性の向上の作用を付与できない、ということによる。
なお、本発明では、表面粒径よりも界面粒径を0.02〜0.1μm小さい値にする事で、切削加工時に硬質被覆層表面での耐摩耗性向上効果と、界面領域での耐チッピング性向上効果を相乗させ、長期の使用にわたって十分な耐摩耗性、または耐チッピング性を発揮させることが可能となる。
粒径の測定方法を以下に記述する。
工具基体刃先から逃げ面側の断面を切り出し、その断面をSEMにて、観察する。硬質被覆層表面から深さ0.5μmの領域に形成されている各結晶粒を用い、工具基体表面と平行に直線を引き、結晶粒界間の距離を粒径と定義する。なお、工具基体表面と平行に直線を引く位置は、各結晶粒において最長の結晶粒径となる位置とする。逃げ面上の刃先から100μm離れた位置までの範囲において結晶粒径を測定し、その平均結晶粒径の平均値を表面粒径とする。より具体的にいえば、逃げ面上の刃先及び逃げ面上において刃先から50μm離れた位置、及び刃先から100μm離れた位置の3箇所で、幅10μmの範囲内に存在する結晶の結晶粒径を測定し、さらに、その3箇所での結晶粒径の平均値を表面粒径とする。また、硬質被覆層内における工具基体と硬質被覆層の界面から厚さ0.5μmの領域に形成されている各結晶粒においても同様の方法にて界面粒径を算出した。
ここで「粒径が0.15μm以下の結晶粒が占める結晶粒径長割合」とは、複数の結晶粒の粒径を測定し、その全測定結晶粒径長の和に対する粒径0.15μm以下の結晶粒径長の和の割合を示す。
図3に示すように、点線部に存在する結晶粒を用いて、各結晶粒径を測定後、表面粒径、界面粒径、粒径0.15μm以下の結晶粒径長割合を算出する。なお、点線部の幅は各10μmとする。また、「刃先」とは、図3に示すように、「切れ刃先端のコーナー部の円錐形状となっている部分を除いた、直線状切れ刃の最も先端に近い部分」であると、本発明では定義する。
その理由は、次のとおりである。
しかし、本発明によれば、切れ刃先端のコーナー部の硬質被覆層中に予めクラックが形成されていることから、残留応力の集中が低減されるため、特に、切削開始初期のチッピング発生等による切削性能の低下を抑制することができる。
ただし、β/αが0.3未満である場合には、圧縮残留応力の集中抑制効果を期待することはできないので、β/αは0.3以上と定めた。
圧縮残留応力の集中抑制効果の観点からは、β/αの値に上限を設ける必要はない(即ち、β/αは、0.3〜1.0)が、β/αの値が1.0に近づくほど、硬質被覆層と工具基体界面での界面剥離が発生しやすくなるので、β/αの値は、0.3〜0.9であることが好ましい。
図4に示すように、逃げ面上の刃先Aを通る逃げ面の垂線と、すくい面上の刃先Bを通るすくい面の垂線との交点を中心Oとした時、A−O−Bのなす角度を刃先角度α(度)という。
また、切れ刃先端のコーナー部の硬質被覆層中に形成されている連続クラックについては、前記中心Oから、連続する一つのクラックの端部C,Dに接する線を引いた時、C−O−Dのなす角度を連続クラックの占有角度β(度)とする。ただし、O―AまたはO−Bの延長線上をクラックが横切る場合は、延長線とクラックの交点をそれぞれC、Dとする。切れ刃先端のコーナー部の硬質被覆層中に複数のクラックが存在する場合、最大の占有角度を示す連続クラックを用いるものとする。
そして、(連続クラックの占有角度β)/(刃先角度α)の値を、クラック占有率であると定義する。図4(b)に、刃先角度α内における最大の角度βを示すクラック(β/α=1)をクラックの端部C、Dとして示す。
なお、本発明被覆工具は、(Al,Ti,Si)N層からなる硬質被覆層の平均層厚を2〜10μm、AlとTiの合量に占めるTiの含有割合は0.15〜0.45(但し、原子比)、粒状結晶粒の表面粒径、界面粒径を特定の数値範囲に定め、また、逃げ面上の刃先から100μm離れた位置までの範囲における粒径が0.15μm以下の結晶粒が占める結晶粒径長割合を20%以下と定めることにより、自ずと刃先のクラック占有率β/αが0.3〜1となる。
この発明の硬質被覆層は、図2(a)、(b)に示すようなアークイオンプレーティング装置(AIP装置)を用い、工具基体の温度を370〜450℃に維持しつつ、工具基体をAIP装置内で自公転させ、ターゲット表面中心とターゲットに最近接した工具基体間に所定の磁場(積算磁力が40〜150mT×mm)を印加しながら蒸着することによって、形成することができる。
例えば、AIP装置の一方には基体洗浄用のTi電極からなるカソード電極、他方には54at%Al−41at%Ti−5at%Si合金からなるターゲット(カソード電極)を設け、
まず、炭化タングステン(WC)基超硬合金からなる工具基体を洗浄・乾燥し、AIP装置内の回転テーブル上に装着し、真空中で基体洗浄用のTi電極とアノード電極との間に100Aのアーク放電を発生させて、工具基体に−1000Vのバイアス電圧を印加しつつ工具基体表面をボンバード洗浄し、
ついで、Al−Ti−Si合金ターゲットの表面中心からターゲットに最近接した工具基体までの積算磁力が40〜150mT×mmなる磁場を印加し、
ついで、装置内に反応ガスとして窒素ガスを導入し6Paの雰囲気圧力とし、工具基体の温度を370〜450℃に維持し、工具基体に−50Vのバイアス電圧を印加しつつ、Al−Ti−Si合金ターゲット(カソード電極)とアノード電極との間に100Aのアーク放電を発生させ、工具基体がターゲットに最接近した際には、逃げ面の一部又は全部とターゲット面が水平となるように工具基体を支持して自公転させつつ蒸着することによって、本発明の層構造を有する(Al,Ti,Si)N層からなる硬質被覆層を蒸着形成することができる。
なお、上記のAl−Ti−Si合金ターゲットと工具基体間での磁場の印加は、例えば、カソード周辺に磁場発生源である電磁コイル又は永久磁石を設置する、あるいは、AIP装置の内部、中心部に永久磁石を配置する等、任意の手段で磁場を形成することができる。
ここで本発明における積算磁力は、以下の算出方法により算出する。
磁束密度計にて、Al−Ti−Si合金ターゲット中心から工具基体の位置までの直線上を10mm間隔で磁束密度を測定する。磁束密度は単位mT(ミリテスラ)で表し、ターゲット表面から工具基体の位置までの距離は単位mm(ミリメートル)で表す。さらに、ターゲット表面から工具基体の位置までの距離を横軸とし、磁束密度を縦軸のグラフで表現した場合、面積に相当する値を積算磁力(mT×mm)と定義する。
ここで工具基体の位置は、Al−Ti−Si合金ターゲットに最近接する位置とする。なお、磁束密度の測定は磁場を形成している状態であれば、放電中でなくても良く、例えば大気圧下にて放電させていない状態で測定しても良い。
(b)まず、装置内を排気して真空に保持しながら、ヒータで工具基体を400℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつ、Tiカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)ついで、上記Al−Ti−Si合金ターゲットの表面中心から工具基体までの積算磁力が40〜150mT×mmの範囲内となるように種々の磁場を印加する。
ここで積算磁力の算出方法を以下に記述する。磁束密度計にて、Al−Ti−Si合金ターゲット中心から工具基体の位置までの直線上を10mm間隔で磁束密度を測定する。磁束密度は単位mT(ミリテスラ)で表し、ターゲット表面から工具基体の位置までの距離は単位mm(ミリメートル)で表す。さらに、ターゲット表面から工具基体の位置までの距離を横軸とし、磁束密度を縦軸のグラフで表現した場合、面積に相当する値を積算磁力(mT×mm)と定義する。ここで工具基体の位置は、Al−Ti−Si合金ターゲットに最近接する位置とする。なお、磁束密度の測定は、磁場を形成している状態で大気圧下にて事前に放電させていない状態で測定した。
(d)ついで、装置内に反応ガスとして窒素ガスを導入して6Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体の温度を370〜450℃の範囲内に維持するとともに−50Vの直流バイアス電圧を印加し、かつ前記Al−Ti−Si合金ターゲットとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表2に示される組成および目標平均層厚の(Al,Ti,Si)N層からなる硬質被覆層を蒸着形成することにより、
本発明被覆工具としての表面被覆エンドミル1〜7(以下、本発明1〜7という)をそれぞれ製造した。
なお、図2に示すAIP装置では、工具基体がAl−Ti−Si合金ターゲットに最接近する際に、逃げ面の一部又は全部とAl−Ti−Si合金ターゲットの上記工具基体側の面が水平となるように装着支持されている。
比較の目的で、上記実施例1における(c)の条件を変更し(即ち、Al−Ti−Si合金ターゲットの表面中心から工具基体までの積算磁力が40mT×mm未満、あるいは150mT×mmを超える)、また、(d)の条件を変更し(即ち、工具基体が370℃未満、あるいは450℃を超える温度に維持し)て、その他は実施例1と同一の条件で、比較例被覆工具としての表面被覆エンドミル1〜5(以下、比較例1〜5という)をそれぞれ製造した。さらに、実施例1から被覆層中のAlとTiとSiの合量に占めるTi、Siの含有割合が本発明の範囲外、被覆層の平均層厚が2〜10μmの範囲外の表面被覆エンドミル6〜10をそれぞれ製造した。
さらに、該粒状結晶の結晶粒径を走査型電子顕微鏡(SEM)で測定し、逃げ面上の刃先から100μm離れた位置までの範囲における表面粒径、界面粒径を求めた。具体的には、逃げ面上の刃先、及び逃げ面上において刃先から50μm離れた位置、及び刃先から100μm離れた位置の3箇所にて、幅10μmの範囲内に存在する結晶の全結晶粒径を算出し、3箇所の位置での平均値を算出することから求めた。
また、同様にして、逃げ面上の刃先から100μm離れた位置までの範囲において、粒径が0.15μm以下の結晶粒が占める結晶粒径長割合を、逃げ面上の刃先、及び逃げ面上において刃先から50μm離れた位置、及び刃先から100μm離れた位置での界面及び表面の計6箇所にて測定することにより求めた。
表2、表3に、上記で測定・算出したそれぞれの値を示す。
被覆工具の切れ刃先端のコーナー部を含み、逃げ面の断面を研磨加工した後、その断面をSEM像にて、観察する。測定条件として、観察倍率:10000倍、加速電圧:3kVの条件を使用した。硬質被覆層表面から深さ0.5μmの領域に形成されている各結晶粒を用い、工具基体表面と平行に直線を引き、結晶粒界間の距離を粒径と定義する。なお、工具基体表面と平行に直線を引く位置は、各結晶粒において最長の結晶粒径となる位置とする。逃げ面上の刃先から100μm離れた位置までの範囲、具体的な測定点としては、逃げ面上の刃先、及び逃げ面上において刃先から50μm離れた位置、及び刃先から100μm離れた位置の3箇所で、幅10μmの範囲内に存在する結晶の結晶粒径を測定し、さらに、その3箇所での平均結晶粒径の平均値を表面粒径とした。幅10μmの粒径を測定するにあたり、各測定箇所を中心に刃先側5μm、刃先と逆側5μmの各結晶粒を用いた。ただし、逃げ面上の刃先の箇所においては、刃先から5μm離れた位置を中心として、刃先側5μm、刃先と逆側5μmの幅10μmの範囲内で測定した。また、硬質被覆層内における工具基体と硬質被覆層の界面から厚さ0.5μmの領域に形成されている各結晶粒においても同様の方法にて界面粒径を算出した。
また、粒径が0.15μm以下の結晶粒が占める結晶粒径長割合の測定方法は、上記粒径を測定した界面3箇所、及び表面3箇所にて測定した結晶粒径の全測定データを用いる。測定した全結晶粒径の和に対する、粒径が0.15μm以下の結晶粒径の和を粒径が0.15μm以下の結晶粒が占める結晶粒径長割合とした。
表2、表3に、これらの値を示す。
結晶粒径を測定するために観察したSEM像のうち、切れ刃先端部の断面SEM像を用いる。測定条件は、観察倍率:10000倍、加速電圧:3kVの条件を使用した。本発明4の切れ刃先端部の断面SEM像(a)及び模式図(b)を図4に示す。図4(b)を用いて説明する。逃げ面上の刃先をA、すくい面上の刃先をBとする。Aを通る逃げ面の垂線、Bを通るすくい面の垂線を引き、双方の垂線の交点を中心Oとする。刃先角度α(度)はA−O−Bのなす角度とする。
また、切れ刃先端のコーナー部の硬質被覆層中に形成されている連続クラックについて、前記中心Oから該クラックを投影させた場合、Aを通る逃げ面の垂線に最も近い箇所をCとし、Bを通るすくい面の垂線に最も近い箇所をDとする。連続クラックの占有角度β(度)はC−O−Dのなす角度とする。なお、切れ刃先端のコーナー部の硬質被覆層中に複数のクラックが存在する場合、最大値を示す連続クラックにて算出した値を連続クラックの占有角度βと定義する。
そして、(連続クラックの占有角度β)/(刃先角度α)の値を、クラック占有率であると定義する。
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS630の板材、
回転速度: 5600 min.−1、
縦方向切り込み: 2 mm、
横方向切り込み: 0.2 mm
送り速度(1刃当り): 0.06 mm/tooth、
切削長: 140 m、
この測定結果を表4に示した。
これに対して、硬質被覆層の構造が本発明で規定する範囲を外れる比較例被覆工具では、チッピング発生あるいは耐摩耗性の低下によって、比較的短時間で使用寿命に至ることが明らかである。
図4に示すように、逃げ面上の刃先Aを通る逃げ面の垂線と、すくい面上の刃先Bを通るすくい面の垂線との交点を中心Oとした時、A−O−Bのなす角度を刃先角度α(度)という。
また、切れ刃先端のコーナー部の硬質被覆層中に形成されている連続クラックについては、前記中心Oから、連続する一つのクラックの端部C,Dに接する線を引いた時、C−O−Dのなす角度を連続クラックの占有角度β(度)とする。ただし、O―AまたはO−Bの延長線上をクラックが横切る場合は、延長線とクラックの交点をそれぞれC、Dとする。切れ刃先端のコーナー部の硬質被覆層中に複数のクラックが存在する場合、最大の占有角度を示す連続クラックを用いるものとする。
そして、(連続クラックの占有角度β)/(刃先角度α)の値を、クラック占有率であると定義する。図4(b)に、刃先角度α内における最大の角度βを示すクラックをクラックの端部C、Dとして示す。
なお、本発明被覆工具は、(Al,Ti,Si)N層からなる硬質被覆層の平均層厚を2〜10μm、AlとTiの合量に占めるTiの含有割合は0.15〜0.45(但し、原子比)、粒状結晶粒の表面粒径、界面粒径を特定の数値範囲に定め、また、逃げ面上の刃先から100μm離れた位置までの範囲における粒径が0.15μm以下の結晶粒が占める結晶粒径長割合を20%以下と定めることにより、自ずと刃先のクラック占有率β/αが0.3〜1となる。
被覆工具の切れ刃先端のコーナー部を含み、逃げ面の断面を研磨加工した後、その断面をSEM像にて、観察する。測定条件として、観察倍率:10000倍、加速電圧:3kVの条件を使用した。硬質被覆層表面から深さ0.5μmの領域に形成されている各結晶粒を用い、工具基体表面と平行に直線を引き、結晶粒界間の距離を粒径と定義する。なお、工具基体表面と平行に直線を引く位置は、各結晶粒において最長の結晶粒径となる位置とする。逃げ面上の刃先から100μm離れた位置までの範囲、具体的な測定点としては、逃げ面上の刃先、及び逃げ面上において刃先から50μm離れた位置、及び刃先から100μm離れた位置の3箇所で、幅10μmの範囲内に存在する結晶の結晶粒径を測定し、さらに、その3箇所での平均結晶粒径の平均値を表面粒径とした。幅10μmの粒径を測定するにあたり、各測定箇所を中心に刃先側5μm、刃先と逆側5μmの各結晶粒を用いた。ただし、逃げ面上の刃先の箇所においては、刃先から5μm離れた位置を中心として、刃先側5μm、刃先と逆側5μmの幅10μmの範囲内で測定した。また、硬質被覆層内における工具基体と硬質被覆層の界面から厚さ0.5μmの領域に形成されている各結晶粒においても同様の方法にて界面粒径を算出した。
また、粒径が0.15μm以下の結晶粒が占める結晶粒径長割合の測定方法は、上記粒径を測定した界面3箇所、及び表面3箇所にて測定した結晶粒径の全測定データを用いる。測定した全結晶粒径の和に対する、粒径が0.15μm以下の結晶粒径の和の割合を粒径が0.15μm以下の結晶粒が占める結晶粒径長割合とした。
Claims (3)
- 炭化タングステン基超硬合金で構成された工具基体の表面に、平均層厚が2〜10μmの硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)硬質被覆層は、AlとTiとSiの複合窒化物層からなり、かつ、該層においてAlとTiとSiの合量に占めるTiの含有割合は0.3〜0.5、Siの含有割合は0.01〜0.1(但し、いずれも原子比)であり、
(b)上記表面被覆切削工具の逃げ面上の刃先から100μm離れた位置までの範囲においては、硬質被覆層は粒状結晶組織を有し、さらに、硬質被覆層表面の粒状結晶粒の平均粒径は0.2〜0.5μmであり、また、工具基体と硬質被覆層の界面における粒状結晶粒の平均粒径は、硬質被覆層表面の粒状結晶粒の平均粒径より0.02〜0.1μm小さく、しかも、粒径が0.15μm以下の結晶粒が占める結晶粒径長割合は20%以下であることを特徴とする表面被覆切削工具。 - 上記表面被覆切削工具の刃先角度をα度とし、該α度の角度範囲内の切れ刃先端のコーナー部の硬質被覆層中に形成されている連続クラックの占有角度をβ度とした場合、クラック占有率β/αが0.3〜1.0であることを特徴とする請求項1に記載の表面被覆切削工具。
- 炭化タングステン基超硬合金で構成された工具基体の表面に、平均層厚が2〜10μmの硬質被覆層を蒸着形成した表面被覆切削工具の製造方法であって、アノード電極と、Al−Ti−Si合金からなるターゲットと、上記ターゲットの背面側に設けられた磁力発生源を備えるアークイオンプレーティング装置内に、炭化タングステン基超硬合金からなる工具基体を装入する基体装入工程と、上記工具基体上にAlとTiとSiの複合窒化物層からなる硬質被覆層を蒸着形成する蒸着工程とを備え、上記蒸着工程は、上記アークイオンプレーティング装置内に窒素ガスを導入するガス導入工程と、上記ターゲットと上記工具基体の間に、上記磁力発生源により、積算磁力が40〜150mT×mmの範囲内となる磁場を印加する印加工程と、上記工具基体にバイアス電圧を印加しつつ、上記ターゲットと上記アノード電極との間にアーク放電を発生させる放電工程と、上記工具基体を上記アークイオンプレーティング装置内で自転および公転させる自公転工程とを有し、上記工具基体が上記ターゲットに最接近した際には、上記工具基体の逃げ面の一部又は全部と上記ターゲットの上記工具基体側の面が水平となるように上記工具基体は支持されることを特徴とする請求項1または2に記載の表面被覆切削工具の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013158524A JP6155940B2 (ja) | 2013-01-31 | 2013-07-31 | 表面被覆切削工具とその製造方法 |
CN201410041399.8A CN103962590B (zh) | 2013-01-31 | 2014-01-28 | 表面包覆切削工具及其制造方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013016391 | 2013-01-31 | ||
JP2013016391 | 2013-01-31 | ||
JP2013158524A JP6155940B2 (ja) | 2013-01-31 | 2013-07-31 | 表面被覆切削工具とその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014166673A true JP2014166673A (ja) | 2014-09-11 |
JP6155940B2 JP6155940B2 (ja) | 2017-07-05 |
Family
ID=51616668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013158524A Active JP6155940B2 (ja) | 2013-01-31 | 2013-07-31 | 表面被覆切削工具とその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6155940B2 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009082993A (ja) * | 2007-09-27 | 2009-04-23 | Kyocera Corp | 表面被覆工具 |
WO2011131460A2 (en) * | 2010-04-23 | 2011-10-27 | Sulzer Metaplas Gmbh | Pvd coating for metal machining |
-
2013
- 2013-07-31 JP JP2013158524A patent/JP6155940B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009082993A (ja) * | 2007-09-27 | 2009-04-23 | Kyocera Corp | 表面被覆工具 |
WO2011131460A2 (en) * | 2010-04-23 | 2011-10-27 | Sulzer Metaplas Gmbh | Pvd coating for metal machining |
JP2013527807A (ja) * | 2010-04-23 | 2013-07-04 | スルザー メタプラス ゲーエムベーハー | 金属の機械加工用のpvdコーティング |
US20130171374A1 (en) * | 2010-04-23 | 2013-07-04 | Jacob Sjölén | Pvd coating for metal machining |
Also Published As
Publication number | Publication date |
---|---|
JP6155940B2 (ja) | 2017-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5344204B2 (ja) | 表面被覆切削工具 | |
JP2007203447A (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
CN103962590B (zh) | 表面包覆切削工具及其制造方法 | |
JP5088469B2 (ja) | 重切削加工で硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具およびその製造方法 | |
JP5850400B2 (ja) | 表面被覆切削工具 | |
WO2014148488A1 (ja) | 表面被覆切削工具 | |
JP6288603B2 (ja) | 表面被覆切削工具 | |
JP6102571B2 (ja) | 表面被覆切削工具 | |
JP2009090395A (ja) | 重切削加工で硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具 | |
JP6217216B2 (ja) | 表面被覆切削工具とその製造方法 | |
JP6604138B2 (ja) | 硬質被覆層がすぐれた耐欠損性と耐摩耗性を備える表面被覆切削工具およびその製造方法 | |
JP6493800B2 (ja) | 高速切削加工ですぐれた耐摩耗性を発揮する表面被覆切削工具 | |
JP5560513B2 (ja) | 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具 | |
JP2009255282A (ja) | 表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具 | |
JP6233708B2 (ja) | 表面被覆切削工具 | |
JP6155940B2 (ja) | 表面被覆切削工具とその製造方法 | |
JP5831708B2 (ja) | 表面被覆切削工具 | |
JP2015033758A (ja) | 表面被覆切削工具 | |
JP5682217B2 (ja) | 耐摩耗性と切屑排出性に優れた表面被覆ドリル | |
JP5850393B2 (ja) | 表面被覆切削工具 | |
JP2015020216A (ja) | 表面被覆切削工具 | |
JP6090033B2 (ja) | 表面被覆切削工具 | |
JP6090034B2 (ja) | 表面被覆切削工具 | |
JP6604136B2 (ja) | 硬質被覆層がすぐれた耐欠損性と耐摩耗性を備える表面被覆切削工具およびその製造方法 | |
JP2018034237A (ja) | 表面被覆切削工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160331 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170301 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170509 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170522 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6155940 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |