JP2014107420A - 炭化珪素半導体装置およびその製造方法 - Google Patents

炭化珪素半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2014107420A
JP2014107420A JP2012259551A JP2012259551A JP2014107420A JP 2014107420 A JP2014107420 A JP 2014107420A JP 2012259551 A JP2012259551 A JP 2012259551A JP 2012259551 A JP2012259551 A JP 2012259551A JP 2014107420 A JP2014107420 A JP 2014107420A
Authority
JP
Japan
Prior art keywords
region
silicon dioxide
silicon
thickness
impurity region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012259551A
Other languages
English (en)
Inventor
Toru Hiyoshi
透 日吉
Takeshi Saito
雄 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012259551A priority Critical patent/JP2014107420A/ja
Priority to US14/439,164 priority patent/US9362121B2/en
Priority to CN201380055289.0A priority patent/CN104737292A/zh
Priority to PCT/JP2013/077326 priority patent/WO2014083943A1/ja
Priority to EP13858187.1A priority patent/EP2927960A4/en
Publication of JP2014107420A publication Critical patent/JP2014107420A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Abstract

【課題】ドレイン電流の低減を抑制しつつ、かつスイッチング特性を向上可能な炭化珪素半導体装置およびその製造方法を提供する。
【解決手段】第1の不純物領域17と、ウェル領域13と、ウェル領域13によって第1の不純物領域17と隔てられた第2の不純物領域14とを含む炭化珪素基板10が準備される。第1の不純物領域17およびウェル領域14に接する二酸化珪素層15が形成される。二酸化珪素層15上にゲート電極27が形成される。第1の不純物領域17上に珪素を含む材料22が形成される。珪素を含む材料22が酸化される。二酸化珪素層15は、第1の不純物領域17上の第1の二酸化珪素領域15aおよびウェル領域13上の第2の二酸化珪素領域15bを含む。第1の二酸化珪素領域15aの厚みT1は、第2の二酸化珪素領域15bの厚みT2よりも大きい。
【選択図】図1

Description

本発明は炭化珪素半導体装置およびその製造方法に関し、より特定的には、スイッチング特性を向上可能な炭化珪素半導体装置およびその製造方法に関するものである。
近年、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの半導体装置の高耐圧化、低損失化、高温環境下での使用などを可能とするため、半導体装置を構成する材料として炭化珪素の採用が進められつつある。炭化珪素は、従来から半導体装置を構成する材料として広く使用されている珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体である。そのため、半導体装置を構成する材料として炭化珪素を採用することにより、半導体装置の高耐圧化、オン抵抗の低減などを達成することができる。また、炭化珪素を材料として採用した半導体装置は、珪素を材料として採用した半導体装置に比べて、高温環境下で使用された場合の特性の低下が小さいという利点も有している。
たとえば、Brett A. Hull et al., "Performance of 60A, 1200V 4H-SiC DMOSFETs", Materials Science Forum, Vols. 615-617, 2009, pp749-752(非特許文献1)において、炭化珪素基板上に形成されたn型ドリフト層と、一対のウェル領域と、ゲート絶縁膜とを有するMOSFETが開示されている。上記文献によれば、ドレインソース電流が65Aであるオン状態からドレインソース電圧が750Vであるオフ状態にスイッチさせたときのスイッチングエネルギー損失は9mJであるMOSFETが開示されている。
Brett A. Hull et al., "Performance of 60A, 1200V 4H-SiC DMOSFETs", Materials Science Forum, Vols. 615-617, 2009, pp749-752
スイッチング特性を向上させるためには、炭化珪素半導体装置の静電容量を低減することが必要である。静電容量は電極間に挟まれた絶縁体の厚みに反比例する。そのため、ゲート絶縁膜の厚みを大きくすることにより静電容量を低減することができる。しかしながら、ゲート絶縁膜の厚みを大きくするとチャネルを流れるドレイン電流が低減する。
本発明はこのような課題を解決するためになされたものであって、その目的は、ドレイン電流の低減を抑制しつつ、かつスイッチング特性を向上可能な炭化珪素半導体装置およびその製造方法を提供することである。
発明者らは鋭意研究の結果、以下の知見を得て本発明を見出した。まず、スイッチング特性を向上するためにはデバイスの静電容量を低減することが有効である。デバイスの静電容量の中でも、一対のウェル領域に挟まれたJFET(Junction Field Effect Transistor)領域とゲート電極とゲート絶縁膜を介してが対向する部分の静電容量(帰還容量)を低減することが望ましい。
JFET領域とゲート電極との静電容量を低減するためには、JFET領域上のゲート絶縁膜の厚みを大きくすることが有効である。しかしながら、ゲート絶縁膜全体の厚みを大きくすると、チャネルを流れるドレイン電流の値が小さくなってしまう。それゆえ、JFET領域上のゲート絶縁膜の厚みを大きくし、ウェル領域上のゲート絶縁膜の厚みは小さく保つことが望ましい。
発明者らは、JFET領域上に珪素を含む材料を形成し、当該珪素を含む材料を酸化させることにより、JFET領域上のゲート絶縁膜の厚みを大きくし、ウェル領域上のゲート絶縁膜の厚みを小さく保つことができることを見出した。たとえばポリシリコンなどの珪素を含む材料は炭化珪素よりも酸化されやすい。それゆえ、珪素を含む材料をJFET領域に形成して当該珪素を含む材料を酸化し、かつ炭化珪素からなるウェル領域の表面を酸化することにより、JFET領域上のゲート絶縁膜の厚みを、ウェル領域上のゲート絶縁膜の厚みよりも大きくすることができる。
そこで、本発明に係る炭化珪素半導体装置の製造方法は以下の工程を有している。第1導電型を有する第1の不純物領域と、第1の不純物領域と接しかつ第1導電型と異なる第2導電型を有するウェル領域と、ウェル領域によって第1の不純物領域と隔てられかつ第1導電型を有する第2の不純物領域とを含む炭化珪素基板が準備される。第1の不純物領域およびウェル領域に接する二酸化珪素層が形成される。二酸化珪素層上にゲート電極が形成される。二酸化珪素層を形成する工程は以下の工程を有する。第1の不純物領域上に珪素を含む材料が形成される。珪素を含む材料が酸化される。第1の不純物領域および第2の不純物領域に挟まれたウェル領域の表面が酸化される。二酸化珪素層は、第1の不純物領域上の第1の二酸化珪素領域および第1の不純物領域と第2の不純物領域に挟まれたウェル領域上の第2の二酸化珪素領域を含む。第1の二酸化珪素領域の厚みを第1の厚みとし、かつ第2の二酸化珪素領域の厚みを第2の厚みとしたとき、第1の厚みは第2の厚みよりも大きい。なお、本発明において、第1の不純物領域上に珪素を含む材料が形成されるとは、第1の不純物領域の上にたとえば二酸化珪素層などの層を介して珪素を含む材料を形成する場合を含む。
本発明に係る炭化珪素半導体装置の製造方法によれば、第1の二酸化珪素領域の厚みは、第2の二酸化珪素領域の厚みよりも大きい。それゆえ、ドレイン電流の低減を抑制しつつ、かつ炭化珪素半導体装置の静電容量を低減することができる。結果として、ドレイン電流の低減を抑制しつつ、炭化珪素半導体装置のスイッチング特性を向上することができる。
上記に係る炭化珪素半導体装置の製造方法において好ましくは、珪素を含む材料は、ポリシリコン、アモルファスシリコンおよびアモルファス炭化珪素のいずれかを含む。これにより、効率的に第1の二酸化珪素領域の厚みを第2の二酸化珪素領域の厚みより大きくすることができる。
上記に係る炭化珪素半導体装置の製造方法において好ましくは、珪素を含む材料の幅は、第1の不純物領域の幅よりも小さい。これにより、珪素を含む材料が幅方向に広がった場合においても、第1の二酸化珪素領域の厚みを第2の二酸化珪素領域の厚みより大きくすることができる。
上記に係る炭化珪素半導体装置の製造方法において好ましくは、第1の二酸化珪素領域の炭素濃度は、第2の二酸化珪素領域の炭素濃度よりも低い。これにより、第1の二酸化珪素領域の絶縁性能が向上するため、逆電圧印加時における耐圧を向上することができる。
上記に係る炭化珪素半導体装置の製造方法において好ましくは、第1の厚みは第2の厚みの1.5倍以上5倍以下である。第1の厚みが第2の厚みの1.5倍以上であれば、第1の二酸化珪素領域の炭素濃度を第2の二酸化珪素領域の炭素濃度よりも効率的に低減することができる。一方、第1の厚みが第2の厚みの5倍以下であれば、第2の二酸化珪素領域に形成されるゲート電極と、第1の二酸化珪素領域に形成されるゲート電極との段差が大きくなり過ぎないので、ゲート電極を断絶することなく形成することができる。
上記に係る炭化珪素半導体装置の製造方法において好ましくは、二酸化珪素層を形成する工程において、珪素を含む材料を酸化する工程およびウェル領域の表面を酸化する工程が同時に行われる。これにより、効率的に第1の厚みを第2の厚みよりも大きくすることができる。
上記に係る炭化珪素半導体装置の製造方法において好ましくは、二酸化珪素層を形成する工程において、珪素を含む材料を形成する工程は、ウェル領域の表面を酸化する工程の後に行われる。これにより、ウェル領域の表面の酸化温度と珪素を含む材料の酸化温度とを個別に調整することができる。
上記に係る炭化珪素半導体装置の製造方法において好ましくは、珪素を含む材料を酸化する工程における温度は、ウェル領域の表面を酸化する温度よりも低い。これにより、珪素を含む材料を溶解させることなく酸化させることができる。
本発明に係る炭化珪素半導体装置は、炭化珪素基板と、第1の二酸化珪素領域と、第2の二酸化珪素領域と、ゲート電極とを有している。炭化珪素基板は、第1導電型を有する第1の不純物領域と、第1の不純物領域と接しかつ第1導電型と異なる第2導電型を有するウェル領域と、ウェル領域によって第1の不純物領域と隔てられかつ第1導電型を有する第2の不純物領域とを含む。第1の二酸化珪素領域は、第1の不純物領域上に配置されている。第2の二酸化珪素領域は、第1の不純物領域と第2の不純物領域とに挟まれたウェル領域の表面に配置されている。ゲート電極は、第1の二酸化珪素領域および第2の二酸化珪素領域上に配置されている。第1の二酸化珪素領域の厚みは、第2の二酸化珪素領域の厚みよりも大きい。第1の二酸化珪素領域の炭素濃度は、第2の二酸化珪素領域の炭素濃度よりも低い。
本発明に係る炭化珪素半導体装置によれば、第1の二酸化珪素領域の厚みは、第2の二酸化珪素領域の厚みよりも大きい。それゆえ、ドレイン電流の低減を抑制しつつ、かつ炭化珪素半導体装置の静電容量を低減することができる。結果として、ドレイン電流の低減を抑制しつつ、炭化珪素半導体装置のスイッチング特性を向上することができる。
上記に係る炭化珪素半導体装置において好ましくは、第1の二酸化珪素領域の厚みは第2の二酸化珪素領域の厚みの1.5倍以上5倍以下である。第1の厚みが第2の厚みの1.5倍以上であれば、第1の二酸化珪素領域の炭素濃度を第2の二酸化珪素領域の炭素濃度よりも効率的に低減することができる。一方、第1の厚みが第2の厚みの5倍以下であれば、第2の二酸化珪素領域に形成されるゲート電極と、第1の二酸化珪素領域に形成されるゲート電極との段差が大きくなり過ぎないので、ゲート電極を断絶することなく形成することができる。
以上の説明から明らかなように、本発明によれば、ドレイン電流の低減を抑制しつつ、かつスイッチング特性を向上可能な炭化珪素半導体装置およびその製造方法を提供することができる。
本発明の実施の形態1に係る炭化珪素半導体装置の構造を概略的に示す断面模式図である。 本発明の実施の形態1に係る炭化珪素半導体装置の製造方法を概略的に示すフロー図である。 本発明の実施の形態1に係る炭化珪素半導体装置の製造方法の第1の工程を概略的に示す断面模式図である。 本発明の実施の形態1に係る炭化珪素半導体装置の製造方法の第2の工程を概略的に示す断面模式図である。 本発明の実施の形態1に係る炭化珪素半導体装置の製造方法の第3の工程を概略的に示す断面模式図である。 本発明の実施の形態1に係る炭化珪素半導体装置の製造方法の第4の工程を概略的に示す断面模式図である。 本発明の実施の形態1に係る炭化珪素半導体装置の製造方法の第5の工程を概略的に示す断面模式図である。 本発明の実施の形態2に係る炭化珪素半導体装置の構造を示す概略的に示す断面模式図である。 本発明の実施の形態2に係る炭化珪素半導体装置の製造方法を概略的に示すフロー図である。 本発明の実施の形態2に係る炭化珪素半導体装置の製造方法の第1の工程を概略的に示す断面模式図である。 本発明の実施の形態2に係る炭化珪素半導体装置の製造方法の第2の工程を概略的に示す断面模式図である。 本発明の実施の形態2に係る炭化珪素半導体装置の製造方法の第3の工程を概略的に示す断面模式図である。
以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。また、本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また、負の指数については、結晶学上、”−”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。また角度の記載には、全方位角を360度とする系を用いている。
(実施の形態1)
図1を参照して、実施の形態1における炭化珪素半導体装置であるMOSFET1は、炭化珪素基板10と、ゲート絶縁膜15と、ゲート電極27と、ソースコンタクト電極16と、ドレイン電極20とを主に有している。
炭化珪素基板10は、たとえばポリタイプ4Hの六方晶炭化珪素からなる。炭化珪素基板10の主面10aは、たとえば(0001)面から8°以下程度オフした面であってもよく、(0−33−8)面であってもよい。好ましくは、主面10aは、{000−1}面に対して、巨視的に62°±10°のオフ角を有する面である。
炭化珪素基板10は、ベース基板11と、ドリフト層12と、ウェル領域13と、第2の不純物領域14と、p+領域18とを主に含む。ベース基板は、炭化珪素からなり導電型がn型(第1導電型)を有するエピタキシャル層である。ドリフト層12は、ベース基板11上に配置されており、導電型がn型である。ドリフト層12に含まれる不純物はたとえば窒素(N)である。ドリフト層12に含まれている窒素濃度はたとえば5×1015cm-3程度である。ドリフト層12は第1の不純物領域17を含む。第1の不純物領域17は、ドリフト層12の一部であって後述する一対のウェル領域13によって挟まれたJFET領域である。ドリフト層12と第1の不純物領域17とは同じ導電型を有する。
ウェル領域13は第1の不純物領域17と接し、導電型がn型(第1導電型)とは異なるp型(第2導電型)を有する領域である。ウェル領域13は、第1の不純物領域17を挟むように一対配置されており、ウェル領域13に含まれる不純物は、たとえばアルミニウム(Al)、ホウ素(B)などである。ウェル領域13におけるアルミニウムやホウ素の濃度は、たとえば1×1017cm-3程度である。
第2の不純物領域14は、ウェル領域13によって第1の不純物領域17と隔てられいる。第2の不純物領域14はn型(第1導電型)を有するn+領域である。第2の不純物領域14は、上記主面10aを含み、かつウェル領域13に取り囲まれるように、一対のウェル領域13の各々の内部に形成されている。第2の不純物領域14は、たとえばリン(P)などの不純物をドリフト層12に含まれる不純物よりも高い濃度(密度)で含んでいる。第2の不純物領域14におけるリンの濃度は、たとえば1×1020cm-3程度である。
p+領域18は、上記主面10aを含み、かつウェル領域13に取り囲まれるとともに、第2の不純物領域14に隣接するように一対のウェル領域13の各々の内部に形成されている。p+領域18は、ソースコンタクト電極16、第2の不純物領域14およびウェル領域13に接して配置されている。p+領域18は、たとえばAlなどの不純物をウェル領域13に含まれる不純物よりも高い濃度(密度)で含んでいる。p+領域18における、Alの濃度はたとえば1×1020cm-3程度である。
ゲート絶縁膜15は、二酸化珪素からなり、炭化珪素基板10の主面10aに接して配置されている。炭化珪素基板10の主面10aは、第1の不純物領域17の表面10cと、第1の不純物領域17および第2の不純物領域14に挟まれたウェル領域13の表面10dとを含む。ゲート絶縁膜15は、第1の不純物領域17の表面10cに接して配置された第1の二酸化珪素領域15aと、ウェル領域13の表面10dに接して配置された第2の二酸化珪素領域15bとを含んでいる。
第1の二酸化珪素領域15aの厚みT1は第2の二酸化珪素領域15bの厚みT2よりも大きい。第1の不純物領域17上の第1の二酸化珪素領域15aの厚みT1はたとえば180nm程度であり、ウェル領域13上の第2の二酸化珪素領域15bの厚みT2はたとえば50nm程度である。好ましくは、第1の二酸化珪素領域15aの厚みT1は第2の二酸化珪素領域15bの厚みT2よりも1.5倍以上5倍以下である。
本実施の形態のMOSFET1において、第1の不純物領域17および第2の不純物領域14に挟まれたウェル領域17内であって、第2の二酸化珪素領域15bと対向する位置にチャネル領域CHが形成可能に構成されている。言い換えれば、第2の二酸化珪素領域15bはチャネル領域CH上に接して配置されている。
第1の二酸化珪素領域15aの炭素濃度は、第2の二酸化珪素領域15bの炭素濃度よりも低い。第1の二酸化珪素領域15aの炭素濃度はたとえば1×1017cm-3以上程度1×1019cm-3以下程度であり、第2の二酸化珪素領域15bの炭素濃度はたとえば1×1018cm-3以上程度1×1020cm-3以下程度である。第1の二酸化珪素領域15aおよび第2の二酸化珪素領域15bの各々の炭素濃度は、たとえばSIMS(Secondary Ion Mass Spectrometry)により測定可能である。
ゲート電極27は、一方の第2の不純物領域14上から他方の第2の不純物領域14上にまで延在するように、ゲート絶縁膜15に接触して配置されている。ゲート電極27は、炭化珪素基板10との間にゲート絶縁膜15を挟むようにゲート絶縁膜15と接して配置されている。また、ゲート電極27は、不純物が添加されたポリシリコン、Al(アルミニウム)などの導電体からなっている。
ソースコンタクト電極16は、第2の不純物領域14と、p+領域18と、第2の二酸化珪素領域15bとに接触して配置されている。また、ソースコンタクト電極16は、たとえばNiSi(ニッケルシリサイド)など、第2の不純物領域14とオーミックコンタクト可能な材料からなっている。
ドレイン電極20は、炭化珪素基板10においてドリフト層12が形成される側とは反対側の第2の主面10bに接触して形成されている。このドレイン電極20は、たとえばNiSiなど、n型のベース基板11とオーミックコンタクト可能な材料からなっており、ベース基板11と電気的に接続されている。ドレイン電極20に接してパッド電極23が配置されている。ソースコンタクト電極16およびドレイン電極20は、ゲート電極27に印加されるゲート電極27により、ソースコンタクト電極16およびドレイン電極20の間に流れる電流が制御可能に構成されている。
層間絶縁膜21は、第2の二酸化珪素領域15bと接し、ゲート電極27を取り囲むように形成されている。層間絶縁膜21は、たとえば絶縁体である二酸化珪素からなっている。ソース配線19は、炭化珪素基板10の主面10a上において、層間絶縁膜21を取り囲み、かつソースコンタクト電極16の上部表面上にまで延在している。また、ソース配線19は、たとえばAlなどの導電体からなり、ソースコンタクト電極16を介して第2の不純物領域14と電気的に接続されている。
次に、MOSFET1の動作について説明する。図1を参照して、ゲート電極27の電圧が閾値電圧未満の状態、すなわちオフ状態では、ゲート絶縁膜15の直下に位置するウェル領域13と第1の不純物領域17との間のpn接合が逆バイアスとなり非導通状態となる。一方、ゲート電極27に閾値電圧以上の電圧を印加すると、ウェル領域13のゲート絶縁膜15と接触する付近であるチャネル領域CHにおいて反転層が形成される。その結果、第2の不純物領域14と第1の不純物領域17とが電気的に接続され、ソース配線19とドレイン電極20との間に電流が流れる。
次に、本実施の形態におけるMOSFET1の製造方法の一例について、図2〜図7を参照して説明する。
まず基板準備工程(S10:図2)が実施される。具体的には、図3を参照して、たとえばポリタイプ4Hの六方晶炭化珪素からなるベース基板11が準備され、ベース基板11上にエピタキシャル成長によりn型(第1導電型)のドリフト層12が形成される。ドリフト層12にはたとえばN(窒素)イオンなどの不純物が含まれている。以上の様に、主面を10aを有しかつ第1導電型を有するドリフト層12を含む炭化珪素基板10が準備される。炭化珪素基板10の主面10aは、たとえば(0001)面から8°程度オフした面であってもよく、(0−33−8)面であってもよい。好ましくは、主面10aは、{000−1}面に対して、巨視的に62°±10°のオフ角を有する面である。
次にウェル領域形成工程が実施される。具体的には、図4を参照して、たとえばAl(アルミニウム)イオンがドリフト層12にイオン注入されることによりウェル領域13が形成される。次に、第2の不純物領域14を形成するためのイオン注入が実施される。具体的には、たとえばP(リン)イオンがウェル領域13に注入されることにより、ウェル領域13内に第2の不純物領域14が形成される。さらに、p+領域18を形成するためのイオン注入が実施される。具体的には、たとえばAlイオンがウェル領域13に注入されることにより、ウェル領域13内であって、第2の不純物領域14と接するp+領域18が形成される。上記イオン注入は、たとえばドリフト層12の主面10a上に二酸化珪素からなり、イオン注入を実施すべき所望の領域に開口を有するマスク層を形成して実施することができる。
以上の様に、n型を有する第1の不純物領域17と、第1の不純物領域17と接しかつn型と異なるp型を有するウェル領域13と、ウェル領域13によって第1の不純物領域17と隔てられかつn型を有する第2の不純物領域14とを含む炭化珪素基板10(図4参照)が準備される。
次に、活性化アニール工程が実施される。具体的には、たとえばアルゴンなどの不活性ガス雰囲気中において、上記炭化珪素基板10をたとえば1700℃程度に加熱して、30分間程度保持する熱処理が実施される。これにより注入された不純物が活性化する。
次に、二酸化珪素層を形成する工程が実施される。二酸化珪素層を形成する工程は、第1の不純物領域17上に珪素を含む材料22を形成する工程と、珪素を含む材料を酸化する工程と、第1の不純物領域17および第2の不純物領域14に挟まれたウェル領域13の表面10dを酸化する工程とを含む。
本実施の形態では、まず珪素を含む材料形成工程(S20:図2)が実施される。具体的には、図5を参照して、一対のウェル領域13に挟まれた第1の不純物領域17の表面10cに、珪素を含む材料22が形成される。珪素を含む材料22とは、たとえばポリシリコン、アモルファスシリコンおよびアモルファス炭化珪素などであり、単結晶珪素であってもよい。好ましくは、珪素を含む材料22とは主成分が珪素からなる材料である。より好ましくは、珪素を含む材料22とは炭化珪素よりも酸化しやすい材料である。珪素を含む材料22の厚みT4はたとえば60nm程度である。なお、第1の不純物領域17はJFET領域である。
珪素を含む材料を形成する工程では、たとえば炭化珪素基板10の主面10aにポリシリコンを堆積させた後、ウェットエッチングやドライエッチングなどでパターニングを行うことで、第1の不純物領域17に接する炭化珪素基板10の表面10cのみに珪素を含む材料22を残すように珪素を含む材料を形成することが好ましい。より厳密には、ウェル領域13上の表面10dよりも第1の不純物領域17の表面10cに多くの珪素を含む材料22が残るように、珪素を含む材料が第1の不純物領域17の表面10cに形成される。
第1の不純物領域17の表面10cに形成された珪素を含む材料の幅W2(当該表面10cに平行な方向の距離)は、第1の不純物領域の幅W1(つまり一対のウェル領域13の間の最短距離)よりも小さいことが好ましい。第1の不純物領域の幅W1はたとえば2.5μm程度以上3.0μm程度以下である。
次に、ゲート絶縁膜形成工程(S30:図2)が実施される。具体的には、たとえば炭化珪素基板10の第1の不純物領域17の表面10cに形成された珪素を含む材料22と、第1の不純物領域17および第2の不純物領域14に挟まれたウェル領域13の表面10dとが酸化される。より具体的には、酸素雰囲気中において、珪素を含む材料22が形成され、かつウェル領域13の表面10dが露出された炭化珪素基板10を、たとえば1300℃程度に加熱して1時間程度保持する熱処理が実施される。これにより、炭化珪素基板10のウェル領域13および第1の不純物領域17に接する二酸化珪素層からなるゲート絶縁膜15が形成される。
図6を参照して、当該二酸化珪素層からなるゲート絶縁膜15は、第1の不純物領域17上の第1の二酸化珪素領域15aおよび第1の不純物領域17と第2の不純物領域14に挟まれたウェル領域13上の第2の二酸化珪素領域15bを含む。第1の二酸化珪素領域15aの厚みを第1の厚みT1とし、かつ第2の二酸化珪素領域15bの厚みを第2の厚みT2としたとき、第1の厚みT1は第2の厚みT2よりも大きい。たとえば、第1の厚みT1は180nm程度であり、第2の厚みは50nm程度である。
好ましくは、第1の二酸化珪素領域15aの厚みT1は第2の二酸化珪素領域15bの厚みT2の1.5倍以上5倍以下であり、より好ましくは3倍以上5倍以下である。好ましくは、第1の二酸化珪素領域15aの炭素濃度は、第2の二酸化珪素領域15bの炭素濃度よりも低い。
本実施の形態においては、二酸化珪素層を形成する工程において、珪素を含む材料22を酸化する工程およびウェル領域13の表面10dを酸化する工程が同時に行われる。珪素を含む材料22はほぼ完全に酸化されて二酸化珪素となり、ウェル領域13の炭化珪素からなる表面10dも酸化されて二酸化珪素となる。たとえば、珪素を含む材料22の厚みが60nm程度であるとき、当該材料22が酸化されて形成された二酸化珪素層の厚みは180nm程度となる。なお、第1の二酸化珪素領域15aの幅W3は、第1の不純物領域17の幅W1と同等か小さいことが好ましい。
なお、炭化珪素基板10の主面10aが酸化されてゲート絶縁膜15が形成される場合、炭化珪素基板10の主面10aから一定の深さの領域が酸化されて二酸化珪素となる。このとき、二酸化珪素の厚みは酸化された炭化珪素基板10の領域の厚みの2倍程度である。
その後、窒素アニール工程が実施される。具体的には、一酸化窒素雰囲気中において、炭化珪素基板10が1100℃程度の温度でたとえば1時間程度保持される。その後、アルゴンや窒素などの不活性ガス中において、炭化珪素基板10を加熱する熱処理が実施される。当該熱処理において、炭化珪素基板10は1100℃以上1500℃以下の温度で1時間程度保持される。
次に、ゲート電極形成工程(S40:図2)が実施される。具体的には、図7を参照して、たとえばCVD(Chemical Vapor Deposition)法、フォトリソグラフィおよびエッチングにより、高濃度に不純物が添加された導電体であるポリシリコンからなるゲート電極27が形成される。その後、たとえばCVD法により、絶縁体である二酸化珪素からなる層間絶縁膜21が、ゲート電極27を取り囲むように形成される。次に、フォトリソグラフィおよびエッチングによりソースコンタクト電極16を形成する領域の層間絶縁膜21とゲート絶縁膜15が除去される。
次に、オーミック電極形成工程(S50:図2)が実施される。具体的には、炭化珪素基板10の主面10aにおいて第2の不純物領域14およびp+領域18と接するように、たとえば蒸着法により金属膜が形成される。金属膜はたとえばNi(ニッケル)である。金属膜はたとえばTi(チタン)原子およびAl(アルミニウム)原子を含んでいてもよい。金属膜はたとえばNi原子およびSi(シリコン)原子を含んでいてもよい。金属膜が形成された後、当該金属膜をたとえば1000℃程度で加熱することにより、ニッケル膜が加熱されてシリサイド化されることにより、炭化珪素基板10の第2の不純物領域14とオーミック接触するソースコンタクト電極16が形成される。同様に、炭化珪素基板10の第2の主面10bに接して、Niなどの金属膜が形成され、当該金属膜を加熱することによりドレイン電極20が形成される。
次に、たとえば蒸着法により、導電体であるAlからなるソース配線19が、層間絶縁膜21を取り囲み、かつソースコンタクト電極16と接するように形成される。また、たとえばAlからなるパッド電極23がドレイン電極20と接して形成される。以上の手順により、本実施の形態に係るMOSFET1(図1参照)が完成する。
なお、本実施の形態においては、第1導電型がn型であり、第2導電型がp型である場合について説明したが本発明はこの形態に限定されない。たとえば、第1導電型がp型であり、第2導電型がn型であっても構わない。
また、本実施の形態において、炭化珪素半導体装置として縦型MOSFETを例に挙げて説明したが本発明はこの形態に限定されない。たとえば、炭化珪素半導体装置は、たとえば横型MOSFETでも構わない。また、MOSFETはプレナー型であってよいし、トレンチ型であってもよい。さらに、炭化珪素半導体装置はIGBT(Insulated Gate Bipolar Transistor)などであっても構わない。
次に、本実施の形態に係るMOSFET1およびその製造方法の作用効果について説明する。
本実施の形態に係るMOSFET1およびその製造方法によれば、第1の二酸化珪素領域15aの厚みT1は、第2の二酸化珪素領域15bの厚みT2よりも大きい。それゆえ、ドレイン電流の低減を抑制しつつ、かつMOSFET1の静電容量を低減することができる。結果として、ドレイン電流の低減を抑制しつつ、MOSFET1のスイッチング特性を向上することができる。
また本実施の形態に係るMOSFET1の製造方法によれば、珪素を含む材料22は、ポリシリコン、アモルファスシリコンおよびアモルファス炭化珪素のいずれかを含む。これにより、効率的に第1の二酸化珪素領域15aの厚みT1を第2の二酸化珪素領域15bの厚みT2より大きくすることができる。
さらに本実施の形態に係るMOSFET1の製造方法によれば、珪素を含む材料22の幅W2は、第1の不純物領域17の幅W1よりも小さい。これにより、珪素を含む材料22が幅方向に広がった場合においても、第1の二酸化珪素領域15aの厚みT1を第2の二酸化珪素領域15bの厚みT2より大きくすることができる。
さらに本実施の形態に係るMOSFET1およびその製造方法によれば、第1の二酸化珪素領域15aの炭素濃度は、第2の二酸化珪素領域15bの炭素濃度よりも低い。これにより、第1の二酸化珪素領域15aの絶縁性能が向上するため、逆電圧印加時における耐圧を向上することができる。
さらに本実施の形態に係るMOSFET1およびその製造方法によれば、第1の厚みT1は第2の厚みT2の1.5倍以上5倍以下である。第1の厚みT1が第2の厚みT2の1.5倍以上であれば、第1の二酸化珪素領域15aの炭素濃度を第2の二酸化珪素領域15bの炭素濃度よりも効率的に低減することができる。一方、第1の厚みT1が第2の厚みT2の5倍以下であれば、第2の二酸化珪素領域15bに形成されるゲート電極27と、第1の二酸化珪素領域15aに形成されるゲート電極27との段差が大きくなり過ぎないので、ゲート電極27を断絶することなく形成することができる。
さらに本実施の形態に係るMOSFET1の製造方法によれば、二酸化珪素層を形成する工程において、珪素を含む材料22を酸化する工程およびウェル領域13の表面10dを酸化する工程が同時に行われる。これにより、効率的に第1の厚みT1を第2の厚みT2よりも大きくすることができる。
(実施の形態2)
図8を参照して、実施の形態2における炭化珪素半導体装置であるMOSFET1の構成について説明する。実施の形態2に係るMOSFET1は、第2の二酸化珪素領域15bを形成した後に珪素を含む材料22を形成する点において実施の形態1に係るMOSFET1と異なっており、他の構成に関しては同様である。
実施の形態2に係るMOSFET1において、ゲート絶縁膜15は、第1の二酸化珪素領域15aおよび第2の二酸化珪素領域15bを含む。第1の二酸化珪素領域15aは、第3の二酸化珪素領域15cと第4の二酸化珪素領域15dとを含む。後述するように、第4の二酸化珪素領域15dは、炭化珪素からなる第1の不純物領域17の表面10cを酸化することにより形成された二酸化珪素領域である。一方、第3の二酸化珪素領域15cは、珪素を含む材料を酸化することにより形成された二酸化珪素領域である。
珪素を含む材料22の炭素濃度は、炭化珪素の炭素濃度よりも小さい。それゆえ、第3の二酸化珪素領域15cの炭素濃度は、第4の二酸化珪素領域15dおよび第2の炭素濃度よりも小さい。結果として、第3の二酸化珪素領域15cおよび第4の二酸化珪素領域15dを含む第1の二酸化珪素領域15aの炭素濃度の平均値は、第2の二酸化珪素領域15bの炭素濃度よりも小さい。
次に、本実施の形態におけるMOSFET1の製造方法の一例について、図9〜図12を参照して説明する。
まず基板準備工程(S10:図9)が実施される。具体的には、図3および図4を参照して、実施の形態1で説明した製造方法と同様の方法によって、n型を有する第1の不純物領域17と、第1の不純物領域17と接しかつn型と異なるp型を有するウェル領域13と、ウェル領域13によって第1の不純物領域17と隔てられかつn型を有する第2の不純物領域14とを含む炭化珪素基板10が準備される。
次に、第2の二酸化珪素領域工程(S20:図9)が実施される。具体的には、図10を参照して、第1の不純物領域17の表面10cおよびウェル領域13の表面10dが酸化される。より具体的には、酸素雰囲気中において、第1の不純物領域17、ウェル領域13、第2の不純物領域14およびp+領域18が露出した炭化珪素基板10をたとえば1300℃程度の温度で1時間程度加熱することにより、第1の不純物領域17、ウェル領域13、第2の不純物領域14およびp+領域18に接する第2の二酸化珪素領域15bが形成される。第2の二酸化珪素領域15bの厚みはたとえば50nmである。
次に、珪素を含む材料形成工程(S30:図9)が実施される。具体的には、図11を参照して、一対のウェル領域13に挟まれた第1の不純物領域17上に、第2の二酸化珪素領域15bを介して、珪素を含む材料22が形成される。珪素を含む材料22の材料や厚みなどは、実施の形態1で説明した材料および厚みと同様である。
珪素を含む材料を形成する工程では、たとえば炭化珪素基板10の主面10aに形成された第2の二酸化珪素領域15b上にポリシリコンを堆積させた後、ウェットエッチングやドライエッチングなどでパターニングを行うことで、第1の不純物領域17上のみに珪素を含む材料22を残すように珪素を含む材料を形成することが好ましい。また第1の不純物領域17の表面10cに形成された珪素を含む材料の幅W2(当該表面10cに平行な方向の距離)は、第1の不純物領域の幅W1(つまり一対のウェル領域13の間の最短距離)よりも小さいことが好ましい。なお、珪素を含む材料22の厚みT4はたとえば60nm程度である。
次に、第1の二酸化珪素領域形成工程(S35:図9)が実施される。具体的には、図12を参照して、たとえば炭化珪素基板10の第1の不純物領域17上に形成された珪素を含む材料22が酸化される。より具体的には、酸素雰囲気中において、珪素を含む材料22が形成された炭化珪素基板10を、たとえば800℃程度以上1200℃程度以下に加熱して1時間程度保持する熱処理が実施される。これにより、炭化珪素基板10の第1の不純物領域17上に、第2の二酸化珪素領域15bを介して第3の二酸化珪素領域15cが形成される。第3の二酸化珪素領域15cの厚みT3はたとえば180nm程度である。
以上の様に、第1の不純物領域17の表面10c上に配置された第1の二酸化珪素領域15aと、第1の不純物領域17と第2の不純物領域14に挟まれたウェル領域13の表面10d上に配置された第2の二酸化珪素領域15bを含むゲート絶縁膜15が形成される。なお、第1の二酸化珪素領域15aは、第3の二酸化珪素領域15cおよび第4の二酸化珪素領域15dを含む。
第1の二酸化珪素領域15aの厚みを第1の厚みT1とし、かつ第2の二酸化珪素領域15bの厚みを第2の厚みT2としたとき、第1の厚みT1は第2の厚みT2よりも大きい。好ましくは、第1の二酸化珪素領域15aの厚みT1は第2の二酸化珪素領域15bの厚みT2の1.5倍以上5倍以下であり、より好ましくは3倍以上5倍以下である。第1の二酸化珪素領域15aの炭素濃度は、第2の二酸化珪素領域15bの炭素濃度よりも低い。
なお、第3の二酸化珪素領域15cの幅W3は、珪素を含む材料の幅W2よりも大きくてもよい。また第3の二酸化珪素領域15cの幅W3は、第1の不純物領域17の幅W1と同等か小さいことが好ましい。
次に、窒素アニール工程、ゲート電極形成工程(S40:図9)およびオーミック電極形成工程(S50:図9)が実施の形態1で説明した方法と同様の方法で実施される。その後、ソース配線19が、層間絶縁膜21を取り囲み、かつソースコンタクト電極16と接するように形成される。また、たとえばAlからなるパッド電極23がドレイン電極20と接して形成される。以上の手順により、本実施の形態に係るMOSFET1(図8参照)が完成する。
なお実施の形態2におけるMOSFET1の製造方法において説明していない各工程における条件などは、実施の形態1におけるMOSFET1の製造方法と同様である。
次に、本実施の形態に係るMOSFET1およびその製造方法の作用効果について説明する。
本実施の形態に係るMOSFET1の製造方法によれば、二酸化珪素層を形成する工程において、珪素を含む材料22を形成する工程は、ウェル領域13の表面10dを酸化する工程の後に行われる。これにより、ウェル領域13の表面10dの酸化温度と珪素を含む材料22の酸化温度とを個別に調整することができる。
また本実施の形態に係るMOSFET1の製造方法によれば、珪素を含む材料22を酸化する工程における温度は、ウェル領域13の表面10dを酸化する温度よりも低い。これにより、珪素を含む材料22を溶解させることなく酸化させることができる。
今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1 MOSFET、10 炭化珪素基板、10a 主面、10b 第2の主面、10c,10d 表面、11 ベース基板、12 ドリフト層、13 ウェル領域、14 第2の不純物領域、15 ゲート絶縁膜(二酸化珪素層)、15a 第1の二酸化珪素領域、15b 第2の二酸化珪素領域、15c 第3の二酸化珪素領域、15d 第4の二酸化珪素領域、16 ソースコンタクト電極、17 第1の不純物領域(JFET領域)、18 p+領域、19 ソース配線、20 ドレイン電極、21 層間絶縁膜、22 珪素を含む材料、23 パッド電極、27 ゲート電極、CH チャネル領域、T1 第1の厚み、T2 第2の厚み、W1,W2,W3 幅。

Claims (10)

  1. 第1導電型を有する第1の不純物領域と、前記第1の不純物領域と接しかつ前記第1導電型と異なる第2導電型を有するウェル領域と、前記ウェル領域によって前記第1の不純物領域と隔てられかつ前記第1導電型を有する第2の不純物領域とを含む炭化珪素基板を準備する工程と、
    前記第1の不純物領域および前記ウェル領域に接する二酸化珪素層を形成する工程と、
    前記二酸化珪素層上にゲート電極を形成する工程とを備え、
    前記二酸化珪素層を形成する工程は、
    前記第1の不純物領域上に珪素を含む材料を形成する工程と、
    前記珪素を含む材料を酸化する工程と、
    前記第1の不純物領域および前記第2の不純物領域に挟まれた前記ウェル領域の表面を酸化する工程とを含み、
    前記二酸化珪素層は、前記第1の不純物領域上の第1の二酸化珪素領域および前記第1の不純物領域と前記第2の不純物領域に挟まれた前記ウェル領域上の第2の二酸化珪素領域を含み、
    前記第1の二酸化珪素領域の厚みを第1の厚みとし、かつ前記第2の二酸化珪素領域の厚みを第2の厚みとしたとき、前記第1の厚みは前記第2の厚みよりも大きい、炭化珪素半導体装置の製造方法。
  2. 前記珪素を含む材料は、ポリシリコン、アモルファスシリコンおよびアモルファス炭化珪素のいずれかを含む、請求項1に記載の炭化珪素半導体装置の製造方法。
  3. 前記珪素を含む材料の幅は、前記第1の不純物領域の幅よりも小さい、請求項1または2に記載の炭化珪素半導体装置の製造方法。
  4. 前記第1の二酸化珪素領域の炭素濃度は、前記第2の二酸化珪素領域の炭素濃度よりも低い、請求項1〜3のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  5. 前記第1の厚みは前記第2の厚みの1.5倍以上5倍以下である、請求項1〜4のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  6. 前記二酸化珪素層を形成する工程において、
    前記珪素を含む材料を酸化する工程および前記ウェル領域の前記表面を酸化する工程が同時に行われる、請求項1〜5のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  7. 前記二酸化珪素層を形成する工程において、
    前記珪素を含む材料を形成する工程は、前記ウェル領域の前記表面を酸化する工程の後に行われる、請求項1〜5のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  8. 前記珪素を含む材料を酸化する工程における温度は、前記ウェル領域の前記表面を酸化する温度よりも低い、請求項7に記載の炭化珪素半導体装置の製造方法。
  9. 第1導電型を有する第1の不純物領域と、前記第1の不純物領域と接しかつ前記第1導電型と異なる第2導電型を有するウェル領域と、前記ウェル領域によって前記第1の不純物領域と隔てられかつ前記第1導電型を有する第2の不純物領域とを含む炭化珪素基板と、
    前記第1の不純物領域上に配置された第1の二酸化珪素領域と、
    前記第1の不純物領域と前記第2の不純物領域とに挟まれた前記ウェル領域の表面に配置された第2の二酸化珪素領域と、
    前記第1の二酸化珪素領域および前記第2の二酸化珪素領域上に配置されたゲート電極とを備え、
    前記第1の二酸化珪素領域の厚みは、前記第2の二酸化珪素領域の厚みよりも大きく、
    前記第1の二酸化珪素領域の炭素濃度は、前記第2の二酸化珪素領域の炭素濃度よりも低い、炭化珪素半導体装置。
  10. 前記第1の二酸化珪素領域の厚みは前記第2の二酸化珪素領域の厚みの1.5倍以上5倍以下である、請求項9に記載の炭化珪素半導体装置。
JP2012259551A 2012-11-28 2012-11-28 炭化珪素半導体装置およびその製造方法 Pending JP2014107420A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012259551A JP2014107420A (ja) 2012-11-28 2012-11-28 炭化珪素半導体装置およびその製造方法
US14/439,164 US9362121B2 (en) 2012-11-28 2013-10-08 Method of manufacturing a silicon carbide semiconductor device
CN201380055289.0A CN104737292A (zh) 2012-11-28 2013-10-08 碳化硅半导体器件及其制造方法
PCT/JP2013/077326 WO2014083943A1 (ja) 2012-11-28 2013-10-08 炭化珪素半導体装置およびその製造方法
EP13858187.1A EP2927960A4 (en) 2012-11-28 2013-10-08 SILICON CARBIDE SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012259551A JP2014107420A (ja) 2012-11-28 2012-11-28 炭化珪素半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2014107420A true JP2014107420A (ja) 2014-06-09

Family

ID=50827589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012259551A Pending JP2014107420A (ja) 2012-11-28 2012-11-28 炭化珪素半導体装置およびその製造方法

Country Status (5)

Country Link
US (1) US9362121B2 (ja)
EP (1) EP2927960A4 (ja)
JP (1) JP2014107420A (ja)
CN (1) CN104737292A (ja)
WO (1) WO2014083943A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154181A (ja) * 2015-02-20 2016-08-25 住友電気工業株式会社 炭化珪素半導体装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9590611B2 (en) * 2014-04-10 2017-03-07 The United States Of America As Represented By The Secretary Of The Navy Radiation-hardened dual gate semiconductor transistor devices containing various improved structures including MOSFET gate and JFET gate structures and related methods
CN104617144A (zh) * 2015-01-15 2015-05-13 东南大学 一种高可靠性n型碳化硅纵向金属氧化物半导体管
CN104600121A (zh) * 2015-01-15 2015-05-06 东南大学 一种高可靠性p型碳化硅纵向金属氧化物半导体管
DE112016000831T5 (de) * 2015-02-20 2017-11-02 Sumitomo Electric Industries, Ltd. Siliziumkarbid-Halbleitervorrichtung
CN104810293B (zh) * 2015-03-27 2017-10-20 西安电子科技大学 分区复合栅结构SiC DMISFET器件的制作方法
CN104966735A (zh) * 2015-05-26 2015-10-07 株洲南车时代电气股份有限公司 一种碳化硅mosfet器件及其制备方法
CN104952917B (zh) * 2015-07-03 2018-11-23 电子科技大学 一种碳化硅vdmos器件
CN108257872A (zh) * 2018-01-12 2018-07-06 北京品捷电子科技有限公司 一种SiC基DI-MOSFET的制备方法及SiC基DI-MOSFET
CN109309127A (zh) * 2018-10-31 2019-02-05 秦皇岛京河科学技术研究院有限公司 一种碳化硅mosfet器件及其制备方法
WO2020185543A1 (en) 2019-03-08 2020-09-17 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system
CN114530370B (zh) * 2020-11-23 2023-11-07 瑶芯微电子科技(上海)有限公司 一种基于外延沟道的mosfet器件及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288303A (ja) * 1995-04-11 1996-11-01 Sharp Corp 縦型電界効果トランジスタ及びその製造方法
JP2011129547A (ja) * 2009-12-15 2011-06-30 Mitsubishi Electric Corp 半導体装置およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217149A (en) * 1976-09-08 1980-08-12 Sanyo Electric Co., Ltd. Method of manufacturing complementary insulated gate field effect semiconductor device by multiple implantations and diffusion
JP2715941B2 (ja) * 1994-10-31 1998-02-18 日本電気株式会社 半導体装置の製造方法
JP2000277514A (ja) * 1999-03-24 2000-10-06 Mitsubishi Electric Corp 半導体装置の製造方法及び半導体装置
JP3534056B2 (ja) * 2000-08-31 2004-06-07 日産自動車株式会社 炭化珪素半導体装置の製造方法
JP3664158B2 (ja) * 2002-02-19 2005-06-22 日産自動車株式会社 炭化珪素半導体装置およびその製造方法
US6940110B2 (en) * 2002-11-29 2005-09-06 Matsushita Electric Industrial Co., Ltd. SiC-MISFET and method for fabricating the same
EP1742271A1 (en) * 2005-07-08 2007-01-10 STMicroelectronics S.r.l. Power field effect transistor and manufacturing method thereof
JP5452876B2 (ja) * 2008-03-13 2014-03-26 ローム株式会社 半導体装置およびその製造方法
JP5268792B2 (ja) * 2009-06-12 2013-08-21 パナソニック株式会社 半導体装置
WO2012098861A1 (ja) 2011-01-17 2012-07-26 パナソニック株式会社 半導体装置およびその製造方法
JP5524103B2 (ja) * 2011-02-07 2014-06-18 株式会社東芝 半導体装置
US8748977B2 (en) * 2011-03-23 2014-06-10 Panasonic Corporation Semiconductor device and method for producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288303A (ja) * 1995-04-11 1996-11-01 Sharp Corp 縦型電界効果トランジスタ及びその製造方法
JP2011129547A (ja) * 2009-12-15 2011-06-30 Mitsubishi Electric Corp 半導体装置およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154181A (ja) * 2015-02-20 2016-08-25 住友電気工業株式会社 炭化珪素半導体装置

Also Published As

Publication number Publication date
EP2927960A4 (en) 2016-08-24
EP2927960A1 (en) 2015-10-07
US20150311076A1 (en) 2015-10-29
US9362121B2 (en) 2016-06-07
WO2014083943A1 (ja) 2014-06-05
CN104737292A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
WO2014083943A1 (ja) 炭化珪素半導体装置およびその製造方法
JP5994604B2 (ja) 炭化珪素半導体装置およびその製造方法
WO2012169224A1 (ja) 半導体装置
WO2015040966A1 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP6705155B2 (ja) 半導体装置および半導体装置の製造方法
JP2012243966A (ja) 半導体装置
JPWO2010116886A1 (ja) 絶縁ゲート型バイポーラトランジスタ
JP2012164707A (ja) 半導体装置およびその製造方法
WO2015015926A1 (ja) 炭化珪素半導体装置およびその製造方法
JP2015156429A (ja) 炭化珪素半導体装置およびその製造方法
JP5880311B2 (ja) 炭化珪素半導体装置
WO2015015938A1 (ja) 炭化珪素半導体装置の製造方法
JP6862782B2 (ja) 半導体装置および半導体装置の製造方法
JPWO2009104299A1 (ja) 半導体装置および半導体装置の製造方法
JP2018206872A (ja) 半導体装置
JP2014127660A (ja) 炭化珪素ダイオード、炭化珪素トランジスタおよび炭化珪素半導体装置の製造方法
WO2015019732A1 (ja) 炭化珪素半導体装置およびその製造方法
US9698220B2 (en) Semiconductor device
US9647072B2 (en) Silicon carbide semiconductor device
JP2021010027A (ja) 半導体装置および半導体装置の製造方法
JP2014060272A (ja) 炭化珪素半導体装置およびその製造方法
JP2015095511A (ja) 炭化珪素半導体装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161206