JP2014081996A - 正極用バインダー組成物 - Google Patents

正極用バインダー組成物 Download PDF

Info

Publication number
JP2014081996A
JP2014081996A JP2011126043A JP2011126043A JP2014081996A JP 2014081996 A JP2014081996 A JP 2014081996A JP 2011126043 A JP2011126043 A JP 2011126043A JP 2011126043 A JP2011126043 A JP 2011126043A JP 2014081996 A JP2014081996 A JP 2014081996A
Authority
JP
Japan
Prior art keywords
polymer
positive electrode
particles
binder composition
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011126043A
Other languages
English (en)
Other versions
JP4849286B1 (ja
Inventor
Yoshiharu Otsuka
巧治 大塚
Hironori Kitaguchi
博紀 北口
Nobuyuki Fujiwara
伸行 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2011126043A priority Critical patent/JP4849286B1/ja
Priority to JP2013519347A priority patent/JPWO2012169094A1/ja
Priority to PCT/JP2011/080582 priority patent/WO2012169094A1/ja
Priority to US13/338,541 priority patent/US8513349B2/en
Priority to KR1020110144360A priority patent/KR101148564B1/ko
Priority to TW100149556A priority patent/TW201251186A/zh
Priority to ES11195979.7T priority patent/ES2486792T3/es
Priority to EP11195979.7A priority patent/EP2533335B1/en
Priority to CN2011104544218A priority patent/CN102694175A/zh
Priority to TW100149909A priority patent/TWI390791B/zh
Application granted granted Critical
Publication of JP4849286B1 publication Critical patent/JP4849286B1/ja
Publication of JP2014081996A publication Critical patent/JP2014081996A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

【課題】イオン導電性、耐酸化性および密着性のすべてに優れる正極用バインダー材料を提供すること。
【解決手段】上記正極用バインダー組成物は、フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンよりなる群から選ばれる少なくとも1種に由来する繰り返し単位を有する重合体Aと、不飽和カルボン酸エステルに由来する繰り返し単位を有する重合体Bと、を含有するポリマーアロイ粒子、および水を含有し、そして前記ポリマーアロイ粒子の平均粒子径が50〜400nmであることを特徴とする。
【選択図】なし

Description

本発明は、正極用バインダー組成物に関する。
上記バインダー組成物は、特定のポリマーアロイ粒子を含有し、イオン導電性、耐酸化性および密着性のすべてに優れ、蓄電デバイスの正極用のバインダー材料として好適なものである。
近年、電子機器の駆動用電源として、電圧が高く、高いエネルギー密度を有する蓄電デバイスが要求されている。特にリチウムイオン電池、リチウムイオンキャパシタなどは、高電圧・高エネルギー密度の蓄電デバイスとして期待されている。
このような蓄電デバイスに使用される電極は、通常、活物質粒子と、電極バインダーとして機能する重合体粒子との混合物を集電体表面へ塗布・乾燥することにより製造される。電極に使用される重合体粒子に要求される特性としては、活物質粒子同士の結合能力および活物質粒子と集電体との結着能力や、電極を巻き取る工程における耐擦性、その後の裁断などによっても塗布された電極用組成物層(以下、単に「活物質層」ともいう。)から活物質の微粉などが発生しない粉落ち耐性などを挙げることができる。重合体粒子がこれらの種々の要求特性を満足することにより、得られる電極の折り畳み方法、捲回半径の設定などの蓄電デバイスの構造設計の自由度が高くなり、デバイスの小型化を達成することができる。なお、上記の活物質粒子同士の結合能力および活物質粒子と集電体との結着能力、ならびに粉落ち耐性については、性能の良否がほぼ比例関係にあることが経験上明らかになっている。従って本明細書では、以下、これらを包括して「密着性」という用語を用いて表す場合がある。
電極バインダーとしては、ポリフッ化ビニリデン(PVDF)などの、イオン導電性および耐酸化性に優れる含フッ素系有機重合体を使用することが有利である。しかしながら、フッ素原子を含有する有機重合体は、一般に、密着性に乏しいため、得られる電極の機械的強度および耐久性に問題がある。そこで、有機重合体のイオン導電性および耐酸化性を維持しつつ、密着性を向上する技術が種々検討され、提案されている。
例えば、特許文献1には、PVDFとゴム系高分子とを併用することにより、負極用バインダーのリチウムイオン導電性および耐酸化性と、密着性とを両立しようとする技術が提案されている。特許文献2には、PVDFを特定の有機溶媒へ溶解し、これを集電体表面上に塗布した後、低温で溶媒を除去する工程を経ることによって密着性を向上しようとする技術が提案されている。さらに特許文献3には、フッ化ビニリデン共重合体からなる主鎖に、フッ素原子を有する側鎖を有する構造の電極バインダーの適用によって、密着性を向上しようとする技術が提案されている。
特開2011−3529号公報 特開2010−55847号公報 特開2002−42819号公報
しかしながら、含フッ素系有機重合体とゴム系高分子とを併用する特許文献1の技術によると、密着性は向上するものの、有機重合体のイオン導電性が減殺されるとともに耐酸化性が大きく損なわれるため、これを用いて製造される蓄電デバイスは、充放電の繰り返しによって充放電特性が不可逆的に劣化してしまうという問題がある。一方、電極バインダーとして含フッ素系有機重合体のみを使用する特許文献2および3の技術によると、密着性のレベルは未だ不十分である。
このように、従来技術においては、イオン導電性および耐酸化性と、密着性との双方に優れる電極バインダー材料は知られていない。特に、有機重合体からなるバインダーを正極に適応する場合には、正極反応の酸化性にも耐え得る高度の耐酸化性が要求されることとなるため、イオン導電性、耐酸化性および密着性のすべてが実用レベルに達している正極用バインダー材料は、未だ知られていない。
本発明は、このような現状に鑑みてなされたものであり、その目的は、イオン導電性、耐酸化性および密着性のすべてに優れる正極用バインダー材料を提供することにある。
本発明の上記目的および利点は、
フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンよりなる群から選ばれる少なくとも1種に由来する繰り返し単位を有する重合体Aと、
不飽和カルボン酸エステルに由来する繰り返し単位を有する重合体Bと
を含有するポリマーアロイ粒子、および

を含有し、そして
前記ポリマーアロイ粒子の平均粒子径が50〜400nmであることを特徴とする、蓄電デバイスの正極用バインダー組成物によって達成される。
本発明の正極用バインダー組成物によれば、イオン導電性および耐酸化性に優れるとともに、高度の密着性を有する正極を製造することができる。
本発明の正極用バインダー組成物を用いて製造された正極を備える蓄電デバイスは、電気的特性の一つである充放電レート特性が極めて良好である。
実施例3で得られた重合体粒子のDSCチャート。 比較例5で得られた重合体粒子のDSCチャート。 比較例6で得られた重合体粒子のDSCチャート。 比較例7で得られた重合体粒子のDSCチャート。
以下、本発明の好適な実施形態について詳細に説明する。なお、本発明は、下記に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変型例も含むものとして理解されるべきである。
1.正極用バインダー組成物
本発明の正極用バインダー組成物は、上記のとおり、
フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンよりなる群から選ばれる少なくとも1種に由来する繰り返し単位を有する重合体Aと、
不飽和カルボン酸エステルに由来する繰り返し単位を有する重合体Bと
を含有するポリマーアロイ粒子、および

を含有し、そして
前記ポリマーアロイ粒子の平均粒子径が50〜400nmであることを特徴とする。
1.1 ポリマーアロイ粒子
本発明の正極用バインダー組成物に含有されるポリマーアロイ粒子は、
フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンからなる群から選ばれる少なくとも一種に由来する繰り返し単位を含む重合体Aと、
不飽和カルボン酸エステルに由来する繰り返し単位を有する重合体Bと
を含有する。
「ポリマーアロイ」とは、「岩波 理化学辞典 第5版.岩波書店」における定義によれば、「2成分以上の高分子の混合あるいは化学結合により得られる多成分系高分子の総称」であって「異種高分子を物理的に混合したポリマーブレンド、異種高分子成分が共有結合で結合したブロックおよびグラフト共重合体、異種高分子が分子間力によって会合した高分子錯体、異種高分子が互いに絡み合ったIPN(Interpenetrating Polymer Network)など」をいう。しかしながら、本発明の正極用バインダー組成物に含有されるポリマーアロイ粒子とは、「異種高分子成分が共有結合によって結合していないポリマーアロイ」を意味するものであり、ポリマーブレンド、高分子錯体またはIPN(相互侵入高分子網目)と称されるものである。本発明におけるポリマーアロイ粒子としては、高分子錯体からなる粒子またはIPNからなる粒子であることが好ましく、IPNからなる粒子であることがより好ましい。
ポリマーアロイ粒子を構成する重合体Aは、イオン導電性に優れるとともに、結晶性樹脂のハードセグメントが凝集して、主鎖にC−H…F−Cのような疑似架橋点を与えているものと考えられる。このためバインダー樹脂として重合体Aを単独で用いると、そのイオン導電性および耐酸化性は良好であるものの、密着性および柔軟性が不十分であるため密着性は低い。一方、ポリマーアロイ粒子を構成する重合体Bは、密着性および柔軟性には優れるものの、耐酸化性が低いから、これをバインダー樹脂として単独で正極に使用した場合には、充放電を繰り返すことにより酸化分解して変質するため、良好な充放電特性を得ることができない。
しかしながら、重合体Aおよび重合体Bを含有するポリマーアロイ粒子を使用することにより、イオン導電性および耐酸化性と、密着性とを同時に発現することができ、良好な充放電特性を有する正極を製造することが可能となった。ポリマーアロイ粒子が、重合体Aおよび重合体Bのみからなる場合、より耐酸化性を向上させることができ、好ましい。
ポリマーアロイ粒子は、JIS K7121に準拠する示差走査熱量測定(DSC)によって測定した場合、−50〜250℃の温度範囲において吸熱ピークを1つしか有さないものであることが好ましい。この吸熱ピークの温度は、−30〜+30℃の範囲にあることがより好ましい。
ポリマーアロイ粒子を構成する重合体Aは、これが単独で存在する場合には、一般的に−50〜250℃に吸熱ピーク(融解温度)を有する。また、ポリマーアロイ粒子を構成する重合体Bは、重合体Aとは異なる吸熱ピーク(ガラス転移温度)を有することが一般的である。このため、粒子中における重合体Aおよび重合体Bが、例えばコア−シエル構造のように相分離して存在する場合、−50〜250℃において2つの吸熱ピークが観察されるはずである。しかし、−50〜250℃における吸熱ピークが1つのみである場合には、該粒子はポリマーアロイ粒子であると推定することができる。
さらに、ポリマーアロイ粒子の有する1つのみの吸熱ピークの温度が−30〜+30℃の範囲にある場合、該粒子は活物質層に対してより良好な柔軟性と粘着性とを付与することができ、従って密着性をより向上させることができることとなり、好ましい。
ポリマーアロイ粒子の平均粒子径(Da)は、50〜400nmの範囲にあり、100〜250nmの範囲にあることが好ましい。ポリマーアロイ粒子の平均粒子径が前記範囲にあると、活物質粒子表面へポリマーアロイ粒子が十分に吸着することができるため、活物質粒子の移動に伴ってポリマーアロイ粒子も追随して移動することができる。その結果、粒子のうちのどちらかのみが単独でマイグレーションすることを抑制することができるから、電気特性の劣化を抑制することができる。ポリマーアロイ粒子の平均粒子径が前記範囲に満たない場合、粒子のマイグレーションによって電気特性が劣化するため好ましくない。一方、ポリマーアロイ粒子の平均粒子径が前記範囲を越えると、ポリマーアロイ粒子の添加量に対する表面積の割合が低くなるため、良好なバインダー特性を発現することができなくなる。その結果、密着性が低下するため、やはり好ましくない。
ポリマーアロイ粒子の平均粒子径は、光散乱法を測定原理とする粒度分布測定装置を用いて行われる。このような粒度分布測定装置としては、たとえば、コールターLS230、LS100、LS13 320(以上、Beckman Coulter.Inc製)や、FPAR−1000(大塚電子(株)製)などを挙げることができる。これらの粒度分布測定装置は、ポリマーアロイ粒子の一次粒子だけを評価対象とするものではなく、一次粒子が凝集して形成された二次粒子をも評価対象とすることができる。従って、これらの粒度分布測定装置によって測定された粒度分布は、正極用スラリー中に含まれるポリマーアロイ粒子の分散状態の指標とすることができる。なお、ポリマーアロイ粒子の平均粒子径は、正極用スラリーを遠心分離して活物質粒子を沈降させた後、その上澄み液を上記の粒度分布測定装置によって測定する方法によっても測定することができる。
1.1.1 重合体A
本発明の電極用バインダー組成物に含有されるポリマーアロイ粒子は、フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンから選ばれる少なくとも一種に由来する繰り返し単位を有する重合体Aを含有する。一般的に重合体Aのようなフッ素化重合体成分は、イオン導電性および耐酸化性は良好であると考えられており、従来から正極に多用されてはいた。しかし、密着性が不良である。そのため従来技術においては、種々のモディファイによってフッ素化重合体の密着性を向上しようとする検討が行われてきた。しかしながら、例えば重合体鎖に官能基を導入することによって密着性を向上する試みは、重合体の合成条件の精密な制御が必要であり、目的を達成することは困難であった。
本発明は、重合体Aを、重合体Bと共にポリマーアロイ粒子として使用することにより、イオン導電性および耐酸化性を劣化させることなく、密着性を発現することを可能としたものである。
重合体Aは、フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレン以外の、共重合可能な他の不飽和単量体に由来する繰り返し単位を有していてもよい。
このような他の不飽和単量体としては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸i−アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトール、(メタ)アクリル酸アリル、ジ(メタ)アクリル酸エチレンなどの(メタ)アクリル酸エステル;
スチレン、α−メチルスチレン、ジビニルベンゼンなどの芳香族ビニル化合物;
酢酸ビニル、プロピオン酸ビニルなどのカルボン酸のビニルエステル;
フッ化ビニル、塩化ビニル、塩化ビニリデンなどのハロゲン化オレフィン;
ブタジエン、イソプレン、クロロプレンなどの共役ジエン;
エチレン、プロピレンなどのα−オレフィンなどを挙げることができ、これらから選択される1種以上を使用することができる。
なお、本明細書における「(メタ)アクリル酸〜」とは、「アクリル酸〜」および「メタクリル酸〜」の双方を包括する概念である。
重合体Aにおけるフッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンから選ばれる少なくとも一種に由来する繰り返し単位の含有割合は、重合体Aの全重量に対して、好ましくは80重量%以上であり、より好ましくは90重量%以上である。
重合体Aにおけるフッ化ビニリデンに由来する繰り返し単位の含有割合は、好ましくは50〜99重量%であり、さらに好ましくは80〜98重量%である。重合体Aにおける四フッ化エチレンに由来する繰り返し単位の含有割合は、好ましくは1〜50重量%であり、さらに好ましくは2〜20重量%である。重合体Aにおける六フッ化プロピレンに由来する繰り返し単位の含有割合は、好ましくは1〜50重量%であり、さらに好ましくは2〜20重量%である。
重合体Aは、上記のフッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンから選ばれる少なくとも一種の不飽和単量体、および任意的に他の不飽和単量体を、公知の方法に従って乳化重合することにより容易に製造することができる。
1.1.2 重合体B
本発明の正極用バインダー組成物が含有するポリマーアロイ粒子は、不飽和カルボン酸エステルに由来する繰り返し単位を有する重合体Bを含有する。一般的に重合体Bのような成分は、密着性は良好であるが、イオン導電性および耐酸化性が不良であると考えられており、従来から正極には使用されてこなかった。しかし本発明は、このような重合体Bを、重合体Aと共にポリマーアロイ粒子として使用することにより、良好な密着性を維持しつつ、十分なイオン導電性および耐酸化性を発現することに成功したものである。
重合体Bを構成する繰り返し単位を導く不飽和カルボン酸エステルとしては、(メタ)アクリル酸エステルであることが好ましい。
このような(メタ)アクリル酸エステルの具体例としては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸i−アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトール、(メタ)アクリル酸アリル、ジ(メタ)アクリル酸エチレンなどを挙げることができ、これらのうちから選択される1種以上であることができる。これらのうち、(メタ)アクリル酸メチル、(メタ)アクリル酸エチルおよびアクリル酸2−エチルヘキシルから選択される1種以上であることが好ましく、(メタ)アクリル酸メチルであることが特に好ましい。
重合体Bは、不飽和カルボン酸エステルに由来する繰り返し単位のみを有する重合体であってもよく、不飽和カルボン酸エステルに由来する繰り返し単位のほかに、共重合可能な他の不飽和単量体に由来する構成単位を有していてもよい。
重合体Bにおける不飽和カルボン酸エステルに由来する繰り返し単位の含有割合は、重合体Bの全重量に対して、好ましくは65重量%以上であり、より好ましくは75重量%以上である。
上記他の不飽和単量体としては、例えばα,β−不飽和ニトリル化合物、不飽和カルボン酸、共役ジエン化合物、芳香族ビニル化合物およびその他の不飽和単量体を挙げることができる。
1.1.2.1 α,β−不飽和ニトリル化合物に由来する構成単位
重合体Bがα,β−不飽和ニトリル化合物に由来する繰り返し単位を有することにより、ポリマーアロイ粒子の電解液に対する膨潤性をより向上させることができる。すなわち、ニトリル基の存在によって重合体鎖からなる網目構造に溶媒が侵入し易くなって網目間隔が広がるため、溶媒和したリチウムイオンがこの網目構造をすり抜けて移動し易くなる。これにより、リチウムイオンの拡散性が向上すると考えられ、その結果、電極抵抗が低下してより良好な充放電特性を実現することができるのである。
α,β−不飽和ニトリル化合物の具体例としては、例えばアクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エチルアクリロニトリル、シアン化ビニリデンなどを挙げることができ、これらから選択される1種以上であることができる。これらのうち、アクリロニトリルおよびメタクリロニトリルから選択される1種以上であることが好ましく、特にアクリロニトリルであることが好ましい。
α,β−不飽和ニトリル化合物に由来する構成単位の含有割合は、全構成単位中、35重量%以下であることが好ましく、10〜25重量%であることがより好ましい。
1.1.2.2 不飽和カルボン酸に由来する構成単位
重合体Bが不飽和カルボン酸に由来する構成単位を有することにより、本発明の正極用バインダー組成物を用いた正極用スラリーの安定性が向上する。
不飽和カルボン酸の具体例としては、例えばアクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸などのモノまたはジカルボン酸(無水物)を挙げることができ、これらから選択される1種以上であることができる。特に、アクリル酸、メタクリル酸およびイタコン酸から選択される1種以上であることが好ましい。
不飽和カルボン酸に由来する繰り返し単位の含有割合は、全構成単位中15重量%以下であることが好ましく、0.3〜10重量%であることがより好ましい。
1.1.2.3 共役ジエン化合物に由来する構成単位
重合体Bが共役ジエン化合物に由来する構成単位を有することにより、粘弾性特性に優れた強度の強い正極用バインダー組成物を製造することが容易となる。すなわち、共役ジエン化合物に由来する構成単位を有する重合体を使用すると、低Tgでありながら架橋構造を有するポリマーアロイ粒子となるため、伸びと強度とのバランスが取れたバインダーとして機能し易くなり、その結果、密着性をより向上することができる。
共役ジエン化合物としては、例えば1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−クロル−1,3−ブタジエンなどを挙げることができ、これらのうちから選択される1種以上であることができる。共役ジエン化合物としては特に1,3−ブタジエンが好ましい。
共役ジエン化合物に由来する構成単位の含有割合は、全構成単位中35重量%以下であることが好ましく、25重量%以下であることがより好ましい。
1.1.2.4 芳香族ビニル化合物に由来する構成単位
重合体Bが芳香族ビニル化合物に由来する構成単位を有することにより、正極用スラリーが導電付与剤を含有する場合に、これに対する親和性をより良好にすることができる。
芳香族ビニル化合物の具体例としては、例えばスチレン、α−メチルスチレン、p−メチルスチレン、ビニルトルエン、クロルスチレン、ジビニルベンゼンなどを挙げることができ、これらのうちから選択される1種以上であることができる。芳香族ビニル化合物としては、上記のうち特にスチレンであることが好ましい。
芳香族ビニル化合物に由来する構成単位の含有割合は、全構成単位中35重量%以下であることが好ましく、25重量%以下であることがより好ましい。
1.1.2.5 その他の共重合単量体に由来する構成単位
重合体Bが有する構成単位を導くその他の共重合単量体の具体例としては、例えば(メタ)アクリルアミド、N−メチロールアクリルアミドなどのエチレン性不飽和カルボン酸のアルキルアミド;
酢酸ビニル、プロピオン酸ビニルなどのカルボン酸ビニルエステル;
エチレン性不飽和ジカルボン酸の酸無水物;
モノアルキルエステル;
モノアミド;
アミノエチルアクリルアミド、ジメチルアミノメチルメタクリルアミド、メチルアミノプロピルメタクリルアミドなどのエチレン性不飽和カルボン酸のアミノアルキルアミドなどが挙げることができ、これらのうちから選択される1種以上であることができる。
1.2 ポリマーアロイ粒子の調製
本発明の正極用バインダー組成物に含有されるポリマーアロイ粒子は、上記のような構成をとるものである限り、その合成方法は特に限定されないが、例えば公知の乳化重合工程またはこれを適宜に組み合わせることによって、容易に合成することができる。
例えば先ず、フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンからなる群から選ばれる少なくとも一種に由来する繰り返し単位を有する重合体Aを、公知の方法によって合成し、次いで
該重合体Aに、重合体Bを構成するための単量体を加え、重合体Aからなる重合体粒子の編み目構造の中に、前記単量体を十分吸収させた後、重合体Aの編み目構造の中で、吸収させた単量体を重合して重合体Bを合成する方法により、ポリマーアロイ粒子を容易に製造することができる。このような方法によってポリマーアロイ粒子を製造する場合、重合体Aに、重合体Bの単量体を十分に吸収させることが必須である。吸収温度が低すぎる場合または吸収時間が短すぎる場合には単なるコアシェル粒子または表層の一部のみがIPN型の構造である粒子となり、本発明におけるポリマーアロイ粒子を得ることができない場合が多い。ただし、吸収温度が高すぎると重合系の圧力が高くなりすぎ、反応系のハンドリングおよび反応制御の面から不利となり、吸収時間を過度に長くしても、さらに有利な結果が得られるわけではない。
上記のような観点から、吸収温度は、30〜100℃とすることが好ましく、40〜80℃とすることがより好ましく;
吸収時間は、1〜12時間とすることが好ましく、2〜8時間とすることがより好ましい。このとき、吸収温度が低い場合には吸収時間を長くすることが好ましく、吸収温度が高い場合には短い吸収時間で十分である。吸収温度(℃)と吸収時間(h)を乗じた値が、おおむね120〜300(℃・h)、好ましくは150〜250(℃・h)の範囲となるような条件が適当である。
重合体Aの編み目構造の中に重合体Bの単量体を吸収させる操作は、乳化重合に用いられる公知の溶媒中、例えば水中で行うことが好ましい。
ポリマーアロイ粒子中の重合体Aの含有量は、ポリマーアロイ粒子100重量%中、3〜60重量%であることが好ましく、5〜55重量%であることがより好ましく、10〜50重量%であることがさらに好ましく、特に20〜40重量%であることが好ましい。ポリマーアロイ粒子が重合体Aを前記範囲で含有することにより、イオン導電性および耐酸化性と、密着性とのバランスがより良好となる。
本発明のポリマーアロイ粒子の製造、すなわち、重合体Aの重合もしくは得られた重合体A中に単量体を吸収させた後に行う重合体Bの重合またはこれらの双方は、公知の乳化剤(界面活性剤)、重合開始剤、分子量調整剤などの存在下で行うことができる。
上記乳化剤としては、例えば高級アルコールの硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、脂肪族スルホン酸塩、脂肪族カルボン酸塩、デヒドロアビエチン酸塩、ナフタレンスルホン酸・ホルマリン縮合物、非イオン性界面活性剤の硫酸エステル塩などのアニオン性界面活性剤;
ポリエチレングリコールのアルキルエステル、ポリエチレングリコールのアルキルフェニルエーテル、ポリエチレングリコールのアルキルエーテルなどのノニオン性界面活性剤;
パーフルオロブチルスルホン酸塩、パーフルオロアルキル基含有リン酸エステル、パーフルオロアルキル基含有カルボン酸塩、パーフルオロアルキルエチレンオキシド付加物などのフッ素系界面活性剤などを挙げることができ、これらのうちから選択される1種以上を使用することができる。
上記重合開始剤としては、例えば過硫酸リチウム、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなどの水溶性重合開始剤;
クメンハイドロパーオキサイド、過酸化ベンゾイル、t−ブチルハイドロパーオキサイド、アセチルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサンカルボニトリル)などの油溶性重合開始剤などを適宜選択して用いることができる。これらのうち、特に過硫酸カリウム、過硫酸ナトリウム、クメンハイドロパーオキサイドまたはt−ブチルハイドロパーオキサイドを使用することが好ましい。重合開始剤の使用割合は特に制限されないが、単量体組成、重合反応系のpH、他の添加剤などの組み合わせなどを考慮して適宜設定される。
上記分子量調整剤としては、例えばn−ヘキシルメルカプタン、n−オクチルメルカプタン、t−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、n−ステアリルメルカプタンなどのアルキルメルカプタン;
ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイドなどのキサントゲン化合物;
ターピノレン、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィドなどのチウラム化合物;
2,6−ジ−t−ブチル−4−メチルフェノール、スチレン化フェノールなどのフェノール化合物;
アリルアルコールなどのアリル化合物;
ジクロルメタン、ジブロモメタン、四臭化炭素などのハロゲン化炭化水素化合物;
α−ベンジルオキシスチレン、α−ベンジルオキシアクリロニトリル、α−ベンジルオキシアクリルアミドなどのビニルエーテル化合物などのほか、
トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2−エチルヘキシルチオグリコレート、α−メチルスチレンダイマーなどを挙げることができ、これらのうちから選択される1種以上を使用することができる。
1.3 正極用バインダー組成物
本発明の正極用バインダー組成物は、上記のようなポリマーアロイ粒子を含有する。好ましくは、上記のようなポリマーアロイ粒子を水性媒体中に乳化状態で含有するラテックスであることが好ましい。
このようなラテックスとしては、ポリマーアロイ粒子を合成(重合)し、好ましくは反応を停止した後の重合反応混合物を、必要に応じて液性を調整した後、そのまま本発明の正極用バインダー組成物として用いることである。従って、本発明の正極用バインダー組成物は、上記のようなポリマーアロイ粒子のほか、乳化剤、重合開始剤またはその残滓、界面活性剤、中和剤などの他の成分を含有していてもよい。これら他の成分の含有割合としては、他の成分の合計重量が組成物の固形分重量に対する割合として、3重量%以下であることが好ましく、2重量%以下であることがより好ましい。
本発明の正極用バインダー組成物の固形分濃度(組成物中の水性媒体以外の成分の重量が、組成物の全重量に対して占める割合)としては、30〜50重量%であることが好ましく、35〜45重量%であることがより好ましい。
正極用バインダー組成物の液性としては、中性付近であることが好ましく、pH6.0〜8.5であることがより好ましく、特にpH7.0〜8.0であることが好ましい。組成物の液性の調整には、公知の水溶性の酸または塩基を用いることができる。酸としては、例えば塩酸、硝酸、硫酸、リン酸などを;
塩基としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア水などを、それぞれ挙げることができる。
2.正極用スラリー
上記の如き、本発明の正極用バインダー組成物を用いて正極用スラリーを製造することができる。
正極用スラリーとは、これを集電体の表面に塗布した後、乾燥して、集電体上に活物質層を形成するために用いられる分散液であり、少なくとも上記のようなポリマーアロイ粒子と、活物質粒子と、水と、を含有し、好ましくはさらに導電付与剤を含有する。
2.1 正極用スラリーの特徴
本発明の正極用バインダー組成物を用いて製造される正極用スラリーに含有されるポリマーアロイ粒子の平均粒子径(Da)と活物質粒子の平均粒子径(Db)との比(Da/Db)は、0.01〜1.0の範囲にあることが好ましく、0.05〜0.5の範囲にあることがより好ましい。このことの技術的な意味は、以下のとおりである。
正極用スラリーは、分散媒体として水を含有している。この正極用スラリーを集電体の表面に塗布した後、形成された塗膜を乾燥する工程において、ポリマーアロイ粒子および活物質粒子のうちの少なくとも一方がマイグレーションすることが確認されている。すなわち、粒子が表面張力の作用を受けることによって塗膜の厚み方向に沿って移動するのである。より具体的には、ポリマーアロイ粒子および活物質粒子のうちの少なくとも一方が、塗膜面のうちの、集電体と接する面とは反対側、すなわち水が蒸発する気固界面側へと移動する。このようなマイグレーションが起こると、ポリマーアロイ粒子および活物質粒子の分布が塗膜の厚み方向で不均一となり、正極特性が悪化する、密着性が損なわれる、などの問題が発生する。例えば、バインダーとして機能するポリマーアロイ粒子が活物質層の気固界面側へとブリード(移行)し、集電体と活物質層との界面におけるポリマーアロイ粒子の量が相対的に少なくなると、活物質層への電解液の浸透が阻害されることにより十分な電気的特性が得られなくなるとともに、集電体と活物質層との結着性が不足して剥離してしまう。さらに、ポリマーアロイ粒子がブリードすることにより、活物質層表面の平滑性が損なわれてしまう。
しかしながら、両粒子の平均粒子径の比(Da/Db)が前記範囲にあると、前述したような問題の発生を抑制することができ、良好な電気的特性と結着性とが両立した正極を容易に製造できることとなる。比(Da/Db)が前記範囲未満では、ポリマーアロイ粒子と活物質粒子との平均粒子径の差が小さくなるため、ポリマーアロイ粒子と活物質粒子とが接触する面積が小さくなり、粉落ち耐性が不十分となる場合がある。一方、比(Da/Db)が前記範囲を超えると、ポリマーアロイ粒子と活物質粒子との平均粒子径の差が大きくなりすぎることにより、ポリマーアロイ粒子の接着力が不十分となり、集電体と活物質層との間の結着性が不足する場合がある。
上記正極用スラリーは、その固形分濃度(スラリー中の溶媒以外の成分の合計重量がスラリーの全重量に対して占める割合)が20〜80重量%であることが好ましく、30〜75重量%であることがより好ましい。
上記正極用スラリーは、その曳糸性が30〜80%であることが好ましく、33〜79%であることがさらに好ましく、35〜78%であることがより好ましい。曳糸性が前記範囲未満であると、正極用スラリーを集電体上へ塗布する際、レベリング性が不足するため、正極厚みの均一性を得難くなる場合がある。このような厚みが不均一な正極を使用すると、充放電反応の面内分布が発生するため、安定した電池性能の発現が困難となる。一方、曳糸性が前記範囲を超えると、正極用スラリーを集電体上に塗布する際、液ダレが起き易くなり、安定した品質の正極を得難いこととなる。そこで、曳糸性が前記範囲にあれば、これらの問題の発生を抑制することができ、良好な電気的特性と密着性とを両立させた正極を製造することが容易となるのである。
本明細書における「曳糸性」は、以下のようにして測定される。
まず、底部に直径5.2mmの開口部を有するザーンカップ(太佑機材(株)製、ザーンビスコシティーカップNo.5)を準備する。この開口部を閉じた状態で、ザーンカップに正極用スラリー40gを流し込む。その後、開口部を開放すると、開口部から正極用スラリーが流れ出す。ここで、開口部を開放した時をT、正極用スラリーの曳糸が終了した時をT、正極用スラリーの流出が終了した時をTとした場合に、本明細書における「曳糸性」は下記数式(1)から求めることができる。
曳糸性(%)=((T−T)/(T−T))×100 (1)
以下、上記正極用スラリーに含まれるポリマーアロイ粒子以外の成分について、それぞれ詳細に説明する。
2.2 活物質粒子
正極用スラリーに含有される活物質粒子を構成する材料としては特に限定はなく、目的とする蓄電デバイスの種類により適宜適当な材料を選択することができる。しかしながら、本発明の正極用バインダー組成物を用いて製造される正極用スラリーに含有される活物質粒子としては、リチウム原子含有酸化物が好ましく、さらにオリビン構造を有するリチウム原子含有酸化物であることが好ましい。
上記のオリビン構造を有するリチウム原子含有酸化物は、下記一般式(1)
Li1−x(XO) (1)
(式(1)中、MはMg、Ti、V、Nb、Ta、Cr、Mn、Fe、Co、Ni、Cu、Zn、A1、Ga、GeおよびSnよりなる群から選択される金属のイオンの少なくとも1種であり;
Xは、Si、S、PおよびVよりなる群から選択される少なくとも1種であり;
xは数であり、0<x<1の関係を満たし;そして
LiイオンおよびMイオンの価数の合計は+3である。)
で表され、そしてオリビン型結晶構造を有する化合物である。
上記オリビン構造を有するリチウム原子含有酸化物は、金属元素Mの種類によって正極電位が異なる。従って、金属元素Mの種類を選択することにより、電池電圧を任意に設定することができる。オリビン構造を有するリチウム原子含有酸化物の代表的なものとしては、LiFePO、LiCoPO、Li0.90Ti0.05Nb0.05Fe0.30Co0.30Mn0.30POなどを挙げることができる。これらのうち、特にLiFePOは、原料となる鉄化合物の入手が容易であるとともに安価であるため、好ましい。また、上記の化合物中のFeイオンをCoイオン、NiイオンまたはMnイオンに置換した化合物も、上記各化合物と同じ結晶構造を有するので、正極活物質として同様の効果を有する。
活物質粒子の平均粒子径(Db)は、前述した比(Da/Db)の値を満足するように選択されるが、0.4〜10μmの範囲とすることが好ましく、0.5〜7μmの範囲とすることがより好ましい。
活物質粒子の平均粒子径が前記範囲内であると、活物質粒子内におけるリチウムの拡散距離が短くなるので、充放電の際のリチウムの脱挿入に伴う抵抗を低減することができ、その結果、充放電特性がより向上する。さらに、正極用スラリーが後述の導電付与剤を含有する場合、活物質粒子の平均粒子径が前記範囲内であることにより、活物質粒子と導電付与剤との接触面積を十分に確保することができることとなり、正極の電子導電性が向上し、正極抵抗がより低下する。
ここで、活物質粒子の平均粒子径(Db)とは、レーザー回折法を測定原理とする粒度分布測定装置を用いて粒度分布を測定し、累積度数が体積百分率で50%となる粒子径(D50)の値である。このようなレーザー回折式粒度分布測定装置としては、例えばHORIBA LA−300シリーズ、HORIBA LA−920シリーズ(以上、(株)堀場製作所製)などを挙げることができる。この粒度分布測定装置は、活物質粒子の一次粒子だけを評価対象とするものではなく、一次粒子が凝集して形成された二次粒子をも評価対象とする。従って、この粒度分布測定装置によって得られた平均粒子径(Db)は、正極用スラリー中に含まれる活物質粒子の分散状態の指標とすることができる。
活物質粒子の平均粒子径(Db)は、正極用スラリーを遠心分離して活物質粒子を沈降させた後、その上澄み液を除去し、沈降した活物質粒子を上記の方法により測定することによっても測定することができる。
2.3 水
上記正極用スラリーは、さらに水を含有する。水を含有することにより、正極用スラリーの安定性が良好となり、正極を再現性よく製造することが可能となる。水は、正極用スラリーで一般的に使用されている高沸点溶剤(たとえば、N−メチルピロリドンなど)と比較して蒸発速度が速く、溶媒除去時間の短縮による生産性の向上、粒子のマイグレーションの抑制などを期待することができる。
2.4 その他の成分
上記正極用スラリーは、前述した成分以外に、必要に応じてその他の成分を含有することができる、このようなその他の成分としては、例えば導電付与剤、非水系媒体、増粘剤などを挙げることができる。
2.4.1 導電付与剤
上記導電付与剤の具体例としては、リチウムイオン二次電池においてはカーボンなどが;
ニッケル水素二次電池においては、正極では酸化コバルトが:
負極ではニッケル粉末、酸化コバルト、酸化チタン、カーボンなどが、それぞれ用いられる。上記両電池において、カーボンとしては、グラファイト、活性炭、アセチレンブラック、ファーネスブラック、黒鉛、炭素繊維、フラーレンなどを挙げることができる。これらの中でも、アセチレンブラックまたはファーネスブラックを好ましく使用することができる。導電付与剤の使用割合は、活物質粒子100重量部に対して、好ましくは20重量部以下であり、より好ましくは1〜15重量部であり、特に2〜10重量部であることが好ましい。
2.4.2 非水系媒体
上記正極用スラリーは、その塗布性を改善する観点から、80〜350℃の標準沸点を有する非水系媒体を含有することができる。このような非水系媒体の具体例としては、例えばN−メチルピロリドン、ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド化合物;
トルエン、キシレン、n−ドデカン、テトラリンなどの炭化水素;
2−エチル−1−ヘキサノール、1−ノナノール、ラウリルアルコールなどのアルコール;
メチルエチルケトン、シクロヘキサノン、ホロン、アセトフェノン、イソホロンなどのケトン;
酢酸ベンジル、酪酸イソペンチル、乳酸メチル、乳酸エチル、乳酸ブチルなどのエステル;
o−トルイジン、m−トルイジン、p−トルイジンなどのアミン化合物;
γ−ブチロラクトン、δ−ブチロラクトンなどのラクトン;
ジメチルスルホキシド、スルホランなどのスルホキシド・スルホン化合物などを挙げることができ、これらのうちから選択される1種以上を使用することができる。これらの中でも、ポリマーアロイ粒子の安定性、正極用スラリーを塗布する際の作業性などの点から、N−メチルピロリドンを使用することが好ましい。
2.4.3 増粘剤
上記正極用スラリーは、その塗工性を改善する観点から、増粘剤を含有することができる。増粘剤の具体例としては、例えばカルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース化合物;
上記セルロース化合物のアンモニウム塩またはアルカリ金属塩;
ポリ(メタ)アクリル酸、変性ポリ(メタ)アクリル酸などのポリカルボン酸;
上記ポリカルボン酸のアルカリ金属塩;
ポリビニルアルコール、変性ポリビニルアルコール、エチレン−ビニルアルコール共重合体などのポリビニルアルコール系(共)重合体;
(メタ)アクリル酸、マレイン酸およびフマル酸などの不飽和カルボン酸と、ビニルエステルとの共重合体の鹸化物などの水溶性ポリマーなどを挙げることができる。これらの中でも特に好ましい増粘剤としては、カルボキシメチルセルロースのアルカリ金属塩、ポリ(メタ)アクリル酸のアルカリ金属塩などである。
これら増粘剤の市販品としては、カルボキシメチルセルロースのアルカリ金属塩として、例えばCMC1120、CMC1150、CMC2200、CMC2280、CMC2450(以上、ダイセル化学工業(株)製)などを挙げることができる。
正極用スラリーが増粘剤を含有する場合、増粘剤の使用割合としては、正極用スラリーの全固形分量に対して、好ましくは20重量%以下であり、より好ましくは0.1〜15重量%であり、さらに好ましくは0.5〜10重量%である。
2.5 正極用スラリーの製造方法
上記正極用スラリーは、前述のポリマーアロイ粒子と、活物質粒子と、水と、必要に応じて用いられる添加剤と、を混合することにより製造することができる。これらの混合には公知の手法による攪拌によって行うことができ、例えば攪拌機、脱泡機、ビーズミル、高圧ホモジナイザーなどを利用することができる。
正極用スラリーの調製(各成分の混合操作)は、少なくともその工程の一部を減圧下で行うことが好ましい。これにより、得られる正極層内に気泡が生じることを防止することができる。減圧の程度としては、絶対圧として、5.0×10〜5.0×10Pa程度とすることが好ましい。
正極用スラリーを製造するための混合撹拌としては、スラリー中に活物質粒子の凝集体が残らない程度に撹拌し得る混合機と、必要にして十分な分散条件とを選択する必要がある。分散の程度は粒ゲージにより測定可能であるが、少なくとも100μmより大きい凝集物がなくなるように混合分散することが好ましい。このような条件に適合する混合機としては、例えばボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを例示することができる。
3.正極
正極は、金属箔などの適宜の集電体の表面に、上記の正極用スラリーを塗布して塗膜を形成し、次いで該塗膜を乾燥することにより、製造することができる。この用にして製造された正極は、集電体上に、前述のポリマーアロイ粒子および活物質粒子、さらに必要に応じて添加した任意成分を含有する活物質層が結着されてなるものである。集電体の表面に前述した正極用スラリーから形成された層を有するこのような正極は、集電体と活物質層間と間の結着性に優れるとともに、電気的特性の一つである充放電レート特性が良好である。このような正極は蓄電デバイスの正極として好適である。
集電体は、導電性材料からなるものであれば特に制限されない。リチウムイオン二次電池においては、鉄、銅、アルミニウム、ニッケル、ステンレスなどの金属製の集電体が使用されるが、特に正極にアルミニウムを、負極に銅を用いた場合、本発明の正極用スラリーを用いて製造された正極用スラリーの効果が最もよく現れる。ニッケル水素二次電池における集電体としては、パンチングメタル、エキスパンドメタル、金網、発泡金属、網状金属繊維焼結体、金属メッキ樹脂板などが使用される。
集電体の形状および厚さは特に制限されないが、厚さ0.001〜0.5mm程度のシート状のものとすることが好ましい。
正極用スラリーの集電体への塗布方法についても特に制限はない。塗布は、例えばドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの適宜の方法によることができる。正極用スラリーの塗布量も特に制限されないが、液状媒体を除去した後に形成される活物質層の厚さが、0.005〜5mmとなる量とすることが好ましく、0.01〜2mmとなる量とすることがより好ましい。
塗布後の塗膜からの乾燥方法(水および任意的に使用される非水系媒体(以下、これらをまとめて「液状媒体」という。)の除去方法)についても特に制限されず、例えば温風、熱風、低湿風による乾燥;真空乾燥;(遠)赤外線、電子線などの照射による乾燥などによることができる。乾燥速度としては、応力集中によって活物質層に亀裂が入ったり、活物質層が集電体から剥離したりしない程度の速度範囲の中で、できるだけ早く液状媒体が除去できるように適宜に設定することができる。
さらに、乾燥後の集電体をプレスすることにより、活物質層の密度を高めることが好ましい。プレス方法は、金型プレスやロールプレスなどの方法が挙げられる。プレス後の活物質層の密度としては、1.6〜2.4g/cmとすることが好ましく、1.7〜2.2g/cmとすることがより好ましい。
4.蓄電デバイス
上記のような正極を用いて、蓄電デバイスを製造することができる。
蓄電デバイスは、前述した正極を備えるものであり、さらに電解液を含有し、セパレータなどの部品を用いて、常法に従って製造することができる。具体的な製造方法としては、例えば、負極と正極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、適宜の形状であることができる。
電解液は、液状でもゲル状でもよく、負極活物質、正極活物質の種類に応じて、蓄電デバイスに用いられる公知の電解液の中から電池としての機能を効果的に発現するものを選択すればよい。
電解液は、電解質を適当な溶媒に溶解した溶液であることができる。
上記電解質としては、リチウムイオン二次電池では、従来から公知のリチウム塩のいずれをも使用することができ、その具体例としては、例えばLiClO、LiBF、LiPF、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、LiCFSO、LiCHSO、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウムなどを例示することができる。ニッケル水素二次電池では、例えば従来公知の濃度が5モル/リットル以上の水酸化カリウム水溶液を使用することができる。
上記電解質を溶解するための溶媒は、特に制限されるものではないが、その具体例として、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどのカーボネート化合物;
γ−ブチルラクトンなどのラクトン化合物;
トリメトキシメタン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル化合物;
ジメチルスルホキシドなどのスルホキシド化合物などを挙げることができ、これらのうちから選択される1種以上を使用することができる。
電解液中の電解質の濃度としては、好ましくは0.5〜3.0モル/Lであり、より好ましくは0.7〜2.0モル/Lである。
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例、比較例中の「部」および「%」は、特に断らない限り質量基準である。
実施例1
<バインダー組成物の調製>
(1)重合体Aの合成
電磁式撹拌機を備えた内容積約6Lのオートクレーブの内部を十分に窒素置換した後、脱酸素した純水2.5Lおよび乳化剤としてパーフルオロデカン酸アンモニウム25gを仕込み、350rpmで撹拌しながら60℃まで昇温した。次いで、単量体であるフッ化ビニリデン(VDF)70%および六フッ化プロピレン(HFP)30%からなる混合ガスを、内圧が20kg/cmに達するまで仕込んだ。重合開始剤としてジイソプロピルパーオキシジカーボネートを20%含有するフロン113溶液25gを窒素ガスを使用して圧入し、重合を開始した。重合中は内圧が20kg/cmに維持されるようVDF60.2%およびHFP39.8%からなる混合ガスを逐次圧入して、圧力を20kg/cmに維持した。また、重合が進行するに従って重合速度が低下するため、3時間経過後に、先と同じ重合開始剤溶液の同量を窒素ガスを使用して圧入し、さらに3時間反応を継続した。その後、反応液を冷却すると同時に撹拌を停止し、未反応の単量体を放出した後に反応を停止することにより、重合体Aの微粒子を40%含有する水系分散体を得た。
得られた重合体につき、19F−NMRにより分析した結果、各単量体の質量組成比はVDF/HFP=21/4であった。
(2)ポリマーアロイ粒子の合成(重合体Bの重合)
容量7Lのセパラブルフラスコの内部を十分に窒素置換した後、上記(1)で得られた重合体Aの微粒子を含有する水系分散体1,600g(重合体A換算で25部に相当)、乳化剤「アデカリアソープSR1025」(商品名、(株)ADEKA製)0.5部、メタクリル酸メチル(MMA)30部、アクリル酸2−エチルヘキシル(EHA)40部およびメタクリル酸(MAA)5部ならびに水130部を順次仕込み、70℃で3時間攪拌し、重合体Aに単量体を吸収させた。次いで油溶性重合開始剤であるアゾビスイソブチロニトリル0.5部を含有するテトラヒドロフラン溶液20mLを添加し、75℃に昇温して3時間反応を行い、さらに85℃で2時間反応を行った。その後、冷却した後に反応を停止し、2.5N水酸化ナトリウム水溶液でpH7に調節することにより、重合体粒子を40%含有する水系分散体(バインダー組成物)を得た。
得られた水系分散体について、動的光散乱法を測定原理とする粒度分布測定装置(大塚電子(株)製、形式「FPAR−1000」)を用いて粒度分布を測定し、その粒度分布から最頻粒径を求めたところ、数平均粒子径は330nmであった。
また、得られた水系分散体の約10gを直径8cmのテフロンシャーレへ取り、120℃で1時間乾燥して成膜した。得られた膜(重合体)のうちの1gを正確に秤り採り、これをテトラヒドロフラン(THF)400mL中に浸積して50℃で3時間振とうした。次いで、THF相を300メッシュの金網で濾過して不溶分を分離した後、溶解分のTHFを蒸発除去して得た残存物の重量(Y(g))を測定した値から、下記数式(2)によってTHF不溶分を求めたところ、上記重合体粒子のTHF不溶分は85%であった。
THF不溶分(%)={(1−Y)/1}×100 (2)
さらに、得られた微粒子を示差走査熱量計(DSC)によって測定したところ、熔解温度Tmは観察されず、単一のガラス転移温度Tgが−2℃に観測されたことから、得られた重合体粒子はポリマーアロイ粒子であると考えられる。
<活物質粒子の調製>
市販のリン酸鉄リチウム(LiFePO)をめのう乳鉢で粉砕し、ふるいを用いて分級することにより、粒子径(D50値)が0.5μmである活物質粒子を調製した。
<正極用スラリーの調製>
二軸型プラネタリーミキサー(プライミクス(株)製、商品名「TKハイビスミックス 2P−03」)に増粘剤(商品名「CMC1120」、ダイセル化学工業(株)製)1部(固形分換算)、上記「活物質粒子の調製」で調製した活物質粒子100質量部、アセチレンブラック5部および水68部を投入し、60rpmで1時間攪拌を行った。次いで、上記「バインダー組成物の調製」で調製したバインダー組成物を、該組成物中に含有されるポリマー粒子が第1表に記載の量(部)となるように加え、さらに1時間攪拌してペーストを得た。得られたペーストに水を加えて固形分濃度を50%に調整した後、攪拌脱泡機((株)シンキー製、商品名「あわとり練太郎」)を使用して、200rpmで2分間、1,800rpmで5分間、さらに真空下(約5.0×10Pa)において1,800rpmで1.5分間攪拌混合することにより、正極用スラリーを調製した。
−正極用スラリーの曳糸性の測定−
この正極用スラリーの曳糸性を、以下のようにして測定した。
先ず、容器の底辺に直径5.2mmの開口部が存在するザーンカップ(太佑機材(株)製、ザーンビスコシティーカップNo.5)を準備した。このザーンカップの開口部を閉じた状態で、上記で調製した正極用スラリーを40g流し込んだ。開口部を開放するとスラリーが流れ出した。このとき、開口部を開放した瞬間の時間をTとし、スラリーが流れ出る際に糸を曳くようにして流出し続けた時間を目視で測定し、この時間をTとした。さらに、糸を曳かなくなってからも測定を継続し、正極用スラリーが流れ出なくなるまでの時間Tを測定した。測定した各値T、TおよびTを上記数式(1)に代入して曳糸性を求めた。
<正極および蓄電デバイスの製造および評価>
(1)正極の製造
アルミニウム箔からなる集電体の表面に、上記で調製した正極用スラリーを、乾燥後の膜厚が100μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥した。その後、膜(活物質層)の密度が第1表に記載の値になるようにロールプレス機によりプレス加工することにより、正極を得た。
(2)正極のクラック率の評価
この正極を、幅2cm×長さ10cmの極板に切り出し、幅方向に直径2mmの丸棒に沿って正極板を折り曲げ回数100回にて繰り返し折り曲げ試験を行った。丸棒に沿った部分のクラックの大きさを目視により観察し計測し、クラック率を測定した。クラック率は、下記数式(3)によって定義した。
クラック率(%)={クラックの入った長さ(mm)÷極板全体の長さ(mm)}×100 (3)
ここで、柔軟性や密着性に優れた電極板はクラック率が低い。クラック率は0%であることが望ましいが、正極板と負極板とをセパレータを介して渦巻き状に捲回して極板群を製造する場合には、クラック率が20%までなら許容される。しかし、クラック率が20%より大きくなると、正極板が切れ易くなり極板群の製造が不可能となり、極板群の生産性が低下する。このことから、クラック率の閾値として20%までが良好な範囲であると考えられる。
クラック率の測定結果は第1表に示した。
(3)負極の製造
二軸型プラネタリーミキサー(プライミクス(株)製、商品名「TKハイビスミックス 2P−03」)に、ポリフッ化ビニリデン(PVDF)4部(固形分換算)、負極活物質としてグラファイト100部(固形分換算)、N−メチルピロリドン(NMP)80部を投入し、60rpmで1時間撹拌を行った。その後、さらにNMP20部を投入した後、撹拌脱泡機((株)シンキー製、製品名「あわとり練太郎」)を使用して、200rpmで2分間、次いで1,800rpmで5分間、さらに真空下において1,800rpmで1.5分間撹拌・混合することにより、負極用スラリーを調製した。
銅箔からなる集電体の表面に、上記で調製した負極用スラリーを、乾燥後の膜厚が150μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥した。その後、膜の密度が1.5g/cmとなるようにロールプレス機を使用してプレス加工することにより、負極を得た。
(4)リチウムイオン電池セルの組立て
露点が−80℃以下となるようAr置換されたグローブボックス内で、上「(2)負極の製造」において製造した負極を直径16.16mmに打ち抜き成型したものを、2極式コインセル(宝泉(株)製、商品名「HSフラットセル」)上に載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレータ(セルガード(株)製、商品名「セルガード#2400」)を載置し、さらに、空気が入らないように電解液を500μL注入した後、前記「(1)正極の製造」において製造した正極を直径15.95mmに打ち抜き成型したものを載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することにより、リチウムイオン電池セル(蓄電デバイス)を組み立てた。
ここで使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1(質量比)の溶媒に、LiPFを1モル/Lの濃度で溶解した溶液である。
(5)蓄電デバイスの評価(充放電レート特性の評価)
上記で製造した蓄電デバイスにつき、定電流(0.2C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)として、0.2Cでの充電容量を測定した。次いで、定電流(0.2C)にて放電を開始し、電圧が2.7Vになった時点を放電完了(カットオフ)とし、0.2Cでの放電容量を測定した。
次に、同じセルにつき、定電流(3C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)として3Cでの充電容量を測定した。次いで、定電流(3C)にて放電を開始し、電圧が2.7Vになった時点を放電完了(カットオフ)とし、3Cでの放電容量を測定した。
上記の測定値を用いて、0.2Cでの充電容量に対する3Cでの充電容量の割合(百分率%)を計算することにより充電レート(%)を、
0.2Cでの放電容量に対する3Cでの放電容量の割合(百分率%)を計算することにより放電レート(%)を、それぞれ算出した。
充電レートおよび放電レートの双方がいずれもが80%以上のとき、充放電レート特性は良好であると評価することができる。
測定された充電レートおよび放電レートの値を、第1表にそれぞれ示した。
なお、測定条件において「1C」とは、ある一定の電気容量を有するセルを定電流放電して1時間で放電終了となる電流値のことを示す。たとえば「0.1C」とは、10時間かけて放電終了となる電流値のことであり、10Cとは0.1時間かけて放電完了となる電流値のことをいう。
実施例2〜8および比較例1〜3
<バインダー組成物の調製>
上記実施例1の「(1)重合体Aの合成」において、単量体ガスの組成と乳化剤量を適宜に変更したほかは実施例1と同様にして、第1表に示す組成の重合体Aの微粒子を含有する水系分散体を調製し、該水系分散体の固形分濃度に応じて水を減圧除去または追加することにより、固形分濃度40%の水系分散体を得た。
次いで実施例1の「(2)ポリマーアロイ粒子の合成」において、上記の水系分散体を固形分換算で第1表に記載の量だけ用い、単量体の仕込み量(部)ならびに重合体Aに単量体を吸収させる際の温度および時間をそれぞれ第1表のとおりとし、さらに乳化剤の使用量を適宜変量することによって、第1表に記載の粒子径を有する重合体粒子を含有する水系分散体(バインダー組成物)を得た。
得られた微粒子について行ったTHF不溶分測定ならびにDSC測定の結果(ガラス転移温度Tg、融解温度Tmおよびポリマーアロイであるか否か)を、第1表に合わせて示した。
<活物質粒子の調製>
上記実施例1の「活物質粒子の調製」において、使用したふるいの目開きを適宜変更することにより、第1表に記載の粒子径(D50値)を有する活物質粒子を調製した。
<正極用スラリーの調製>
活物質粒子およびバインダー組成物として、それぞれ上記で調製したものを第1表に記載した量だけ用い、さらに<正極用スラリーの調製>において第1表に記載した種類および量の増粘剤を使用したほかは、実施例1における「正極用スラリーの調製」と同様にして正極用スラリーを調製し、その曳糸性を測定した。曳糸性の値は第1表に示した。
<正極および蓄電デバイスの製造および評価>
上記で得た各材料を使用したほかは、実施例1と同様にして正極および蓄電デバイスを製造し、評価した。
評価結果は、第1表に示した。
比較例4
<バインダー組成物の調製>
上記実施例1の「(1)重合体Aの合成」において、単量体ガスの組成を適宜に変更したほかは実施例1と同様にして、第1表に示す組成の重合体Aの微粒子を含有する水系分散体を得た。
次いで実施例1の「(2)ポリマーアロイ粒子の合成」において、上記の水系分散体を固形分換算で第1表に記載の量だけ用い、重合体(B)の単量体の仕込み量(部)をそれぞれ第1表のとおりとし、さらに乳化剤の使用量を変量することによって、第1表に記載の粒子径400nmの重合体粒子を含有する水系分散体を得た。
さらに、溶媒としてN−メチルピロリドン(NMP)を使用して溶媒置換を行うことにより、バインダー組成物を得た。このバインダー組成物において、重合体は溶媒に溶解していた。
<活物質粒子の調製>
上記実施例1の「活物質粒子の調製」において、使用したふるいの目開きを変更することにより、粒子径(D50値)1.0μmの活物質粒子を調製した。
<正極用スラリーの調製ならびに正極および蓄電デバイスの製造および評価>
二軸型プラネタリーミキサー(プライミクス(株)製、商品名「TKハイビスミックス 2P−03」)に増粘剤(商品名「CMC1150」、ダイセル化学工業(株)製)10部(固形分換算)、上記「活物質粒子の調製」で調製した活物質粒子100質量部、アセチレンブラック5部、上記「バインダー組成物の調製」で調製したバインダー組成物4部(固形分換算)およびNMP68部を投入し、60rpmで2時間攪拌してペーストを得た。得られたペーストにNMPを加えて固形分濃度を45%に調整した後、攪拌脱泡機((株)シンキー製、商品名「あわとり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間攪拌混合することにより、正極用スラリーを調製した。
上記の正極様子ラリーを用いたほかは、実施例1における「正極および蓄電デバイスの製造および評価」と同様にして正極および蓄電デバイスを製造し、評価した。
評価結果は第1表に示した。
比較例5
<バインダー組成物の調製>
上記実施例1の「(1)重合体Aの合成」において、単量体ガスの組成を変更したほかは実施例1と同様にして、第1表に示す組成の重合体Aの微粒子を含有する水系分散体を得て、これをバインダー組成物とした(これに引き続く「(2)ポリマーアロイ粒子の合成」は行わなかった。)。
<正極用スラリーの調製ならびに正極および蓄電デバイスの製造および評価>
バインダー組成物として、上記で調製したものを用い、さらに増粘剤として「CMC2200」(ダイセル化学工業(株)製)10部(固形分換算)を用いたほかは、実施例1における「正極用スラリーの調製」および「正極および蓄電デバイスの製造および評価」と同様にして正極用スラリーを調製し、これを用いて正極および蓄電デバイスを製造し、評価した。
評価結果は第1表に示した。
比較例6
<バインダー組成物の調製>
上記実施例1の「(2)ポリマーアロイ粒子の合成」において、重合体Aを含有する水系分散体を使用せず、乳化剤「アデカリアソープSR1025」1.0部、水145部に変更し、重合体(B)の単量体の仕込み量(部)を第1表のとおりとしたほかは、実施例1と同様にして重合体粒子を含有する水系分散体を得て、これをバインダー組成物とした。
<正極用スラリーの調製ならびに正極および蓄電デバイスの製造および評価>
バインダー組成物として、上記で調製したものを用い、さらに増粘剤として「CMC1120」(ダイセル化学工業(株)製)10部(固形分換算)を用いたほかは、実施例1における「正極用スラリーの調製」および「正極および蓄電デバイスの製造および評価」と同様にして正極用スラリーを調製し、これを用いて正極および蓄電デバイスを製造し、評価した。
評価結果は第1表に示した。
比較例7
<バインダー組成物の調製>
上記実施例1の「(2)ポリマーアロイ粒子の合成」において、重合体Aの微粒子を含有する水系分散体1,600g(重合体A換算で25部に相当)に乳化剤「アデカリアソープSR1025」(商品名、(株)ADEKA製)0.5部を加えた後、温度を75℃に昇温後、メタクリル酸メチル(MMA)30部、アクリル酸2−エチルヘキシル(EHA)40部、メタクリル酸(MAA)5部、水130部およびアゾビスイソブチロニトリル0.5部をほぼ同時に加えて重合を開始し、75℃で3時間、次いで85℃で2時間反応を行ったほかは、実施例1と同様にして重合体粒子40%を含有する水系分散体(バインダー組成物)を得た。
<正極用スラリーの調製ならびに正極および蓄電デバイスの製造および評価>
バインダー組成物として、上記で調製したものを用い、さらに増粘剤として「CMC1120」(ダイセル化学工業(株)製)1部(固形分換算)を用いたほかは、実施例1における「正極用スラリーの調製」および「正極および蓄電デバイスの製造および評価」と同様にして正極用スラリーを調製し、これを用いて正極および蓄電デバイスを製造し、評価した。
評価結果は第1表に示した。
Figure 2014081996
Figure 2014081996
第1表における各成分の略称は、それぞれ以下の意味である。
[重合体Aのモノマー]
VDF:フッ化ビニリデン
HFP:六フッ化プロピレン
TFE:四フッ化エチレン
[重合体Bのモノマー]
MMA:メタクリル酸メチル
EHA:アクリル酸2−エチルヘキシル
AN:アクリロニトリル
AA:アクリル酸
MAA:メタクリル酸
[溶媒]
NMP:N−メチルピロリドン
[ポリマーアロイであるか否か?]
○:ポリマーアロイである。
×:ポリマーアロイでない。
[増粘剤]
CMC1120、CMC1150、CMC2200、CMC2280およびCMC2450は、いずれもダイセル化学工業(株)製品の商品名であり、カルボキシメチルセルロースのアルカリ金属塩からなる増粘剤である。
第1表における「−」の表記は、該当する成分を使用しなかったか、あるいは該当する操作を行わなかったことを示す。
上記第1表から明らかなように、実施例1〜8に示した本発明のバインダー組成物を用いて調製された正極用スラリーは、集電体と活物質層との間の結着性が良好であり、クラック率が低く、密着性に優れる正極を与えた。また、これらの正極を具備する蓄電デバイス(リチウムイオン電池)は、充放電レート特性が良好であった。
一方、比較例1のバインダー組成物からは、良好な充放電特性を示す蓄電デバイスは得られなかった。比較例3のバインダー組成物からは、密着性の良好な正極は得られなかった。比較例2、5および6のバインダー組成物からは、正極の密着性および蓄電デバイスの充放電レート特性のうちの少なくとも一方が不良であった。比較例4は、非水系の分散媒体を使用した例であるが、重合体粒子が溶解してしまい、このため、正極の密着性および蓄電デバイスの充放電レート特性の双方が不良であった。
上述のとおり、本発明における重合体粒子がポリマーアロイであることは、DSCチャートから推定した。
上記実施例3ならびに比較例5、6および7においてそれぞれ得られた重合体粒子のDSCチャートを、図1〜4にそれぞれ示した。
図2は重合体Aのみの場合に、
図3は重合体Bのみの場合に、
図4は重合体Aおよび重合体Bの混合物に、それぞれ該当し、そして
図1が重合体Aおよび重合体Bからなるポリマーアロイ粒子に該当する。
図2には重合体Aの熔解温度Tmが、図3には重合体Bのガラス転移温度Tgが、それぞれ観測された。
図4(重合体Aに重合体Bの単量体を吸収させなかった場合)では、重合体Aの熔解温度Tmおよび重合体Bのガラス転移温度Tgが双方とも観測されたことから、本重合体粒子が重合体Aおよび重合体Bの混合物であると考えられるのに対して、
図1を見ると、重合体Aの熔解温度Tmおよび重合体Bのガラス転移温度Tgはいずれも観測されず、重合体AのTmとも重合体BのTgとも異なる温度に単一の新しいガラス転移温度Tgが発生していることから、この重合体粒子はポリマーアロイであるものと考えられる。
本発明は、上記の実施形態に限定されるものではなく、種々の変形が可能である。本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を包含する。また本発明は、上記の実施形態で説明した構成の本質的でない部分を他の構成に置き換えた構成を包含する。さらに本発明は、上記の実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成をも包含する。さらに本発明は、上記の実施形態で説明した構成に公知技術を付加した構成をも包含する。
本発明の上記目的および利点は、
フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンよりなる群から選ばれる少なくとも1種に由来する繰り返し単位を有する重合体Aと、
不飽和カルボン酸エステルに由来する繰り返し単位を有する重合体Bと
からなるポリマーアロイ粒子、および

を含有し、ただし
前記ポリマーアロイ粒子の平均粒子径が50〜400nmであり、
前記ポリマーアロイ粒子が、前記重合体Aに重合体Bを構成するための単量体を吸収させた後、該重合体Bを構成するための単量体を重合して重合体Bを合成する方法によって合成されたものであり、そして
前記重合体Bを構成するための単量体が、
不飽和カルボン酸エステルであるか、または
不飽和カルボン酸エステルと、α,β−不飽和ニトリル化合物、不飽和カルボン酸、共役ジエン化合物、スチレン、α−メチルスチレン、p−メチルスチレン、ビニルトルエン、クロルスチレン、ジビニルベンゼン、カルボン酸ビニルエステルおよびエチレン性不飽和ジカルボン酸の酸無水物よりなる群から選択される少なくとも1種の単量体と、の混合物であることを特徴とする、蓄電デバイスの正極用バインダー組成物によって達成される。
実施例3で得られた重合体粒子のDSCチャート。 比較例で得られた重合体粒子のDSCチャート。 比較例で得られた重合体粒子のDSCチャート。 比較例で得られた重合体粒子のDSCチャート。
1.正極用バインダー組成物
本発明の正極用バインダー組成物は、上記のとおり、
フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンよりなる群から選ばれる少なくとも1種に由来する繰り返し単位を有する重合体Aと、
不飽和カルボン酸エステルに由来する繰り返し単位を有する重合体Bと
からなるポリマーアロイ粒子、および

を含有し、そして
前記ポリマーアロイ粒子の平均粒子径が50〜400nmである。
1.1 ポリマーアロイ粒子
本発明の正極用バインダー組成物に含有されるポリマーアロイ粒子は、
フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンからなる群から選ばれる少なくとも一種に由来する繰り返し単位を含む重合体Aと、
不飽和カルボン酸エステルに由来する繰り返し単位を有する重合体Bと
からなる。
「ポリマーアロイ」とは、「岩波 理化学辞典 第5版.岩波書店」における定義によれば、「2成分以上の高分子の混合あるいは化学結合により得られる多成分系高分子の総称」であって「異種高分子を物理的に混合したポリマーブレンド、異種高分子成分が共有結合で結合したブロックおよびグラフト共重合体、異種高分子が分子間力によって会合した高分子錯体、異種高分子が互いに絡み合ったIPN(Interpenetrating Polymer Network)など」をいう。しかしながら、本発明の正極用バインダー組成物に含有されるポリマーアロイ粒子は、「異種高分子成分が共有結合によって結合していないポリマーアロイ」のうちのIPN(相互侵入高分子網目)からなる粒子である。
ポリマーアロイ粒子を構成する重合体Aは、イオン導電性に優れるとともに、結晶性樹脂のハードセグメントが凝集して、主鎖にC−H…F−Cのような疑似架橋点を与えているものと考えられる。このためバインダー樹脂として重合体Aを単独で用いると、そのイオン導電性および耐酸化性は良好であるものの、密着性および柔軟性が不十分であるため密着性は低い。一方、ポリマーアロイ粒子を構成する重合体Bは、密着性および柔軟性には優れるものの、耐酸化性が低いから、これをバインダー樹脂として単独で正極に使用した場合には、充放電を繰り返すことにより酸化分解して変質するため、良好な充放電特性を得ることができない。
しかしながら、重合体Aおよび重合体Bを含有するポリマーアロイ粒子を使用することにより、イオン導電性および耐酸化性と、密着性とを同時に発現することができ、良好な充放電特性を有する正極を製造することが可能となった。ポリマーアロイ粒子が、重合体Aおよび重合体Bのみからなる場合、より耐酸化性を向上させることができ
このような(メタ)アクリル酸エステルの具体例としては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸i−アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトール、(メタ)アクリル酸アリル、ジ(メタ)アクリル酸エチレンなどを挙げることができ、これらのうちから選択される1種以上であることができる。これらのうち、(メタ)アクリル酸メチル、(メタ)アクリル酸エチルおよびアクリル酸2−エチルヘキシルから選択される1種以上であることが好ましく、(メタ)アクリル酸メチルであることが特に好ましい。
重合体Bは、不飽和カルボン酸エステルに由来する繰り返し単位のみを有する重合体であってもよく、不飽和カルボン酸エステルに由来する繰り返し単位のほかに、共重合可能な他の不飽和単量体に由来する構成単位を有していてもよい。
重合体Bにおける不飽和カルボン酸エステルに由来する繰り返し単位の含有割合は、重合体Bの全重量に対して、好ましくは65重量%以上であり、より好ましくは75重量%以上である。
上記他の不飽和単量体は、α,β−不飽和ニトリル化合物、不飽和カルボン酸、共役ジエン化合物、芳香族ビニル化合物およびその他の不飽和単量体から選択される。
1.1.2.4 芳香族ビニル化合物に由来する構成単位
重合体Bが芳香族ビニル化合物に由来する構成単位を有することにより、正極用スラリーが導電付与剤を含有する場合に、これに対する親和性をより良好にすることができる。
芳香族ビニル化合物は、スチレン、α−メチルスチレン、p−メチルスチレン、ビニルトルエン、クロルスチレンおよびジビニルベンゼンであり、これらのうちから選択される1種以上であることができる。芳香族ビニル化合物としては、上記のうち特にスチレンであることが好ましい。
芳香族ビニル化合物に由来する構成単位の含有割合は、全構成単位中35重量%以下であることが好ましく、25重量%以下であることがより好ましい。
1.1.2.5 その他の共重合単量体に由来する構成単位
重合体Bが有する構成単位を導くその他の共重合単量体は、酢酸ビニル、プロピオン酸ビニルなどのカルボン酸ビニルエステル;および
エチレン性不飽和ジカルボン酸の酸無水物であり、これらのうちから選択される1種以上であることができる。
1.2 ポリマーアロイ粒子の調製
本発明の正極用バインダー組成物に含有されるポリマーアロイ粒子は、公知の乳化重合工程またはこれを適宜に組み合わせることによって、容易に合成することができる。
ず、フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンからなる群から選ばれる少なくとも一種に由来する繰り返し単位を有する重合体Aを、公知の方法によって合成し、次いで
該重合体Aに、重合体Bを構成するための単量体を加え、重合体Aからなる重合体粒子の編み目構造の中に、前記単量体を十分吸収させた後、重合体Aの編み目構造の中で、吸収させた単量体を重合して重合体Bを合成する方法により、ポリマーアロイ粒子を容易に製造することができる。このような方法によってポリマーアロイ粒子を製造する場合、重合体Aに、重合体Bの単量体を十分に吸収させることが必須である。吸収温度が低すぎる場合または吸収時間が短すぎる場合には単なるコアシェル粒子または表層の一部のみがIPN型の構造である粒子となり、本発明におけるポリマーアロイ粒子を得ることができない場合が多い。ただし、吸収温度が高すぎると重合系の圧力が高くなりすぎ、反応系のハンドリングおよび反応制御の面から不利となり、吸収時間を過度に長くしても、さらに有利な結果が得られるわけではない。
実施例2〜8ならびに比較例1および2
<バインダー組成物の調製>
上記実施例1の「(1)重合体Aの合成」において、単量体ガスの組成と乳化剤量を適宜に変更したほかは実施例1と同様にして、第1表に示す組成の重合体Aの微粒子を含有する水系分散体を調製し、該水系分散体の固形分濃度に応じて水を減圧除去または追加することにより、固形分濃度40%の水系分散体を得た。
次いで実施例1の「(2)ポリマーアロイ粒子の合成」において、上記の水系分散体を固形分換算で第1表に記載の量だけ用い、単量体の仕込み量(部)ならびに重合体Aに単量体を吸収させる際の温度および時間をそれぞれ第1表のとおりとし、さらに乳化剤の使用量を適宜変量することによって、第1表に記載の粒子径を有する重合体粒子を含有する水系分散体(バインダー組成物)を得た。
得られた微粒子について行ったTHF不溶分測定ならびにDSC測定の結果(ガラス転移温度Tg、融解温度Tmおよびポリマーアロイであるか否か)を、第1表に合わせて示した。
<活物質粒子の調製>
上記実施例1の「活物質粒子の調製」において、使用したふるいの目開きを適宜変更することにより、第1表に記載の粒子径(D50値)を有する活物質粒子を調製した。
<正極用スラリーの調製>
活物質粒子およびバインダー組成物として、それぞれ上記で調製したものを第1表に記載した量だけ用い、さらに<正極用スラリーの調製>において第1表に記載した種類および量の増粘剤を使用したほかは、実施例1における「正極用スラリーの調製」と同様にして正極用スラリーを調製し、その曳糸性を測定した。曳糸性の値は第1表に示した。
<正極および蓄電デバイスの製造および評価>
上記で得た各材料を使用したほかは、実施例1と同様にして正極および蓄電デバイスを製造し、評価した。
評価結果は、第1表に示した。
比較例
<バインダー組成物の調製>
上記実施例1の「(1)重合体Aの合成」において、単量体ガスの組成を適宜に変更したほかは実施例1と同様にして、第1表に示す組成の重合体Aの微粒子を含有する水系分散体を得た。
次いで実施例1の「(2)ポリマーアロイ粒子の合成」において、上記の水系分散体を固形分換算で第1表に記載の量だけ用い、重合体(B)の単量体の仕込み量(部)をそれぞれ第1表のとおりとし、さらに乳化剤の使用量を変量することによって、第1表に記載の粒子径400nmの重合体粒子を含有する水系分散体を得た。
さらに、溶媒としてN−メチルピロリドン(NMP)を使用して溶媒置換を行うことにより、バインダー組成物を得た。このバインダー組成物において、重合体は溶媒に溶解していた。
<活物質粒子の調製>
上記実施例1の「活物質粒子の調製」において、使用したふるいの目開きを変更することにより、粒子径(D50値)1.0μmの活物質粒子を調製した。
<正極用スラリーの調製ならびに正極および蓄電デバイスの製造および評価>
二軸型プラネタリーミキサー(プライミクス(株)製、商品名「TKハイビスミックス 2P−03」)に増粘剤(商品名「CMC1150」、ダイセル化学工業(株)製)10部(固形分換算)、上記「活物質粒子の調製」で調製した活物質粒子100質量部、アセチレンブラック5部、上記「バインダー組成物の調製」で調製したバインダー組成物4部(固形分換算)およびNMP68部を投入し、60rpmで2時間攪拌してペーストを得た。得られたペーストにNMPを加えて固形分濃度を45%に調整した後、攪拌脱泡機((株)シンキー製、商品名「あわとり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間攪拌混合することにより、正極用スラリーを調製した。
上記の正極様子ラリーを用いたほかは、実施例1における「正極および蓄電デバイスの製造および評価」と同様にして正極および蓄電デバイスを製造し、評価した。
評価結果は第1表に示した。
比較例
<バインダー組成物の調製>
上記実施例1の「(1)重合体Aの合成」において、単量体ガスの組成を変更したほかは実施例1と同様にして、第1表に示す組成の重合体Aの微粒子を含有する水系分散体を得て、これをバインダー組成物とした(これに引き続く「(2)ポリマーアロイ粒子の合成」は行わなかった。)。
<正極用スラリーの調製ならびに正極および蓄電デバイスの製造および評価>
バインダー組成物として、上記で調製したものを用い、さらに増粘剤として「CMC2200」(ダイセル化学工業(株)製)10部(固形分換算)を用いたほかは、実施例1における「正極用スラリーの調製」および「正極および蓄電デバイスの製造および評価」と同様にして正極用スラリーを調製し、これを用いて正極および蓄電デバイスを製造し、評価した。
評価結果は第1表に示した。
比較例
<バインダー組成物の調製>
上記実施例1の「(2)ポリマーアロイ粒子の合成」において、重合体Aを含有する水系分散体を使用せず、乳化剤「アデカリアソープSR1025」1.0部、水145部に変更し、重合体(B)の単量体の仕込み量(部)を第1表のとおりとしたほかは、実施例1と同様にして重合体粒子を含有する水系分散体を得て、これをバインダー組成物とした。
<正極用スラリーの調製ならびに正極および蓄電デバイスの製造および評価>
バインダー組成物として、上記で調製したものを用い、さらに増粘剤として「CMC1120」(ダイセル化学工業(株)製)10部(固形分換算)を用いたほかは、実施例1における「正極用スラリーの調製」および「正極および蓄電デバイスの製造および評価」と同様にして正極用スラリーを調製し、これを用いて正極および蓄電デバイスを製造し、評価した。
評価結果は第1表に示した。
比較例
<バインダー組成物の調製>
上記実施例1の「(2)ポリマーアロイ粒子の合成」において、重合体Aの微粒子を含有する水系分散体1,600g(重合体A換算で25部に相当)に乳化剤「アデカリアソープSR1025」(商品名、(株)ADEKA製)0.5部を加えた後、温度を75℃に昇温後、メタクリル酸メチル(MMA)30部、アクリル酸2−エチルヘキシル(EHA)40部、メタクリル酸(MAA)5部、水130部およびアゾビスイソブチロニトリル0.5部をほぼ同時に加えて重合を開始し、75℃で3時間、次いで85℃で2時間反応を行ったほかは、実施例1と同様にして重合体粒子40%を含有する水系分散体(バインダー組成物)を得た。
<正極用スラリーの調製ならびに正極および蓄電デバイスの製造および評価>
バインダー組成物として、上記で調製したものを用い、さらに増粘剤として「CMC1120」(ダイセル化学工業(株)製)1部(固形分換算)を用いたほかは、実施例1における「正極用スラリーの調製」および「正極および蓄電デバイスの製造および評価」と同様にして正極用スラリーを調製し、これを用いて正極および蓄電デバイスを製造し、評価した。
評価結果は第1表に示した。
Figure 2014081996
上記第1表から明らかなように、実施例1〜8に示した本発明のバインダー組成物を用いて調製された正極用スラリーは、集電体と活物質層との間の結着性が良好であり、クラック率が低く、密着性に優れる正極を与えた。また、これらの正極を具備する蓄電デバイス(リチウムイオン電池)は、充放電レート特性が良好であった。
一方、比較例1のバインダー組成物からは、良好な充放電特性を示す蓄電デバイスは得られなかった。比較例のバインダー組成物からは、密着性の良好な正極は得られなかった。比較例およびのバインダー組成物からは、正極の密着性および蓄電デバイスの充放電レート特性のうちの少なくとも一方が不良であった。比較例は、非水系の分散媒体を使用した例であるが、重合体粒子が溶解してしまい、このため、正極の密着性および蓄電デバイスの充放電レート特性の双方が不良であった。
上述のとおり、本発明における重合体粒子がポリマーアロイであることは、DSCチャートから推定した。
上記実施例3ならびに比較例およびにおいてそれぞれ得られた重合体粒子のDSCチャートを、図1〜4にそれぞれ示した。
図2は重合体Aのみの場合に、
図3は重合体Bのみの場合に、
図4は重合体Aおよび重合体Bの混合物に、それぞれ該当し、そして
図1が重合体Aおよび重合体Bからなるポリマーアロイ粒子に該当する。
図2には重合体Aの熔解温度Tmが、図3には重合体Bのガラス転移温度Tgが、それぞれ観測された。
図4(重合体Aに重合体Bの単量体を吸収させなかった場合)では、重合体Aの熔解温度Tmおよび重合体Bのガラス転移温度Tgが双方とも観測されたことから、本重合体粒子が重合体Aおよび重合体Bの混合物であると考えられるのに対して、
図1を見ると、重合体Aの熔解温度Tmおよび重合体Bのガラス転移温度Tgはいずれも観測されず、重合体AのTmとも重合体BのTgとも異なる温度に単一の新しいガラス転移温度Tgが発生していることから、この重合体粒子はポリマーアロイであるものと考えられる。

Claims (6)

  1. フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンよりなる群から選ばれる少なくとも1種に由来する繰り返し単位を有する重合体Aと、
    不飽和カルボン酸エステルに由来する繰り返し単位を有する重合体Bと
    を含有するポリマーアロイ粒子、および

    を含有し、そして
    前記ポリマーアロイ粒子の平均粒子径が50〜400nmであることを特徴とする、蓄電デバイスの正極用バインダー組成物。
  2. 前記ポリマーアロイ粒子についてJIS K7121に準拠して示差走査熱量測定(DSC)を行ったときに、−50〜+250℃の温度範囲における吸熱ピークが1つのみしか観測されない、請求項1に記載の正極用バインダー組成物。
  3. −50〜+250℃の温度範囲において1つのみ観測される前記吸熱ピークが−30〜+30℃の温度範囲に観測される、請求項2に記載の正極用バインダー組成物。
  4. 前記ポリマーアロイ粒子中の重合体Aの含有割合が、前記ポリマーアロイ粒子100重量部に対して1〜60重量%である、請求項1に記載の正極用バインダー組成物。
  5. 請求項1〜4のいずれか一項に記載された正極用バインダー組成物を用いて製造されたことを特徴とする、蓄電デバイスの正極。
  6. 請求項5に記載の正極を具備することを特徴とする、蓄電デバイス。
JP2011126043A 2011-06-06 2011-06-06 正極用バインダー組成物 Active JP4849286B1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2011126043A JP4849286B1 (ja) 2011-06-06 2011-06-06 正極用バインダー組成物
JP2013519347A JPWO2012169094A1 (ja) 2011-06-06 2011-12-27 蓄電デバイス用正極
PCT/JP2011/080582 WO2012169094A1 (ja) 2011-06-06 2011-12-27 蓄電デバイス用正極
KR1020110144360A KR101148564B1 (ko) 2011-06-06 2011-12-28 정극용 결합제 조성물
US13/338,541 US8513349B2 (en) 2011-06-06 2011-12-28 Binder composition for positive electrodes
ES11195979.7T ES2486792T3 (es) 2011-06-06 2011-12-29 Composición ligante para electrodos positivos
TW100149556A TW201251186A (en) 2011-06-06 2011-12-29 Positive electrode for power storage device
EP11195979.7A EP2533335B1 (en) 2011-06-06 2011-12-29 Binder composition for positive electrodes
CN2011104544218A CN102694175A (zh) 2011-06-06 2011-12-30 正极用粘合剂组合物
TW100149909A TWI390791B (zh) 2011-06-06 2011-12-30 正電極用黏合劑組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011126043A JP4849286B1 (ja) 2011-06-06 2011-06-06 正極用バインダー組成物

Publications (2)

Publication Number Publication Date
JP4849286B1 JP4849286B1 (ja) 2012-01-11
JP2014081996A true JP2014081996A (ja) 2014-05-08

Family

ID=45463395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011126043A Active JP4849286B1 (ja) 2011-06-06 2011-06-06 正極用バインダー組成物

Country Status (7)

Country Link
US (1) US8513349B2 (ja)
EP (1) EP2533335B1 (ja)
JP (1) JP4849286B1 (ja)
KR (1) KR101148564B1 (ja)
CN (1) CN102694175A (ja)
ES (1) ES2486792T3 (ja)
TW (1) TWI390791B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160052752A (ko) * 2013-11-27 2016-05-12 가부시끼가이샤 구레하 불화비닐리덴계 중합체 수계 조성물 및 그 용도

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163919B1 (ja) * 2011-07-14 2013-03-13 Jsr株式会社 電極用バインダー組成物
JP4957932B1 (ja) 2011-08-30 2012-06-20 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
KR102004561B1 (ko) * 2011-10-18 2019-07-26 제이에스알 가부시끼가이샤 보호막 및 그것을 제조하기 위한 조성물, 슬러리, 및 축전 디바이스
ES2526689T3 (es) * 2012-02-02 2015-01-14 Jsr Corporation Composición ligante de electrodo, suspensión para el electrodo, electrodo y dispositivo de almacenamiento eléctrico
JP5862877B2 (ja) * 2012-02-06 2016-02-16 Jsr株式会社 電極用バインダー組成物、電極用スラリー、電極および蓄電デバイスの製造方法
JP6048636B2 (ja) * 2012-02-13 2016-12-21 Jsr株式会社 電極用バインダー組成物、電極用スラリー、電極および蓄電デバイスの製造方法
JP4993150B1 (ja) * 2012-02-13 2012-08-08 Jsr株式会社 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
JP5862878B2 (ja) * 2012-02-15 2016-02-16 Jsr株式会社 電極用バインダー組成物、電極用スラリー、電極および蓄電デバイスの製造方法
KR102063540B1 (ko) * 2012-04-23 2020-03-02 제온 코포레이션 리튬 이온 이차 전지
US9583278B2 (en) * 2012-06-18 2017-02-28 Jsr Corporation Binder composition for electrical storage device electrodes, slurry for electrical storage device electrodes, electrical storage device electrode, and electrical storage device
KR102060429B1 (ko) * 2012-09-28 2019-12-30 제온 코포레이션 리튬 이온 이차 전지
KR101637889B1 (ko) * 2012-11-29 2016-07-08 주식회사 엘지화학 접착력이 우수한 이차전지용 바인더
JP6024896B2 (ja) * 2012-12-04 2016-11-16 Jsr株式会社 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
WO2014119481A1 (ja) 2013-01-29 2014-08-07 ダイソー株式会社 電池電極用バインダー、およびそれを用いた電極ならびに電池
US9570751B2 (en) * 2013-02-26 2017-02-14 Samsung Sdi Co., Ltd. Binder composition for secondary battery, anode including the binder composition, and lithium battery including the anode
KR20150135207A (ko) * 2013-03-27 2015-12-02 제이에스알 가부시끼가이샤 축전 디바이스용 결합제 조성물
KR101739299B1 (ko) * 2013-09-24 2017-06-08 삼성에스디아이 주식회사 2차전지용 바인더 조성물, 이를 채용한 양극과 리튬전지
JP6218538B2 (ja) * 2013-10-02 2017-10-25 株式会社Gsユアサ 非水系二次電池用正極ペースト、非水系二次電池用正極および非水系二次電池
KR101785263B1 (ko) 2013-12-02 2017-10-16 삼성에스디아이 주식회사 바인더 조성물, 이에 의해 형성된 바인더를 포함하는 세퍼레이터, 상기 세퍼레이터를 포함하는 리튬 전지, 및 상기 바인더 조성물의 제조방법
JP6357327B2 (ja) * 2014-03-11 2018-07-11 株式会社クレハ フッ化ビニリデン系共重合体、その製造方法、ゲル電解質および非水系電池
US20150280239A1 (en) 2014-04-01 2015-10-01 Ppg Industries Ohio, Inc. Aqueous binder composition for lithium ion electrical storage devices
US9385374B2 (en) 2014-04-01 2016-07-05 Ppg Industries Ohio, Inc. Electrode binder composition for lithium ion electrical storage devices
CN106663812B (zh) 2014-09-08 2019-08-06 Jsr株式会社 蓄电设备电极用粘结剂组合物、蓄电设备电极用浆料、蓄电设备电极及蓄电设备
CN105470461B (zh) * 2014-10-15 2018-03-23 万向一二三股份公司 一种锂离子电池高镍基正极浆料及其制备方法
KR102278446B1 (ko) 2014-11-21 2021-07-16 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
WO2016080145A1 (ja) * 2014-11-21 2016-05-26 日本ゼオン株式会社 電気化学素子電極用複合粒子
KR102297823B1 (ko) 2014-11-21 2021-09-02 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
CN107732163B (zh) * 2016-08-12 2021-08-10 微宏动力系统(湖州)有限公司 一种锂离子二次电池
CN106893124B (zh) * 2017-03-13 2019-07-30 厦门大学 一种通过聚合物结晶诱导纳米微球有序排列的方法及其在制备复合膜上的应用
JP6959751B2 (ja) 2017-03-31 2021-11-05 株式会社クレハ フッ化ビニリデン共重合体粒子及びその利用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2715540B2 (ja) * 1989-04-15 1998-02-18 ダイキン工業株式会社 含フッ素樹脂の水性分散体、複合粉末およびオルガノゾル組成物
CN1107090C (zh) * 1994-10-19 2003-04-30 大金工业株式会社 电池用粘结剂及使用该粘结剂的电极用组合物及电池
KR19990081865A (ko) 1996-01-22 1999-11-15 베아트리체 델로스탈 금속에 대한 플루오르화 수지의 부착 방법
JPH10134821A (ja) 1996-10-30 1998-05-22 Sony Corp 非水電解液二次電池およびその製造方法
JP4682401B2 (ja) 2000-07-31 2011-05-11 日本ゼオン株式会社 二次電池電極用バインダー、二次電池電極および二次電池
TW508861B (en) 2000-08-08 2002-11-01 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and positive electrode for the same
JP3582823B2 (ja) * 2000-10-11 2004-10-27 松下電器産業株式会社 非水系二次電池用正極および非水系二次電池
FR2822296A1 (fr) * 2001-03-19 2002-09-20 Atofina Elements de batteries lithium-ion fabriques a partir d'une poudre microcomposite a base d'une charge et d'un fluoropolymere
US20030039886A1 (en) 2001-08-22 2003-02-27 Guiping Zhang Modified lithium ion polymer battery
TW200740913A (en) * 2006-02-02 2007-11-01 Jsr Corp Polymer composition, paste for secondary battery electrode, and secondary battery electrode
JP2010055847A (ja) 2008-08-27 2010-03-11 Idemitsu Kosan Co Ltd 電極製造用スラリー及びそれからなる電極シート
JP2011003529A (ja) 2009-05-21 2011-01-06 Mitsubishi Chemicals Corp 非水系二次電池用バインダー樹脂組成物、非水系二次電池用負極及び非水系二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160052752A (ko) * 2013-11-27 2016-05-12 가부시끼가이샤 구레하 불화비닐리덴계 중합체 수계 조성물 및 그 용도
KR101662656B1 (ko) 2013-11-27 2016-10-14 가부시끼가이샤 구레하 불화비닐리덴계 중합체 수계 조성물 및 그 용도

Also Published As

Publication number Publication date
EP2533335B1 (en) 2014-06-04
KR101148564B1 (ko) 2012-05-23
ES2486792T3 (es) 2014-08-19
TW201244234A (en) 2012-11-01
US20120309892A1 (en) 2012-12-06
JP4849286B1 (ja) 2012-01-11
TWI390791B (zh) 2013-03-21
EP2533335A1 (en) 2012-12-12
US8513349B2 (en) 2013-08-20
CN102694175A (zh) 2012-09-26

Similar Documents

Publication Publication Date Title
JP4849286B1 (ja) 正極用バインダー組成物
JP4957932B1 (ja) 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JP6210240B2 (ja) 蓄電デバイス用バインダー組成物
JP5862878B2 (ja) 電極用バインダー組成物、電極用スラリー、電極および蓄電デバイスの製造方法
JP4993150B1 (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
JP5928712B2 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池電極の製造方法及びリチウムイオン二次電池の製造方法
JPWO2014157715A1 (ja) 蓄電デバイス用バインダー組成物
KR101373889B1 (ko) 전극용 결합제 조성물, 전극용 슬러리, 전극 및 축전 디바이스
JP2013098123A (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
JP5077613B1 (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
WO2012169094A1 (ja) 蓄電デバイス用正極
JP6024896B2 (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
JP5459526B1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、保護膜形成用スラリー、保護膜、および蓄電デバイス
JP6048636B2 (ja) 電極用バインダー組成物、電極用スラリー、電極および蓄電デバイスの製造方法
JP5862877B2 (ja) 電極用バインダー組成物、電極用スラリー、電極および蓄電デバイスの製造方法
JP2013033702A (ja) 蓄電デバイス用正極
JP2013030449A (ja) 正極用スラリー
JP2013030447A (ja) 正極用スラリー
JP5024575B1 (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
JP2013179024A (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111004

R150 Certificate of patent or registration of utility model

Ref document number: 4849286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250