JP2014059085A5 - - Google Patents

Download PDF

Info

Publication number
JP2014059085A5
JP2014059085A5 JP2012203637A JP2012203637A JP2014059085A5 JP 2014059085 A5 JP2014059085 A5 JP 2014059085A5 JP 2012203637 A JP2012203637 A JP 2012203637A JP 2012203637 A JP2012203637 A JP 2012203637A JP 2014059085 A5 JP2014059085 A5 JP 2014059085A5
Authority
JP
Japan
Prior art keywords
furnace
coal
dry distillation
gas
carbonization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012203637A
Other languages
English (en)
Other versions
JP6130114B2 (ja
JP2014059085A (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from JP2012203637A external-priority patent/JP6130114B2/ja
Priority to JP2012203637A priority Critical patent/JP6130114B2/ja
Priority to PCT/JP2013/074825 priority patent/WO2014042240A1/ja
Priority to DE112013004492.7T priority patent/DE112013004492T5/de
Priority to US14/425,912 priority patent/US10138762B2/en
Priority to AU2013316430A priority patent/AU2013316430B2/en
Publication of JP2014059085A publication Critical patent/JP2014059085A/ja
Publication of JP2014059085A5 publication Critical patent/JP2014059085A5/ja
Publication of JP6130114B2 publication Critical patent/JP6130114B2/ja
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

乾留工程の乾留炉としては、移動層を用いた乾留炉が好適に用いられる。乾留は、乾燥炭を乾留炉の炉頂から装入され乾燥炭の粒子群が膨張した後収縮し重力によって順次流下する間に、粒子と向流あるいは並流する高温の水蒸気や窒素ガスあるいは炭酸ガスと連続的に接触し乾留が行われ固定炭素を得ることができる。また、乾留には必ずしもガスを導入する必要はなく、炉内に投入されるガスは広い範囲の流速が利用出来る。
乾留工程の乾留温度としては、300℃〜900℃、好ましくは350℃〜500℃が好適に用いられる。これにより炉材の材料が高温に耐える特殊材料の使用を減らすことができる。
乾留炉の払い出し口としては、底部の角度が安息角以上であるものが好適に用いられる。安息角以下になるにつれて払い出し口に固定炭素のブリッジが発生し易く、スムーズに固定炭素が流下しなくなる傾向にあり好ましくない。
固定炭素としては、褐炭等を乾留工程で乾留して得られる。また、炭化水素ガス(揮発分)が抜けることで高品位の石炭へ転化し略400℃において高品質なニューランズの燃料比2を越えることから現在市場に流通する高品位炭レベルの固定炭素を製造することが出来る。乾留温度は、最終品質を考慮して適宜選択できる。固定炭素とすることで、低石炭化度炭である生産地以外で利用が困難な含水量が高い亜瀝青炭や褐炭などを産炭地以外で利用できる。
燃焼工程としては、流動層燃焼炉や炭化水素ガス・固定炭素燃焼ボイラーが好適に用いられる。
流動層燃焼炉としては、流動媒体として石灰石、ドロマイト等が用いられる。助燃剤としては、酸素と酸素濃度を調節(希釈)する炭酸ガスの混合ガスが好ましい。燃料は、乾留で得られ炭化水素ガスや乾燥部で乾燥された低石炭化度炭の乾燥炭や改質器で改質された低石炭化度炭の改質後石炭やチャーが用いられる。
炭化水素ガスや、乾燥部で乾燥された低石炭化度炭を主燃料とした場合、固定炭素を製造し、産炭地以外で固体燃料として使用することが出来る。また、固定炭素の一部を燃焼炉で用いた場合、炭化水素ガスの余剰分を回収し有用な化学原料として利用出来るのでケミカルコンプレックスを構築することが出来る。
また、流動層燃焼炉の燃焼温度は800〜900℃に調節される。これにより炉材の材料が高温に耐える特殊材料の使用を減らすことができ、さらに流動層内での灰熔解などの障害を防ぐことができる。
乾留炉の下流に触媒改質装置を設けてもよい。この場合、触媒改質装置により、低石炭化度炭から得られた揮発成分や炉ガス(燃焼排ガス)のCO2やCO,H2Oと触媒を接触させ改質を行うもので、FT合成ガスやメタノール合成ガス,アンモニア合成ガス,水素ガス,合成天然ガス等を得ることができる。
不活性ガスとしては、窒素ガスが好適に用いられる。窒素ガスは、素分離器で分離された窒素ガスが用いられる。窒素ガスは復水器の熱水で加熱された空気予熱器で加熱されるようにしてもよい。この場合、酸素濃度が低いので、自然酸化し昇温し易く発火し易い低石炭化度炭の発火を防ぎ、より高い温度で乾燥することができる。また、酸素分離器で分離された窒素ガスは相対湿度が低いので、乾燥効率を大きくすることができる。更に、廃熱を利用し、別途熱エネルギーを要しないので、環境に優しく省エネルギー性に優れる。また、乾燥部から排出される高湿度排ガスから清浄水を回収でき水の有効利用が図れる。
また、炭化水素ガス(揮発分)が揮発分離することで高品位の石炭へ転化が進むが、100℃〜300℃の範囲でもガス成分が揮発すことが分かっており、略400℃において高品質なニューランズ炭の燃料比2を越えることから現在市場に流通する高品位炭レベルの固定炭素を製造することが出来ることがわかる。
更に、従来一般的な高温での乾留に比べ、350℃〜500℃という遥かに低温なので、省エネルギー性に優れる。
請求項5に記載の発明は、請求項1乃至4の内いずれか1項に記載の発電システムであって、前記乾留工程と前記冷却工程を含む固定炭素製造装置が前記冷却工程の冷却槽に立設された乾留工程の乾留炉と、前記乾留炉内の水平方向断面上を隔壁によって矩形又は多角形に鉛直方向に上部から下部まで区切られた乾留ユニットと、前記乾留ユニット内に水平方向断面上を仕切り板によって矩形又は多角形に鉛直方向に上部から下部まで区切られたミニ乾留炉と、前記乾留ユニットの隔壁と前記ミニ乾留炉のしきりに配設された加熱の為のパイプ状の加熱手段と、原料炭を上部から投入してそれぞれの前記ミニ乾留炉内で前記パイプ状の加熱手段によって乾留され冷却槽に製造された固定炭素を捕集する捕集路と、を備えた構成を有している。
この構成により、請求項1乃至4の内いずれか1項で得られる作用に加え、以下のような作用が得られる。
(1)ミニ乾留炉がパイプ状の加熱手段をそれぞれ備えているので、高温熱媒体による間接加熱が可能で、乾留炉内を均一の温度にすることが容易で、固定炭素の収率に優れる。
また、大量生産の為に、炉内の内容積を単純に大きくした場合、炉内の温度を均一にすることは困難で、部分的に乾留が進み易い場所が出来るなど、高品質な固定炭素の収率が悪いが、ミニ乾留炉を多列に備える乾留ユニット、乾留ユニットを多列に備える乾留炉を備えているので、大量生産性に優れる。
(2)ミニ乾留炉を多列に形成する乾留ユニットやそれを多列に形成する乾留炉を有しているので、剛性が高く、乾留炉内で揮発成分の発生や、乾留炉内での原料炭の膨張によって炉内に圧がかかる時でも変形することがなく、操業安定性に優れる。
(3)パイプ状の加熱手段を形成しているので、蒸気等の高温熱媒体によって安定的に加熱を行うことが出来る為、操業の安定性に優れる。
(4)固定炭素を捕集する冷却槽を乾留炉の下部に有しているので、製品固定炭素を安定的に捕集することが出来る。
(5)パイプ状の加熱手段を有しているので、乾留炉の熱交換媒体として、燃焼炉の排ガスを供給する直接加熱とは異なり、間接加熱を用いることで発生する揮発分の単位体積当たりの熱量を最大限活用することができ、省エネルギー性に優れる。
乾留炉に投入される石炭としては、褐炭を乾燥したものが好適に用いられる。褐炭の他には亜炭、亜瀝青炭も同様にして用いることが出来る。また、褐炭には、ビクトリア炭、ノースダコタ炭、ベルガ炭等が存在するが同様にして用いることが出来る。これらの石炭は、低灰分、低硫黄という好ましい性質があるが、多孔質なので高含水率になる傾向があり、水分が多く含まれているので、カロリーが低くなり、低品位炭として取り扱われている。これら多孔質で高い含水量を有するものを同様にして用いることが出来る。
隔壁、仕切り板としては、各乾留ユニット、各ミニ乾留炉を上部から下部まで仕切るようにして配設され、区切られた内部の温度を制御する為の加熱手段を備えた構造のものを好適に用いる。また、加熱手段は上部から順に複数段階に分けるように仕切り板に配設することもできる。乾留工程で乾留速度を急激にしたり、緩やかにする、などの加温パターンを制御し、高品位炭を高効率で得るため条件設定が容易になり、生産性に優れる。
請求項6に記載の発明は、請求項1乃至5の内いずれか1項に記載の発電システムであって、前記乾留炉で用いる乾燥炭が前記乾燥工程で低石炭化度炭を含水率20質量%以下まで乾燥されている構成を有している。
この構成により、請求項1乃至5の内いずれか1項で得られる作用に加え、以下のような作用が得られる。
(1)高含水率の低石炭化度炭を乾燥する乾燥工程を備えているので、安定した品質の乾燥炭が乾留に投入されるので、乾留炉で、高品位の固定炭素(製品乾留チャー)が得られ、品質性能に優れる。
ここで、燃焼工程で発生する熱を、乾留工程に供給する熱供給方法としては、燃焼工程で発生する排ガスを乾留炉に直接供給してもよいし、燃焼工程が発電機のタービンを回す蒸気を発生している場合、タービンを回した後の蒸気を燃焼工程において再加熱したものを乾留炉熱交換部に供給し間接的に加熱することもできる。
また、産炭地以外では含水率が重く用いられない低石炭化度炭を燃焼工程で燃料として用いることも出来るので産炭地においてこの発電システムを用いた場合、安価な低石炭化度炭を有効に活用し電力を発電しながら、固体燃料(固定炭素)を製造でき、発電の排熱を有効に利用したシステムなので省エネルギー製に優れ、燃料の高い固体燃料を効率的に生産出来る固体燃料製造設備を一体とした発電システムを構築できる。
請求項5に記載の発明によれば、請求項1乃至4のうちいずれか1項に記載の効果に加えて以下のような有利な効果が得られる。
(1)高温熱媒体による間接加熱が可能で、乾留炉内を均一の温度にすることが容易で、固定炭素の収率に優れた発電システムを提供することができる。また、このミニ乾留炉を多列に備える乾留ユニット、乾留ユニットを多列に備える乾留炉を備えた大量生産性に優れた発電システムを提供することができる。
また、大量生産の為に、炉内の内容積を単純に大きくした場合、炉内の温度を均一にすることは困難で、部分的に乾留が進み易い場所が出来るなど、高品質な固定炭素の収率が悪い。
(2)剛性が高く、乾留炉内で揮発成分の発生や、乾留炉内での原料炭の膨張によって炉内に矩形に区切っていない場合、圧がかかる時でも変形することがない操業安定性に優れた発電システムを提供することができる。
(3)蒸気等の高温熱媒体によって安定的に加熱を行うことが出来る操業の安定性に優れた発電システムを提供することができる。
(4)製品固定炭素を安定的に捕集することが出来る生産性に優れた発電システムを提供することができる。
(5)乾留炉の熱交換媒体として、燃焼炉の排ガスを供給する直接加熱とは異なり、間接加熱を用いることで発生する揮発分の単位体積当たりの熱量を最大限活用することができる省エネルギー性に優れた固定炭素製造装置を提供することができる。
請求項6に記載の発明によれば、請求項1乃至5のうちいずれか1項に記載の効果に加えて以下のような有利な効果が得られる。
(1)安定した品質の乾燥炭が乾留に投入されるので、乾留炉で、高品位の固定炭素(製品乾留チャー)が得られる品質性能に優れた発電システムを提供することができる。
実施の形態における発電システムの概要図 実施の形態における固定炭素製造装置の模式図 模擬移動層間接加熱乾留炉の概要図 乾留温度に応じた乾留炭分析結果を示すグラフ 乾留温度に応じた乾留炭熱重量分析結果を示すグラフ 乾留内褐炭の温度変化を示すグラフ 褐炭乾留処理温度による固定炭素各種燃焼関連成分変化を示すグラフ 低温乾燥による温度と時間による含水量を示すグラフ 実施の形態におけるヒートバランスとマテリアルバランス図
以下、本発明を実施するための形態について、図面を用いながら説明する。
(実施の形態)
図1は実施の形態における発電システムの概要図である。
図中、1は発電システム、2は低石炭化度炭を採掘・運炭する採掘・運炭設備、3は後述する不活性ガス予熱器30によって温められたN2ガス雰囲気下で粒径が1μm〜5mmの塊炭状で含水率が略60質量%の採掘・運炭設備2から搬送された褐炭等の低石炭化度炭を略30〜50℃で含水率が20質量%になるまで乾燥する乾燥工程の乾燥器、4は後述する復水器33に接続された60〜90℃の温水を用いて乾燥器を温める乾燥器熱交換部、5は排気を集塵する集塵機、6は乾燥器3で得られた乾燥炭を乾留前処理として200〜350℃に温める前処理装置、7は後述する流動層燃焼炉13で得られた500〜600℃の再熱蒸気を後述する再熱蒸気前処理供給部45によって供給され200〜350℃に加熱する前処理装置熱交換部、8は前処理装置6で前処理として温めた乾燥炭を乾留炉に投入する乾燥炭バンカ、9は乾燥炭バンカ8から搬送された乾燥炭を揮発分やタール分等を蒸発脱離させ固定炭素と炭化水素ガスに乾留する乾留炉、10は後述する流動層燃焼炉13で加熱された500〜600℃の再熱蒸気を後述する再熱蒸気乾留炉供給部44によって供給され350〜500℃に加熱する乾留炉熱交換部、11は乾留炉9で得られた固定炭素を冷却し取出す冷却槽、12は後述する給水部38から冷却槽8の冷却の為に常温以下に冷却する冷却槽熱交換部、13は乾留炉9の乾留によって製造される炭化水素ガスが主燃料として供給され後述する蒸気タービン32用の主蒸気の為の熱を発生する流動層燃焼炉、14は流動層燃焼炉13の熱によって後述する蒸気タービン32用の主蒸気を発生させる燃焼炉主蒸気熱交換部、15は流動層燃焼炉13の熱によって後述する蒸気タービン32を回したあとの蒸気を再び加熱し再熱蒸気とする再熱蒸気熱交換部、16は流動層燃焼炉9の排ガスから固形成分を遠心力によって分離するサイクロン、17はサイクロン16によって分離された灰分を処理する灰処理装置、18はサイクロン16から配管によって供給される排ガスを後述するO2分離器25から得られたO2を温めることに利用するため熱交換を行う燃焼用空気予熱器、19は燃焼用空気予熱器18の燃焼用空気予熱器熱交換部、20は燃焼用空気予熱器18で熱回収された排ガスからCO2を分離するCO2分離装置、CO2分離装置20でCO2を分離した後の排ガス中から粉塵等の除去は集塵機5で行う。21は集塵機5によって粉塵等を除去した排ガスを排出する煙突、22はCO2分離装置20で分離したCO2を冷却槽11や後述する予熱O2供給部27に供給するCO2供給部、23は冷却槽11を通過したCO2を回収・利用するCCS、24は大気中から後述するO2分離器に空気を送り込む押込ファン、25は押込ファン24によって押込まれた大気中の空気からO2ガスとN2ガスを分離し燃焼用空気予熱器18に送り込むO2分離器、26はO2分離器25によって分離されたO2を燃焼用空気予熱器18に供給するO2供給部、27は燃焼用空気予熱器18によって温められたO2とCO2供給部22からのCO2を混合して流動層燃焼炉に供給する予熱O2供給部、O2分離器25から得られたO2ガスは、O2供給部26を通り燃焼用空気予熱器18で予熱され流動層燃焼炉13の助燃剤として使用される。また、同時に得られたN2ガスは、後述する不活性ガス予熱器30で加熱されて低石炭化度炭の乾燥に用いられる。28はO2分離機25によって大気から分離したN2ガスを後述する不活性ガス予熱器30に供給するN2ガス供給部、29はN2ガス供給部28のN2ガスを主成分とする不活性ガスを後述する不活性ガス予熱器30に押込む乾燥空気用押込ファン、30は不活性ガスを予熱する不活性ガス予熱器、不活性ガス予熱器30は前処理装置熱交換部7または乾留炉熱交換部4で熱交換した後の排熱を用いる。31は不活性ガス予熱器30で温められたN2を乾燥器熱交換部4に供給する予熱N2供給部、32は流動層燃焼炉13の主蒸気で発電機を回転させる蒸気タービン、33は復水器、34は発電機、35はクーリングタワー、36は復水器の排熱を乾燥器3の乾燥器熱交換部4に供給する復水器排熱供給部、37は蒸気駆動式給水ポンプ、38は復水器の水を冷却槽11の冷却槽熱交換部12や後述する給水加熱器39に送り込む給水部、39は前処理装置熱交換部7と乾留炉熱交換部10と冷却槽熱交換部12と不活性ガス予熱器30と給水部38からの水を燃焼炉主蒸気熱交換部14とタービンからの蒸気(抽気)により予熱する給水加熱器、40は給水加熱器39から燃焼炉主蒸気熱交換部14に加熱水を供給する加熱水供給部、41は燃焼炉主蒸気熱交換部14から主蒸気をタービンに供給する主蒸気供給部、42はタービンを回した後の蒸気を再加熱するために再熱蒸気熱交換部へ供給する再熱蒸気用供給部、43は再熱蒸気の一部を再びタービンに戻す再熱蒸気戻り部、44は再熱蒸気を乾留炉熱交換部10に供給する再熱蒸気乾留炉供給部、45は再熱蒸気を前処理装置熱交換部7に供給する再熱蒸気前処理装置供給部である。55は製造されたチャー等の固定炭素である。
詳しく説明すると本実施例では流動層燃焼炉13の燃焼炉主蒸気熱交換部14で加熱水供給部40から供給された加熱水を主蒸気にする。この主蒸気を主蒸気供給部41を用いて蒸気タービン32に供給している。蒸気タービン32を回した後の蒸気を再熱蒸気用供給部42を用いて再熱蒸気熱交換部15に供給し、再熱蒸気熱交換部15で再加熱し再熱蒸気にする。この再熱蒸気の一部は再熱蒸気戻り部43を用いて再び蒸気タービン32に供給される。再熱蒸気は主に再熱蒸気乾留炉供給部44と再熱蒸気前処理装置供給部45によって、乾留炉熱交換部10と前処理装置熱交換部7に供給される。また、乾留炉熱交換部10と前処理装置熱交換部7で用いられた再熱蒸気は不活性ガス予熱器30で一部用いられた後に、もしくはそのまま給水加熱器39に供給される。また給水部38の冷水の一部は冷却槽熱交換部12で固定炭素を冷却する為に用いられ温められたものを給水加熱部39に供給している。このように水、蒸気等の熱媒体間で排熱利用を行っているので流動層燃焼炉13、クーリングタワー35、給水加熱器39の負荷を減らすことができ省資源性に優れている。
また燃焼炉の燃料として固定炭素55の一部を用いることもできる。この場合、乾燥器3、乾留炉9に必要な入熱分として固定炭素55を流動層燃焼炉13に投入する場合は、それ自体を生成するのに必要なエネルギー分を損失することになるが、乾燥器3や乾留炉9の熱源の確保の手段として利用することもでき、燃料の選択性に優れる。
以上のように構成された発電システムについて、以下、各単位操作について説明する。
(1)低石炭化度炭はあらかじめボールミルなどで粗粉砕し、気流による分離、搬送を行い、発電システムの乾燥器3に供給する。
(2)乾燥器3では、粒径を0.1μm〜5mmに調整した低石炭化度炭の含水率を20質量%以下まで下げるため、相対湿度が0〜70%の乾燥ガスで乾燥器内の温度が30〜50℃で乾燥する。乾燥ガスは復水器33からの排熱、蒸気タービン、燃焼炉流動媒体、固定炭素から回収された排熱が利用される。
(3)乾留炉9としては、350℃〜500℃の間接加熱による移動床方式を採用するのが好ましい。これにより、タール成分を保持したまま固定炭素を得ることができ、タール成分のコーキングなどの障害を防止することができる。また、軽質油成分の炭化水素ガスを取り出すことが可能で燃焼炉の取り扱いを容易化することができる。
(4)流動層燃焼炉13は、大気から酸素を分離するO2分離器25で分離された酸素を、CO2分離装置20から副生あるいは分離した炭酸ガスで希釈した助燃剤を用いている。
(5)CO2分離装置20は、鉄あるいはアルカリ成分などの固体改質触媒が用いられる。具体的にはペロブスカイト担持アルカリ土類触媒を用いた固定床等が利用できる。これにより、タール分等の重質成分を軽質成分に分解できる。
(6)高含水率の低石炭化度炭を30℃〜50℃で乾燥する乾燥工程を備える構成を有しているので、投入熱量を少なくすることができ、エネルギー効率に優れる。
(7)0.1μm〜5mmの粒径に調整された低石炭化度炭を乾燥工程で含水率20質量%以下まで乾燥した乾燥炭を乾留する乾留工程を有しているので、乾燥することで比重が軽くなり、水分を蒸発する熱量も含め、乾留炉をコンパクトに設計できる利点がある。このため、乾留炉にかかる負荷が少なく設備を小さくすることが出来るので、省資源性に優れる。
(8)乾留炉で得られた固定炭素を冷却する冷却槽を有しているので、乾留後の冷却により表面に浮き出ているタール成分を固定炭素内で定着させることでタール成分による障害問題を解決することができ、安定的な操業性に優れる。
(9)炭化水素ガスを主燃料とする流動層燃焼炉と、流動層燃焼炉で発生する主蒸気によって蒸気タービンを動かす発電機と復水器を備える発電工程とを有しているので、流動層燃焼炉と復水器の間を移動する熱媒体によって排熱を有効利用することが出来る。また、乾留炉により、炭化水素ガス及び固定炭素を製造するので省資源性に優れ、油分等の副資材を加えない為、重量が軽く、運搬性に優れ、生産地以外で利用が困難な含水量が高い亜瀝青炭や褐炭などを産炭地以外で利用できる。
(10)乾留炉で発生する炭化水素ガス主燃料として発電を行う複合システムなので、炭化水素ガス(揮発分)の燃焼熱を発電用の蒸気の加熱とともに低石炭化度炭の乾燥、乾留することで、固定炭素製造に利用することができる。
また、炭酸ガスを分離・回収する場合、N2ガスが著しく少ないので炭酸ガス濃度が高く、炭酸ガスの分離エネルギーを小さくすることができ、省エネルギー性に優れる。
(11)350℃〜500℃で乾留を行うので、投入熱量が少なくエネルギー効率に優れた発電システムを提供することができる。また、乾燥することで比重が軽くなり、水分を蒸発する熱量も含め、乾留炉をコンパクトに設計でき、省資源性に優れる。さらに、乾留炉の乾留ガス回収設備などをコンパクトにすることができるので省資源性に優れる。
(12)炭化水素ガスを主燃料とする流動層燃焼炉と、流動層燃焼炉で発生する主蒸気によって蒸気タービンを動かす発電機と復水器を備える発電工程とを有しているので、流動層燃焼炉と復水器の間を移動する熱媒体によって排熱を有効利用することが出来る。また、乾留炉により、炭化水素ガス及び固定炭素を製造するので省資源性に優れ、油分等の副資材を加えない為、重量が軽く、運搬に掛る費用が安く、生産地以外で利用が困難な含水量が高い亜瀝青炭や褐炭などを産炭地以外で利用できる運用面で優れる。
また、これらの固定炭素は350℃〜500℃で乾留を行うことで、炭化水素ガス(揮発分)が抜け、高品位の石炭への転換が進むことができ、燃料比2以上の高品位炭を得ることが可能で、装置自体の製造コストを下げ省資源性及び、投入熱量が少なく省エネルギー性に優れる。
(13)炭化水素ガス(揮発分)の燃焼熱を発電用の蒸気の加熱とともに低石炭化度炭の乾燥、乾留する固定炭素製造に利用することができる省資源性に優れる。
また、炭酸ガスを分離・回収する場合、窒素ガスが著しく少ないので炭酸ガス濃度が高く、炭酸ガスの分離エネルギーを小さくすることができ、更に省資源性に優れる。
(14)前記乾燥工程の乾燥温度が30℃〜50℃である構成を有しているので、温度を上げる投入熱量に対する乾燥時間の減少割合が大きく、エネルギー効率に優れる。
また、乾燥温度が30℃〜50℃である構成を有し、エネルギー効率に優れるので設備容量をコンパクトにすることが可能でコスト面に優れる。
更に、30℃〜50℃である構成を有しているため、復水器からの排熱によって乾燥温度まで加熱できるのでエネルギー効率に優れる。
(15)ミニ乾留炉がパイプ状の加熱手段をそれぞれ備えているので、高温熱媒体による間接加熱が可能で、乾留炉内を均一の温度にすることが容易で、固定炭素の収率に優れる。また、このミニ乾留炉を多列に備える乾留ユニット、乾留ユニットを多列に備える乾留炉を備えているので、大量生産性に優れる。
また、大量生産の為に、炉内の内容積を単純に大きくした場合、炉内の温度を均一にすることは困難で、部分的に乾留が進み易い場所が出来るなど、高品質な固定炭素の収率が悪い。
(16)ミニ乾留炉を多列に形成する乾留ユニットやそれを多列に形成する乾留炉を有しているので、剛性が高く、乾留炉内で揮発成分の発生や、乾留炉内での原料炭の膨張によって炉内に矩形に区切っていない場合圧がかかる時でも変形することがなく、操業安定性に優れる。
(17)パイプ状の加熱手段を形成しているので、蒸気等の高温熱媒体によって安定的に加熱を行うことが出来る為、操業の安定性に優れる。
(18)固定炭素を捕集する冷却槽を乾留炉の下部に有しているので、製品固定炭素を安定的に捕集することが出来る。
(19)排熱を有効利用することで、省エネルギー性に優れる。
(20)発電機における復水器排熱を利用した間接加熱を用いることで、乾留工程における潜熱損失を軽減することが可能で設備をよりコンパクトに製作できる。
(21)復水器排熱を利用した間接加熱を用いる構成を有しているので、圧力が高く、熱容量が高い熱媒体なので、装置がコンパクトに製作できコスト面に優れる。
図4及び(表1)は乾留温度に応じた乾留炭分析結果を示すグラフである。詳しくは、図3の模擬移動層間接加熱乾留炉50を用いて実験終了後に残存した固体の質量に基づいて求めた各コンテナの固体収率を示したものが図4である。
このときコンテナ炉51の1番から6番までが炉を通過済みで、7番から11番までが熱分解帯の200℃から595℃、12番から15番までが165℃によって加熱される部分で略140℃程度である。
コンテナ炉51の1番における炭化物収率は56質量%で、コンテナ炉51の2番から6番にかけてより下段にいくほど炭化物収率が増加し、コンテナ炉51の6番では58.7質量%に達した。これは上段のコンテナから生成する重質油を含む揮発成分が下段の褐炭炭化、炭化物と接触し、重質油の収着、重質油・褐炭共炭化により炭化物の収率が増加した結果によるものである。また、コンテナ炉51の12番以降では、主として重質油の収着に由来すると考えられる自重の10〜20%の重量増加が認められる。また、反応器下流(コンテナ炉51の12番〜15番において生成ガス及び凝縮成分を回収し、これらの生成物回収率は99%以上であった。回収した凝縮成分を分析した結果、炉内に低温部が存在することで高沸点重質油の凝縮、さらにここに存在する褐炭粒子による重質油補足により、軽質油成分の選択的製造が可能で、図4及び(表1)に示すように200℃〜595℃温度域において移動層間接加熱乾留炉で乾留が急速に進み、固定炭素内に重質油成分を留めることが可能であることがわかる。
(実験例2)・・・熱重量分析による評価試験
実験例2では、熱重量分析を用いて乾留温度について検討した。
図5及び(表2)、(表3)は乾留温度に応じた乾留炭熱重量分析結果を示すグラフである。詳しくは、褐炭の熱分解による乾留温度を確認する為、Loy Yang褐炭(生炭)を室温、大気中で予備加熱乾燥して水分含有率を20質量%前後に低下させ、ついで粉砕・分級によって粒子径を0.3から0.5mmに揃え、110℃の不活性ガス雰囲気で乾燥し、水分を除去したものを熱重量分析装置(SII nanotechnology社製:EXSTAR TG/DTA6000)を用いて測定した結果である。
図5及び(表2)、(表3)に示すように350℃前後から褐炭重量が減少し始めており、この温度から乾留が顕著になることが確認できる。また、固定層乾留炉において同様の試料を窒素気流中で、昇温速度10℃/min、ピーク温度における保持時間を0秒とし、500℃、550℃、600℃、650℃で乾留した。この時の、固定炭素収率と温度の関係を図5中にプロットした。これを確認すると、熱重量分析の結果が乾留炉での温度定義と良好な相関関係にあることが分かる。(表2)に図5の乾留炭重量分析の結果を、(表3)に図5中の固定炭素収率と温度の関係を示したプロットを示す。
(実験例3)・・・高品位転化温度実証試験
実験例3では、低石炭化度炭の高品位転化に必要な温度について検討した。
図6及び(表4)は、乾留内褐炭の温度変化を示すグラフである。詳しくは、Loy Yang褐炭(生炭)を、横置きの管状炉にN2ガスを流通させた状態で炉内温度を各測定温度まで上昇させ、その時の温度変化時間と各温度を測定した。
図6に示すように、100℃付近で水分が蒸発した後も、緩やかに温度は上昇し、設定温度が300℃であっても潜熱成分があり、高品位炭への転換が起こっていることがわかる。
(実験例4)・・・乾留温度効果試験
実験例4では、乾留温度と得られる固定炭素の性能について検討した。
図7及び(表5)は、褐炭乾留処理温度による固定炭素各種燃焼関連成分変化を示すグラフである。詳しくは、Loy Yang褐炭(生炭)を室温、大気中で予備加熱乾燥して水分含有率を略20質量%に低下させたものを、横置きの管状炉にN2ガスを流通させた状態で炉内温度を400℃、600℃、700℃、800℃まで上昇させ、その時の固有水分、揮発分、灰分、固定炭素収率(%)、燃料比を測定した。
図7及び(表5)に示すように、400℃で処理したものは、燃料2.5であり、ニューランズ炭のような瀝青炭並みの燃料比を実現していることがわかる。
Figure 2014059085
本発明は、乾燥工程で低石炭化度炭を乾燥させ乾留工程で乾留炉を移動させながら燃焼工程の燃焼熱で乾留を行い、乾留で得られた炭化水素ガスを主燃料として発電を行うとに、乾留で得られた固定炭素を回収することで海外輸送可能な固体燃料として利用できる。また、燃焼工程の排熱を乾燥工程、乾留工程に供給して温度のコントロールに利用しCO2ガスの循環又は回収と発電を行う。これにより、発電と固体燃料の製造が融合しCO2と電気と固体燃料の高度利用を図ることのできる発電システムを提供する。
1 発電システム
2 採掘・運炭設備
3 乾燥器
4 乾燥器熱交換部
5 集塵機
6 前処理装置
7 前処理装置熱交換部
8 乾燥炭バンカ
9,9A 乾留炉
9a 隔壁
9b 仕切り板
10 乾留炉熱交換部
11,11A 冷却槽
12 冷却槽熱交換部
13 流動層燃焼炉
14 燃焼炉主蒸気熱交換部
15 再熱蒸気熱交換部
16 サイクロン
17 灰処理装置
18 燃焼用空気予熱器
19 燃焼用空気予熱器熱交換部
20 CO2分離装置
21 煙突
22 CO2供給部
23 CCS
24 押込ファン
25 O2分離器
26 O2供給部
27 予熱O2供給部
28 N2供給部
29 乾燥空気用押込ファン
30 不活性ガス予熱器
31 予熱N2供給部
32 蒸気タービン
33 復水器
34 発電機
35 クーリングタワー
36 復水器排熱供給部
37 蒸気駆動式給水ポンプ
38 給水部
39 給水加熱器
40 加熱水供給部
41 主蒸気供給部
42 再熱蒸気用供給部
43 再熱蒸気戻り部
44 再熱蒸気乾留炉供給部
45 再熱蒸気前処理装置供給部
46 固定炭素製造装置
47 乾留ガス配管
48 乾燥褐炭投入装置
49 固定炭素の取出口
50 模擬移動層間接加熱乾留炉
51 コンテナ炉
51a 不活性ガス投入口
51b 不活性ガス出口
52 電気炉
53 モーター
54 コンテナ炉の移動方向
55 固定炭素
JP2012203637A 2012-09-14 2012-09-14 発電システム Active JP6130114B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012203637A JP6130114B2 (ja) 2012-09-14 2012-09-14 発電システム
AU2013316430A AU2013316430B2 (en) 2012-09-14 2013-09-13 Power generation system
DE112013004492.7T DE112013004492T5 (de) 2012-09-14 2013-09-13 Energieerzeugungssystem
US14/425,912 US10138762B2 (en) 2012-09-14 2013-09-13 Power generation system
PCT/JP2013/074825 WO2014042240A1 (ja) 2012-09-14 2013-09-13 発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012203637A JP6130114B2 (ja) 2012-09-14 2012-09-14 発電システム

Publications (3)

Publication Number Publication Date
JP2014059085A JP2014059085A (ja) 2014-04-03
JP2014059085A5 true JP2014059085A5 (ja) 2015-04-23
JP6130114B2 JP6130114B2 (ja) 2017-05-17

Family

ID=50278345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012203637A Active JP6130114B2 (ja) 2012-09-14 2012-09-14 発電システム

Country Status (5)

Country Link
US (1) US10138762B2 (ja)
JP (1) JP6130114B2 (ja)
AU (1) AU2013316430B2 (ja)
DE (1) DE112013004492T5 (ja)
WO (1) WO2014042240A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150040807A1 (en) * 2012-03-29 2015-02-12 Bruce CLEMENTS Supplemental burner for conversion of biomass and related solid fuel
CN105091546B (zh) * 2014-05-20 2017-06-06 天华化工机械及自动化研究设计院有限公司 一种发电机组高水分、低热值褐煤干燥和水回收方法及其装置
CN104676798B (zh) * 2015-03-17 2017-04-05 黄国和 一种全天候太阳能水源热泵空调系统
CN107387180B (zh) * 2017-07-17 2019-08-20 浙江陆特能源科技股份有限公司 地层煤就地化浆供热系统及地层煤就地化浆发电供热的方法
CN107620975A (zh) * 2017-09-29 2018-01-23 西安热工研究院有限公司 一种利用循环冷却水加热原煤的发电系统
CN108251144B (zh) * 2018-01-29 2023-08-01 中冶焦耐(大连)工程技术有限公司 利用热泵机组回收余热实现焦油最终脱水的工艺及系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2658743A (en) * 1949-10-21 1953-11-10 Johns Manville Melting furnace
JPS5461205A (en) * 1977-10-25 1979-05-17 Kansai Coke & Chem Co Ltd Coke oven for briquette
JPS5738893A (en) * 1980-08-20 1982-03-03 Electric Power Dev Co Ltd Method and apparatus for heating and dehydrating organic solid
JPS61171796A (ja) * 1985-01-25 1986-08-02 Hitachi Ltd 低品位炭の高品質化方法
JPS6262892A (ja) * 1985-09-13 1987-03-19 Hitachi Ltd 低品位炭の改質方法
JP2581294B2 (ja) * 1990-09-29 1997-02-12 富士電機株式会社 復水器冷却水熱回収設備
AU668328B2 (en) 1993-12-27 1996-04-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd) Solid fuel made from porous coal and production process and production apparatus therefore
AU666833B2 (en) 1993-12-27 1996-02-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd) Thermal treated coal, and process and apparatus for preparing the same
JPH07233384A (ja) 1993-12-27 1995-09-05 Kobe Steel Ltd 熱改質炭、その製造方法及び製造装置
JP2776278B2 (ja) 1993-12-27 1998-07-16 株式会社神戸製鋼所 多孔質炭を原料とする固形燃料及びその製造方法
JPH11264528A (ja) * 1998-03-19 1999-09-28 Kubota Corp 廃棄物処理設備
CN100445349C (zh) * 2003-11-27 2008-12-24 王守峰 油页岩类物质流化床干馏及脱碳工艺
JP5030750B2 (ja) 2007-11-30 2012-09-19 三菱重工業株式会社 石炭ガス化複合発電設備
US9121606B2 (en) * 2008-02-19 2015-09-01 Srivats Srinivasachar Method of manufacturing carbon-rich product and co-products
JP2010059383A (ja) * 2008-09-08 2010-03-18 Mitsubishi Heavy Ind Ltd ガス化炉装置
JP5326481B2 (ja) 2008-10-14 2013-10-30 富士電機株式会社 半導体装置及び半導体装置の製造方法
JP5498692B2 (ja) 2008-12-19 2014-05-21 出光興産株式会社 改質炭と炭化水素油の製造法
JP5461100B2 (ja) 2009-02-27 2014-04-02 三菱重工業株式会社 低品位炭を燃料とする火力発電プラント
JP4939662B1 (ja) 2011-03-22 2012-05-30 三菱重工業株式会社 石炭改質システム

Similar Documents

Publication Publication Date Title
JP2014059085A5 (ja)
JP6130114B2 (ja) 発電システム
JP5857340B2 (ja) 石炭をチャー・原料ガス製造と発電に利用する複合システム
JP2008516183A (ja) システム熱源を使用し、高含水物質の品質を向上させる方法
CN101812310A (zh) 以干馏煤气为载热质的高效褐煤低温干馏提质工艺
CN102358840B (zh) 单级粉煤多管回转低温干馏工艺及系统
CN102250633A (zh) 一种用外热式回转炉进行褐煤提质的方法
CN101289621B (zh) 用悬浮热解装置处理褐煤制备半焦、焦油和煤气的方法
JP5316948B2 (ja) バイオマス熱分解装置
CN104789244A (zh) 一种带煤气循环的回转炉粉煤热解生产无烟煤方法
CN102010738A (zh) 一种煤或生物质中低温热解提质系统和利用该系统生产提质煤、高热值热解气和焦油或液化合成油的方法
CN103980920B (zh) 一种低质燃料热解工艺
WO2012147752A1 (ja) 流動層乾燥設備及び石炭を用いたガス化複合発電システム
CN103965922B (zh) 一种半焦干熄方法、半焦产品及煤热解系统
JP5851884B2 (ja) 流動層乾燥装置、ガス化複合発電設備および乾燥方法
CN102492445A (zh) 一种粉煤的多管回转低温干馏工艺方法
CN105907413A (zh) 低阶粉煤的低温干馏工艺
WO2012141217A1 (ja) 流動層乾燥装置
WO2012133549A1 (ja) 湿潤原料供給設備及び湿潤原料を用いたガス化複合発電システム
JP5812896B2 (ja) 流動層乾燥装置、ガス化複合発電設備および乾燥方法
JP2012214578A (ja) 低品位炭供給設備及び低品位炭を用いたガス化複合発電システム
JP5960003B2 (ja) 固定炭素製造装置
JP2013167378A (ja) 流動層乾燥設備及び石炭を用いたガス化複合発電システム
CN108611107A (zh) 一种低阶煤分级高效清洁利用的工艺
JP6234901B2 (ja) 無灰炭の製造方法、および無灰炭の製造装置