JP2014056180A - 電子写真感光体、画像形成方法及び画像形成装置 - Google Patents

電子写真感光体、画像形成方法及び画像形成装置 Download PDF

Info

Publication number
JP2014056180A
JP2014056180A JP2012201872A JP2012201872A JP2014056180A JP 2014056180 A JP2014056180 A JP 2014056180A JP 2012201872 A JP2012201872 A JP 2012201872A JP 2012201872 A JP2012201872 A JP 2012201872A JP 2014056180 A JP2014056180 A JP 2014056180A
Authority
JP
Japan
Prior art keywords
resin
layer
photoreceptor
image forming
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012201872A
Other languages
English (en)
Inventor
Sunao Mizushima
直 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012201872A priority Critical patent/JP2014056180A/ja
Publication of JP2014056180A publication Critical patent/JP2014056180A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

【課題】耐久性を持ち、かつ、電子写真プロセスに於ける環境変動の影響を受けづらい感光体を提供することである。また、該感光体を用いた画像形成装置、および画像形成方法を提供する。
【解決手段】導電性支持体上に少なくとも感光層及び下引き層を有する感光体において、金属酸化物/樹脂質量比率が3.5以上の下引き層を有し、且つ、感光層に、下記一般式(1)で表される繰り返し単位からなるポリカーボネート樹脂を含有することを特徴とする電子写真感光体。
【選択図】なし

Description

本発明は、特定材料を組み合わせて使用する電子写真感光体、画像形成方法、及び画像形成装置に関する。特に、レーザープリンター、複写機、ファクス等に使用される電子写真感光体で、LED光や半導体レーザー光に対して非常に有効で、環境変動に優れ、耐久性にも優れた電子写真感光体、画像形成方法、及び画像形成装置に関する。
電子写真技術は、即時性、高品質の画像が得られることなどから、近年では複写機の分野にとどまらず、各種プリンターの分野でも広く使われ応用されている。
電子写真技術の中核となる感光体については、近年ではその光導電材料として、無公害で成膜が容易、製造が容易である等の利点を有する有機系の光導電材料を使用した感光体が開発されている。
有機系の光導電材料を使用した感光体としては、光導電性微粉末をバインダー樹脂中に分散させたいわゆる分散型感光体、電荷発生層及び電荷輸送層を積層した積層型感光体が知られている。また、積層型感光体では電荷発生層及び電荷輸送層を導電性基体上にこの順で積層した順積層型感光体と、電荷輸送層及び電荷発生層をこの順に積層した逆積層型感光体が知られている。積層型感光体は、それぞれ効率の高い電荷発生物質、及び電荷輸送物質を組み合わせることにより高感度な感光体が得られること、材料選択範囲が広く安全性の高い感光体が得られること、また塗布の生産性が高く比較的コスト面でも有利なことから感光体の主流として鋭意開発され実用化されている。
電子写真感光体は、電子写真プロセスすなわち帯電、露光、現像、転写、クリーニング、除電等のサイクルで繰り返し使用される。感光体は繰り返し使用されるため、様々なストレスを受け劣化する。このような劣化としては例えば、帯電器から発生する強酸化性のオゾンやNOxが感光層に化学的なダメ−ジを与えたり、像露光で生成したキャリアー(電流)が感光層内を流れることや除電光、外部からの光によって感光層組成物が分解するなどによる化学的、電気的劣化がある。また、感光体を帯電させるために感光体に接触している帯電ローラーや帯電ブラシ、余分なトナーを除去するためのクリーニングブレード、画像を転写するための転写ローラーなどによる機械的劣化が挙げられる。
ところで、近年、複写機、プリンターは共にモノクロからフルカラー化に向かっている。このフルカラー画像形成方法には主としてタンデム方式、4サイクル方式があり、また印刷媒体への転写方式としては、直接転写方式、転写ドラム方式、中間転写方式、多重現像一括転写方式などがある。フルカラーの画像形成装置では、モノクロの画像形成装置と異なり、画質への要求レベルが非常に高く、画像形成装置の置かれた環境(例えば温湿度)が変動することによる画質の変動に関しても、非常に厳しい。
また、使用環境の影響を受けづらい感光層とするためには、感光層を形成するすべての材料のマッチングを検証する必要があり、さらに、実際の複写機、レーザープリンターを構成するプロセスから受ける影響が異なる場合が多く、いかなる材料の組み合わせれば良好であるかは明らかにされていなかった。
一方で、表面保護層などの機能層を持たない一般的な感光体の場合、感光体の耐久性を決めるのは感光層である。感光層は、通常バインダー樹脂と光導電性物質からなっており、実質的に強度を決めるのはバインダー樹脂であるが、光導電性物質のドープ量が相当多いため十分な機械強度を持たせるには至っていない。
感光層のバインダー樹脂としては、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル等のビニル重合体、およびその共重合体、ポリカーボネート、ポリエステル、ポリスルホン、フェノキシ、エポキシ、シリコーン樹脂等の熱可塑性樹脂や種々の熱硬化性樹脂が用いられている。数あるバインダー樹脂のなかではポリカーボネート樹脂が比較的優れた性能を有しており、これまで種々のポリカーボネート樹脂が開発され実用に供されている。
特に近年、耐摩耗性に優れたポリカーボネート樹脂が開発されている(例えば特許文献1及び特許文献2)。
また、特定の電荷発生材料の製造方法または電荷発生材料の塩素含有率と、特定構造を有するポリカーボネート樹脂とを組み合わせることで、転写プロセスの影響を受けづらい感光体を構築するアイディアも近年示されているが、残念ながら十分な耐久性を持つものではなかった(特許文献3)。
特定の表面処理された金属酸化物粒子を下引き層に用いることで、繰返して使用しても残留電位の上昇を充分に防止可能であり、優れた画質の画像を得ること、実施例には金属酸化物/樹脂質量比率が4/1であることが記載されているが、耐久性及び耐環境変動に着
目したものではなかった(特許文献4)。
特開2011−26574号公報 特開2011−26575号公報 特開2007−212510号公報 特開2004−191868号公報
本発明は上記実状に鑑みてなされたものであり、その目的は、耐久性を持ち、かつ、電子写真プロセスに於ける環境変動の影響を受けづらい感光体を提供することである。また、該感光体を用いた画像形成装置、および画像形成方法を提供することにある。
本発明者らは、高い感度を持ち、かつ、電子写真プロセスに於ける環境変動の影響を受けづらい電子写真感光体について鋭意検討を行なった結果、特定の下引き層と、特定構造を有するポリカーボネート樹脂とを組み合わせて電子写真感光体に用いることにより、感光体のその他諸特性に悪影響を与えることなく、高い耐久性を示し、かつ環境変動の影響を受けづらい電子写真感光体を得ることができることを見出し、本発明を完成させるに至った。
すなわち、本発明の第一の要旨は、導電性支持体上に少なくとも感光層及び下引き層を有する感光体において、金属酸化物/樹脂質量比率が3.5以上10以下の下引き層を有し、且つ、感光層に、下記一般式(1)で表される繰り返し単位からなるポリカーボネート樹脂を含有することを特徴とする電子写真感光体に存する。
Figure 2014056180
ここで、n/(m+n)=0.25〜0.47であり、特にn/(m+n)=0.35〜0.45が好ましい。
また、本発明の第二の要旨は、下引き層に用いる樹脂を構成する全単量体中、ε−カプロラクタム成分比率が、70モル%以下であることを特徴とする請求項1又は2に記載の電子写真感光体に存する。
また、本発明の第三の要旨は、該電子写真感光体を直列に複数個並べて使用するカラー画像形成方法に存する。本発明の第四の要旨は、該画像形成方法を用いることを特徴とした、カラー画像形成装置に存する。
本発明によれば、使用開始時はもちろんのこと、繰り返し使用した場合でも環境変動による画像濃度差が発生することなく、しかも電気特性に優れた電子写真感光体、および画像形成装置を得ることができる。本発明による感光体は安定性が極めて良好であり、耐久性に優れているため、高速の複写機やカラープリンタ等に好適に用いることができ、特に長寿命の画像形成装置に於いても好適に用いることができる。
本発明の画像形成装置の一実施態様の要部構成を示す概略図である。 本発明の合成例で用いたオキシチタニウムフタロシアニン化合物の粉末X線回折図である。 湿式攪拌ボールミルの縦断面図である。
以下、本発明の実施の形態につき詳細に説明するが、以下に記載する構成要件の説明は本発明の実施形態の代表例であって、本発明の趣旨を逸脱しない範囲において適宜変形して実施することができる。
本発明は、特定の下引き層と、特定のポリカーボネート樹脂を併用することにより、高性能の電子写真感光体を得る。
<下引き層>
本発明においては、下引き層を有することが必須であり、下引き層中の、金属酸化物/樹脂質量比率が3.5以上の下引き層を有する。電気特性の環境依存性を小さくする観点から、好ましくは、金属酸化物/樹脂質量比率が3.7以上、より好ましくは3.9以上、4.0以上が特に好ましい。上限は、耐リーク性の観点から、10以下、好ましくは8.0以下、より好ましくは5.0以下である。
また、電気特性の環境依存性を小さくする観点から、下引き層に用いる樹脂を構成する全単量体中、ε−カプロラクタム成分比率が、70モル%以下が好ましく、より好ましくは65%以下、60%以下が特に好ましい。下限は、金属微粒子を分散安定化させる観点から、通常0%以上、好ましくは20%以上、より好ましくは40%以上である。
上記条件と、数ある組み合わせのうち、本発明の下引き層と本発明のポリカーボネート樹脂を組み合わせた時に、環境変動による影響が少なく、耐磨耗性に優れた感光体が形成される。
<ポリカーボネート樹脂>
本発明において、感光層は、下記一般式(1)で示される繰り返し構造単位からなるポリカーボネート樹脂をバインダー樹脂として含有する。
Figure 2014056180
n/(m+n)は、0.25〜0.47である。n/(m+n)は、耐摩耗性確保の観点から、好ましくは0.30以上、更に好ましくは0.35以上である。また上限は、製造安定性の観点から、好ましくは0.46以下、更に好ましくは0.45以下である。
本発明のポリカーボネート樹脂は、特許文献1及び特許文献2に記載の方法に従って、製造することができる。
一般式(1)で表される繰り返し構造を含むポリカーボネート樹脂において、粘度平均分子量は、感光層を塗布形成するのに適するよう、通常10,000以上、好ましくは15,000以上、さらに好ましくは20,000以上であり、通常300,000以下、好ましくは200,000以下、より好ましくは100,000以下である。粘度平均分子量が10,000未満であると樹脂の機械的強度が低下し実用的でなく、300,000以上であると、感光層を適当な膜厚に塗布形成する事が困難である。
本発明の感光層は、式(1)で表される繰り返し単位からなるポリカーボネート樹脂を含有するものであるが、式(1)で表される繰り返し単位からなるポリカーボネート樹脂は、実質上式(1)で表される繰り返し単位からなるものであれば、本発明の趣旨を逸脱しない範囲において、他の繰り返し構造を有していても構わない。
また、本発明の感光層は本発明に係る式(1)で表される繰り返し単位からなるポリカーボネート樹脂を含有するものであるが、他のバインダー樹脂を含有していても構わない。併用される他の樹脂としては、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル等のビニル重合体、およびその共重合体、ポリカーボネート、ポリエステル、ポリスルホン、フェノキシ、エポキシ、シリコーン樹脂等の熱可塑性樹脂や種々の熱硬化性樹脂などが挙げられる。これら樹脂のなかでもポリカーボネート樹脂またはポリエステル樹脂が好ましい。
式(1)で表される繰り返し単位からなるポリカーボネート樹脂を含有する層が、該樹脂以外のバインダー樹脂を含有する場合、本発明の電子写真感光体の機械的特性を維持するため、該層に含有される全バインダー樹脂に対して、式(1)で表される繰り返し単位からなるポリカーボネート樹脂が、50質量%以上であることが好ましく、より好ましくは80質量%以上であるが、特に好ましくはバインダー樹脂として式(1)で表される繰り返し単位からなるポリカーボネート樹脂のみを用い、該樹脂以外のバインダー樹脂を含有しない。
<電子写真感光体>
以下、本発明の電子写真感光体について説明する。
電子写真感光体の感光層は、導電性支持体上に設けられ、下引き層を有する場合は下引き層上に設けられる。感光層の型式としては、電荷発生物質と電荷輸送物質とが同一層に存在し、バインダー樹脂中に分散された、いわゆる単層型感光体、電荷発生物質がバイン
ダー樹脂中に分散された電荷発生層及び電荷輸送物質がバインダー樹脂中に分散された電荷輸送層の二つに機能分離された複層構造の、いわゆる積層型感光体があげられるが、何れの構成であってもよい。また、感光層上に、帯電性の改善や、耐摩耗性改善を目的としてオーバーコート層を設けてもよい。
積層型感光層としては、導電性支持体側から電荷発生層、電荷輸送層をこの順に積層して設ける順積層型感光層と、逆に電荷輸送層、電荷発生層の順に積層して設ける逆積層型感光層とがあり、いずれを採用することも可能であるが、特にバランスの取れた光導電性を発揮できる順積層型感光層が好ましい。
本発明の電子写真感光体で使用されるオキシチタニウムフタロシアニンおよび式(1)で表されるポリカーボネート樹脂は、導電性支持体上に形成される何れの層に含有されていても構わないが、オキシチタニウムフタロシアニンは通常、単層型感光層または積層型感光層の電荷発生層に、式(1)で表されるポリカーボネート樹脂は通常、単層型感光層または積層型感光層の電荷輸送層に含有される。特に、電気特性に高い効果が得られることから、積層型感光層の各層中に含有されるのが好ましい。
<導電性支持体>
感光体に用いる導電性支持体としては、例えばアルミニウム、アルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料や、金属、カーボン、酸化錫などの導電性粉体を添加して導電性を付与した樹脂材料や、アルミニウム、ニッケル、ITO(酸化インジウム酸化錫)等の導電性材料をその表面に蒸着又は塗布した樹脂、ガラス、紙等が主として使用される。形態としては、ドラム状、シート状、ベルト状などのものが用いられる。金属材料の導電性支持体に、導電性・表面性などの制御のためや欠陥被覆のために。適当な抵抗値をもつ導電性材料を塗布したものでもよい。
導電性支持体としてアルミニウム合金等の金属材料を用いた場合、陽極酸化被膜を施してから用いてもよい。陽極酸化被膜を施した場合、公知の方法により封孔処理を施すのが望ましい。
例えば、クロム酸、硫酸、シュウ酸、ホウ酸、スルファミン酸等の酸性浴中で、陽極酸化処理することにより陽極酸化被膜が形成されるが、硫酸中での陽極酸化処理がより良好な結果を与える。硫酸中での陽極酸化の場合、硫酸濃度は100〜300g/l、溶存アルミニウム濃度は2〜15g/l、液温は15〜30℃、電解電圧は10〜20V、電流密度は0.5〜2A/dm2の範囲内に設定されるのが好ましいが、前記条件に限定され
るものではない。
このようにして形成された陽極酸化被膜に対して、封孔処理を行なうことは好ましい。封孔処理は、公知の方法で行われればよいが、例えば、主成分としてフッ化ニッケルを含有する水溶液中に浸漬させる低温封孔処理、あるいは主成分として酢酸ニッケルを含有する水溶液中に浸漬させる高温封孔処理が施されるのが好ましい。
上記低温封孔処理の場合に使用されるフッ化ニッケル水溶液濃度は、適宜選べるが、3〜6g/lの範囲で使用された場合、より好ましい結果が得られる。また、封孔処理をスムーズに進めるために、処理温度としては、25〜40℃、好ましくは30〜35℃で、また、フッ化ニッケル水溶液pHは、4.5〜6.5、好ましくは5.5〜6.0の範囲で処理するのがよい。pH調節剤としては、シュウ酸、ホウ酸、ギ酸、酢酸、水酸化ナトリウム、酢酸ナトリウム、アンモニア水等を用いることが出来る。処理時間は、被膜の膜厚1μmあたり1〜3分の範囲で処理することが好ましい。なお、被膜物性を更に改良するためにフッ化コバルト、酢酸コバルト、硫酸ニッケル、界面活性剤等をフッ化ニッケル水溶液に添加しておいてもよい。次いで水洗、乾燥して低温封孔処理を終える。前記高温封孔処理の場合の封孔剤としては、酢酸ニッケル、酢酸コバルト、酢酸鉛、酢酸ニッケル−コバルト、硝酸バリウム等の金属塩水溶液を用いることが出来るが、特に酢酸ニッケル
を用いるのが好ましい。酢酸ニッケル水溶液を用いる場合の濃度は5〜20g/lの範囲内で使用するのが好ましい。処理温度は80〜100℃、好ましくは90〜98℃で、また、酢酸ニッケル水溶液のpHは5.0〜6.0の範囲で処理するのが好ましい。ここでpH調節剤としてはアンモニア水、酢酸ナトリウム等を用いることが出来る。処理時間は10分以上、好ましくは20分以上処理するのが好ましい。なお、この場合も被膜物性を改良するために酢酸ナトリウム、有機カルボン酸、アニオン系、ノニオン系界面活性剤等を酢酸ニッケル水溶液に添加してもよい。次いで水洗、乾燥して高温封孔処理を終える。平均膜厚が厚い場合には、封孔液の高濃度化、高温・長時間処理により強い封孔条件を必要とする。従って生産性が悪くなると共に、被膜表面にシミ、汚れ、粉ふきといった表面欠陥を生じやすくなる。このような点から、陽極酸化被膜の平均膜厚は通常20μm以下、特に7μm以下で形成されることが好ましい。
支持体表面は、平滑であってもよいし、特別な切削方法を用いたり、研磨処理したりすることにより、粗面化されていてもよい。また、支持体を構成する材料に適当な粒径の粒子を混合することによって、粗面化されたものであってもよい。また、安価化のためには切削処理を施さず、引き抜き管をそのまま使用することも可能である。特に引き抜き加工、インパクト加工、しごき加工等の非切削アルミニウム支持体を用いる場合、処理により、表面に存在した汚れや異物等の付着物、小さな傷等が無くなり、均一で清浄な支持体が得られるので好ましい。
<下引き層>
導電性支持体と後述する感光層との間には、接着性・ブロッキング性等の改善のため、下引き層を設けてもよい。下引き層としては、樹脂、樹脂に金属酸化物等の粒子を分散したものなどが用いられる。
下引き層に用いる金属酸化物粒子の例としては、酸化チタン、酸化アルミニウム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の1種の金属元素を含む金属酸化物粒子、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数の金属元素を含む金属酸化物粒子などがあげられる。これらは一種類の粒子を単独で用いてもよいし、複数の種類の粒子を混合して用いてもよい。これらの金属酸化物粒子の中で、酸化チタン及び酸化アルミニウムが好ましく、特に酸化チタンが好ましい。酸化チタン粒子は、その表面に、酸化錫、酸化アルミニウム、酸化アンチモン、酸化ジルコニウム、酸化珪素等の無機物、又はステアリン酸、ポリオール、シリコン等の有機物による処理を施されていてもよい。酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルッカイト、アモルファスのいずれも用いることができる。また、複数の結晶状態のものが含まれていてもよい。
また、金属酸化物粒子の粒径としては種々のものが利用できるが、中でも電気特性および下引き層形成要の塗布液の安定性の面から、平均一次粒径として通常1nm以上、好ましくは10nm以上、また、通常100nm以下、好ましくは50nm以下のものが望ましい。
下引き層は、金属酸化物粒子をバインダ樹脂に分散した形で形成するのが望ましい。下引き層に用いられるバインダ樹脂としては、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリイミド樹脂、塩化ビニリデン樹脂、ポリビニルアセタール樹脂、塩化ビニル−酢酸ビニル共重合体、ポリビニルアルコール樹脂、ポリウレタン樹脂、ポリアクリル酸樹脂、ポリアクリルアミド樹脂、ポリビニルピロリドン樹脂、ポリビニルピリジン樹脂、水溶性ポリエステル樹脂、ニトロセルロース等のセルロースエステル樹脂、セルロースエーテル樹脂、カゼイン、ゼラチン、ポリグルタミン酸、澱粉、スターチアセテート、アミノ澱粉、ジルコニウムキレート化合物、ジルコニウムアルコキシド化合物等の有機ジルコニウム
化合物、チタニルキレート化合物、チタニルアルコキシド化合物等の有機チタニル化合物、シランカップリング剤などの公知のバインダ樹脂があげられる。これらは単独で用いても良く、或いは2種以上を任意の組み合わせ及び比率で併用してもよい。また、硬化剤とともに硬化した形で使用してもよい。中でも、アルコール可溶性の共重合ポリアミド、変性ポリアミド等は、良好な分散性、塗布性を示すことから好ましい。
ポリアミド樹脂としては例えば、6−ナイロン、66−ナイロン、610 −ナイロン
、11−ナイロン、12−ナイロン等を共重合させた、いわゆる共重合ナイロンや、N−アルコキシメチル変性ナイロン、N−アルコキシエチル変性ナイロンのようにナイロンを化学的に変性させたタイプ等のアルコール可溶性ナイロン樹脂などを挙げることができる。具体的な商品としては、例えば「CM4000」「CM8000」(以上、東レ製)、「F−30K」「M F−30」「EF−30T」( 以上、ナガセケムテック株式会社製)等が挙げられる。
これらポリアミド樹脂の中でも、下記式(ii)で表されるジアミンに対応するジアミン成分(以下適宜、「式(ii) に対応するジアミン成分」という) を構成成分として含む共重合ポリアミド樹脂が特に好ましく用いられる。
Figure 2014056180
前記式(ii)において、R4〜R7は、水素原子または有機置換基を表す。m 、n はそれぞれ独立に、0〜4の整数を表す。なお、置換基が複数ある場合、それらの置換基は互いに同じでも良く、異なっていてもよい。
4〜R7で表される有機置換基として好適なものの例を挙げると、ヘテロ原子を含んでいても構わない炭化水素基が挙げられる。この中でも好ましいものとしては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基等のアルキル基;メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基等のアルコキシ基; フェニル基、ナフチ
ル基、アントリル基、ピレニル基等のアリール基が挙げられ、更に好ましくはアルキル基、またはアルコキシ基である。特に好ましくは、メチル基、エチル基である。
また、R4〜R7で表される有機置換基の炭素数は本発明の効果を著しく損なわない限り任意であるが、通常20以下、好ましくは18以下、より好ましくは12以下、また、通常1 以上である。炭素数が大きすぎると、溶解性が悪化し、また、溶解ができたとして
も下引き層形成用塗布液としての保存安定性が悪化する傾向を示す。
前記式(ii)に対応するジアミン成分を構成成分として含む共重合ポリアミド樹脂は、式(ii) に対応するジアミン成分以外の構成成分(以下適宜、単に「その他のポリアミ
ド構成成分」という)を構成単位として含んでいてもよい。その他のポリアミド構成成分としては、例えば、γ−ブチロラクタム、ε−カプロラクタム、ラウリルラクタム等のラクタム類;1,4− ブタンジカルボン酸、1,12−ドデカンジカルボン酸、1,20
−アイコサンジカルボン酸等のジカルボン酸類;1,4−ブタンジアミン、1,6−ヘキサメチレンジアミン、1,8−オクタメチレンジアミン、1,12−ドデカンジアミン等のジアミン類;ピペラジン等などが挙げられる。この際、前記の共重合ポリアミド樹脂は、その構成成分を、例えば、二元、三元、四元等に共重合させたものが挙げられる。
前記式(ii)に対応するジアミン成分を構成成分として含む共重合ポリアミド樹脂がその他のポリアミド構成成分を構成単位として含む場合、全構成成分中に占める式(ii)に対応するジアミン成分の割合に制限は無いが、通常5mol% 以上、好ましくは10m
ol%以上、より好ましくは15mol% 以上、また、通常40 mol%以下、好ましくは30mol%以下である。式(ii)に対応するジアミン成分が多すぎると下引き層形成用塗布液の安定性が悪くなる可能性があり、少なすぎると高温高湿度条件での電気特性の変化が大きくなり、電気特性の環境変化に対する安定性が悪くなる可能性がある。
前記の共重合ポリアミド樹脂の具体例を以下に示す。但し、具体例中、共重合比率はモノマーの仕込み比率(モル比率)を表す。
Figure 2014056180
前記の共重合ポリアミドの製造方法には特に制限はなく、通常のポリアミドの重縮合方法が適宜適用される。例えば溶融重合法、溶液重合法、界面重合法等の重縮合方法が適宜適用できる。また、重合に際して、例えば、酢酸や安息香酸等の一塩基酸;ヘキシルアミン、アニリン等の一酸塩基などを、分子量調節剤として重合系に含有させてもよい。
なお、バインダー樹脂は、1 種を単独で用いてもよく、2種以上を任意の組み合わせ
及び比率で併用しても良い。
下引き層の膜厚は、任意に選ぶことができるが、感光体特性及び塗布性を向上させる観点から、通常は0.1μm以上、20μm以下の範囲が好ましい。
下引き層には、公知の酸化防止剤等を混合してもよい。画像欠陥防止などを目的として、顔料粒子、樹脂粒子等を含有させ用いてもよい。
本発明の下引き層形成用塗布液は、金属酸化物粒子を含有するものであるが、該金属酸化物粒子は塗布液中に分散されて存在する。塗布液中に金属酸化物粒子を分散させるには、例えば、ボールミル、サンドグラインドミル、遊星ミル、ロールミルなどの公知の機械的な粉砕装置で有機溶媒中にて湿式分散することにより製造することができるが、分散メディアを利用して分散することが好ましい。
分散メディアを利用して分散する分散装置としては、公知のどのような分散装置を用いて分散しても構わないが、ペブルミル、ボールミル、サンドミル、スクリーンミル、ギャップミル、振動ミル、ペイントシェーカー、アトライター等が挙げられる。これらの中で
も塗布液を循環させて分散できるものが好ましく、分散効率、到達粒径の細かさ、連続運転の容易さ等の点から、サンドミル、スクリーンミル、ギャップミルが用いられる。サンドミルは、縦型、横型いずれのものでもよい。サンドミルのディスク形状は、平板型、垂直ピン型、水平ピン型等任意のものを使用できる。
好ましくは、液循環型のサンドミルが用いられ、円筒形のステータと、ステータの一端に設けられるスラリーの供給口と、ステータの他端に設けられるスラリーの排出口と、ステータ内に充填されるメディアと供給口より供給されたスラリーを攪拌混合するピン、ディスク或いはアニューラタイプのロータと、排出口に連結され、かつロータと一体をなして回転するか、或いはロータとは別個に独立して回転し、遠心力の作用によりメディアとスラリーに分離して、スラリーを排出口より排出させるインペラタイプのセパレータとよりなる湿式攪拌ボールミルにおいて、セパレータを回転駆動するシャフトの軸心を上記排出口に通ずる中空な排出口としたものが特に好ましい。
このような湿式攪拌ボールミルによれば、セパレータによりメディアを分離したスラリーはシャフトの軸心を通って排出されるが、軸心では遠心力が作用しないため、スラリーは運動エネルギーを有しない状態で排出される。このために運動エネルギーが無駄に放出されず、無駄な動力が消費されなくなる。
このような湿式攪拌ボールミルは、横向きでもよいが、メディアの充填率を多くするために好ましくは縦向きで、排出口がミル上端に設けられる。またセパレータもメディア充填レベルより上方に設けるのが望ましい。排出口をミル上端に設ける場合、供給口はミル底部に設けられる。好ましい態様において、供給口は弁座と、弁座に昇降可能に嵌合し、弁座のエッジと線接触が可能なV 形、台形或いはコーン状の弁体とより構成され、弁座
のエッジとV 形、台形或いはコーン状の弁体との間にメディアが通過し得ないような環
状のスリットを形成することにより、原料スラリーは供給されるが、メディアの落ち込みは防止できるようにされる。また弁体を上昇させることによりスリットを広げてメディアを排出させたり、或いは弁体を降下させることによりスリットを閉じてミルを密閉させることが可能である。更にスリットは弁体と弁座のエッジで形成されるため、原料スラリー中の粗粒子が噛み込み難く、噛み込んでも上下に抜け出し易く詰まりを生じにくい。
また、弁体を振動手段により上下に振動させるようにすれば、スリットに噛み込んだ粗粒子をスリットより抜け出させることができるうえ、噛み込み自体が生じ難くなる。しかも弁体の振動により原料スラリーに剪断力が加わって粘度が低下し、上記スリットへの原料スラリー通過量、すなわち供給量を増加させることができる。弁体を振動させる振動手段としては、バイブレータなどの機械的手段のほか、弁体と一体をなすピストンに作用する圧縮空気の圧力を変動させる手段、例えば往復動型の圧縮機、圧縮空気の吸排を切換える電磁切換弁等を用いることができる。
このような湿式攪拌ボールミルにはまた、底部にメディアを分離するスクリーンと、製品スラリーの取出し口を設け、粉砕終了後、ミル内に残留する製品スラリーを取り出せるようにするのが望ましい。
円筒形の縦型のステータと、ステータの底部に設けられる製品スラリーの供給口と、ステータの上端に設けられるスラリーの排出口と、ステータの上端に軸支され、モータ等の駆動手段によって回転駆動されるシャフトと、シャフトに固定され、ステータ内に充填されるメディアと供給口より供給されたスラリーを攪拌混合するピン、ディスク或いはアニューラタイプのロータと、排出口近くに設けられ、スラリーよりメディアを分離するセパレータと、ステータ上端のシャフトを支承する軸承部に設けられるメカニカルシールとからなる縦型の湿式攪拌ボールミルにおいて、メカニカルシールのメイティングリングと接触するO リングが嵌合する環状溝の下側部に下方に向かって拡開するテーパ状の切込み
を形成したものである。
本発明に係る湿式攪拌ボールミルによれば、メカニカルシールをメディアやスラリーが運動エネルギーを殆ど有しない軸心部で、しかもそれらの液面レベルより上方のステータ上端に設けることによりメカニカルシールのメイティングリングとO リング嵌合溝下側
部との間にメディアやスラリーが入り込むのを大幅に減らすことができる。
その上、O リングが嵌合する環状溝の下側部は、切込みにより下方に向かって拡開し
、クリアランスが広がっているため、スラリーやメディアが入り込んで噛み込んだり、固化することによる詰まりを生じ難く、メイティングリングのシールリングへの追随が円滑に行われてメカニカルシールの機能維持が行われる。なお、O リングが嵌合する嵌合溝
の下側部は断面V 形をなし、全体が薄肉となる訳ではないから、強度が損なわれること
はないし、O リングの保持機能が損なわれることもない。
円筒形のステータと、ステータの一端に設けられるスラリーの供給口と、ステータの他端に設けられるスラリーの排出口と、ステータ内に充填されるメディアと供給口より供給されたスラリーを攪拌混合するピン、ディスク或いはアニューラタイプのロータと、排出口に連結され、かつロータと一体をなして回転するか、或いはロータとは別個に独立して回転し、遠心力の作用によりメディアとスラリーに分離して、スラリーを排出口より排出させるインペラタイプのセパレータとよりなる湿式攪拌ボールミルにおいて、セパレータを、対向する内側面にブレードの嵌合溝を備えた二枚のディスクと、嵌合溝に嵌合してディスク間に介在するブレードと、ブレードを介在させたディスクを両側より挟持する支持手段とからなるもので、好ましい態様において支持手段は段付軸をなすシャフトの段と、シャフトに嵌合してディスクを押さえる円筒状の押え手段とより構成され、シャフトの段と押え手段とでブレードを介在させたディスクを両側より挟み込んで支持するようにされる。
図3 において、原料スラリーは、縦型湿式攪拌ボールミルに供給され、該ミルでメデ
ィアと共に攪拌されることにより粉砕されたのち、セパレータ1 4 でメディアを分離してシャフト1 5 の軸心を通って排出され、戻される経路を辿り、循環粉砕されるようになっている。
縦型湿式攪拌ボールミルは、図3に詳細に示されるように、縦向きの円筒形で、かつミル冷却のための冷却水が通されるジャケット16を備えたステータ17と、ステータ17の軸心に位置してステータ上部において回転可能に軸承されると共に、軸承部にメカニカルシールを備え、かつ上側部の軸心を中空な排出路19としたシャフト15と、シャフト下端部に径方向に突設されるピンないしディスク状のロータ21と、シャフト上部に固着され、駆動力を伝達するプーリ2 4 と、シャフト上端の開口端に装着されるロータリージョイント25と、ステータ内の上部近くにおいてシャフト15に固着されるメディア分離のためのセパレータ14と、ステータ底部にシャフト15の軸端に対向して設けられる原料スラリーの供給口26と、ステータ底部の偏心位置に設けられる製品スラリー取出し口29に設置される格子状のスクリーンサポート27上に取着され、メディアを分離するスクリーン28とからなっている。セパレータ14は、シャフト15に一定の間隔を存して固着される一対のディスク31と、両ディスク31を連結するブレード32とよりなってインペラを構成し、シャフト15と共に回転してディスク間に入り込んだメディアとスラリーに遠心力を付与し、その比重差によりメディアを径方向外方に飛ばす一方、スラリーをシャフト15の軸心の排出路19を通って排出させるようにしている。原料スラリーの供給口26は、ステータ底部に形成される弁座に昇降可能に嵌合する逆台形状の弁体35と、ステータ底部より下向きに突出する有底の円筒体36よりなり、原料スラリーの供給により弁体35が押し上げられると、弁座との間に環状のスリットが形成され、これより原料スラリーがミル内に供給されるようになる。
原料供給時の弁体35は、円筒体36内に送り込まれた原料スラリーの供給圧によりミ
ル内の圧力に抗して上昇し、弁座との間にスリットを形成する。
スリットでの詰まりを解消するため、弁体35が短い周期で上限位置まで上昇する上下動を繰返して噛み込みを解消できるようにしてある。この弁体35の振動は、常時行っておいてもよいし、原料スラリー中に粗粒子が多量に含まれる場合に行ってもよく、また詰まりによって原料スラリーの供給圧が上昇したとき、これに連動して行われるようにしてもよい。
このような構造を有する湿式撹拌ボールミルとしては、具体的には例えば寿工業株式会社製のウルトラアペックスミルがあげられる。
次に、原料スラリーの粉砕方法について説明する。ボールミルのステータ17内にメディアを充填し、外部動力により駆動されてロータ2 1 及びセパレータ14が回転駆動される一方、原料スラリーが一定量、供給口2 6 に送られ、これにより弁座のエッジと弁体35との間に形成されるスリットを通してミル内に供給される。
ロータ21の回転によりミル内の原料スラリーとメディアが攪拌混合されてスラリーの粉砕が行われ、またセパレータ1 4 の回転により、セパレータ内に入り込んだメディアとスラリーが比重差により分離され、比重の重いメディアが径方向外方に飛ばされるのに対し、比重の軽いスラリーがシャフト15の軸心に形成される排出路19を通して排出され、原料タンクに戻される。粉砕がある程度進行した段階でスラリーの粒度を適宜測定し、所望粒度に達すると、一旦原料ポンプを停止し、ついでミルの運転を停止し、粉砕を終了する。
このような縦型湿式攪拌ボールミルを用いて、金属酸化物粒子を分散させる場合、ミル内に充填されるメディアの充填率は50〜100%で粉砕するようにするのが好ましく、より好ましくは70〜95% 、特に好ましくは80〜90% である。
本発明に係る下引き層形成用塗布液を分散するのに適用される湿式攪拌ボールミルは、セパレータがスクリーンやスリット機構であってもよいが、インペラタイプのものが望ましく、縦型であることが好ましい。湿式攪拌ボールミルは縦向きにし、セパレータをミル上部に設けることが望まれるが、特にメディアの充填率を80〜90%に設定すると、粉砕が最も効率的に行われるうえ、セパレータをメディア充填レベルより上方に位置させることが可能となり、メディアがセパレータに乗って排出されるのを防止することができる効果もある。
分散メディアの平均粒子径としては、通常1μm〜5mmのものが用いられ、5μm〜1mmが好ましく、特に10μm〜100μmであるのが好ましい。一般に小さな粒径の分散メディアの方が、短時間で均一な分散液を与える傾向があるが、過度に粒径が小さくなると分散メディアの質量が小さくなりすぎて効率よい分散ができなくなる。
分散メディアの密度としては、通常5.5g/cm 以上のものが用いられ、好まし
くは5.9g/cm以上、より好ましくは6.0g/cm以上のものが用いられる。一般に、より高密度の分散メディアを使用して分散した方が短時間で均一な分散液を与える傾向がある。分散メディアの真球度としては、1.08以下のものが好ましく、より好ましくは1.07以下の真球度を持つ分散メディアを用いる。
分散メディアの材質としては、下引き層形成用塗布液に不溶、且つ、比重が下引き層形成用塗布液より大きなものであって、下引き層形成用塗布液と反応したり、下引き層形成用塗布液変質させたりしないものであれば、公知の如何なる分散メディアも使用することができ、クローム球( 玉軸受用鋼球) 、カーボン球( 炭素鋼球) 等のスチール球;
ステンレス球; 窒化珪素球、炭化珪素、ジルコニア、アルミナ等のセラミック球; 窒化チタン、炭窒化チタン等の膜でコーティングされた球などがあげられるが、これらの中でもセラミック球が好ましく、特にはジルコニア焼成ボールが好ましい。より具体的には、
特許第3400836号公報に記載のジルコニア焼成ビーズを用いることが特に好ましい。
本発明の下引き層をメタノールと1−プロパノールとを7:3の質量比で混合した溶媒に分散した液中の金属酸化物凝集体二次粒子の体積平均粒子径は、通常0.40μm以下、好ましくは0.15μm以下、更に好ましくは0.10μm以下、特に好ましくは0.08μm以下である。累積90%粒子径は通常0.50μm以下、好ましくは0.20μm以下、更に好ましくは、0.30μm以下、特に好ましくは0.20μm以下である。
屈折率2.0以上の金属酸化物粒子を含有する下引き層をメタノールと1 − プロパノールとを7:3の重量比で混合した溶媒に分散した液の、波長400nmの光に対する吸光度と波長1000nmの光に対する吸光度との差は、通常1.0μm以下、好ましくは0.7以下、更に好ましくは、0.3(Abs)以下である。
屈折率2.0以上の金属酸化物粒子を含有する下引き層が2μmである場合に換算した、該導電性支持体の波長480nmの光に対する正反射に対する、該下引き層の波長480nmの光に対する正反射の比は、通常40%以上、好ましくは45%以上、更に好ましくは、50%以上、特に好ましくは54%以上である。
これらの値は、特開2006−171703に記載されている方法に準じて測定することができる。このような値とすることで、下引き層用塗布液は安定した状態となり、ゲル化したり、分散された酸化チタン粒子が沈殿したりすることがなく、長期保存および使用が可能となる。また、該塗布液の使用時における粘性をはじめとする物性の変化が小さくなり、連続して支持体上に塗布し乾燥して感光層を形成する際に、製造されたそれぞれの感光層の膜厚が均一なものとなる。更に、本発明の方法により製造された塗布液を用いて形成された下引き層を有する電子写真感光体は、低温低湿度でも安定した電気特性を有し、環境変動の影響を受けづらく、電気特性に優れている。
<電荷発生物質>
導電性支持体上に形成された感光層としては、電荷発生物質と電荷輸送物質が同一層に存在し、バインダー樹脂中に分散された単層構造のものであっても、もしくは電荷発生物質がバインダー中に分散された電荷発生層と電荷輸送物質がバインダー樹脂中に分散された電荷輸送層とに機能分離された積層構造のもののいずれであってもよい。感光層が積層構造を有する場合において、電荷発生層は前記オキシチタニウムフタロシアニンを電荷発生物質の少なくとも1種として含有する電荷発生物質と結着樹脂からなる。
機能分離型感光体においての電荷発生層は、結着樹脂を有機溶剤に溶解した溶液に前記オキシチタニウムフタロシアニンを少なくとも1種含有する電荷発生物質とを分散させることにより塗布液を調整し、これを導電性支持体上に塗布し、電荷発生物質の微粒子と各種バインダー樹脂とを結着することにより形成される。
電荷発生物質はオキシチタニウムフタロシアニンを単独として用いてもよいし、またはいくつかの染顔料との混合状態で用いてもよい。
オキシチタニウムフタロシアニンと混合状態としてもちいる染顔料としては、フタロシアニン顔料、アゾ顔料、ジチオケトピロロピロール顔料、スクアレン(スクアリリウム顔料)、キナクリドン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、アントアントロン顔料、ベンズイミダゾール顔料等が挙げられる。
混合状態として用いる染顔料としては、光感度の面から、フタロシアニン顔料、アゾ顔料が好ましく使用される。
機能分離型感光体における電荷発生層に用いられる結着樹脂の例としては、ポリビニル
ブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールや、アセタール等で変性された部分アセタール化ポリビニルブチラール樹脂等のポリビニルアセタール系樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、変性エーテル系ポリエステル樹脂、フェノキシ樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、ポリビニルピリジン樹脂、セルロース系樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコーン樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、カゼインや、塩化ビニル−酢酸ビニル共重合体、ヒドロキシ変性塩化ビニル−酢酸ビニル共重合体、カルボキシル変性塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体等の塩化ビニル−酢酸ビニル系共重合体、スチレン−ブタジエン共重合体、塩化ビニリデン−アクリロニトリル共重合体、スチレン−アルキッド樹脂、シリコン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂等の絶縁性樹脂や、ポリ−N−ビニルカルバゾール、ポリビニルアントラセン、ポリビニルペリレン等の有機光導電性ポリマーの中から選択し、用いることが出来るが、これらポリマーに限定されるものではない。また、これら結着樹脂は単独で用いても、2種類以上を混合して用いてもよい。
結着樹脂を溶解させ、塗布液の作製に用いられる溶媒、分散媒としては例えば、ペンタン、ヘキサン、オクタン、ノナン等の飽和脂肪族系溶媒、トルエン、キシレン、アニソール等の芳香族系溶媒、クロロベンゼン、ジクロロベンゼン、クロロナフタレン等のハロゲン化芳香族系溶媒、ジメチルホルムアミド、N−メチル−2−ピロリドン等のアミド系溶媒、メタノール、エタノール、イソプロパノール、n−ブタノール、ベンジルアルコール等のアルコール系溶媒、グリセリン、ポリエチレングリコール等の脂肪族多価アルコール類、アセトン、シクロヘキサノン、メチルエチルケトン等の鎖状、及び環状ケトン系溶媒、ギ酸メチル、酢酸エチル、酢酸n−ブチル等のエステル系溶媒、塩化メチレン、クロロホルム、1,2―ジクロロエタン等のハロゲン化炭化水素系溶媒、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,4−ジオキサン、メチルセルソルブ、エチルセルソルブ等の鎖状、及び環状エーテル系溶媒、アセトニトリル、ジメチルスルホキシド、スルフォラン、ヘキサメチルリン酸トリアミド等の非プロトン性極性溶媒、n−ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン、トリエチルアミン等の含窒素化合物、リグロイン等の鉱油、水などが挙げられ、後述する下引き層を溶解しないものが好ましく用いられる。またこれらは単独、または2種以上を併用しても用いることが可能である。
機能分離型感光体の電荷発生層において、前記結着樹脂と電荷発生物質との配合比(質量)は、バインダー樹脂100質量部に対して10から1000質量部、好ましくは30から500質量部の範囲であり、その膜厚は通常0.1μmから4μm、好ましくは0.15μmから0.6μmである。電荷発生物質の比率が高すぎる場合は電荷発生物質の凝集等の問題により塗布液の安定性が低下し、一方低すぎる場合は感光体としての感度の低下をまねくことから、前記範囲で使用する事が好ましい。前記電荷発生物質を分散させる方法としては、ボールミル分散法、アトライター分散法、サンドミル分散法等の公知の分散方法を用いることが出来る。この際粒子を0.5μm以下、好ましくは0.3μm以下、より好ましくは0.15μm以下の粒子サイズに微細化することが有効である。
<電荷輸送物質>
積層型感光体の電荷輸送層は、電荷輸送物質を含有するとともに、通常はバインダ樹脂と、必要に応じて使用されるその他の成分とを含有する。このような電荷輸送層は、具体的には、例えば電荷輸送物質等とバインダ樹脂とを溶剤に溶解又は分散して塗布液を作製し、これを順積層型感光層の場合には電荷発生層上に、また、逆積層型感光層の場合には導電性支持体上に(下引き層を設ける場合は下引き層上に)塗布、乾燥して得ることがで
きる。
電荷輸送物質としては特に限定されず、任意の物質を用いることが可能である。公知の電荷輸送物質の例としては、2,4,7−トリニトロフルオレノン等の芳香族ニトロ化合物、テトラシアノキノジメタン等のシアノ化合物、ジフェノキノン等のキノン化合物等の電子吸引性物質、カルバゾール誘導体、インドール誘導体、イミダゾール誘導体、オキサゾール誘導体、ピラゾール誘導体、チアジアゾール誘導体、ベンゾフラン誘導体等の複素環化合物、アニリン誘導体、ヒドラゾン誘導体、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン誘導体及びこれらの化合物の複数種が結合したもの、あるいはこれらの化合物からなる基を主鎖又は側鎖に有する重合体等の電子供与性物質等が挙げられる。これらの中でも、カルバゾール誘導体、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン誘導体、及びこれらの化合物の複数種が結合したものが好ましい。これらの電荷輸送物質は、何れか1種を単独で用いても良く、2種以上を任意の組み合わせで併用しても良い。
前記電荷輸送物質の好適な構造の具体例を以下に示す。これら具体例は例示のために示したものであり、本発明の趣旨に反しない限りはいかなる公知の電荷輸送物質を用いてもよい。
Figure 2014056180
Figure 2014056180
<バインダー樹脂>
感光層は、蒸着膜であっても構わないが、通常、前記の電荷発生物質や電荷輸送物質などの原料をバインダー樹脂により結着することにより形成され、本発明のポリカーボネートはバインダー樹脂として用いられる。複数の層が積層された感光層の場合、本発明のポリカーボネート樹脂はその何れの層に用いられても構わないが、通常、積層型感光体の電荷輸送層、または単層型感光体の感光層に用いられる。バインダー樹脂は、本発明のポリカーボネートの他に、通常電子写真感光体に適用可能なものであればどのようなバインダー樹脂も併用可能である。本発明の効果を発現するためには、必ずしも発明のポリカーボネート樹脂を最外層に含む必要はなく、いずれの層に含んでも構わない。
積層型感光体の電荷輸送層、および単層型感光体の感光層に使用されるバインダー樹脂
と電荷輸送物質の割合は、単層型、積層型共に、通常、バインダー樹脂100質量部に対して電荷輸送物質が20質量部以上であって、残留電位低減の観点から30質量部以上が好ましく、さらに繰り返し使用時の安定性、電荷移動度の観点から、40質量部以上がより好ましい。また、一方で感光層の熱安定性の観点から、通常は150質量部以下、さらに電荷輸送物質とバインダー樹脂の相溶性の観点からは好ましくは120質量部以下、さらに耐刷性の観点からは100質量部以下がより好ましく、耐傷性の観点からは80質量部以下がとりわけ好ましい。
単層型感光体の場合には、上記のような配合比の電荷輸送媒体中に、さらに前記の電荷発生物質が分散される。その場合の電荷発生物質の粒子径は充分小さいことが必要であり、好ましくは1μm以下が好ましく、より好ましくは0.5μm以下で使用される。感光層内に分散される電荷発生物質は少なすぎると充分な感度が得られず、多すぎると帯電性の低下、感度の低下の弊害があり、例えば、好ましくは0.1〜50質量%の範囲、好ましくは1〜20質量%の範囲で使用される。
単層型感光体の感光層の膜厚は、通常5〜100μm、好ましくは10〜50μmの範囲で使用され、順積層型感光体の電荷輸送層の膜厚は、通常5〜50μmの範囲で用いられるが、長寿命、画像安定性の観点からは、好ましくは10〜45μm、高解像度の観点からは10〜30μmがより好ましい。
バインダー樹脂は、本発明のポリカーボネートの他に、通常電子写真感光体に適用可能なものであればどのようなバインダー樹脂も併用可能である。
ここで併用される他の樹脂としては、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル等のビニル重合体、およびその共重合体、ポリカーボネート、ポリエステル、ポリカーボネート、ポリスルホン、フェノキシ、エポキシ、シリコーン樹脂等の熱可塑性樹脂や種々の熱硬化性樹脂などが挙げられる。これら樹脂の中でもポリカーボネート樹脂またはポリエステル樹脂が好ましい。
前記バインダー樹脂の好適な構造の具体例を以下に示す。これら具体例は例示のために示したものであり、本発明の趣旨に反しない限りはいかなる公知のバインダー樹脂を混合して用いてもよい。
Figure 2014056180
なお、感光層には成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性などを向上させるために周知の酸化防止剤、可塑剤、紫外線吸収剤、電子吸引性化合物、レベリング剤、可視光遮光剤などの添加物を含有させてもよい。また感光層には必要に応じて塗布性を改善するためのレベリング剤や酸化防止剤、増感剤等の各種添加剤を含んでいてもよい。酸化防止剤の例としては、ヒンダードフェノール化合物、ヒンダードアミン化合物などが挙げられる。また染料、顔料の例としては、各種の色素化合物、アゾ化合物などが挙げられ、界面活性剤の例としては、シリコ−ンオイル、フッ素系オイルなどが挙げられる。
感光体の最表面層には、感光層の損耗を防止したり、帯電器等からの発生する放電物質等による感光層の劣化を防止・軽減する目的で保護層を設けてもよい。保護層は導電性材料を適当な結着樹脂中に含有させて形成するか、特開平9−190004号公報、特開平10−252377号公報の記載のようなトリフェニルアミン骨格等の電荷輸送能を有する化合物を用いた共重合体を用いることが出来る。導電性材料としては、TPD(N,N'−ジフェニル−N,N'−ビス−(m−トリル)ベンジジン)等の芳香族アミノ化合物、酸化アンチモン、酸化インジウム、酸化錫、酸化チタン、酸化錫−酸化アンチモン、酸化アルミ、酸化亜鉛等の金属酸化物などを用いることが可能であるが、これに限定されるものではない。保護層に用いる結着樹脂としてはポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリケトン樹脂、ポリカーボネート樹脂、ポリビニルケトン樹脂、ポリスチレン樹脂、ポリアクリルアミド樹脂、シロキサン樹脂等の公知の樹脂を
用いることができ、また、特開平9−190004号公報、特開平10−252377号公報の記載のようなトリフェニルアミン骨格等の電荷輸送能を有する骨格と上記樹脂の共重合体を用いることも出来る。上記保護層は電気抵抗が109〜1014Ω・cmとなるよ
うに構成することが好ましく。電気抵抗が1014Ω・cmより高くなると残留電位が上昇しカブリの多い画像となってしまい、一方109Ω・cmより低くなると画像のボケ、解
像度の低下が生じてしまう。また、保護層は像露光に照射される光の透過を実質上妨げないように構成されなければならない。
また、感光体表面の摩擦抵抗や、摩耗を低減、トナーの感光体から転写ベルト、紙への転写効率を高める等の目的で、表面層にフッ素系樹脂、シリコーン樹脂、ポリエチレン樹脂、ポリスチレン樹脂等を含んでいてもよい。また、これらの樹脂からなる粒子や無機化合物の粒子を含んでいてもよい。
<層形成方法>
感光体を構成する各層は、各層を構成する材料を含有する塗布液を、支持体上に公知の塗布方法を用い、各層ごとに塗布・乾燥工程を繰り返し、順次塗布していくことにより形成される。
層形成用の塗布液は、単層型感光体および積層型感光体の電荷輸送層の場合には、固形分濃度を、通常5〜40質量%の範囲で用いられるが、10〜35質量%の範囲で使用するのが好ましい。また、該塗布液の粘度は、通常10〜500mPa・sの範囲で用いられるが、50〜400mPa・sの範囲とするのが好ましい。
積層型感光体の電荷発生層の場合には、固形分濃度を、通常0.1〜15質量%の範囲で使用されるが、1〜10%の範囲で使用することがより好ましい。塗布液の粘度は、通常0.01〜20mPa・sの範囲で使用されるが、0.1〜10mPa・sの範囲で使用されることがより好ましい。
塗布液の塗布方法としては、浸漬コーティング法、スプレーコーティング法、スピナーコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、エアーナイフコーティング法、カーテンコーティング法等があげられるが、他の公知のコーティング法を用いることも可能である。
塗布液の乾燥は室温における指触乾燥後、30〜200℃の温度範囲で、1分から2時間の間、無風、または送風下で加熱乾燥させることが好ましい。また加熱温度は一定であっても、乾燥時に変更させながら行なってもよい。
<画像形成装置>
次に、本発明の電子写真感光体を用いた画像形成装置(本発明の画像形成装置)の実施の形態について、装置の要部構成を示す図1を用いて説明する。但し、実施の形態は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない限り任意に変形して実施することができる。
図1に示すように、画像形成装置は、電子写真感光体1,帯電装置2,露光装置3及び現像装置4を備えて構成され、更に、必要に応じて転写装置5,クリーニング装置6及び定着装置7が設けられる。
電子写真感光体1は、上述した本発明の電子写真感光体であれば特に制限はないが、図1ではその一例として、円筒状の導電性支持体の表面に上述した感光層を形成したドラム状の感光体を示している。この電子写真感光体1の外周面に沿って、帯電装置2,露光装置3,現像装置4,転写装置5及びクリーニング装置6がそれぞれ配置されている。電子写真感光体1は、直列に複数個並べて使用してもよい。直列に複数個並べることによりカラー画像を高速で出力することが可能になる。一方で、複数の電子写真感光体が使用されることから、画質を安定化させるためにも、環境に対して特性の違いの少ない感光体が必
要とされる。
帯電装置2は、電子写真感光体1を帯電させるもので、電子写真感光体1の表面を所定電位に均一帯電させる。帯電装置としては、コロトロンやスコロトロン等のコロナ帯電装置、電圧印加された直接帯電部材を感光体表面に接触させて帯電させる直接帯電装置(接触型帯電装置)帯電ブラシ等の接触型帯電装置などがよく用いられる。直接帯電手段の例としては、帯電ローラ、帯電ブラシ等の接触帯電器などが挙げられる。なお、図1では、帯電装置2の一例としてローラ型の帯電装置(帯電ローラ)を示している。直接帯電手段として、気中放電を伴う帯電、あるいは気中放電を伴わない注入帯電いずれも可能である。また、帯電ローラーに樹脂シートの等を巻き付け感光体と帯電ローラーを帯電性の安定する距離で非接触に保った状態で帯電を行なうNCローラ帯電方式をとることも可能である。また、帯電時に印可する電圧としては、直流電圧だけの場合、及び直流に交流を重畳させて用いることもできる。
露光装置3は、電子写真感光体1に露光を行なって電子写真感光体1の感光面に静電潜像を形成することができるものであれば、その種類に特に制限はない。具体例としては、ハロゲンランプ、蛍光灯、半導体レーザーやHe−Neレーザー等のレーザー、LEDなどが挙げられる。また、感光体内部露光方式によって露光を行なうようにしてもよい。デジタル式電子写真方式としては、レーザー、LED、光シャッターアレイ等を用いることが好ましい。露光を行なう際の光は任意であるが、例えば波長が780nmの単色光、波長600nm〜700nmのやや短波長寄りの単色光、波長380nm〜500nmの短波長の単色光などで露光を行なえばよい。
現像装置4は、その種類に特に制限はなく、カスケード現像、一成分絶縁トナー現像、一成分導電トナー現像、二成分磁気ブラシ現像などの乾式現像方式や、湿式現像方式などの任意の装置を用いることができる。図1では、現像装置4は、現像槽41、アジテータ42、供給ローラ43、現像ローラ44、及び、規制部材45からなり、現像槽41の内部にトナーTを貯留している構成となっている。また、必要に応じ、トナーTを補給する補給装置(図示せず)を現像装置4に付帯させてもよい。この補給装置は、ボトル、カートリッジなどの容器からトナーTを補給することが可能に構成される。現像方式は、接触方式、非接触方式のいずれの方式で行なってもよい。用いるトナーとしては、粉砕トナーの他に、懸濁造粒、懸濁重合、乳化重合凝集法等のケミカルトナーを用いることができる。特に、ケミカルトナーの場合には、4〜8μm程度の小粒径のものが用いられ、形状も球形に近いものから、ポテト状、ラグビーボール状の球形から外れたものも使用することができる。重合トナーは、帯電均一性、転写性に優れ、高画質化に好適に用いられる。
供給ローラ43は、導電性スポンジ等から形成される。現像ローラ44は、鉄,ステンレス鋼,アルミニウム,ニッケルなどの金属ロール、又はこうした金属ロールにシリコン樹脂,ウレタン樹脂,フッ素樹脂などを被覆した樹脂ロールなどからなる。この現像ローラ44の表面には、必要に応じて、平滑加工や粗面加工を加えてもよい。
現像ローラ44は、電子写真感光体1と供給ローラ43との間に配置され、電子写真感光体1及び供給ローラ43に各々当接している。供給ローラ43及び現像ローラ44は、回転駆動機構(図示せず)によって回転される。供給ローラ43は、貯留されているトナーTを担持して、現像ローラ44に供給する。現像ローラ44は、供給ローラ43によって供給されるトナーTを担持して、電子写真感光体1の表面に接触させる。
規制部材45は、シリコン樹脂やウレタン樹脂などの樹脂ブレード、ステンレス鋼、アルミニウム、銅、真鍮、リン青銅などの金属ブレード、又はこうした金属ブレードに樹脂を被覆したブレード等により形成されている。この規制部材45は、現像ローラ44に当接し、ばね等によって現像ローラ44側に所定の力で押圧(一般的なブレード線圧は5〜
500g/cm)される。必要に応じて、この規制部材45に、トナーTとの摩擦帯電によりトナーTに帯電を付与する機能を具備させてもよい。
アジテータ42は、回転駆動機構によってそれぞれ回転されており、トナーTを攪拌するとともに、トナーTを供給ローラ43側に搬送する。アジテータ42は、羽根形状、大きさ等を違えて複数設けてもよい。
転写装置5は、その種類に特に制限はなく、コロナ転写、ローラ転写、ベルト転写などの静電転写法、圧力転写法、粘着転写法など、任意の方式を用いた装置を使用することができる。ここでは、転写装置5が電子写真感光体1に対向して配置された転写チャージャー,転写ローラ,転写ベルト等から構成されるものとする。この転写装置5は、トナーTの帯電電位とは逆極性で所定電圧値(転写電圧)を印加し、電子写真感光体1に形成されたトナー像を記録紙(用紙,媒体)Pに転写するものである。本発明は、この転写電圧が大きい場合により大きな効果を発現する。
クリーニング装置6について特に制限はなく、ブラシクリーナー、磁気ブラシクリーナー、静電ブラシクリーナー、磁気ローラクリーナー、ブレードクリーナーなど、任意のクリーニング装置を用いることができる。クリーニング装置6は、感光体1に付着している残留トナーをクリーニング部材で掻き落とし、残留トナーを回収するものである。但し、感光体表面に残留するトナーが少ないか、殆ど無い場合には、クリーニング装置6は無くても構わない。
定着装置7は、上部定着部材(定着ローラ)71及び下部定着部材(定着ローラ)72から構成され、定着部材71又は72の内部には加熱装置73が備えられている。なお、図1では、上部定着部材71の内部に加熱装置73が備えられた例を示す。上部及び下部の各定着部材71,72は、ステンレス,アルミニウムなどの金属素管にシリコンゴムを被覆した定着ロール、更にフッ素樹脂で被覆した定着ロール、定着シートなどが公知の熱定着部材を使用することができる。更に、各定着部材71,72は、離型性を向上させる為にシリコーンオイル等の離型剤を供給する構成としてもよく、バネ等により互いに強制的に圧力を加える構成としてもよい。
記録紙P上に転写されたトナーは、所定温度に加熱された上部定着部材71と下部定着部材72との間を通過する際、トナーが溶融状態まで熱加熱され、通過後冷却されて記録紙P上にトナーが定着される。
なお、定着装置についてもその種類に特に限定はなく、ここで用いたものをはじめ、熱ローラ定着、フラッシュ定着、オーブン定着、圧力定着、IH定着、ベルト定着、IHF定着など、任意の方式による定着装置を設けることができる。などの公知の方法のいずれでも用いることが可能であり、これら定着方式は単独で用いても良く、複数の定着方式を組み合わせた形で使用してもよい。
以上のように構成された電子写真装置では、次のようにして画像の記録が行なわれる。即ち、まず感光体1の表面(感光面)が、帯電装置2によって所定の電位(例えば−600V)に帯電される。この際、直流電圧により帯電させても良く、直流電圧に交流電圧を重畳させて帯電させてもよい。
続いて、帯電された感光体1の感光面を、記録すべき画像に応じて露光装置3により露光し、感光面に静電潜像を形成する。そして、その感光体1の感光面に形成された静電潜像の現像を、現像装置4で行なう。
現像装置4は、供給ローラ43により供給されるトナーTを、規制部材(現像ブレード)45により薄層化するとともに、所定の極性(ここでは感光体1の帯電電位と同極性であり、負極性)に摩擦帯電させ、現像ローラ44に担持しながら搬送して、感光体1の表
面に接触させる。
現像ローラ44に担持された帯電トナーTが感光体1の表面に接触すると、静電潜像に対応するトナー像が感光体1の感光面に形成される。そしてこのトナー像は、転写装置5によって記録紙Pに転写される。この後、転写されずに感光体1の感光面に残留しているトナーが、クリーニング装置6で除去される。
トナー像の記録紙P上への転写後、定着装置7を通過させてトナー像を記録紙P上へ熱定着することで、最終的な画像が得られる。
なお、画像形成装置は、上述した構成に加え、例えば除電工程を行なうことができる構成としても良い。除電工程は、電子写真感光体に露光を行なうことで電子写真感光体の除電を行なう工程であり、除電装置としては、蛍光灯、LED等が使用される。また除電工程で用いる光は、強度としては露光光の3倍以上の露光エネルギーを有する光である場合が多い。
また、画像形成装置は更に変形して構成してもよく、例えば、前露光工程、補助帯電工程などの工程を行なうことができる構成としたり、オフセット印刷を行なう構成としたり、更には複数種のトナーを用いたフルカラータンデム方式の構成としてもよい。本発明の効果は、フルカラータンデム方式のプリンターにおいて特に顕著となる。
なお、電子写真感光体1を、帯電装置2、露光装置3、現像装置4、転写装置5、クリーニング装置6、及び定着装置7のうち1つ又は2つ以上と組み合わせて、一体型のカートリッジ(以下適宜「電子写真感光体カートリッジ」という)として構成し、この電子写真感光体カートリッジを複写機やレーザービームプリンタ等の電子写真装置本体に対して着脱可能な構成にしてもよい。例えば、帯電手段3、現像手段4及びクリーニング手段6の内、少なくとも1つをドラム状感光体1と共に一体に支持してカートリッジ化とすることが出来る。この場合、例えば電子写真感光体1やその他の部材が劣化した場合に、この電子写真感光体カートリッジを画像形成装置本体から取り外し、別の新しい電子写真感光体カートリッジを画像形成装置本体に装着することにより、画像形成装置の保守・管理が容易となる。
以下、合成例および実施例によって本発明を説明する。実施例は本発明を詳細に説明するために示すものであり、本発明の要旨に反しない限り、実施例に限定されるものではない。なお、実施例、比較例において、部は「質量部」を意味する。
合成例1
特開平10−7925号報中に記載の「粗TiOPcの製造例」、「実施例1」の順に従ってβ型オキシチタニウムフタロシアニンを調製した。
得られたオキシチタニウムフタロシアニンの粉末XRDスペクトルを図2に示す。TiOPc結晶中に含有される塩素含有量を前記元素分析手法を用いて分析した結果、塩素含有量は検出下限以下の0.20質量%以下であった。また前記<マススペクトル測定条件>に従ってオキシチタニウムフタロシアニンと塩素化オキシチタニウムフタロシアニンピーク強度比を測定すると、0.002であった。
実施例1
平均一次粒子径40nmのルチル型酸化チタン(石原産業社製「TTO55N」)と該酸化チタンに対して3質量%のメチルジメトキシシランをボールミルにて混合して得られたスラリーを乾燥後、更にメタノールで洗浄、乾燥して得られた疎水性処理酸化チタンを、メタノール/1−プロパノールの混合溶媒中でボールミルにより分散させることにより、疎水化処理酸化チタンの分散スラリーとなし、該分散スラリーと、メタノール/1−プロパノール/トルエン(質量比6/1/3)の混合溶媒、及び、ε−カプロラクタム/ビ
ス(4−アミノ−3−メチルシクロヘキシル)メタン/ヘキサメチレンジアミン/デカメチレンジカルボン酸/オクタデカメチレンジカルボン酸(組成モル%58/18/3/18/3)からなる共重合ポリアミドのペレットとを加熱しながら撹拌、混合してポリアミドペレットを溶解させた後、超音波分散処理を行うことにより、疎水性処理酸化チタン/共重合ポリアミドを質量比4/1で含有する固形分濃度18.0%の分散液(UC1)とした。
この分散液を表面が切削加工された外径24mm、長さ251.5mm、肉厚0.75mmのアルミニウム合金よりなるシリンダーの表面に浸漬塗布し、乾燥後の膜厚が1.5μmとなるように下引き層を設けた。
また、電荷発生物質として、合成例3で得られたオキシチタニウムフタロシアニン(CG1)20部と1,2−ジメトキシエタン280部を混合し、サンドグラインドミルで2時間粉砕して微粒化分散処理を行なった。続いてこの微細化処理液に、ポリビニルブチラール(電気化学工業(株)製、商品名「デンカブチラール」#6000C)を1,2−ジメトキシエタン253部を、4−メトキシ−4−メチル−2−ペンタノンを85部の混合液に溶解させて得られたバインダー液、及び230部の1,2−ジメトキシエタンを混合して分散液を調製した。
この分散液に、下引き層を形成したアルミニウムシリンダーを浸漬塗布し、乾燥後の膜厚が0.3μm(0.3g/m2)となるように電荷発生層を作製した。
次に、電荷輸送物質として下記構造を有する電荷輸送物質70部と、
Figure 2014056180
バインダー樹脂として下記構造を繰り返し単位として持つポリカーボネート(PC1;粘度平均分子量約50,000)100部、
Figure 2014056180
下記構造を有する酸化防止剤8部、
Figure 2014056180
およびレベリング剤としてシリコーンオイル(商品名 KF96 信越化学工業(株))0.05部を、テトラヒドロフラン/トルエン(7/3)混合溶媒640部に溶解させた液を、上述の電荷発生層上に、乾燥後の膜厚が18μmとなるように浸漬塗布し、積層型感光層を有する感光体ドラムAを得た。
実施例2
バインダー樹脂として、下記構造を繰り返し単位として持つポリカーボネート(PC2;粘度平均分子量約50,000)100部を用いた以外は、実施例1とまったく同様にして感光体Bを得た。
Figure 2014056180
実施例3
平均一次粒子径40nmのルチル型酸化チタン(石原産業社製「TTO55N」)と該酸化チタンに対して3質量%のメチルジメトキシシランをボールミルにて混合して得られたスラリーを乾燥後、更にメタノールで洗浄、乾燥して得られた疎水性処理酸化チタンを、メタノール/1−プロパノールの混合溶媒中でボールミルにより分散させることにより、疎水化処理酸化チタンの分散スラリーとなし、該分散スラリーと、メタノール/1−プロパノール/トルエン(質量比7/1/2)の混合溶媒、及び、ε−カプロラクタム/ビス(4−アミノ−3−メチルシクロヘキシル)メタン/ヘキサメチレンジアミン/デカメチレンジカルボン酸/オクタデカメチレンジカルボン酸(組成モル%75/9.5/3/9.5/3)からなる共重合ポリアミドのペレットとを加熱しながら撹拌、混合してポリアミドペレットを溶解させた後、超音波分散処理を行うことにより、疎水性処理酸化チタン/共重合ポリアミドを質量比4/1で含有する固形分濃度18.0%の分散液とした(UC2)。
この分散液を、実施例1で使用した下引き層形成用分散液の代わりに使用した以外は、実施例1と同様にして感光体Cを得た。
実施例4
平均一次粒子径40nmのルチル型酸化チタン(石原産業株式会社製「TTO55N」)と、該酸化チタンに対して3重量%のメチルジメトキシシラン(東芝シリコーン社製「TSL8117」)とを、ヘンシェルミキサーにて混合して得られた表面処理酸化チタン50部と、メタノール90部を混合してなる原料スラリー1kgを、直径約100μmのジルコニアビーズ(株式会社ニッカトー製 YTZ)を分散メディアとして、ミル容積約0.15Lの寿工業株式会社製ウルトラアペックスミル(UAM−015型)を用い、ロータ周速10m/秒、液流量10kg/時間の液循環状態で1時間分散処理し、酸化チタン分散液を作製した。
前記酸化チタン分散液と、メタノール/1−プロパノール/トルエンの混合溶媒、および、ε−カプロラクタム[下記式(A)で表わされる化合物]/ビス(4−アミノ−3−メチルシクロヘキシル)メタン[下記式(B)で表わされる化合物]/ヘキサメチレンジアミン[下記式(C)で表わされる化合物]/デカメチレンジカルボン酸[下記式(D)で表わされる化合物]/オクタデカメチレンジカルボン酸[下記式(E)で表わされる化合物]の組成モル%が、58/18/3/18/3からなる共重合ポリアミドのペレットとを加熱しながら撹拌、混合してポリアミドペレットを溶解させた後、出力1200Wの超音波発信器による超音波分散処理を1時間行い、更に孔径5μmのPTFE製メンブレ
ンフィルター(アドバンテック製 マイテックス LC)により濾過し、表面処理酸化チタン/共重合ポリアミドを重量比が4/1であり、メタノール/1−プロパノール/トルエンの混合溶媒の重量比が6/1/3であって、含有する固形分の濃度が18.0重量%の下引き層形成用分散液を得た(UC3)。
この分散液を、実施例1で使用した下引き層形成用分散液の代わりに使用した以外は、実施例1と同様にして感光体Dを得た。
比較例1
平均一次粒子径40nmのルチル型酸化チタン(石原産業社製「TTO55N」)と該酸化チタンに対して3質量%のメチルジメトキシシランをボールミルにて混合して得られたスラリーを乾燥後、更にメタノールで洗浄、乾燥して得られた疎水性処理酸化チタンを、メタノール/1−プロパノールの混合溶媒中でボールミルにより分散させることにより、疎水化処理酸化チタンの分散スラリーとなし、該分散スラリーと、メタノール/1−プロパノール/トルエン(質量比6/1/3)の混合溶媒、及び、ε−カプロラクタム/ビス(4−アミノ−3−メチルシクロヘキシル)メタン/ヘキサメチレンジアミン/デカメチレンジカルボン酸/オクタデカメチレンジカルボン酸(組成モル%58/18/3/18/3)からなる共重合ポリアミドのペレットとを加熱しながら撹拌、混合してポリアミドペレットを溶解させた後、超音波分散処理を行うことにより、疎水性処理酸化チタン/共重合ポリアミドを質量比3/1で含有する固形分濃度18.0%の分散液(UC4)とした。
この分散液を、実施例1で使用した下引き層形成用分散液の代わりに使用した以外は、実施例1と同様にして感光体Eを得た。
比較例2
バインダー樹脂として、実施例1で用いたポリカーボネート(PC1)の代わりに、下記構造を繰り返し単位として持つポリカーボネート樹脂(PC3;粘度平均分子量約50,000)100部を用いた以外は、実施例1とまったく同様にして感光体Fを得た。
Figure 2014056180
比較例3
バインダー樹脂として、実施例1で用いたポリカーボネート(PC1)の代わりに、下記構造を繰り返し単位として持つポリカーボネート(PC4;粘度平均分子量約50,000)100部を用いた以外は、実施例1とまったく同様にして感光体Gを得た。
Figure 2014056180
比較例4
バインダー樹脂として、実施例1で用いたポリカーボネート(PC1)の代わりに、下記構造を繰り返し単位として持つポリアリレート樹脂(PA1;粘度平均分子量約50,000)100部を用いた以外は、実施例1とまったく同様にして感光体Hを得た。
Figure 2014056180
比較例5
平均一次粒子径40nmのルチル型酸化チタン(石原産業株式会社製「TTO55N」)と、該酸化チタンに対して3重量%のメチルジメトキシシラン(東芝シリコーン社製「TSL8117」)とを、ヘンシェルミキサーにて混合して得られた表面処理酸化チタン50部と、メタノール90部を混合してなる原料スラリー1kgを、直径約100μmのジルコニアビーズ(株式会社ニッカトー製 YTZ)を分散メディアとして、ミル容積約0.15Lの寿工業株式会社製ウルトラアペックスミル(UAM−015型)を用い、ロータ周速10m/秒、液流量10kg/時間の液循環状態で1時間分散処理し、酸化チタン分散液を作製した。
前記酸化チタン分散液と、メタノール/1−プロパノール/トルエンの混合溶媒、および、ε−カプロラクタム[下記式(A)で表わされる化合物]/ビス(4−アミノ−3−メチルシクロヘキシル)メタン[下記式(B)で表わされる化合物]/ヘキサメチレンジアミン[下記式(C)で表わされる化合物]/デカメチレンジカルボン酸[下記式(D)で表わされる化合物]/オクタデカメチレンジカルボン酸[下記式(E)で表わされる化合物]の組成モル%が、58/18/3/18/3からなる共重合ポリアミドのペレットとを加熱しながら撹拌、混合してポリアミドペレットを溶解させた後、出力1200Wの超音波発信器による超音波分散処理を1時間行い、更に孔径5μmのPTFE製メンブレンフィルター(アドバンテック製 マイテックス LC)により濾過し、表面処理酸化チタン/共重合ポリアミドを重量比が3/1であり、メタノール/1−プロパノール/トルエンの混合溶媒の重量比が6/1/3であって、含有する固形分の濃度が18.0重量%の下引き層形成用分散液を得た(UC4)。
この分散液を、実施例1で使用した下引き層形成用分散液の代わりに使用した以外は、実施例1と同様にして感光体Iを得た。
<電気特性の評価>
実施例1〜5および比較例1〜5において作製した電子写真感光体A〜Jを、電子写真学会標準に従って作製された電子写真特性評価装置(続電子写真技術の基礎と応用、電子写真学会編、コロナ社、404〜405頁記載)に装着し、以下の手順に従って、帯電(マイナス極性)、露光、電位測定、除電のサイクルによる電気特性の評価を行なった。
感光体の初期表面電位が−400Vになるように帯電させ、ハロゲンランプの光を干渉フィルターで780nmの単色光としたものを0.2μJ/cm2で露光したときの露光
後表面電位(以下、VLと呼ぶことがある)を測定した。VL測定に際しては、露光から電位測定に要する時間を100msとし、高速応答の条件とした。測定環境は、温度25℃、相対湿度50%(以下、NN環境と呼ぶことがある)および、温度10℃、相対湿度15%(以下、LL環境と呼ぶことがある)で行なった。
NN環境でのVLをVL1とし、LL環境でのVLをVL2として、その絶対値の差をΔVLとして評価した。これにより、環境変動が電子写真感光体特性に与える影響の大きさを評価した。
<摩耗評価>
実施例および比較例で得られた電子写真感光体A〜Lをそれぞれ、A4印刷対応である
市販のタンデム型カラープリンター(Dell社製 3130cn)のブラックドラムカートリッジに装着し、上記プリンターに装着した。
LL環境で、18000枚の連続印字評価を行い、初期状態である18μmからの膜減りの量、18000枚印刷後の画像かすれを評価した。
これらの結果を表−1にまとめた。
Figure 2014056180
表−1の結果から、本発明の下引き層、ポリカーボネート樹脂、いずれか単独では優れた性能を出すことはできず、2者を組み合わせた場合のみ、電気特性の環境変動抑制と、耐摩耗性の両立が可能であることがわかる。
1 感光体
2 帯電装置(帯電ローラ)
3 露光装置
4 現像装置
5 転写装置
6 クリーニング装置
7 定着装置
41 現像槽
42 アジテータ
43 供給ローラ
44 現像ローラ
45 規制部材
71 上部定着部材(定着ローラ)
72 下部定着部材(定着ローラ)
73 加熱装置
T トナー
P 記録紙

Claims (5)

  1. 導電性支持体上に少なくとも感光層及び下引き層を有する感光体において、金属酸化物/樹脂質量比率が3.5以上10以下の下引き層を有し、且つ、感光層に、下記一般式(1)で表される繰り返し単位からなるポリカーボネート樹脂を含有することを特徴とする電子写真感光体。
    Figure 2014056180
  2. 該ポリカーボネート樹脂の成分が、以下の関係式を満たすことを特徴とする請求項1に記載の電子写真感光体。
    n/(m+n)=0.35〜0.45
  3. 下引き層に用いる樹脂を構成する全単量体中、ε−カプロラクタム成分比率が、70モル%以下であることを特徴とする請求項1又は2に記載の電子写真感光体。
  4. 請求項1乃至3の何れか1項に記載の電子写真感光体を直列に複数個並べて使用するカラー画像形成方法。
  5. 請求項4に記載の画像形成方法を用いることを特徴とした、カラー画像形成装置。
JP2012201872A 2012-09-13 2012-09-13 電子写真感光体、画像形成方法及び画像形成装置 Pending JP2014056180A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012201872A JP2014056180A (ja) 2012-09-13 2012-09-13 電子写真感光体、画像形成方法及び画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012201872A JP2014056180A (ja) 2012-09-13 2012-09-13 電子写真感光体、画像形成方法及び画像形成装置

Publications (1)

Publication Number Publication Date
JP2014056180A true JP2014056180A (ja) 2014-03-27

Family

ID=50613513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012201872A Pending JP2014056180A (ja) 2012-09-13 2012-09-13 電子写真感光体、画像形成方法及び画像形成装置

Country Status (1)

Country Link
JP (1) JP2014056180A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018049068A (ja) * 2016-09-20 2018-03-29 富士ゼロックス株式会社 画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018049068A (ja) * 2016-09-20 2018-03-29 富士ゼロックス株式会社 画像形成装置

Similar Documents

Publication Publication Date Title
JP5041023B2 (ja) 下引き層形成用塗布液、該塗布液の製造方法、該塗布液を塗布してなる下引き層を有する感光体、該感光体を用いる画像形成装置、および該感光体を用いる電子写真カートリッジ
JP4517996B2 (ja) 下引き層形成用塗布液、該塗布液の製造方法、該塗布液を塗布してなる下引き層を有する感光体、該感光体を用いる画像形成装置、および該感光体を用いる電子写真カートリッジ
US8906586B2 (en) Coating fluid for photosensitive-layer formation, process for producing the same, photoreceptor produced with the coating fluid, image-forming apparatus employing the photoreceptor, and electrophotographic cartridge employing the photoreceptor
WO2007135987A1 (ja) 電子写真感光体、画像形成装置及び電子写真カートリッジ
US20090257776A1 (en) Electrophotographic photoreceptor, image-forming apparatus, and electrophotographic cartridge
WO2007135985A1 (ja) 下引き層形成用塗布液、該塗布液を塗布してなる下引き層を有する感光体、該感光体を用いる画像形成装置、および該感光体を用いる電子写真カートリッジ
JP5239212B2 (ja) 下引き層形成用塗布液、下引き層形成用塗布液の製造方法、電子写真感光体、画像形成装置及び電子写真カートリッジ
JP5194553B2 (ja) 感光層形成用塗布液、その製造方法、該塗布液を用いてなる感光体、該感光体を用いる画像形成装置、及び該感光体を用いる電子写真カートリッジ
JP6197305B2 (ja) 電子写真感光体、電子写真プロセスカートリッジ及び画像形成装置
JP5181531B2 (ja) 電子写真感光体、画像形成装置及び電子写真カートリッジ
JP2014056180A (ja) 電子写真感光体、画像形成方法及び画像形成装置
JP5067012B2 (ja) 下引き層を形成するための塗布液の製造方法、電子写真感光体、画像形成装置及び電子写真カートリッジ
JP2016173401A (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5070933B2 (ja) 下引き層形成用塗布液、下引き層形成用塗布液の製造方法、電子写真感光体、画像形成装置及び電子写真カートリッジ
JP4661617B2 (ja) 電子写真感光体、画像形成方法および画像形成装置
JP4983066B2 (ja) アミン化合物、電子写真感光体、画像形成方法及び画像形成装置
JP4985093B2 (ja) 電子写真感光体の下引き層形成用塗布液の製造方法及びそれを使用して製造された下引き層形成用塗布液
JP2007334336A (ja) 電子写真感光体、画像形成装置及び電子写真カートリッジ
JP5245288B2 (ja) 電子写真感光体、画像形成装置及び電子写真カートリッジ
JP2007334341A (ja) 下引き層形成用塗布液、該塗布液を塗布してなる下引き層を有する感光体、該感光体を用いる画像形成装置、および該感光体を用いる電子写真カートリッジ
JP4720527B2 (ja) 電子写真感光体、画像形成方法及び画像形成装置
JP5067013B2 (ja) 下引き層を形成するための塗布液、下引き層を形成するための塗布液の製造方法、電子写真感光体、画像形成装置及び電子写真カートリッジ
JP2007334338A (ja) 電子写真感光体、画像形成装置及び電子写真カートリッジ
JP5181530B2 (ja) 下引き層形成用塗布液、下引き層形成用塗布液の製造方法、電子写真感光体、画像形成装置及び電子写真カートリッジ
JP2007334337A (ja) 電子写真感光体、画像形成装置及び電子写真カートリッジ