JP2014047695A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2014047695A
JP2014047695A JP2012190881A JP2012190881A JP2014047695A JP 2014047695 A JP2014047695 A JP 2014047695A JP 2012190881 A JP2012190881 A JP 2012190881A JP 2012190881 A JP2012190881 A JP 2012190881A JP 2014047695 A JP2014047695 A JP 2014047695A
Authority
JP
Japan
Prior art keywords
phase
engine
intake valve
control
decompression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012190881A
Other languages
English (en)
Other versions
JP5523523B2 (ja
Inventor
Yuichi Masukake
佑一 増掛
Akiyoshi Suda
明義 須田
Tetsuya Iida
哲也 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012190881A priority Critical patent/JP5523523B2/ja
Publication of JP2014047695A publication Critical patent/JP2014047695A/ja
Application granted granted Critical
Publication of JP5523523B2 publication Critical patent/JP5523523B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

【課題】 電動アクチュエータによって駆動する弁作動特性可変機構を備える内燃機関の停止時における吸気弁作動位相制御を適切に実行し、機関再始動時における良好な始動性を確保しつつ車体振動を確実に抑制することができる制御装置を提供する。
【解決手段】 エンジン運転中に所定アイドリングストップ条件が成立し、かつエンジン冷却水温TWが所定温度TWTH以上であるときは、吸気弁作動位相CAINを最遅角位相CAMINに移行させ、その後エンジン回転数NEが「0」となったときに、吸気弁作動位相CAINをデコンプ位相CADCPまで進角させる減圧停止制御が行われる。デコンプ位相CADCPはエンジン冷却水温TWが低下するほど進角するように設定される。
【選択図】 図6

Description

本発明は、吸気弁の作動位相を変更する弁作動特性可変機構を備える内燃機関の制御装置に関する。
特許文献1には、吸気弁の作動位相を変更する弁作動特性可変機構を備える内燃機関の制御装置が示されている。この制御装置によれば、イグニッションスイッチがオフされて機関が停止するときは、吸気弁作動位相が最進角位相に制御される一方、所定条件が満たされたときに機関を一時的に停止させるアイドリングストップを行うときは、吸気弁作動位相が最遅角位相に制御される。吸気弁作動位相を最遅角位相に制御することによって、温間再始動時(ホットリスタート時)における車体振動を抑制することができる。また、特許文献1は、他の制御手法として、イグニッションスイッチがオフされて機関が停止する場合において、検出される機関冷却水温が所定温度以上であるときは、吸気弁作動位相を最遅角位相に制御する手法を開示している。
特開平10−227236号公報
特許文献1に示される弁作動特性可変機構は、油圧制御装置によって駆動することにより、吸気弁作動位相を変更するものであるが、電動アクチュエータによって駆動する弁作動特性可変機構を使用する場合は、吸気弁作動位相の可変角度範囲は、油圧制御装置を使用する場合より広く設定することができる。そのため、温間始動時の車体振動を抑制するために吸気弁作動位相を一律に最遅角位相とすると、機関再始動時に始動性を悪化させる可能性が高くなる。
本発明はこの点に着目してなされたものであり、電動アクチュエータによって駆動する弁作動特性可変機構を備える内燃機関の停止時における吸気弁作動位相制御を適切に実行し、機関再始動時における良好な始動性を確保しつつ車体振動を確実に抑制することができる制御装置を提供することを目的とする。
上記目的を達成するため請求項1に記載の発明は、吸気弁の作動位相(CAIN)を変更する弁作動特性可変機構(42)と、該弁作動特性可変機構を駆動する電動アクチュエータ(44)と、前記電動アクチュエータを用いて前記吸気弁作動位相(CAIN)を制御する吸気弁作動位相制御手段とを備える内燃機関の制御装置において、所定の機関停止条件が成立したときに前記機関を自動停止させる自動停止制御手段と、前記機関の温度を示す温度パラメータ(TW)を検出する機関温度パラメータ検出手段と、前記機関の回転数(NE)を検出する回転数検出手段とを備え、前記吸気弁作動位相制御手段は、前記機関の運転中に前記所定機関停止条件が成立し、かつ前記温度パラメータの検出値(TW)が所定温度(TWTH)以上であるときは、前記吸気弁作動位相(CAIN)を最遅角位相(CAMIN)に設定し、その後前記機関回転数(NE)が「0」となったときに、前記吸気弁作動位相(CAIN)を減圧制御位相(CADCP)まで進角させる減圧停止制御を実行し、前記減圧制御位相(CADCP)は、前記機関の冷間始動時に適用される冷間始動位相(CACOLD)より遅角側の位相であることを特徴とする。
請求項2に記載の発明は、請求項1に記載の内燃機関の制御装置において、前記減圧制御位相(CADCP)は、前記温度パラメータの検出値(TW)が低下するほど進角するように設定されることを特徴とする。
請求項3に記載の発明は、請求項1または2に記載の内燃機関の制御装置において、前記吸気弁作動位相制御手段は、前記機関の運転中に前記所定機関停止条件が成立し、かつ前記温度パラメータの検出値(TW)が前記所定温度(TWTH)より低いときは、前記吸気弁作動位相(CAIN)を前記冷間始動位相(CACOLD)に設定することを特徴とする。
請求項4に記載の発明は、請求項1から3の何れか1項に記載の内燃機関の制御装置において、前記吸気弁作動位相制御手段は、前記機関のイグニッションスイッチがオフされた時点で前記機関回転数(NE)が「0」であるときは、前記吸気弁作動位相(CAIN)を前記冷間始動位相(CACOLD)に移行させる通常停止制御を直ちに実行し、前記イグニッションスイッチがオフされた時点で前記機関回転数(NE)が「0」より高いときは、前記機関回転数が「0」となった時点で前記通常停止制御を実行することを特徴とする。
請求項5に記載の発明は、請求項4に記載の内燃機関の制御装置において、前記吸気弁作動位相制御手段は、前記イグニッションスイッチがオンされた時点において前記温度パラメータの検出値(TW)が前記所定温度(TWTH)以上であるときは、前記吸気弁作動位相(CAIN)を前記冷間始動位相(CACOLD)から前記減圧制御位相(CADCP)へ遅角させることを特徴とする。
請求項1に記載の発明によれば、機関の運転中に所定機関停止条件が成立し、かつ機関温度を示す温度パラメータの検出値が所定温度以上であるときは、吸気弁作動位相を最遅角位相に移行させ、その後機関回転数が「0」となったときに、吸気弁作動位相を減圧制御位相まで進角させる減圧停止制御が行われるので、次回の機関始動は吸気弁作動位相を減圧制御位相に設定した状態で開始される。減圧制御位相は冷間始動位相より遅角側の位相であるので、温間始動時における車体振動を抑制することができる。また、吸気弁作動位相を先ず最遅角位相に設定し、機関回転数が「0」となったときに減圧制御位相まで進角させる減圧停止制御を実行することにより、吸気弁作動位相を減圧制御位相に安定的かつ速やかに移行させることが可能となる。所定機関停止条件が成立してから機関回転数が「0」となるまでの期間において、機関の回転変動が大きくなることがあり、そのような場合に減圧制御位相に直ちに移行させる制御を行うと、機関回転数が「0」となった時点で減圧制御位相からずれてしまうおそれがあるが、最遅角位相は機械的に決まる位相であるため機関回転変動があったとしても安定的に移行させることができる。また減圧制御位相は最遅角位相の近傍に設定されるため、最遅角位相から減圧制御位相に移行させる減圧停止制御を行うことにより、確実かつ速やかに移行させることができる。
請求項2に記載の発明によれば、減圧制御位相は温度パラメータの検出値が低下するほど進角するように設定される。機関温度が低くなるほど車体振動の影響が軽減されるので、進角側の位相に設定しても所望の振動抑制効果を得ることができる。また弁作動特性可変機構の動作速度は、機関温度が低くなるほど遅くなる傾向がある。したがって、温度パラメータの検出値が低下するほど減圧制御位相を進角側の位相に設定することにより、機関始動時に必要な吸気弁作動位相の制御応答性の確保と、車体振動の抑制とを適切に両立させることが可能となる。
請求項3に記載の発明によれば、機関の運転中に所定機関停止条件が成立し、かつ温度パラメータの検出値が所定温度より低いときは、吸気弁作動位相が冷間始動位相に設定される。温度パラメータの検出値が所定温度より低いときは、再始動時における車体振動を抑制するために吸気弁作動位相を遅角させる必要性がなく、冷間始動位相に設定することによって、円滑な始動が可能となる。
請求項4に記載の発明によれば、イグニッションスイッチがオフされた時点で機関回転数が「0」であるときは、吸気弁作動位相を冷間始動位相に移行させる通常停止制御が直ちに実行され、イグニッションスイッチがオフされた時点で機関回転数が「0」より高いときは、機関回転数が「0」となった時点で通常停止制御が実行される。イグニッションスイッチがオフされたときは、通常は次の機関始動時(イグニッションスイッチオン時)においては機関温度が低下しているため、吸気弁作動位相を冷間始動位相に設定しておくことにより、円滑な始動が可能となる。
請求項5に記載の発明によれば、イグニッションスイッチがオンされた時点において温度パラメータの検出値が所定温度以上であるときは、吸気弁作動位相を冷間始動位相から減圧制御位相へ遅角させる減圧始動制御が行われる。すなわち、イグニッションスイッチがオフされて機関温度が低下する前に再始動が行われた場合(温間再始動時)には、吸気弁作動位相が冷間始動位相より遅角側の減圧制御位相に設定されるので、温間再始動時において車体振動を抑制することができる。
本発明の一実施形態にかかる車両駆動装置の構成を示す図である。 図1に示す内燃機関及びモータ/発電機の制御系の構成を示す図である。 吸気弁及び排気弁のリフトカーブを示す図である。 吸気弁作動位相を制御する処理のフローチャートである。 図4の処理で参照されるテーブルを示す図である。 図5の処理による制御動作を説明するためのタイムチャートである。 図5の処理による制御動作を説明するためのタイムチャートである。 図5の処理による制御動作を説明するためのタイムチャートである。 機関温度パラメータの検出値(TW)に応じて減圧制御位相(CADCP)を設定することの効果を説明するためのタイムチャートである。
以下本発明の実施の形態を図面を参照して説明する。
図1は本発明の一実施形態にかかる車両駆動装置の構成を示す図であり、この車両駆動装置は、駆動源としての内燃機関(以下「エンジン」という)1及びモータ61と、エンジン1と高圧バッテリ66の電力により駆動される発電機62と、エンジン1及びモータ61の駆動力を駆動輪56に伝達する駆動力伝達機構54とを備えている。エンジン1の出力軸51は、クラッチ52、駆動軸53、を介して駆動力伝達機構54に接続され、モータ61の出力軸65は直接駆動力伝達機構54に接続されている。モータ61は回生動作を行うときは発電機として作動する。駆動力伝達機構54は差動ギヤ機構を含む。
エンジン1の出力軸51は、ギヤ対57を介して発電機62に接続されており、発電機62はエンジン1の駆動力により発電を行うとともに、エンジン1の始動時には高圧バッテリ66の電力によりスタータモータとして作動する。
モータ61及び発電機62は、それぞれパワードライビングユニット(以下「PDU」という)63,64に電気的に接続されており、PDU63はPDU64及び高圧バッテリ66に接続されている。PDU63,64は、モータ制御用電子制御ユニット(以下「MOT−ECU」という)、図2参照)70に接続され、それぞれモータ61及び発電機62の動作制御を行うとともに、高圧バッテリ66の充電及び放電の制御を行う。
図1に示す車両駆動装置は、クラッチ52を解放状態として高圧バッテリ66の電力により駆動されるモータ61の駆動力で走行する第1運転モード、クラッチ52を解放状態として、エンジン1を作動させて発電機62による発電を行い、その発電電力によって駆動されるモータ61の出力で走行する第2運転モード、及びクラッチ52が締結され、主としてエンジン1の駆動力で走行する第3運転モードで作動し、当該車両を駆動する。第3運転モードでは、エンジン負荷の増減に対応してモータ61を発電機として作動させる回生動作、またはモータ61の駆動力でエンジン出力のアシストが行われる。
また所定アイドリングストップ条件が成立したときは、エンジン1を自動的に停止させるアイドリングストップが行われ、所定アイドリングストップ条件が不成立となった時点でエンジン1の再始動が行われる。所定アイドリングストップ条件は、例えば車速VPが所定車速以下であり、アクセルペダルが踏み込まれておらず、ブレーキペダルが踏み込まれており、かつ高圧バッテリ66の残電荷量が所定量以上であるとき成立する。
図2はエンジン1及びモータ61/発電機62の制御系の構成を示す図であり、エンジン1はエンジン制御用電子制御ユニット(以下「ENG−ECU」という)5によって制御され、モータ61/発電機62は、PDU63,64を介してMOT−ECU70により制御される。ENG−ECU5、MOT−ECU70、及び駆動系制御用電子制御ユニット(PT−ECU,図示せず)は、バス100を介して相互に接続されており、相互に必要な情報を伝送する。図1に示すクラッチ52は、PT−ECUによって締結/解放の制御が行われる。
エンジン1は吸気弁(図示せず)の弁リフト量及び開角を2段階に切り換える第1弁作動特性可変機構41と、吸気弁の作動位相を連続的に変更する第2弁作動特性可変機構42とを有する弁作動特性可変装置40を備えている。
エンジン1の吸気通路2の途中にはスロットル弁3が配されている。スロットル弁3にはスロットル弁駆動装置4が取り付けられており、スロットル弁駆動装置4はENG−ECU5に接続されている。スロットル弁駆動装置4は、スロットル弁3を駆動するスロットルアクチュエータ及びスロットル弁開度センサを備えており、スロットル弁開度センサによる検出信号がENG−ECU5に供給されるとともに、ENG−ECU5からの駆動信号によりスロットル弁開度THが目標開度THCMDに制御される。
燃料噴射弁6はエンジン1とスロットル弁3との間かつ吸気通路2の図示しない吸気弁の少し上流側に各気筒毎に設けられており、各噴射弁は図示しない燃料ポンプに接続されていると共にENG−ECU5に電気的に接続されて当該ECU5からの信号により燃料噴射弁6の開弁時間及び開弁時期が制御される。
スロットル弁3の上流側には吸入空気流量GAIR[g/sec]を検出する吸入空気流量センサ7が設けられている。またスロットル弁3の下流側には吸気圧PBAを検出する吸気圧センサ8、及び吸気温TAを検出する吸気温センサ9が設けられている。これらのセンサの検出信号は、ENG−ECU5に供給される。エンジン1の本体には、エンジン冷却水温TWを検出する冷却水温センサ10が装着されており、その検出信号はENG−ECU5に供給される。
ENG−ECU5には、エンジン1のクランク軸の回転角度を検出するクランク角度位置センサ11、及びエンジン1の吸気弁を駆動するカムが固定されたカム軸(図示せず)の回転角度を検出するカム角度位置センサ12が接続されており、クランク軸の回転角度及びカム軸の回転角度に応じた信号がENG−ECU5に供給される。クランク角度位置センサ11は、一定クランク角周期毎(例えば6度周期)に1パルス(以下「CRKパルス」という)と、クランク軸の所定角度位置を特定するパルスを発生する。また、カム角度位置センサ12は、エンジン1の特定の気筒の所定クランク角度位置でカムパルスを発生し、各気筒の吸気行程開始時の上死点(TDC)でTDCパルスを発生する。これらのパルスは、燃料噴射時期、点火時期等の各種タイミング制御及びエンジン回転数(エンジン回転速度)NEの検出に使用される。なお、カム角度位置センサ12より出力されるカムパルスと、クランク角度位置センサ11より出力されるCRKパルスとの相対関係からカム軸の実際の作動位相(吸気弁作動位相)CAINを検出することができる。
排気通路13には、比例型酸素濃度センサ15(以下「LAFセンサ15」という)、排気浄化装置としての三元触媒14、及び二値型酸素濃度センサ(以下「O2センサ」という)16が設けられており、LAFセンサ15及びO2センサ16の検出信号はENG−ECU5に供給され、エンジン1で燃焼する混合気の空燃比制御に適用される。
ENG−ECU5には、エンジン1により駆動される車両のアクセルペダルの踏み込み量(以下「アクセルペダル操作量」という)APを検出するアクセルセンサ21及び当該車両のブレーキペダル(図示せず)が踏み込まれているときオンするブレーキスイッチ22が接続されており、センサ及びスイッチから検出信号及び切換信号がENG−ECU5に供給される。スロットル弁3はスロットル弁駆動装置4により開閉駆動され、スロットル弁開度THはアクセルペダル操作量APに応じてENG−ECU5により制御される。なお、本実施形態では当該車両の走行速度(車速)VPは、モータ61の回転速度に所定の係数を乗算して算出されるが、通常の車速センサを設けて検出するようにしてもよい。
弁作動特性可変装置40は、吸気弁のリフト量及び開角を第1作動特性と第2作動特性とに切り換える第1弁作動特性可変機構41と、吸気弁の作動位相を連続的に変更する第2弁作動特性可変機構42と、第1弁作動特性可変機構41を駆動するための油圧制御機構43と、第2弁作動特性可変機構42を駆動するための電動アクチュエータ44とを備えている。油圧制御機構43及び電動アクチュエータ44の作動はENG−ECU5により制御される。
弁作動特性可変装置40によれば、吸気弁は、図3に実線L1で示す第1作動特性と、実線L2で示す第2作動特性とを中心として、カムの作動位相CAINの変化に伴って破線L3,L4で示す最進角位相から、一点鎖線L5,L6で示す最遅角位相までの間の位相で駆動される。なお、排気弁は実線L7で示す一定の作動特性で駆動される。図3から明らかなように、本実施形態では吸気弁の閉弁時期CAIVCが圧縮行程の開始後となるように設定され、アトキンソンサイクル運転が行われる。
なお、図示は省略しているが、エンジン1には周知の排気還流機構及び蒸発燃料処理装置が設けられている。
ENG−ECU5は、各種センサからの入力信号波形を整形し、電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路、中央演算処理ユニット(以下「CPU」という)、該CPUで実行される各種演算プログラム及び演算結果等を記憶する記憶回路、燃料噴射弁6、弁作動特性可変装置40などに駆動信号を供給する出力回路を備えている。
MOT−ECU70は、当該車両の走行状態及びエンジン1の運転状態に応じて、PDU63,64を介してモータ61及び発電機62の作動制御を行う。
本実施形態では、エンジン1の暖機完了後にアイドリングストップが開始され、アイドリングストップ終了時(エンジン再始動時)において車体振動を抑制するために圧縮行程における筒内圧を減圧するための吸気弁作動位相制御(以下「デコンプ制御」という)を実行する。またエンジン1の暖機完了後にイグニッションスイッチがオフされて、比較的短時間のうちに再始動される温間再始動時においても同様にデコンプ制御を実行する。
図4は、吸気弁作動位相CAINを制御する処理のフローチャートである。この処理は、ENG−ECU5において所定時間毎に実行される。本実施形態では、吸気弁作動位相CAINの増加は位相の進角に対応する。
ステップS11では、IGオンフラグFIGONが「1」であるか否かを判別する。IGオンフラグFIGONは、エンジン1のイグニッションスイッチ(図示せず)がオンのとき「1」に設定され、オフのとき「0」に設定される。ステップS11の答が肯定(YES)であるときは、エンジン冷却水温TWが所定温度TWTH(例えば−10℃)以上であるか否かを判別する(ステップS12)。
ステップS12の答が肯定(YES)であるときは、アイドリングストップ条件フラグFISCNDが「1」であるか否かを判別する(ステップS13)。アイドリングストップ条件フラグFISCNDは、上述した所定アイドリングストップ条件が成立するとき「1」に設定される。ステップS13の答が肯定(YES)であるときは、エンジン回転数NEがデコンプ制御開始回転数NEDS(例えば、アイドル回転数より若干高い回転数に設定される)以下であるか否かを判別する(ステップS14)。
ステップS14の答が肯定(YES)であるときは、エンジン回転数NEが「0」であるか否かを判別する(ステップS15)。最初はステップS15の答は否定(NO)となるので、ステップS16に進み、吸気弁作動位相指令値CAINCMDを最遅角位相CAMINに設定し(ステップS16)、ステップS21に進む。
ステップS15の答が肯定(YES)となると、ステップS19に進み、エンジン冷却水温TWに応じて図5に示すCADCPテーブルを検索し、デコンプ位相CADCPを算出する。CADCPテーブルは、エンジン冷却水温TWが低下するほど、デコンプ位相CADCPが増加(進角)するように設定されている。またデコンプ位相CADCPは、冷間始動位相CACOLDより遅角側の位相に設定されている。
ステップS20では、吸気弁作動位相指令値CAINCMDをデコンプ位相CADCPに設定し、ステップS21に進む。ステップS21では、デコンプ制御フラグFDCPを「1」に設定し、続くステップS35では、デコンプ位相到達判定を行う。すなわち、吸気弁作動位相指令値CAINCMDをデコンプ位相CADCPに設定したことに対応して、実際の作動位相CAINがデコンプ位相CADCPに到達したか否かを判定し、到達した時点でデコンプ位相到達フラグFDCARを「1」に設定する。
ステップS13またはS14の答が否定(NO)であるときは、ステップS17に進み、デコンプ位相到達フラグFDCARが「1」であるか否かを判別する。アイドリングストップ条件フラグFISCNDが「1」から「0」に変化した直後は、ステップS17の答が否定(NO)であり、ステップS19に進み、デコンプ制御を継続する。吸気弁作動位相CAINがデコンプ位相CADCPに達すると、ステップS17からステップS18に進み、エンジン回転数NEがデコンプ制御終了回転数NEDE(例えば600rpm)より高いか否かを判別する。最初はこの答が否定(NO)であり、ステップS19に進み、デコンプ制御を継続する。
ステップS18の答が肯定(YES)となると、通常制御に移行し(ステップS22)、デコンプ制御フラグFDCPを「0」に設定する(ステップS34)。通常制御開始後は、デコンプ位相到達フラグFDCARが「1」に維持され、所定アイドリングストップ条件が成立しない限り、ステップS13からステップS17,S18を経由してステップS22に至る制御が継続される。デコンプ位相到達フラグFDCARは、イグニッションスイッチがオフされたとき、及びデコンプ制御の開始時に「0」に戻される。
ステップS12の答が否定(NO)、すなわちエンジン1の暖機が完了していないときは、ステップS33に進み、吸気弁作動位相指令値CAINCMDを冷間始動位相CACOLDに設定し(ステップS33)、ステップS34に進む。
ステップS11の答が否定(NO)、すなわちイグニッションスイッチがオフされているときは、ステップS31に進み、エンジン回転数NEが「0」であるか否かを判別する(ステップS31)。例えばアイドリングストップが実行されている状態でイグニッションスイッチがオフされたときは、ステップS31の答は肯定(YES)であり、ステップS33に進む。したがって、イグニッションスイッチがオフされたときに、吸気弁作動移動CAINは、冷間始動位相CACOLDに移行する。
ステップS31の答が否定(NO)であるときは、吸気弁作動位相指令値CAINCMDをIGオフ位相CAIGOFに設定する(ステップS32)。IGオフ位相CAIGOFは、イグニッションスイッチがオフされた時点の吸気弁作動位相CAINである。したがって、その後エンジン回転数NEが「0」となった時点で、吸気弁作動位相指令値CAINCMDが冷間始動位相CACOLDに変更される。
イグニッションスイッチがオフされ、次にオンされたときに、エンジン温度が低下しているときは、ステップS12の答が否定(NO)となり、吸気弁作動位相指令値CAINCMDは冷間始動位相CAINCMDに設定される(ステップS33)。したがって、エンジン停止時に設定された冷間始動位相CACOLDが維持されて、エンジン始動が開始される。
イグニッションスイッチがオフされ比較的短時間の内に再度オンされたときに、すなわち温間再始動が行われたときは、ステップS12の答が肯定(YES)となり、ステップS13からステップS17に進む。デコンプ位相到達フラグFDCARは、イグニッションスイッチがオフされると「0」に設定されるので、ステップS17の答は否定(NO)となり、ステップS19に進んでデコンプ制御が開始される。以後はアイドリングストップ終了時と同様に、デコンプ位相到達フラグFDCARが「1」に設定されかつエンジン回転数NEがデコンプ制御終了回転数NEDEを超えるまでデコンプ制御が実行される。
図6〜図8は、図5の処理による制御動作を説明するためのタイムチャートであり、これらの図には、吸気弁作動位相CAIN、エンジン回転数NE、IGオンフラグFIGON、デコンプ制御フラグFDCP、及び燃料噴射フラグFFIの推移が示されている。燃料噴射フラグFFIは、燃料噴射を実行するとき「1」に設定されるフラグである。
図6〜図8に示す例では、停止状態へ移行する直前のエンジン1はアイドリング状態にあり、エンジン回転数NEはデコンプ制御開始回転数NEDS以下である。なお、図6において吸気弁作動位相CAINの推移を示す図には、破線で吸気弁作動位相指令値CAINCMDの推移が示されている。図7及び図8では、吸気弁作動位相指令値CAINCMDの図示は省略されている。
図6に示す例では、エンジン1の暖機が完了している状態(TW≧TWTH)で時刻t1において所定アイドリングストップ条件が成立し、燃料噴射が停止されるとともにデコンプ制御が開始される。すなわち、吸気弁作動位相指令値CAINCMDが最遅角位相CAMINに設定され、吸気弁作動位相CAINが最遅角位相CAMINに移行する。時刻t2においてエンジン回転数NEが「0」となると、吸気弁作動位相指令値CAINCMDがデコンプ位相CADCPに設定され、時刻t3に吸気弁作動位相CAINがデコンプ位相CADCPに到達し、デコンプ位相到達フラグFDCARが「1」に設定される。
時刻t4において所定アイドリングストップ条件が不成立となり、エンジン1の再始動が開始される。エンジン回転数NEが上昇し、デコンプ制御終了回転数NEDEに達すると(時刻t5)、通常制御に移行する。時刻t6から燃料噴射が開始される。本実施形態では、発電機62によりエンジン1の始動が行われるので、燃料噴射及び点火を実行しなくても、エンジン回転数NEを上昇させることができる。エンジン回転数NEが、車体振動の共振周波数に対応する回転数を超える時刻t6から燃料噴射を開始することにより、自立運転可能な状態となる。
なお、エンジン1の暖機が完了していない状態(TW<TWTH)では、図4のステップS12からステップS33に進んで、吸気弁作動位相指令値CAINCMDが冷間始動位相CACOLDに設定されるので、所定アイドリングストップ条件が成立してもデコンプ制御は実行されず、吸気弁作動位相CAINは冷間始動位相CACOLDに維持される。
図7にはエンジン1の暖機完了状態でイグニッションスイッチがオフされ、エンジン1の温度が低下した後にイグニッションスイッチがオンされて、エンジン1の冷間始動が行われる例が示されている。
図7(a)に示す例では、図6に示す例と同様に、エンジン1の暖機が完了している状態(TW≧TWTH)で時刻t11において所定アイドリングストップ条件が成立し、燃料噴射が停止されるとともにデコンプ制御が開始される。時刻t12においてエンジン回転数NEが「0」となった後の時刻t13において、イグニッションスイッチがオフされる。したがって、図4のステップS11からステップS31を経由してステップS33に進む制御が行われ、吸気弁作動位相CAINは冷間始動位相CACOLDへ移行する。
時刻t14においてイグニッションスイッチがオンされると、ステップS12からステップS33へ移行し、吸気弁作動位相CAINは冷間始動位相CACOLDに維持される。時刻t15からエンジン1の始動が開始され、時刻t16から燃料噴射が開始される。
図7(b)に示す例では、エンジン1が作動している状態で時刻t21にイグニッションスイッチがオフされる。したがって、図4のステップS11からステップS31を経由してステップS32に進み、吸気弁作動位相指令値CAINCMDは、IGオフ位相CAIGOFに設定され、吸気弁作動位相CAINはIGオフ位相CAIGOFに維持される。その後エンジン回転数NEが「0」となると(時刻t22)、ステップS31からステップS33に進み、吸気弁作動位相CAINは冷間始動位相CACOLDに移行する。
時刻t23においてイグニッションスイッチがオンされると、吸気弁作動位相CAINは冷間始動位相CACOLDに維持され(ステップS12→S33)、時刻t24からエンジン1の始動が開始され、時刻t25から燃料噴射が開始される。
図8にはエンジン1の暖機完了状態でイグニッションスイッチがオフされ、比較的短時間のうちにイグニッションスイッチがオンされて温間再始動が行われる例が示されている。
図8(a)に示す例では、時刻t31〜t34までの動作は、図7(a)と同一であり、時刻t34においてイグニッションスイッチがオンされると、ステップS12からステップS13及びS17を経由してステップS19に進み、デコンプ制御を開始する。時刻t35からエンジン1の始動が開始され、エンジン回転数NEがデコンプ制御終了回転数NEDEに達すると(時刻t36)、デコンプ制御を終了し、通常制御に移行する。時刻t37から燃料噴射が開始される。
図8(b)に示す例では、時刻t41からt43までの動作は、図7(b)と同一であり、時刻t43においてイグニッションスイッチがオンされると、以後の動作は図8(a)と同一である。すなわち、直ちにデコンプ制御が開始され、時刻t44からエンジン1の始動が開始され、エンジン回転数NEがデコンプ制御終了回転数NEDEに達すると(時刻t45)、デコンプ制御を終了し、通常制御に移行する。時刻t46から燃料噴射が開始される。
図9は、エンジン冷却水温TWに応じてデコンプ位相CADCPを設定することの効果を説明するためのタイムチャートであり、吸気弁作動位相CAIN及びエンジン回転数NEの推移を示す。動作線L11,L12,L13(デコンプ位相CADCP1,CADCP2,CADCP3)は、それぞれエンジン冷却水温TW1,TW2,TW3(TW1<TW2<TW3)に対応する。
エンジン冷却水温TWが低くなるほど始動時における車体振動の影響が軽減されるので、吸気弁作動位相CAINを進角側の位相に設定しても所望の振動抑制効果を得ることができる。また第2弁作動特性可変機構42を駆動する電動アクチュエータ44の応答速度は、エンジン冷却水温TWが低下するほど遅くなる傾向がある。したがって、エンジン冷却水温TWが低下するほどデコンプ位相CADCPを進角側の位相に設定することにより、エンジン始動時の通常制御移行直後において(時刻t51〜t52の期間)、デコンプ位相CADCPから通常制御位相CANMLまでの変更量を少なくすることができる。その結果、エンジン始動時に必要な吸気弁作動位相CAINの制御応答性の確保と、車体振動の抑制とを適切に両立させることが可能となる。
以上のように本実施形態では、エンジン運転中に所定アイドリングストップ条件が成立し、かつエンジン冷却水温TWが所定温度TWTH以上であるときは、吸気弁作動位相CAINを最遅角位相CAMINに移行させ、その後エンジン回転数NEが「0」となったときに、吸気弁作動位相CAINをデコンプ位相CADCPまで進角させる減圧停止制御が行われるので、次回のエンジン始動は吸気弁作動位相CAINをデコンプ位相CADCPに設定した状態で開始される。デコンプ位相CADCPは冷間始動位相CACOLDより遅角側の位相であるので、温間始動時に車体振動を抑制することができる。
また、吸気弁作動位相CAINを先ず最遅角位相CAMINに設定し、エンジン回転数NEが「0」となったときにデコンプ位相CADCPまで進角させる減圧停止制御を実行することにより、吸気弁作動位相CAINをデコンプ位相CADCPに安定的かつ速やかに移行させることが可能となる。所定アイドリングストップ条件が成立してからエンジン回転数NEが「0」となるまでの期間において、エンジンの回転変動が大きくなることがあり、そのような場合にデコンプ位相CADCPに直ちに移行させる制御を行うと、エンジン回転数NEが「0」となった時点でデコンプ位相CADCPからずれてしまうおそれがあるが、最遅角位相CAMINは機械的に決まる位相であるためエンジンの回転変動があったとしても安定的に移行させることができる。またデコンプ位相CADCPは最遅角位相CAMINの近傍に設定されるため、最遅角位相CAMINを経由してデコンプ位相CADCPに移行させる減圧停止制御を行うことにより、確実かつ速やかに移行させることが可能となる。
本実施形態では、エンジン回転数NEが減少していく過程では発電機62による発電を行ってエンジン回転数NEの減少速度を速めて、車体の共振周波数域を迅速に通過させるようにしているため、エンジン回転数NEの減少過程での回転変動が増加する傾向がある。したがって、最遅角位相CAMINを経由してデコンプ位相CADCPに移行させる減圧停止制御を行うことより上記効果がより顕著なものとなる。
またエンジン運転中に所定アイドリングストップ条件が成立した場合であっても、エンジンの暖機が完了していないとき(TW<TWTHであるとき)は、吸気弁作動位相CAINが冷間始動位相CACOLDに設定される。エンジンの暖機が完了していないときは、再始動時における車体振動を抑制するために吸気弁作動位相CAINを遅角させる必要性がなく、冷間始動位相CACOLDに設定することによって、円滑な始動が可能となる。
またイグニッションスイッチがオフされた時点でエンジン回転数NEが「0」であるときは、吸気弁作動位相CAINを冷間始動位相CACOLDに移行させる通常停止制御が直ちに実行され、イグニッションスイッチがオフされた時点でエンジン回転数NEが「0」より高いときは、エンジン回転数NEが「0」となった時点で吸気弁作動位相CAINが冷間始動位相CACOLDに移行される。イグニッションスイッチがオフされたときは、通常は次のエンジン始動時(イグニッションスイッチオン時)においてはエンジン温度が低下しているため、吸気弁作動位相CAINを予め冷間始動位相CACOLDに設定しておくことにより、円滑な始動が可能となる。
ただし、イグニッションスイッチがオンされた時点においてエンジン冷却水温TWが所定温度TWTH以上である温間再始動時は、吸気弁作動位相CAINを冷間始動位相CACOLDからデコンプ位相CADCPへ遅角させる減圧始動制御が行われるので、車体振動を抑制することができる。
本実施形態では、冷却水温センサ10が機関温度パラメータ検出手段に相当し、クランク角度位置センサ11が回転数検出手段を構成し、ENG−ECU5が吸気弁作動位相制御手段を構成する。
なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、上述した実施形態では吸気弁のリフト量及び開角を変更する第1弁作動特性可変機構41を備える内燃機関の制御装置を示したが、本発明は第1弁作動特性可変機構41を備えていない内燃機関の制御装置にも適用可能である。また本発明は、クランク軸を鉛直方向とした船外機などのような船舶推進機用エンジンなどの制御にも適用が可能である。
また機関温度を示す温度パラメータとしては、上述したエンジン冷却水温TWに限るものではなく、エンジン1の潤滑油温度TOILあるいはエンジン1のシリンダブロックそのものの温度TCBLKなどを用いてもよい。
1 内燃機関
5 エンジン制御用電子制御ユニット(吸気弁作動位相制御手段)
10 エンジン冷却水温センサ(機関温度パラメータ検出手段)
11 クランク角度位置センサ(回転数検出手段)
44 電動アクチュエータ

Claims (5)

  1. 吸気弁の作動位相を変更する弁作動特性可変機構と、該弁作動特性可変機構を駆動する電動アクチュエータと、前記電動アクチュエータを用いて前記吸気弁作動位相を制御する吸気弁作動位相制御手段とを備える内燃機関の制御装置において、
    所定の機関停止条件が成立したときに前記機関を自動停止させる自動停止制御手段と、
    前記機関の温度を示す温度パラメータを検出する機関温度パラメータ検出手段と、
    前記機関の回転数を検出する回転数検出手段とを備え、
    前記吸気弁作動位相制御手段は、
    前記機関の運転中に前記所定機関停止条件が成立し、かつ前記温度パラメータの検出値が所定温度以上であるときは、前記吸気弁作動位相を最遅角位相に設定し、その後前記機関回転数が「0」となったときに、前記吸気弁作動位相を減圧制御位相まで進角させる減圧停止制御を実行し、
    前記減圧制御位相は、前記機関の冷間始動時に適用される冷間始動位相より遅角側の位相であることを特徴とする内燃機関の制御装置。
  2. 前記減圧制御位相は、前記温度パラメータの検出値が低下するほど進角するように設定されることを特徴とする請求項1に記載の内燃機関の制御装置。
  3. 前記吸気弁作動位相制御手段は、前記機関の運転中に前記所定機関停止条件が成立し、かつ前記温度パラメータの検出値が前記所定温度より低いときは、前記吸気弁作動位相を前記冷間始動位相に設定することを特徴とする請求項1または2に記載の内燃機関の制御装置。
  4. 前記吸気弁作動位相制御手段は、前記機関のイグニッションスイッチがオフされた時点で前記機関回転数が「0」であるときは、前記吸気弁作動位相を前記冷間始動位相に移行させる通常停止制御を直ちに実行し、前記イグニッションスイッチがオフされた時点で前記機関回転数が「0」より高いときは、前記機関回転数が「0」となった時点で前記通常停止制御を実行することを特徴とする請求項1から3の何れか1項に記載の内燃機関の制御装置。
  5. 前記吸気弁作動位相制御手段は、前記イグニッションスイッチがオンされた時点において前記温度パラメータの検出値が前記所定温度以上であるときは、前記吸気弁作動位相を前記冷間始動位相から前記減圧制御位相へ遅角させることを特徴とする請求項4に記載の内燃機関の制御装置。
JP2012190881A 2012-08-31 2012-08-31 内燃機関の制御装置 Active JP5523523B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012190881A JP5523523B2 (ja) 2012-08-31 2012-08-31 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012190881A JP5523523B2 (ja) 2012-08-31 2012-08-31 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2014047695A true JP2014047695A (ja) 2014-03-17
JP5523523B2 JP5523523B2 (ja) 2014-06-18

Family

ID=50607635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012190881A Active JP5523523B2 (ja) 2012-08-31 2012-08-31 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP5523523B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148302A (ja) * 2015-02-13 2016-08-18 トヨタ自動車株式会社 車両の制御装置
JP2016205195A (ja) * 2015-04-20 2016-12-08 トヨタ自動車株式会社 ハイブリッド車両
DE102019105773A1 (de) 2018-03-07 2019-09-12 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung für eine verbrennungskraftmaschine
DE102019105772A1 (de) 2018-03-07 2019-09-12 Toyota Jidosha Kabushiki Kaisha Hybridfahrzeug
JP2020169581A (ja) * 2019-04-02 2020-10-15 スズキ株式会社 内燃機関の制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000213383A (ja) * 1999-01-20 2000-08-02 Mitsubishi Motors Corp ハイブリッド車
JP2001289086A (ja) * 2000-04-05 2001-10-19 Toyota Motor Corp 内燃機関の始動停止制御装置
JP2010195308A (ja) * 2009-02-26 2010-09-09 Toyota Motor Corp ハイブリッド車両の制御装置
JP2011183871A (ja) * 2010-03-05 2011-09-22 Aisin Aw Co Ltd ハイブリッド駆動装置
JP2012026275A (ja) * 2010-07-20 2012-02-09 Hitachi Automotive Systems Ltd 内燃機関のバルブタイミング制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000213383A (ja) * 1999-01-20 2000-08-02 Mitsubishi Motors Corp ハイブリッド車
JP2001289086A (ja) * 2000-04-05 2001-10-19 Toyota Motor Corp 内燃機関の始動停止制御装置
JP2010195308A (ja) * 2009-02-26 2010-09-09 Toyota Motor Corp ハイブリッド車両の制御装置
JP2011183871A (ja) * 2010-03-05 2011-09-22 Aisin Aw Co Ltd ハイブリッド駆動装置
JP2012026275A (ja) * 2010-07-20 2012-02-09 Hitachi Automotive Systems Ltd 内燃機関のバルブタイミング制御装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148302A (ja) * 2015-02-13 2016-08-18 トヨタ自動車株式会社 車両の制御装置
CN105888761A (zh) * 2015-02-13 2016-08-24 丰田自动车株式会社 车辆的控制装置和控制方法
JP2016205195A (ja) * 2015-04-20 2016-12-08 トヨタ自動車株式会社 ハイブリッド車両
DE102019105773A1 (de) 2018-03-07 2019-09-12 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung für eine verbrennungskraftmaschine
DE102019105772A1 (de) 2018-03-07 2019-09-12 Toyota Jidosha Kabushiki Kaisha Hybridfahrzeug
JP2019157641A (ja) * 2018-03-07 2019-09-19 トヨタ自動車株式会社 ハイブリッド車両
US10655546B2 (en) 2018-03-07 2020-05-19 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US10697418B2 (en) 2018-03-07 2020-06-30 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
DE102019105773B4 (de) 2018-03-07 2022-09-29 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung für eine Verbrennungskraftmaschine
JP2020169581A (ja) * 2019-04-02 2020-10-15 スズキ株式会社 内燃機関の制御装置
JP7240228B2 (ja) 2019-04-02 2023-03-15 スズキ株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
JP5523523B2 (ja) 2014-06-18

Similar Documents

Publication Publication Date Title
JP4535135B2 (ja) 始動制御装置
JP2005299594A (ja) エンジンのバルブ特性制御装置
JP5523523B2 (ja) 内燃機関の制御装置
JP2004176709A (ja) 内燃機関の始動制御装置
JP2007032388A (ja) 内燃機関の始動制御装置
JP4857685B2 (ja) エンジンの始動方法及びエンジンの始動装置
JP2011190768A (ja) ハイブリッド車両における可変動弁制御装置
JP6322618B2 (ja) 内燃機関の制御装置
JP4605512B2 (ja) 内燃機関の制御装置
JP2008014146A (ja) 内燃機関の停止制御装置
JP2013024065A (ja) 内燃機関の可変バルブタイミング制御装置
JP5566429B2 (ja) 内燃機関の制御装置
CN108930599B (zh) 车辆及车辆的控制方法
JP2006170163A (ja) 内燃機関の始動制御装置
JP2006138299A (ja) 内燃機関の始動制御装置
JP2004036428A (ja) 内燃機関の制御装置
JP2010053794A (ja) 内燃機関の制御装置
JP5615328B2 (ja) 車両駆動装置の制御装置
JP5746880B2 (ja) 内燃機関の制御装置
JP2011038433A (ja) 内燃機関の制御装置
JP2009209723A (ja) エンジンの始動制御装置及び始動制御方法
JP2019027367A (ja) エンジン始動制御装置
JP2010169085A (ja) 内燃機関の制御装置
JP6505071B2 (ja) ウェイストゲート弁の全閉位置学習装置
JP2009127550A (ja) エンジンの吸気制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140408

R150 Certificate of patent or registration of utility model

Ref document number: 5523523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150