JP2014002110A - 静電容量検出装置 - Google Patents

静電容量検出装置 Download PDF

Info

Publication number
JP2014002110A
JP2014002110A JP2012139047A JP2012139047A JP2014002110A JP 2014002110 A JP2014002110 A JP 2014002110A JP 2012139047 A JP2012139047 A JP 2012139047A JP 2012139047 A JP2012139047 A JP 2012139047A JP 2014002110 A JP2014002110 A JP 2014002110A
Authority
JP
Japan
Prior art keywords
capacitance
electrode
substrate
film
electrode film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012139047A
Other languages
English (en)
Inventor
Takao Noguchi
隆男 野口
Takeshi Wada
健 和田
Kenichi Onchi
健一 遠池
Takeshi Unno
健 海野
Akihiro Unno
晶裕 海野
Takeshi Aoyanagi
岳 青柳
Hirofumi Natori
宏文 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012139047A priority Critical patent/JP2014002110A/ja
Publication of JP2014002110A publication Critical patent/JP2014002110A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

【課題】狭い空隙を備え、静電容量のばらつきが小さく、且つ、静電容量出力のばらつきの小さい、静電容量形成部を有する静電容量検出装置を提供する。
【解決手段】固定電極11と、可動電極10の間の距離である空隙が、一部が除去された少なくとも第2の電極膜18の厚みで正確に設定でき、狭い間隔で一定に形成できる、静電容量、および、センサ特性の安定性に優れた静電容量検出装置。
【選択図】図4

Description

本発明は、物体の加速度などの物理量を静電容量の変化により検出する静電容量検出装置に関する。
加速度センサや角速度センサなどの物理量センサが広く実用化されている。加速度センサは、ゲーム機、入力デバイス、携帯情報端末などの電子機器から、自動車用のカーナビゲーションシステムやエアバッグシステムなどの車両用制御機器に用いられている。また、角速度センサは、デジタルカメラなどの電子機器から、カーナビゲーションシステムや車体制御システムなどの車載機器などがその代表的な用途である。さらに近年では、これらのセンサを組み合わせた複合センサが研究開発されており、物理量センサの用途は急速に拡大している。
これらの物理量センサの代表的な方式として、固定電極と可動電極の間の静電容量の変化を検出する静電容量式や、圧電体を用いた振動ジャイロが知られている。加速度センサとしては、例えば、特許文献1に示すような、櫛歯を用いた静電検出方式の加速度センサや、特許文献2に示すような、並行平板電極を用いた静電検出式の加速度センサが開示されている。
また、角速度センサとしては、特許文献3に示すような、基板上に形成した圧電薄膜を用いた振動ジャイロセンサが開示されている。
特開2001−004658号公報 特開2009−063430号公報 特開2010−238856号公報
特許文献3に開示されているような角速度センサや、特許文献1、2に開示されているような加速度センサが一般的に知られている一方、角速度センサと加速度センサを一体とした物理量センサへの要求が近年高まっている。
特に、一体型の物理量センサを実現するにあたり、以下のような課題が考えられている。例えば、加速度センサ等の、静電検出方式のセンサまたは、静電容量検出装置では、外部からの入力によってセンサ本体に対して変位可能な可動電極と、センサ本体に対して固定された固定電極が対向して空隙を介して形成されており、その空隙によって形成される静電容量の変化によって物理量を検出する方式が一般的である。すなわち、外部からの入力によって可動電極と固定電極の相対的な位置関係が変化した場合に、それらの電極間の静電容量の変化を用いて加速度などの物理量を検出する方式である。
この方式の場合、物理量の入力による可動電極の変位量は極めて小さく通常マイクロメータかそれよりも小さいオーダーであるため、それによって得られる静電容量の変化量を少しでも大きくするために、可動電極と固定電極間の距離すなわち空隙をマイクロメーター程度かそれ以下まで小さくする必要がある。さらに、空隙を一定の距離で形成することが必要とされ、この距離がウェハ内の素子間あるいはウェハ間でばらつくことにより、入力ゼロ時の静電容量や、物理量が入力された際の静電容量の変化量が変動し、出力がばらつく原因となる。したがって、この空隙の距離は高精度に一定でなければならない。
しかし、可動電極と固定電極間の距離すなわち空隙を、マイクロメーター程度かそれ以下の距離で安定して高精度に形成することは容易ではない。シリコン深堀りエッチングや異方性ウェットエッチング方法などを用いた高度な基板加工技術が必要とされるばかりでなく、それらの技術をもってしても高い精度で加工することは難しく、MEMS製品製造での大きな課題となっている。
本発明は、かかる問題点に鑑みてなされたもので、狭い空隙を備え、静電容量のばらつきが小さく、且つ、静電容量出力のばらつきの小さい、静電容量形成部を有する静電容量検出装置を提供することを目的とする。
本発明は、静電容量の変化を用いて物理量を検出するための静電容量形成部を備えた静電容量検出装置であって、前記静電容量形成部は、第1の基板と、第2の基板を備えており、前記第1の基板上には、一方の主面に形成された第1の電極膜と、第2の電極膜、および、前記第1の電極膜と前記第2の電極膜の間に形成された圧電体膜を有しており、前記第2の基板上には、一方の主面に形成された第3の電極膜を有しており、前記第1の基板と、前記第2の基板は、お互いの電極面が対向した部分で接合されており、前記第1の電極膜の一部と、前記第3の電極膜の一部が、物理量の入力に対して相対的に変位可能となるように前記第2の電極膜が除去されていることを特徴とする静電容量検出装置である。
こうすることにより、第3の電極膜からなる固定電極と、第1の電極膜からなる可動電極の間の距離である空隙が、一部が除去された少なくとも第2の電極膜の厚みで正確に設定でき、狭い間隔で一定に形成できる。その結果、静電容量が安定に実現でき、加速度出力などのセンサ特性の安定性に優れた物理量センサ、すなわち、静電容量検出装置が実現できる。
さらに、静電容量形成部において、前記圧電体膜の一部が除去されていることにより、積層工程の過程において、空隙の寸法制御を正確に行うことができる。
本発明により、狭い空隙を備え、静電容量のばらつきが小さく、且つ、静電容量出力のばらつきの小さい、静電容量形成部を有する静電容量検出装置を提供することができる。
実施形態の静電容量検出装置を示す平面図である。 図1のA−A線における実施形態、実施例1の静電容量検出装置の断面図である。 図1のA−A線における比較例の静電容量検出装置の断面図である。 図1のA−A線における実施例2の静電容量検出装置の断面図である。
本発明の実施の形態について、図面を参照して詳細に説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。また、本発明の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。
図1は、実施形態に係る静電容量検出装置1の内部構成を示す。この静電容量検出装置1は、例えば、角速度センサ部2と、静電容量形成部である加速度センサ部3を有する物理量センサである。なお、図1では、配線、外部との電気的接続を取るための接続端子、ならびに角速度センサ部2の検出電極は省略されている。角速度センサ部2は固定部4によって固定支持されており、駆動電極5に電圧を加えることにより振動腕6が左右方向すなわち、X軸方向に振動可能なように構成されている。
図1の静電容量検出装置1の長手方向すなわち、Y軸方向の回転軸21の周りに回転が発生すると、コリオリ力により左右方向すなわち、X軸方向に振動している駆動腕6が厚み方向すなわち、Z軸方向に変位を開始するため、この厚み方向の変位を検出電極により検知することで角速度が測定できる。
一方、静電容量形成部である加速度センサ部3は、加速度センサ部用固定部7から角速度センサ部2を取り囲むように、角速度センサ2の両側に延びた支持腕8を介して可動部9が形成されており、可動部9の表面には可動電極10が形成されている。図2は、図1の、A−A線における断面図であるが、この加速度センサ部3は、図1の左右方向すなわち、X軸方向の加速度入力に対して、左右方向に変位可能になっており、図2に示すように、その変位を可動電極10と、対向して形成された固定電極11の間の静電容量の変化によって検出することで加速度の測定ができる。
図2に示すように、角速度センサ部2と加速度センサ部3は、第1の基板12から一体的に形成されるもので、例えば、シリコン(Si)からなる第1の基板12を深掘り加工することにより形成される。この第1の基板12には、表面が対向するように第2の基板13が接合されている。一方、第2の基板13が接合されている面と反対側の面には、必要に応じて第3の基板14が接合される。第1の基板12と、第2の基板13は、お互いの電極面が対向し、例えば、固定部4(図1)で接合されている。
角速度センサ部2は、図1のように、Siからなる第1の基板12からなる一対の振動腕6と、それを固定する固定部4から形成されている。一般的に角速度センサは、音叉型やH型が知られているが、本実施形態では、図1のように、一対の振動腕からなる角速度センサ部2となっている。
角速度センサ部2には、図2のように、Siからなる第1の基板12上に第1の電極膜16、圧電体膜17と、第2の電極膜18が順に積層されている。
第1の電極膜16と第2の電極膜18の間に電圧を印加することにより、左右方向すなわち、X軸方向の振動腕6を振動させることができるようになっている。例えば、左右方向の一対の振動腕6の、それぞれの表面上に、長手方向すなわち、Y軸方向に平行になるように各2本の第2の電極膜18を加工して配置し、それら振動腕1本あたりにつき2本の第2の電極膜18に位相が逆になるように交流電圧を印加することにより、一対の振動腕6は左右方向に振動するようになる。
このとき、図1に示すように、外部から振動腕6の長手方向すなわち、Y軸方向の回転軸21の周りの回転運動が加わると、振動腕6には駆動振動の方向すなわち、X軸方向と回転軸21の周りの回転方向の両者に直交するようにコリオリ力が働き、厚み方向すなわち、Z軸方向に振動が発生する。このコリオリ力による厚み方向の振動を検出できるように振動腕6上に図示しない検出電極を形成することにより、角速度が検出できる。
図2において、一方、静電容量形成部である加速度センサ部3では、可動部9の一方の表面に可動電極10があり、一定の空隙Gを隔てて、可動電極10の対向面には固定電極11が形成されている。加速度センサ部3において、第1の電極膜16の一部である可動電極10と、第3の電極膜22の一部である固定電極11が、物理量の入力に対して相対的に変位可能となっている。なお、空隙Gは、空気、不活性ガス、または真空になっている。
可動電極10は、成膜過程において、第1の基板12上に成膜された第1の電極膜16の一部が除去されて形成された膜であり、第1の電極膜16の一部でもある。また、固定電極11は、第2の基板13上に形成されており、この固定電極11は、成膜過程において、第2の基板13上に成膜された第3の電極膜22の一部が除去されて形成された膜であり、第3の電極膜22の一部でもある。
また、加速度センサ部3は、形成時には第1の基板12上に第1の電極膜16を形成するなど、角速度センサ部2と共通の構造を有していたが、加速度センサ部3は、角速度センサ部2とは独立した機能を有するため、第1の基板12や第1の電極膜16などは、元々共通の基板や膜であったが、一部が除去されて構造上の分離をしている。
図2において、静電容量形成部である加速度センサ部3では、第1の電極膜16の一部である可動電極10と、第3の電極膜22の一部である固定電極11が、空隙Gを介して対向しており、この可動電極10と固定電極11と空隙Gにより静電キャパシタが形成されている。外部からの加速度により加速度センサ部3が変位すると、空隙Gの距離または対向した可動電極10と固定電極11の重なり面積が変化することにより、静電キャパシタの容量が変化し、加速度を検出することができる。
なお、第1の電極膜16の一部である可動電極10と、第3の電極膜22の一部である固定電極11は、金属や酸化物導電体などの導電性薄膜からなることが好ましいが、導電性のSi基板を用いることにより導電性薄膜を用いずに電極を形成することが可能である。たとえば、可動電極側のSiを可動電極となる部分を残してエッチングすることにより、Siを電極とした可動電極が形成可能である。
図2において、静電容量形成部である加速度センサ部3では、角速度センサ部2で存在した第2の電極膜18と圧電体膜17が取り除かれており、存在していない。加速度センサ部3と、角速度センサ部2を形成する過程で、第1の電極膜16の一部である可動電極10と、第3の電極膜22の一部である固定電極11との距離である空隙Gは、加速度センサ部3で、第2の電極膜18と圧電体膜17が除去された膜厚に等しくなっており、これにより、全面にわたってほぼ一定な距離の空隙Gを形成することが可能である。
実施形態の静電容量検出装置1は、対向した平行平板電極間の容量変化を検出することにより加速度などの物理量を検出するための静電容量式の静電容量検出装置であって、対向面間の距離である空隙Gを第2の電極膜18および、圧電体膜17の厚さで制御することにより、空隙Gをマイクロメータオーダで正確に制御することができる。
圧電体膜17には、PZTやBaTiOに代表されるABO(AはBa、Sr、Pb、Li、Na、K、Biのうち少なくとも一種を含む。BはTi、Zr、Nb、Ta、Mnの少なくとも一種を含む)で表されるペロブスカイト構造やイルメナイト構造の材料、ZnOやAlNなどのウルツァイト構造の材料、Bi層状化合物、タングステンブロンズ構造の材料、およびそれらの複合組成物が利用できる。
第1の電極膜16、第2の電極膜18、第3の電極膜22にはPt、Au、Cu、Al、Ni、Cr、Tiなどの金属のほか、NiO、SrRuOなどの酸化物導電体を利用することが好ましい。特に、Ptを用いれば、エピタキシャル膜が得られやすく、密着性に優れた信頼性の高いセンサが得られる。
図2の、静電容量形成部である加速度センサ部3における、静電容量を形成する可動電極10と固定電極11は、図1に示すように、矩形などにパターン化された複数の領域が、直列または並列に配列されたものが好ましい。こうすることにより、横方向、すなわちX方向の変位に対する容量の変化量を大きくできるため、高感度で低ノイズのセンサが作製できる。
Si基板上に形成される第1の電極膜16、圧電体膜17は配向膜であることが好ましく、エピタキシャル膜であることがより好ましい。エピタキシャル膜とは下地材料の格子によって特定の方向に結晶の配向方位が制御された膜であり、X線回折のθ―2θ測定において特定の方位の面と等価な回折のピークの強度に対し、それ以外のピークの強度が10%以下となっている膜をいう。
各膜の膜厚は、第1の電極膜16ならびに、第2の電極膜18の厚さが50nmから1000nm、圧電体膜17の厚さが300nmから5μmであることが好ましい。これらよりも薄くなるとそれぞれの膜の機能が十分に発揮されなくなる。また、これらの範囲よりも厚くなると、膜ハガレやクラックなどの不良が発生しやすくなるとともに、製造時に多くの時間や原料が必要となり製造効率が低下する。
第1の基板12にはSiなどの半導体基板のほか、ガラス基板、セラミック基板などが利用できる。加速度センサ部3には反応性イオンエッチングやアルカリ溶液により深掘り加工の容易なSi基板を利用することが好ましい。一方、第1の基板12に対向して接合される第2の基板13には、ガラス基板やSi基板、低温同時焼成セラミック(LTCC)基板を利用することが好ましい。こうすることにより、接合強度の高い陽極接合や高温接合が可能になり、信頼性の高い長期使用の可能なセンサが作成できる。
静電容量検出装置は、物理量センサとしては、圧電体膜の機能を使用したり、静電容量の変化を利用したりするものとして広く活用でき、加速度センサや角速度センサのほか、圧力センサや歪みセンサなどに活用可能である。
実施形態に基づく実施例について、詳細に説明する。各センサである素子は、例えばSiからなる円形状のウェハ上に電極膜等を形成した基板を用いて、一度に多数個形成される。本実施例および比較例では、第1の基板12と第2の基板13に、成膜やエッチング加工を行った後、貼り合わされて、さらに、ダイシングなどの工程により、素子毎に分離されて、単体のセンサ素子となる。
(実施例1)
実施例1として、図2に示すように、第1の基板12であるSi基板上に厚さ200nmのPt膜を第1の電極膜16として形成し、その上にPZTからなる圧電体膜17を2μmの厚さで形成した。いずれの膜もエピタキシャル膜であり、Ptは(100)配向のエピタキシャル膜、PZTは(001)配向のエピタキシャル膜であった。このPZT膜上に第2の電極膜18として多結晶Pt膜を200nmの厚さで形成した。
第1の基板12に対し、第1の電極膜16、圧電体膜17、第2の電極膜18のパターンニング加工を行った。角速度センサ部2は第1の電極膜16、圧電体膜17、第2の電極膜18をパターンニング加工して、図1に示す駆動電極部5、図示しない検出電極部を形成した。一方、加速度センサ部3には、第2の電極膜18と圧電体膜17を除去し、その下の第1の電極膜16を加工して静電検出のための可動電極10を形成した。
また、静電容量形成部である加速度センサ部3は、角速度センサ部2とは独立した機能を有するため、第1の基板12や第1の電極膜16を、構造上の分離をした。第1の基板12や第1の電極膜16の分離には、反応性イオンエッチング法をもちいた。膜が形成された基板上にフォトレジストを塗布し、露光、現像によりパターンニングした後に、反応性イオンエッチングを行い、第1の基板12や第1の電極膜16の分離を行った。反応性イオンエッチングにはSiの深彫り加工に有効なDeep−RIE法が利用できる。
一方、第1の基板12であるSi基板と同じ形状、大きさの第2の基板13であるガラス基板を用意し、角速度センサ部2の可動部に対向する箇所に、角速度センサ部2が基板の面内方向への駆動振動、ならびに基板の厚み方向への検出振動が可能なように溝23を形成した。圧電体膜17と溝23との間隔Dは、角速度センサ部2の駆動振動および検出振動を妨げないのに十分な深さである10μmにした。
また、静電容量形成部である加速度センサ部3の第1の電極膜16の一部である可動電極10に対向する部分には第3の電極膜22の一部である電極膜を厚さ100nmで形成し、パターンニング加工することにより固定電極11を形成した。また、第2の基板13に貫通配線19を形成し端子20と接続した。これらの第1の基板12と第2の基板13を、加速度センサ部3の可動電極10と固定電極11が対向するように接合した。これにより、第1の電極膜16の一部である可動電極10と、第3の電極膜22の一部である固定電極11との距離である空隙Gは、2.2μmとなった。
こうして加工した第1の基板12であるSi基板と、第2の基板13であるガラス基板を接合し、Si深掘り加工により各センサ部の外形加工をした。ここでもう一枚の第3の基板14であるガラス基板を、第1の基板12の積層していない側の面上に、貼り合わせることで、各センサ部2、3を封止した。ダイシングにより、基板を切削し、物理量センサを各素子ごとに切り出し、静電容量検出装置1を作製した。
角速度センサ部2と、静電容量形成部である加速度センサ部3からなる物理量センサ、すなわち、静電容量検出装置1を、電子回路素子とともに容器に搭載し、ワイヤーボンドにより電気的な接続をとった後、金属からなる蓋により封止することで、角速度と加速度の検出機能を持つ静電容量検出装置1を作製した。
(比較例)
また、図3に示すように、比較例として、基板加工により空隙Gを形成したサンプルを作製し、実施例1と比較を行った。比較例のサンプルの作製方法は、実施例1と同様にして、駆動電極部5、図示しない検出電極部までを形成した。静電容量形成部である加速度センサ部3には、実施例1では、第2の電極膜18と圧電体膜17を除去し、その下の第1の電極膜16を加工して静電検出のための可動電極10を形成したが、比較例においては、実施例1とは異なり、加速度センサ部3の圧電体膜17と第2の電極膜18を除去をしないでおき、そのかわりに、第2の基板13をエッチングして掘り下げることで、第2の電極膜18と第3の電極膜22の一部である固定電極11の層の間に、実施例1の空隙Gと同じ深さの間隔を設けた。
図3に示すように、角速度センサ部2の可動部に対向する箇所の、溝23を含む間隔Dはそのままであるが、静電容量形成部である加速度センサ部3には、第2の電極膜18と第3の電極膜22の一部である固定電極11の層の間に、実施例1の空隙Gと同じ間隔である2.2μmだけ、第2の基板13であるSiをエッチングして掘り下げることで間隔を設けた。ここで設けた2.2umの間隔は、圧電体膜17の厚さ2μmと、第2の電極膜18の厚さ0.2μmの和である。
次に、作製した実施例1と比較例の静電容量検出装置に対して、静電容量形成部である加速度センサ部3の静電容量を測定した。作製した実施例1と比較例のそれぞれの静電容量検出装置について、全体で500個作製し、その中から50個を無作為に取り出し、静電容量の測定をした結果、設計値が5pFに対し、比較例については、平均5pFの静電容量となり、ばらつきは0.15pFであった。それに対し、実施例1においては、平均5pFの静電容量は同等であったが、ばらつきは0.05pF以内となり、比較例に比べて、ばらつきが約1/3に改善された。電極の面積が一定であれば、静電容量は電極間距離によって決定されるため、比較例に対して実施例1の加速度センサ部3の静電容量のばらつきが小さいことから、実施例1の加速度センサ部3では均一な間隔Gが精度よく形成できていることが示された。
一方、加速度がない状態、すなわち、加速度入力ゼロの時のゼロ点出力について、設計値が2.5Vになるように加速度検出回路のゲインを調整したものであるが、この状態から、加速度1Gを印加したときの出力を測定した。その結果、比較例は、平均3.5Vとなり、ばらつきが0.1Vであった。それに対し、実施例1においては、平均3.5Vとなり、ばらつきが0.025Vとなり、実施例1は比較例に比べて、ばらつきが約1/4に改善された。
さらに、加速度の影響に対する角速度について、外部からの1Gの加速度の入力に対する角速度出力も確認した。実施例1において、加速度がない状態での角速度出力に対して、加速度1Gを印加したときの角速度出力は、出力値についても、また、ばらつきについても、同等であり、加速度が生じても、角速度検出については、加速度の影響を受けない安定した出力が得られることが確認できた。すなわち、本実施例の静電容量検出装置として十分な特性を確認できた。
上記の、実施例1と比較例の静電容量と加速度出力の結果から、実施例1による静電容量検出装置が、静電容量と加速度出力のばらつきの小さい安定した静電容量検出装置であることが確認された。すなわち、実施例1の構造を用いることで、安定して高精度に一定に狭い空隙Gを形成することが可能であり、その結果、静電容量と加速度出力のばらつきの小さい、すなわち、高感度の静電容量検出装置を得ることが可能であることを確認できた。対向する電極の面積が一定であれば、静電容量は電極間距離によって決定されるため、比較例に対して実施例1の静電容量形成部である加速度センサ部3の静電容量のばらつきが小さいことから、実施例1の加速度センサ部3では均一な間隔Gが精度よく形成できていることが示された。
(実施例2)
図4は、実施例2を示す断面図である。図4に示すように、実施例1と比較して、実施例2では、静電容量形成部である加速度センサ部3における第2の電極膜18が取り除かれているが、圧電体膜17は取り除かれていないか、膜厚の一部が取り除かれるのみとなっている。加速度センサ部3は、もし、圧電体膜17が残っている場合は、対向する電極の面積および、空隙Gが一定ならば、一般的に使用される、例えば、空隙Gに用いた絶縁層よりも、圧電体膜17のほうが誘電率が大きいため、静電容量形成部である加速度センサ部3の静電容量は大きくなり、加速度などの検出感度を高くできる。
また、図4に示すように、静電容量形成部である加速度センサ部3において、比較例は、第2の電極膜18と圧電体膜17が残っているので、第2の基板13を一部削ることで、空隙Gを、確保したのに対し、実施例2は、加速度センサ部3において、圧電体膜17が残っているが、第2の電極膜18を削除することで、空隙Gを、確保した。
第1の基板12であるSi基板上に厚さ200nmの第1の電極膜16、厚さ1μmの圧電体膜17、厚さ1μmの第2の電極膜18をこの順番で形成した。形成した第1の電極膜16、圧電体膜17、第2の電極膜18をパターニング加工した。角速度センサ部2は第1の電極膜16、圧電体膜17、第2の電極膜18をパターニング加工して、駆動電極部5、図示しない検出電極部を形成した。一方、加速度センサ部3には、第2の電極膜18を除去し、圧電体膜17と第1の電極膜16を加工して静電検出のための可動電極10を形成した。他の工程は、実施例1と同じである。
次に、作製した実施例2と比較例の静電容量検出装置に対して、静電容量形成部である加速度センサ部3の静電容量を測定した。作製した実施例2と比較例のそれぞれの静電容量検出装置を、全体で500個作製し、その中から50個を無作為に取り出し、静電容量の測定をした結果、比較例については、設計値5pFに対し、平均5pFの静電容量となり、ばらつきは0.15pFであった。それに対し、実施例2においては、設計値10pFに対し、平均10pFの静電容量であり、ばらつきは0.10pFとなり、比較例に比べて、設計値が大きくなるとばらつきもそれに応じて大きくなってしまう傾向があるにもかかわらず、ばらつきが約0.05pFと逆に小さくなっており、大幅に改善されたことが確認できた。なお、静電容量の設計値が、空隙Gの材料の違いにより、比較例よりも実施例2のほうが増加している。
一方、加速度がない状態、すなわち、加速度入力ゼロの時のゼロ点出力について、設計値が2.5Vになるように加速度検出回路のゲインを調整したものであるが、この状態から、加速度1Gを印加したときの出力を測定した。その結果、比較例は、平均3.5Vとなり、ばらつきが0.1Vであった。それに対し、実施例2においては、平均3.5Vとなり、ばらつきが0.035Vとなり、実施例2は比較例に比べて、ばらつきが約1/3に改善された。
さらに、加速度の影響に対する角速度について、外部からの1Gの加速度の入力に対する角速度出力も確認した。実施例2において、加速度がない状態での角速度出力に対して、加速度1Gを印加したときの角速度出力は、出力値についても、また、ばらつきについても、同等であり、加速度が生じても、角速度検出については、加速度の影響を受けない安定した出力が得られることが確認できた。すなわち、本実施例の静電容量検出装置として十分な特性を確認できた。
上記の、実施例2と比較例の静電容量と加速度出力の結果から、実施例2による静電容量検出装置が、静電容量と加速度出力のばらつきの小さい安定した静電容量検出装置であることが確認された。すなわち、圧電体膜17を残すことにより、静電容量を大きくすることができる上、加速度出力のばらつきについては、比較例のように静電容量形成部である加速度センサ部3の第3の基板13の一部を削るという加工をするものに対して改善できることを確認できた。
また、実施例2と比較例にて静電容量の大きさは異なるが、比較例に対して実施例2の加速度センサ部3の静電容量のばらつきが小さいことから、実施例2の加速度センサ部3では均一な間隔Gが精度よく形成できていることが示された。すなわち、実施例2の構造を用いることで、安定して高精度に一定に狭い空隙Gを形成することが可能であり、その結果、静電容量と加速度出力のばらつきの小さい、すなわち、高感度の静電容量検出装置を得ることが可能であることを確認できた。
以上、加速度および角速度の検出を行うための物理量センサ、すなわち、静電容量検出装置について実施例を用いて説明したが、本技術を用いることで、静電容量の変化によって物理量を検出するさまざまなセンサ、具体的には、気体や液体などの圧力を検出する圧力センサやマイク、振動を検出するための振動センサ、衝撃センサなどに応用することが可能である。
1 静電容量検出装置(物理量センサ)
2 角速度センサ部
3 静電容量形成部(加速度センサ部)
4 固定部
5 角速度センサ部の駆動電極
6 振動腕
7 加速度センサ固定部
8 加速度センサ支持腕
9 加速度センサ可動部
10 可動電極
11 固定電極
12 第1の基板
13 第2の基板
14 第3の基板
16 第1の電極膜
17 圧電体膜
18 第2の電極膜
19 貫通配線
20 端子
21 回転軸
22 第3の電極膜
23 溝



Claims (3)

  1. 静電容量の変化を用いて物理量を検出するための静電容量形成部を備えた静電容量検出装置であって、
    前記静電容量形成部は、第1の基板と、第2の基板を備えており、前記第1の基板上には、一方の主面に形成された第1の電極膜と、第2の電極膜、および、前記第1の電極膜と前記第2の電極膜の間に形成された圧電体膜を有しており、
    前記第2の基板上には、一方の主面に形成された第3の電極膜を有しており、
    前記第1の基板と、前記第2の基板は、お互いの電極面が対向した部分で接合されており、前記第1の電極膜の一部と、前記第3の電極膜の一部が、物理量の入力に対して相対的に変位可能となるように前記第2の電極膜が除去されていることを特徴とする静電容量検出装置。
  2. 前記静電容量形成部において、前記圧電体膜の一部が除去されていることを特徴とする請求項1に記載の静電容量検出装置。
  3. 前記第1の基板と、前記第2の基板の、周辺部で対向する電極面で接合していることを特徴とする請求項1から2のいずれかに記載の静電容量検出装置。

JP2012139047A 2012-06-20 2012-06-20 静電容量検出装置 Pending JP2014002110A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012139047A JP2014002110A (ja) 2012-06-20 2012-06-20 静電容量検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012139047A JP2014002110A (ja) 2012-06-20 2012-06-20 静電容量検出装置

Publications (1)

Publication Number Publication Date
JP2014002110A true JP2014002110A (ja) 2014-01-09

Family

ID=50035401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012139047A Pending JP2014002110A (ja) 2012-06-20 2012-06-20 静電容量検出装置

Country Status (1)

Country Link
JP (1) JP2014002110A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206769A (ja) * 2014-04-23 2015-11-19 株式会社デンソー 角速度センサ

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270715A (ja) * 1997-03-26 1998-10-09 Mitsubishi Materials Corp 半導体慣性センサの製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270715A (ja) * 1997-03-26 1998-10-09 Mitsubishi Materials Corp 半導体慣性センサの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206769A (ja) * 2014-04-23 2015-11-19 株式会社デンソー 角速度センサ
US10132631B2 (en) 2014-04-23 2018-11-20 Denso Corporation Angular velocity sensor

Similar Documents

Publication Publication Date Title
JP4600468B2 (ja) 半導体圧力センサ及びその製造方法、半導体装置並びに電子機器
JPH0832090A (ja) 慣性力センサおよびその製造方法
JP2011022137A (ja) Mems装置及びその製造方法
JP4556454B2 (ja) 半導体装置の製造方法
CN102843117A (zh) 弯曲振动片及其制造方法以及电子设备
JP2008241547A (ja) 加速度センサおよび電子機器
JP4909607B2 (ja) 2軸加速度センサ
JP5451396B2 (ja) 角速度検出装置
JP6572892B2 (ja) ジャイロセンサおよび電子機器
JP5664292B2 (ja) 変位センサおよびその製造方法、半導体ウェハ
JP3346379B2 (ja) 角速度センサおよびその製造方法
JP2014002110A (ja) 静電容量検出装置
JP2013234873A (ja) 振動片およびその製造方法並びにジャイロセンサーおよび電子機器および移動体
JP2010145315A (ja) 振動ジャイロスコープ
US9231182B2 (en) Angular velocity sensor
JP4362739B2 (ja) 振動型角速度センサ
JP2007333642A (ja) 慣性センサおよび慣性センサの製造方法
JP2014157063A (ja) 複合センサ素子
JP6594527B2 (ja) 複合センサ
JP2006064538A (ja) ジャイロセンサ
JP4561352B2 (ja) 微小電気機械デバイスの製造方法
JPH08320342A (ja) 慣性力センサおよびその製造方法
JP5235361B2 (ja) センサ
JPWO2008149821A1 (ja) センサ装置
JP2010156591A (ja) Memsセンサおよびmemsセンサの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160315