JP4561352B2 - 微小電気機械デバイスの製造方法 - Google Patents

微小電気機械デバイスの製造方法 Download PDF

Info

Publication number
JP4561352B2
JP4561352B2 JP2004371488A JP2004371488A JP4561352B2 JP 4561352 B2 JP4561352 B2 JP 4561352B2 JP 2004371488 A JP2004371488 A JP 2004371488A JP 2004371488 A JP2004371488 A JP 2004371488A JP 4561352 B2 JP4561352 B2 JP 4561352B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
semiconductor layer
integrated circuit
forming
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004371488A
Other languages
English (en)
Other versions
JP2006175555A (ja
Inventor
幸司 辻
和夫 江田
崇史 奥戸
直正 岡
久和 宮島
隆司 西條
昌男 桐原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2004371488A priority Critical patent/JP4561352B2/ja
Publication of JP2006175555A publication Critical patent/JP2006175555A/ja
Application granted granted Critical
Publication of JP4561352B2 publication Critical patent/JP4561352B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Description

本発明は、微小電気機械要素と集積回路とが集積化された微小電気機械デバイスの製造方法に関するものである。
従来から、マイクロマシンニング技術を利用して形成した微小電気機械デバイスとして、例えば、ジャイロセンサ、加速度センサ、圧力センサ、マイクロアクチュエータ、マイクロバルブ、マイクロリレーなどの種々のデバイスが知られている。
また、近年、集積回路を形成した素子形成基板上に多結晶シリコン層を堆積させ、当該多結晶シリコン層を表面マイクロマシンニング技術により加工することにより微小電気機械要素であるジャイロセンサの3次元構造体を形成した微小電気機械デバイスが提案されている(非特許文献1参照)。
John A.Green,et al、「Single-Chip Surface Micromachined Integrated Gyroscope With 50℃/h Allan Deviatin」,IEEE JOURNAL OF SOLID-STATE CIRCUITS,VOL.37,NO.12,DECEMBER 2002,p.1860-1866
ところで、上述の微小電気機械デバイスでは、表面マイクロマシンニング技術により微小電気機械要素を形成しているので、微小電気機械要素を構成する3次元構造体の厚みが素子形成基板上に堆積させる多結晶シリコン層の厚みで制限されてしまい、微小電気機械要素の性能が従来のバルクマイクロマシンニング技術により形成した微小電気機械デバイスの性能に比べて低くなってしまうという問題があった。例えば、ジャイロセンサや加速度センサでは、重りの質量が大きいほど高感度化を図ることができ、静電容量型のジャイロセンサや加速度センサでは、電極の面積が大きいほど高感度化を図ることができるので、バルクマイクロマシンニング技術により形成した微小電気機械デバイスの方が表面マイクロマシンニングを利用して形成した微小電気機械デバイスに比べて高性能化の点で有利である。
本発明は上記事由に鑑みて為されたものであり、その目的は、高性能の微小電気機械要素と集積回路とが集積化された微小電気機械デバイスの製造方法を提供することにある。
請求項1の発明は、微小電気機械要素と集積回路とが集積化された微小電気機械デバイスの製造方法であって、半導体基板の一表面側に前記半導体基板よりも抵抗率の高い半導体層を成膜してから、前記半導体層に集積回路を形成し、その後、前記半導体基板を加工することにより微小電気機械要素の少なくとも一部を構成する3次元構造体を形成するようにし、前記半導体基板の前記一表面側に前記半導体層を成膜する前に、前記半導体基板の前記一表面における前記微小電気機械要素の形成予定領域上へ前記半導体基板とは異なる材料からなり前記半導体層の成膜温度での耐熱性を有する領域規定膜を形成し、前記半導体層を成膜するにあたっては、前記半導体層のうち前記半導体基板の前記一表面における露出部位上に成膜される部分が単結晶となるようにエピタキシャル成長法により前記半導体層を成膜し、前記集積回路の形成後であって前記3次元構造体を形成する前に、前記半導体層のうち前記領域規定膜上に成膜されている部分を除去することを特徴とする。なお、微小電気機械要素とは、集積回路の集積化されていない狭義のMEMS(Micro Electro Mechanical System)、NEMS(Nano Electro Mechanical System)を意味している。
この発明によれば、微小電気機械要素の少なくとも一部を構成する3次元構造体の形成前に集積回路が形成されるので、集積回路を従来のIC製造プロセスにより歩留まり良く形成することが可能であり、しかも、半導体基板を加工することにより微小電気機械要素の少なくとも一部を構成する3次元構造体を形成しているので、表面マイクロマシンニング技術により形成される微小電気機械要素に比べて高性能の微小電気機械要素を形成することが可能であり、高性能の微小電気機械要素と集積回路とが集積化された微小電気機械デバイスを提供することができる。
また、この発明によれば、前記半導体層のうち前記領域規定膜上に成膜される部分を多結晶とすることができ、前記半導体層のうち前記規定領域膜上に成膜された部分を前記3次元構造体の形成前に容易に除去することが可能となり、高性能の微小電気機械要素を形成することが可能となる。
請求項の発明は、請求項の発明において、前記半導体基板がシリコン基板であって、前記半導体層が前記半導体基板の前記一表面上に成膜する単結晶シリコンの部分と前記領域規定膜上に成膜する多結晶シリコンの部分とであり、前記領域規定膜の材料として耐アルカリ性を有する材料を採用し、前記半導体層のうち前記領域規定膜上の部分を除去するにあたって、アルカリ系溶液からなるエッチング液を用い前記領域規定膜をエッチングストッパ膜として利用することを特徴とする。
この発明によれば、前記半導体層のうち前記領域規定膜上の部分を除去する際に、前記領域規定膜をエッチングストッパ膜として利用することにより、前記半導体基板における前記3次元構造体の形成予定領域の一部がエッチングされるのを防止することができる。
請求項の発明は、請求項の発明において、前記3次元構造体を形成するにあたって、前記半導体基板のエッチング加工時に前記領域規定膜の一部をエッチングマスクとして利用することを特徴とする。
この発明によれば、別途にエッチングマスク用の膜を成膜する場合に比べて、製造プロセスの簡略化を図れる。また、前記集積回路の形成後にエッチングマスク用の膜を成膜する製造プロセスを採用する場合に比べて、エッチングマスクとして利用する膜をより高温で形成することが可能となり、エッチングマスクとして利用する膜の材料の選択肢が多くなるという利点がある。
請求項の発明は、微小電気機械要素と集積回路とが集積化された微小電気機械デバイスの製造方法であって、半導体基板の一表面側に前記半導体基板よりも抵抗率の高い半導体層を成膜してから、前記半導体層に集積回路を形成し、その後、前記半導体基板を加工することにより微小電気機械要素の少なくとも一部を構成する3次元構造体を形成するようにし、前記半導体基板の前記一表面側に前記半導体層を成膜する前に、前記半導体基板の前記一表面上に前記半導体基板よりも低抵抗率の単結晶の半導体膜を成膜し、前記集積回路の形成後であって前記3次元構造体を形成する前に、前記半導体層のうち前記半導体基板における前記微小電気機械要素の形成予定領域に重複している部分を除去することを特徴とする。なお、微小電気機械要素とは、集積回路の集積化されていない狭義のMEMS、NEMSを意味している。
この発明によれば、微小電気機械要素の少なくとも一部を構成する3次元構造体の形成前に集積回路が形成されるので、集積回路を従来のIC製造プロセスにより歩留まり良く形成することが可能であり、しかも、半導体基板を加工することにより微小電気機械要素の少なくとも一部を構成する3次元構造体を形成しているので、表面マイクロマシンニング技術により形成される微小電気機械要素に比べて高性能の微小電気機械要素を形成することが可能であり、高性能の微小電気機械要素と集積回路とが集積化された微小電気機械デバイスを提供することができる。また、この発明によれば、請求項の発明に比べて前記半導体層の表面の平坦性が高くなって前記集積回路の製造歩留まりを向上できる。なお、前記微小電気機械要素を少なくとも前記半導体基板と前記半導体膜とに亙って形成し、前記微小電気機械要素のパッドを前記半導体膜上に形成するようにすれば、前記半導体基板上にパッドを形成する場合に比べて接触抵抗を低減することができる。また、前記半導体層のうち前記半導体基板における前記微小電気機械要素の形成予定領域に重複している部分を除去する際に前記半導体膜をエッチングストッパ膜として利用することも可能となる。
請求項の発明は、微小電気機械要素と集積回路とが集積化された微小電気機械デバイスの製造方法であって、半導体基板の一表面側に前記半導体基板よりも抵抗率の高い半導体層を成膜してから、前記半導体層に集積回路を形成し、その後、前記半導体基板を加工することにより微小電気機械要素の少なくとも一部を構成する3次元構造体を形成するようにし、前記半導体基板としてp形半導体基板を用い、前記半導体層の成膜にあたっては、前記半導体基板の前記一表面上に前記半導体層として単結晶のn形半導体層を成膜し、前記集積回路の形成後であって前記3次元構造体を形成する前に、前記半導体層のうち前記半導体基板における前記微小電気機械要素の形成予定領域に重複している部分を電解エッチングにより除去することを特徴とする。なお、微小電気機械要素とは、集積回路の集積化されていない狭義のMEMS、NEMSを意味している。
この発明によれば、微小電気機械要素の少なくとも一部を構成する3次元構造体の形成前に集積回路が形成されるので、集積回路を従来のIC製造プロセスにより歩留まり良く形成することが可能であり、しかも、半導体基板を加工することにより微小電気機械要素の少なくとも一部を構成する3次元構造体を形成しているので、表面マイクロマシンニング技術により形成される微小電気機械要素に比べて高性能の微小電気機械要素を形成することが可能であり、高性能の微小電気機械要素と集積回路とが集積化された微小電気機械デバイスを提供することができる。また、この発明によれば、前記半導体層のうち前記半導体基板における前記微小電気機械要素の形成予定領域に重複している部分を除去する際に前記半導体基板の厚みが薄くなるのを防止することができる。また、請求項の発明に比べて前記半導体層の表面の平坦性が高くなって前記集積回路の製造歩留まりを向上できる。また、前記半導体層のうち前記半導体基板における前記微小電気機械要素の形成予定領域に重複している部分を除去する際のエッチングストッパ膜を前記半導体層の成膜以前に形成しておくような製造プロセスを採用する場合に比べて、製造プロセスの簡略化を図れる。
請求項1,4,5の発明では、高性能の微小電気機械要素と集積回路とが集積化された微小電気機械デバイスを提供することができるという効果がある。
(実施形態1)
本実施形態では、図1および図2に示すように、微小電気機械要素(MEMS)としてのジャイロセンサSと、ジャイロセンサSと協働する集積回路3とが集積化された微小電気機械デバイスの構成について説明した後で、製造方法について説明する。なお、図1(a)は図2のD−D’概略断面図、図1(b)は図2のE−E’概略断面図である。
本実施形態の微小電気機械デバイスは、図1および図2に示すように、抵抗率が比較的小さなp形のシリコン基板1Aの一表面の所定領域上にシリコン基板1Aよりも抵抗率の高いp形のシリコン層1Bが形成された素子形成基板1と、シリコン基板1Aにおけるシリコン層1Bとは反対側に積層されたガラス基板からなる支持基板2とを備えている。ここにおいて、シリコン基板1Aと支持基板2とは陽極接合により接合されている。なお、本実施形態では、シリコン基板1Aの抵抗率を0.2Ωcm、厚さを525μm、シリコン層1Bの抵抗率を20Ωcm、厚さを3μmに設定してあるが、これらの数値は特に限定するものではない。
素子形成基板1は、図2における左側に、平面視において外周形状が矩形状である駆動質量体11および検出質量体12が素子形成基板1の一表面に沿って並設されるとともに、駆動質量体11および検出質量体12の周囲を囲む矩形枠状のフレーム10を有するジャイロセンサSの大部分を構成する3次元構造体が形成され、図2における右側に、集積回路3が形成されている(なお、図2においてハッチングを施した領域は集積回路3の形成領域を示している)。以下では、図1、図2の各図中に示した直交座標系のように、駆動質量体11と検出質量体12とが並ぶ方向をY方向、素子形成基板1の一表面(図1(a)における上面)に沿う面内でY方向に直交する方向をX方向、X方向とY方向とに直交する方向(つまり、素子形成基板1の厚み方向)をZ方向として説明する。
駆動質量体11と検出質量体12とは、X方向に延長された一対の駆動ばね13を介して連続一体に連結されている。すなわち、X方向において検出質量体12の全長よりもやや短いスリット溝14aと、駆動質量体11におけるX方向の各側縁にそれぞれ一端が開放されX方向の一直線上に並ぶ2本のスリット溝14bとが形成され、スリット溝14aと各スリット溝14bとの間にそれぞれ駆動ばね13が形成されている。各駆動ばね13の一端部はスリット溝14aの各一端と検出質量体12の側縁との間に連続し、各駆動ばね13の他端部は2本のスリット溝14bの間の部位において駆動質量体11にそれぞれ連続している。駆動ばね13はねじれ変形が可能なトーションばねであって、駆動質量体11は検出質量体12に対して駆動ばね13の回りで変位可能になっている。つまり、駆動質量体11は検出質量体12に対してZ方向の並進とX方向の軸回りの回転とが可能であると言える。また、駆動ばね13にトーションばねを用いているから、素子形成基板1の厚み方向における駆動ばね13の寸法を小さくする必要がなく、駆動ばね13を形成する際の加工が容易である。
検出質量体12におけるX方向の各側縁にはY方向に延長された検出ばね15の一端部がそれぞれ連続し、両検出ばね15の他端部同士はX方向に延長された連結片16を介して連続一体に連結されている。すなわち、一対の検出ばね15と連結片16とにより平面視コ字状の部材が形成される。ただし、連結片16は駆動ばね13および検出ばね15に比較して十分に剛性が高くなるように設計されている。連結片16の長手方向の中間部には固定片17が突設され、固定片17は支持基板2に接合され定位置に固定されている。駆動質量体11および検出質量体12と検出ばね15および連結片16との間はコ字状のスリット溝14cにより分離されており、スリット溝14bの一端はスリット溝14cに連続している。検出ばね15はX方向に曲げ変形が可能であって駆動質量体11および検出質量体12は固定片17に対してX方向に変位可能になっている。
ところで、検出質量体12は厚み方向に貫通する4個の切抜孔18を有し、各切抜孔18の内側にはそれぞれ固定子20が配置されている。固定子20は、検出質量体12のX方向の両端付近に配置される電極片21を有し、電極片21からは櫛骨片22がX方向に延長され、電極片21と櫛骨片22とでL字状の形状をなしている。電極片21と櫛骨片22とは支持基板2に接合され、固定子20は定位置に固定されている。切抜孔18の内周面は固定子20の外周面の形状に沿った形状であって、固定子20との間には間隙が形成されている。検出質量体12のX方向の両端部には2個ずつの電極片21が配置されている。図3に示すように、櫛骨片22の幅方向の両端面にはそれぞれ多数本の固定櫛歯片23がX方向に列設されている。一方、切抜孔18の内側面であって櫛骨片22との対向面には、図3に示すように、固定櫛歯片23にそれぞれ対向する多数本の可動櫛歯片24がX方向に列設されている。各固定櫛歯片23と各可動櫛歯片24とは互いに離間しており、検出質量体12がX方向に変位する際の固定櫛歯片23と可動櫛歯片24との距離変化に伴う静電容量の変化を検出できるようにしてある。すなわち、固定櫛歯片23と可動櫛歯片24とにより検出質量体12の変位を検出する検出手段が構成されている。
ジャイロセンサSは、フレーム10、固定片17および固定子20が支持基板2に接合されている。これらに対し、駆動質量体11および検出質量体12は、支持基板2との間に形成される間隙においてZ方向に変位可能でなければならないから、図1に示すように、支持基板2における素子形成基板1との対向面に凹所29を形成することによって駆動質量体11と支持基板2との間隙を確保するとともに、検出質量体12における支持基板2との対向面を支持基板2から後退させる(言い換えれば、シリコン基板1Aにおいて支持基板2との対向面となる表面にバルクマイクロマシンニング加工によって凹部30を形成する)ことにより検出質量体12と支持基板2との間隙を確保している。言い換えれば、シリコン基板1Aにおける支持基板2との対向面にバルクマイクロマシンニングにより凹部30を形成することにより検出質量体12と支持基板2との間隙を確保しており、このような凹部30を設けることにより、固定櫛歯片23と可動櫛歯片24とのギャップを短くした場合にバルクマイクロマシンニングによる固定櫛歯片23と可動櫛歯片24とを分離工程が容易となる。このようなバルクマイクロマシンニング加工では、例えば、垂直深掘が可能な誘導結合プラズマ型のドライエッチング装置による異方性ドライエッチング技術を利用すればよい。
支持基板2において駆動質量体11との対向面にはアルミニウム薄膜のような導電性の金属薄膜からなる固定駆動電極25(図1(a)参照)が形成されている。一方、素子形成基板1は、固定駆動電極25において支持基板2の凹所29の周部まで延長された部分を介して支持基板2に接合された一対の電極片26を備えており、各固定片17、各電極片21,26それぞれの表面にパッド28が形成されている。さらに、図示例ではフレーム10において取付片17の近傍部位に、固定片17を挟む形で一対の接地片19が形成されており、各接地片19上にもパッド28が形成されている。このように、各パッド28は、素子形成基板1において支持基板2に接合された固定片17、各電極片21,26、各接地片19それぞれの上に形成されているので、各パッド28それぞれへボンディングワイヤを確実にボンディングすることができる。
ここで、上述のジャイロセンサSの動作について説明する。
ジャイロセンサSは駆動質量体11に規定の振動を与えておき、外力による角速度が作用したときの検出質量体12の変位を検出するものである。ここにおいて、駆動質量体11を振動させるには固定駆動電極25と駆動質量体11との間に正弦波形ないし矩形波形の振動電圧を印加すればよい。振動電圧は、交流電圧が望ましいが、極性を反転させることは必須ではない。駆動質量体11は駆動ばね13と検出質量体12と検出ばね15と連結片16とを介して固定片17に電気的に接続され、固定片17の表面にはパッド28が形成されており、また、固定駆動電極25は電極片26に電気的に接続され、電極片26の表面にもパッド28が形成されているから、固定片17上のパッド28と電極片26上のパッド28との間に振動電圧を印加すれば、駆動質量体11と固定駆動電極25との間に静電力を作用させて駆動質量体11を支持基板2に対してZ方向に振動させることができる。振動電圧の周波数は、駆動質量体11および検出質量体12の質量や駆動ばね13および検出ばね15のばね定数などにより決まる共振周波数に一致させれば、比較的小さい駆動力で大きな振幅を得ることができる。
駆動質量体11を振動させている状態において、素子形成基板1にY方向の軸回りの角速度が作用したときに、X方向にコリオリ力が発生し、検出質量体12(および駆動質量体11)は固定子20に対してX方向に変位する。可動櫛歯片24が固定櫛歯片23に対して変位すれば、可動櫛歯片24と固定櫛歯片23との距離が変化し、結果的に可動櫛歯片24と固定櫛歯片23との間の静電容量が変化する。この静電容量の変化は、4個の固定子20に接続されたパッド28から取り出すことができる。すなわち、X方向において並ぶ各一対の電極片21の間の静電容量は固定櫛歯片23と可動櫛歯片24との距離変化を反映するから、両電極片21は可変容量コンデンサの電極と等価であって、図示する構成では4個の可変容量コンデンサが形成されるから、各可変容量コンデンサの静電容量をそれぞれ検出したり、両可変容量コンデンサを並列に接続した合成容量を検出したりすることにより、検出質量体12の変位を検出することができる。駆動質量体11の振動は既知であるから、検出質量体12の変位を検出することにより、コリオリ力を求めることができる。
ここに、可動櫛歯片24の変位は、(駆動質量体11の質量)/(駆動質量体11の質量+検出質量体12の質量)に比例するから、駆動質量体11の質量が検出質量体12の質量に比較して大きいほど可動櫛歯片24の変位が大きくなり、結果的に感度が向上することになる。そこで、本実施形態では駆動質量体11の厚み寸法を検出質量体12の厚み寸法よりも大きくしてある。
以下、本実施形態の微小電気機械デバイスの製造方法について図4および図5を参照しながら説明する。
まず、シリコン基板1Aの一表面(図4(a)の上面)における微小電気機械要素の形成予定領域上へ例えばシリコン酸化膜からなる領域規定膜41をCVD法などにより形成することによって、図4(a)に示す構造を得る。ここにおいて、領域規定膜41は、シリコン基板1Aの上記一表面側の全面にシリコン酸化膜を成膜した後で、フォトリソグラフィ技術およびエッチング技術を利用してシリコン酸化膜をパターニングすることにより形成すればよい。なお、領域規定膜41は、シリコン酸化膜に限定するものではなくて、シリコン基板1Aとは異なる材料であってシリコン層1Bの成膜温度での耐熱性を有する材料であればよく、例えば、シリコン窒化膜でもよい。
上述の領域規定膜41を形成した後、シリコン基板1Aの上記一表面側の全面にシリコン基板1Aよりも抵抗率の高いシリコン層1Bを成膜することによって、図4(b)に示す構造を得る。ここにおいて、シリコン層1Bの成膜にあたっては、シリコン層1Bのうちシリコン基板1Aの上記一表面における露出部位上に成膜される部分が単結晶(つまり、単結晶シリコン層)となるようにエピタキシャル成長法(例えば、MBE法、MOVPE法など)によりシリコン層1Bを成膜する。この場合、シリコン層1Bのうち領域規定膜41上に成膜される部分は多結晶(つまり、多結晶シリコン層)となる。なお、シリコン基板1Aの不純物濃度は微小電気機械要素であるジャイロセンサSの高性能化に適した高濃度とし、シリコン層1Bの不純物濃度は上述の集積回路3の高性能化に適した低濃度としてある。なお、本実施形態では、シリコン基板1Aが半導体基板を構成し、シリコン層1Bが半導体層を構成している。
上述のシリコン層1Bを成膜した後、シリコン層1Bのうちシリコン基板1Aの上記一表面上に形成された部分(単結晶シリコン層)の所定領域に集積回路3を周知のIC製造プロセスにより形成し、続いて、集積回路3の各パッド38を形成することによって、図4(c)に示す構造を得る。なお、図4(c)および以降の工程を説明する各図では各パッド38の形成前に集積回路3上とシリコン層1B上とに跨って形成した保護膜(例えば、シリコン窒化膜など)の図示を省略してある。
その後、シリコン層1Bのうち領域規定膜41上に成膜されている部分(多結晶シリコン層)を除去することによって、図4(d)に示す構造を得る。ここにおいてシリコン層1Bにおける領域規定膜41上の部分を除去するにあたっては、領域規定膜41がシリコン酸化膜のような耐アルカリ性を有している膜であれば、アルカリ系溶液(例えば、KOH溶液、TMAH溶液など)からなるエッチング液を用い領域規定膜41をエッチングストッパ膜として利用する。したがって、シリコン基板1Aにおける上記3次元構造体の形成予定領域の一部がエッチングされるのを防止することができる。
続いて、シリコン基板1Aの他表面(図4(d)の下面)において検出質量体12などの形成予定部位に上記凹部30をバルクマイクロマシンニング加工により形成した後で、フォトリソグラフィ技術およびエッチング技術を利用して、領域規定膜41をパターニングすることにより、フレーム10を分離する溝、スリット溝14a〜14c、固定子20を分離する溝などを形成する際のエッチングマスク42を形成することによって、図5(a)に示す構造を得る。すなわち、図5(a)に示したエッチングマスク42は領域規定膜41の一部により構成されている。したがって、別途にエッチングマスク用の膜を成膜する場合に比べて、製造プロセスの簡略化を図れる。また、集積回路3の形成後にエッチングマスク用の膜を成膜する製造プロセスを採用する場合に比べて、エッチングマスクとして利用する膜をより高温で形成することが可能となり、エッチングマスクとして利用する膜の材料の選択肢が多くなるという利点がある。上記凹部30を形成するバルクマイクロマシンニング加工では、例えば、垂直深掘が可能な誘導結合プラズマ型のドライエッチング装置による異方性ドライエッチング技術を利用すればよい。
その後、シリコン基板1Aの上記一表面側にジャイロセンサS用の各パッド28を形成することによって、図5(b)に示す構造を得る。
次に、素子形成基板1におけるシリコン基板1Aと、上記凹所29および固定駆動電極25を形成した支持基板2とを陽極接合によって接合することによって、図5(c)に示す構造を得る。この状態では、シリコン基板1Aの各部位(フレーム10、駆動質量体11および検出質量体12、固定子20)は分離されていない。
上述のように素子形成基板1と支持基板2とを接合した後に、フレーム10を分離する溝、スリット溝14a〜14c、固定子20を分離する溝を素子形成基板1における支持基板2とは反対側の表面(つまり、シリコン基板1Aの上記一表面)側から形成して各部位に分離するバルクマイクロマシンニング加工を行うことによって、図5(d)に示す構造を得る。この段階において、固定片17は支持基板2に接合されているから、固定片17に連続する駆動質量体11および検出質量体12は支持基板2に保持されており、また、固定子20も支持基板2に接合されている。要するに、この段階において、微小電気機械要素であるジャイロセンサSの3次元構造体が完成する。ここでのバルクマイクロマシンニング加工においても、例えば、垂直深掘が可能な誘導結合プラズマ型のドライエッチング装置による異方性ドライエッチング技術を利用すればよい。
その後、エッチングマスク42を除去してから、ジャイロセンサSの所定のパッド28と集積回路3の所定のパッド38とをボンディングワイヤWを介して接続することにより、図5(e)に示す構造の微小電気機械デバイスを得る。
以上説明した製造方法によれば、微小電気機械要素であるジャイロセンサSの少なくとも一部を構成する3次元構造体の形成前に集積回路3が形成されるので、集積回路3を従来のIC製造プロセスにより歩留まり良く形成することが可能であり、しかも、シリコン基板1Aを加工することにより3次元構造体を形成しているので、表面マイクロマシンニング技術により形成されるジャイロセンサに比べて高性能のジャイロセンサSを形成することが可能であり、高性能のジャイロセンサSと集積回路3とが集積化された微小電気機械デバイスを提供することができる。
(実施形態2)
本実施形態における微小電気機械デバイスの基本構成は実施形態1と略同じであって、図6(e)に示すように、素子形成基板1のシリコン基板1Aとシリコン層1Bとの間にシリコン基板1Aよりも低抵抗率であり且つ単結晶のp++形のシリコン膜1Cが介在しており、ジャイロセンサSの3次元構造体の大部分をシリコン基板1Aとシリコン膜1Cとを用いて形成してある点などが相違する。ここにおいて、シリコン層1Bは実施形態1と同様にシリコン基板1Aよりも不純物濃度が低濃度で抵抗率が高い。一方、シリコン膜1Cは、シリコン基板1Aよりもさらに不純物濃度を高く設定することで、シリコン基板1Aよりも抵抗率を低くしてあり、例えば、不純物濃度を1021cm-3、厚さを1μmに設定してあるが、これらの数値は特に限定するものではない。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態では、ジャイロセンサSの各パッド28がシリコン基板1Aに比べて不純物濃度の高いシリコン膜1C上に形成されているので、実施形態1におけるジャイロセンサSのようにシリコン基板1A上に各パッド28を形成したものに比べて各パッド28と3次元構造体との接触抵抗を低減することができる。
以下、本実施形態の微小電気機械デバイスの製造方法について図6を参照しながら説明するが、実施形態1の製造方法と同様の工程については説明を適宜省略する。
まず、シリコン基板1Aの一表面(図6(a)の上面)側の全面に単結晶のシリコン膜1Cを成膜することによって図6(a)に示す構造を得て、続いて、シリコン膜1C上に単結晶のシリコン層1Bを成膜することによって、図6(b)に示す構造を得る。ここにおいて、シリコン膜1C、シリコン層1Bの成膜にあたっては、エピタキシャル成長法(例えば、MBE法、MOVPE法など)を採用し、エピタキシャル成長装置(例えば、MBE装置、MOVPE装置など)の同一チャンバ内でシリコン膜1C、シリコン層1Bを連続的にエピタキシャル成長させればよい。なお、本実施形態では、シリコン基板1Aが半導体基板を構成し、シリコン層1Bが半導体層を構成し、シリコン膜1Cが半導体基板よりも低抵抗率の半導体膜を構成している。
上述のシリコン層1Bを成膜した後、シリコン層1Bの所定領域に集積回路3を周知のIC製造プロセスにより形成し、続いて、集積回路3の各パッド38を形成することによって、図6(c)に示す構造を得る。なお、図6(c)および以降の工程を説明する各図では各パッド38の形成前に集積回路3上とシリコン層1B上とに跨って形成した保護膜(例えば、シリコン窒化膜など)の図示を省略してある。
その後、シリコン層1Bのうちシリコン基板1AにおけるジャイロセンサSの形成予定領域に重複している部分を除去することによって、図6(d)に示す構造を得る。ここにおいて、シリコン膜1Cとシリコン層1Bとは不純物濃度の濃度差が大きいので、シリコン層1Bのうちシリコン基板1AにおけるジャイロセンサSの形成予定領域に重複している部分をエッチングにより除去する際に、シリコン膜1Cをエッチングストッパ膜として利用している。したがって、シリコン基板1Aおよびシリコン膜1Cにおける上記3次元構造体の形成予定領域の一部がエッチングされるのを防止することができる。
続いて、シリコン膜1C上に実施形態1にて説明したエッチングマスク42(図5(a)参照)と同様にパターニングされたエッチングマスクを形成し、以後、実施形態1と同様の工程を行うことによって、図6(e)に示す構造の微小電気機械デバイスを得ることができる。
以上説明した本実施形態の製造方法によれば、実施形態1の製造方法に比べて、集積回路3を形成する前のシリコン層1Bの表面の平坦性が高くなって集積回路3の製造歩留まりを向上できる。なお、微小電気機械要素であるジャイロセンサSの3次元構造体を少なくともシリコン基板1Aとシリコン膜1Cとに亙って形成し、ジャイロセンサSの各パッド28をシリコン膜1C上に形成しているので、シリコン基板1A上に各パッド28を形成する場合に比べて接触抵抗を低減することができる。
(実施形態3)
本実施形態の微小電気機械デバイスの基本構成は実施形態1と略同じであって、図7(a)に示す単結晶のシリコン基板1Aの導電形がp形、単結晶のシリコン層1Bの導電形がn形である点が相違するだけである。
以下、製造方法について図7を参照しながら説明するが、実施形態1の製造方法と同様の工程については説明を適宜省略する。
まず、p形のシリコン基板1Aの一表面(図7(a)の上面)側の全面にn形のシリコン層1Bを成膜することによって、図7(a)に示す構造を得る。ここにおいて、シリコン層1Bの成膜方法としては、エピタキシャル成長法(例えば、MBE法、MOVPE法など)を採用すればよい。なお、本実施形態では、シリコン基板1Aが半導体基板(p形半導体基板)を構成し、シリコン層1Bが半導体層(n形半導体層)を構成している。
上述のシリコン層1Bを成膜した後、シリコン層1Bの所定領域に集積回路3を周知のIC製造プロセスにより形成し、続いて、集積回路3の各パッド38を形成することによって、図7(b)に示す構造を得る。なお、図7(c)および以降の工程を説明する各図では各パッド38の形成前に集積回路3上とシリコン層1B上とに跨って形成した保護膜(例えば、シリコン窒化膜など)の図示を省略してある。
その後、シリコン層1Bのうちシリコン基板1AにおけるジャイロセンサSの形成予定領域に重複している部分を除去することによって、図7(c)に示す構造を得る。ここにおいて、シリコン層1Bはシリコン基板1Aと導電形が異なっているので、電解エッチングによりシリコン層1Bの上記部分を除去することによって、シリコン基板1Aの厚さが薄くなるのを防止することができる。
続いて、シリコン基板1Aの一表面(図7(c)の上面)上に実施形態1にて説明したエッチングマスク42(図5(a)参照)と同様にパターニングされたエッチングマスクを形成し、以後、実施形態1と同様の工程を行うことによって、図7(d)に示す構造の微小電気機械デバイスを得ることができる。
以上説明した本実施形態の製造方法によれば、実施形態1の製造方法に比べて、集積回路3を形成する前のシリコン層1Bの表面の平坦性が高くなって集積回路3の製造歩留まりを向上できる。また、シリコン層1Bのうちシリコン基板1AにおけるジャイロセンサSの形成予定領域に重複している部分を除去する際のエッチングストッパ膜をシリコン層1Bの成膜以前に形成しておくような製造プロセスを採用する場合に比べて、製造プロセスの簡略化を図れる。
実施形態1における微小電気機械デバイスを示し、(a)はX方向に直交する概略断面図、(b)はY方向に直交する概略断面図である。 同上における微小電気機械デバイスを示す概略平面図である。 同上における微小電気機械デバイスの要部平面図である。 同上の製造方法を説明するための主要工程断面図である。 同上の製造方法を説明するための主要工程断面図である。 実施形態2における微小電気機械デバイスの製造方法を説明するための主要工程断面図である。 実施形態3における微小電気機械デバイスの製造方法を説明するための主要工程断面図である。
符号の説明
1 素子形成基板
1A シリコン基板
1B シリコン層
2 支持基板
3 集積回路
11 駆動質量体
12 検出質量体
13 駆動ばね
15 検出ばね
16 連結片
18 切抜孔
23 固定櫛歯片
24 可動櫛歯片
25 固定駆動電極
S ジャイロセンサ

Claims (5)

  1. 微小電気機械要素と集積回路とが集積化された微小電気機械デバイスの製造方法であって、半導体基板の一表面側に前記半導体基板よりも抵抗率の高い半導体層を成膜してから、前記半導体層に集積回路を形成し、その後、前記半導体基板を加工することにより微小電気機械要素の少なくとも一部を構成する3次元構造体を形成するようにし、前記半導体基板の前記一表面側に前記半導体層を成膜する前に、前記半導体基板の前記一表面における前記微小電気機械要素の形成予定領域上へ前記半導体基板とは異なる材料からなり前記半導体層の成膜温度での耐熱性を有する領域規定膜を形成し、前記半導体層を成膜するにあたっては、前記半導体層のうち前記半導体基板の前記一表面における露出部位上に成膜される部分が単結晶となるようにエピタキシャル成長法により前記半導体層を成膜し、前記集積回路の形成後であって前記3次元構造体を形成する前に、前記半導体層のうち前記領域規定膜上に成膜されている部分を除去することを特徴とする微小電気機械デバイスの製造方法。
  2. 前記半導体基板がシリコン基板であって、前記半導体層が前記半導体基板の前記一表面上に成膜する単結晶シリコンの部分と前記領域規定膜上に成膜する多結晶シリコンの部分とであり、前記領域規定膜の材料として耐アルカリ性を有する材料を採用し、前記半導体層のうち前記領域規定膜上の部分を除去するにあたって、アルカリ系溶液からなるエッチング液を用い前記領域規定膜をエッチングストッパ膜として利用することを特徴とする請求項1記載の微小電気機械デバイスの製造方法。
  3. 前記3次元構造体を形成するにあたって、前記半導体基板のエッチング加工時に前記領域規定膜の一部をエッチングマスクとして利用することを特徴とする請求項2記載の微小電気機械デバイスの製造方法。
  4. 微小電気機械要素と集積回路とが集積化された微小電気機械デバイスの製造方法であって、半導体基板の一表面側に前記半導体基板よりも抵抗率の高い半導体層を成膜してから、前記半導体層に集積回路を形成し、その後、前記半導体基板を加工することにより微小電気機械要素の少なくとも一部を構成する3次元構造体を形成するようにし、前記半導体基板の前記一表面側に前記半導体層を成膜する前に、前記半導体基板の前記一表面上に前記半導体基板よりも低抵抗率の単結晶の半導体膜を成膜し、前記集積回路の形成後であって前記3次元構造体を形成する前に、前記半導体層のうち前記半導体基板における前記微小電気機械要素の形成予定領域に重複している部分を除去することを特徴とする微小電気機械デバイスの製造方法。
  5. 微小電気機械要素と集積回路とが集積化された微小電気機械デバイスの製造方法であって、半導体基板の一表面側に前記半導体基板よりも抵抗率の高い半導体層を成膜してから、前記半導体層に集積回路を形成し、その後、前記半導体基板を加工することにより微小電気機械要素の少なくとも一部を構成する3次元構造体を形成するようにし、前記半導体基板としてp形半導体基板を用い、前記半導体層の成膜にあたっては、前記半導体基板の前記一表面上に前記半導体層として単結晶のn形半導体層を成膜し、前記集積回路の形成後であって前記3次元構造体を形成する前に、前記半導体層のうち前記半導体基板における前記微小電気機械要素の形成予定領域に重複している部分を電解エッチングにより除去することを特徴とする微小電気機械デバイスの製造方法
JP2004371488A 2004-12-22 2004-12-22 微小電気機械デバイスの製造方法 Expired - Fee Related JP4561352B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004371488A JP4561352B2 (ja) 2004-12-22 2004-12-22 微小電気機械デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004371488A JP4561352B2 (ja) 2004-12-22 2004-12-22 微小電気機械デバイスの製造方法

Publications (2)

Publication Number Publication Date
JP2006175555A JP2006175555A (ja) 2006-07-06
JP4561352B2 true JP4561352B2 (ja) 2010-10-13

Family

ID=36730138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004371488A Expired - Fee Related JP4561352B2 (ja) 2004-12-22 2004-12-22 微小電気機械デバイスの製造方法

Country Status (1)

Country Link
JP (1) JP4561352B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008001442A1 (de) * 2008-04-29 2009-11-05 Robert Bosch Gmbh Mikromechanisches Bauelement und Verfahren zum Betrieb eines mikromechanischen Bauelements
JP5471640B2 (ja) 2010-03-12 2014-04-16 富士通株式会社 Memsデバイスの製造方法および基板

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207950A (ja) * 1993-01-11 1994-07-26 Murata Mfg Co Ltd 加速度センサ
JP2000019197A (ja) * 1998-07-03 2000-01-21 Hitachi Ltd 半導体センサの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207950A (ja) * 1993-01-11 1994-07-26 Murata Mfg Co Ltd 加速度センサ
JP2000019197A (ja) * 1998-07-03 2000-01-21 Hitachi Ltd 半導体センサの製造方法

Also Published As

Publication number Publication date
JP2006175555A (ja) 2006-07-06

Similar Documents

Publication Publication Date Title
JP4999227B2 (ja) Soi基板を使用した懸垂梁の形成及びその振動式ジャイロメータの製作への応用
JP5562517B2 (ja) 表面加工により形成される可変厚さの共振型マイクロ慣性センサ
JP4556454B2 (ja) 半導体装置の製造方法
US11277112B2 (en) Micro-electro-mechanical device with reduced temperature sensitivity and manufacturing method thereof
EP3052901A1 (en) Inertial and pressure sensors on single chip
JP5790003B2 (ja) 加速度センサー
JP2000205862A (ja) マイクロ慣性センサ―の製造方法及びマイクロ慣性センサ―
JP5335212B2 (ja) マイクロシステム、特に容量性電極検出素子を有するマイクロジャイロメータ
JP2010107521A (ja) 微小電気機械デバイス
JP5074693B2 (ja) 微小電気機械デバイス
JP2008039593A (ja) 静電容量型加速度センサ
JP7129599B2 (ja) センサ
JP2001004658A (ja) 2軸半導体加速度センサおよびその製造方法
JP4561352B2 (ja) 微小電気機械デバイスの製造方法
JP4736420B2 (ja) 微小電気機械デバイス
JP2010122141A (ja) Memsセンサ
JP2009198493A (ja) 角速度検出装置
JP2008039595A (ja) 静電容量型加速度センサ
JP4466283B2 (ja) ジャイロセンサ
JP4586425B2 (ja) 振動式トランスデューサ
JP2010145315A (ja) 振動ジャイロスコープ
JP4611005B2 (ja) センサ素子
JP2006205353A (ja) 微小電気機械デバイス
JP2010156591A (ja) Memsセンサおよびmemsセンサの製造方法
JP2010156577A (ja) Memsセンサおよびmemsセンサの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

TRDD Decision of grant or rejection written
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees