JP2007333642A - 慣性センサおよび慣性センサの製造方法 - Google Patents

慣性センサおよび慣性センサの製造方法 Download PDF

Info

Publication number
JP2007333642A
JP2007333642A JP2006167759A JP2006167759A JP2007333642A JP 2007333642 A JP2007333642 A JP 2007333642A JP 2006167759 A JP2006167759 A JP 2006167759A JP 2006167759 A JP2006167759 A JP 2006167759A JP 2007333642 A JP2007333642 A JP 2007333642A
Authority
JP
Japan
Prior art keywords
vibrator
axis
inertial sensor
detection
elastic support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006167759A
Other languages
English (en)
Other versions
JP4983107B2 (ja
Inventor
Kazuhiro Matsuhisa
和弘 松久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006167759A priority Critical patent/JP4983107B2/ja
Publication of JP2007333642A publication Critical patent/JP2007333642A/ja
Application granted granted Critical
Publication of JP4983107B2 publication Critical patent/JP4983107B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】駆動モード周波数の低周波側と高周波側にそれぞれ別の検出モード周波数を持つようにすることで、他軸感度の向上を可能とする。
【解決手段】基板100に対して浮遊した状態で変位可能に支持された振動子11と、前記振動子11の変位を検出する変位検出部14とを備えた慣性センサ1であって、前記振動子11は、駆動モード周波数の低周波側と高周波側にそれぞれ別の検出モード周波数を有することを特徴とするもので、例えば、前記振動子11は、ばね定数が異なる第1弾性支持体13−1、13−3と第2弾性支持体13−2、13−4とによって支持されていることを特徴とする。
【選択図】図1

Description

本発明は、慣性センサおよび慣性センサの製造方法に関する。
従来技術として、シリコン(Si)などの材料を用い、半導体加工技術を使って加工された振動型ジャイロスコープが知られている。この種のジャイロスコープは慣性質量を一定方向に振動させ、角速度が入力された際に発生するコリオリ力による変位により、角速度の大きさを検出するものである。この角速度センサは、入力インターフェース、ビデオカメラやスチルカメラの手ブレ補正などに適用することができる。
このような角速度センサは一般的に、半導体プロセスによって製造された振動子を電気信号によって駆動させ、この駆動による速度と系に加えられた角速度により、発生するコリオリ力によって振動子を駆動方向と直角に変位させ、この変位量を計測することにより、角速度を計測することができる。
コリオリ力は駆動力に比較して非常に微小なために、変位も微小となるために検出が困難であることが知られている。既知の技術として、駆動周波数と検出周波数を近づけることにより、カップリングを発生させ、利得を稼ぐ方法がある。例えば、充分にQ値が大きい場合、駆動周波数と検出周波数の比(この比を以後は離調度と呼ぶ)を1.05もしくは0.95に設定すれば、概ね10倍程度の利得が得られる。
離調度の調整方法として、反応性イオンエッチングまたは等方性イオンエッチングまたは結晶異方性エッチングによって、単結晶シリコン基板から形成した振動子の基準電極、圧電体、駆動電極、検出電極等が形成された面以外を研削することにより、所望の離調度とすることが開示されている(例えば、特許文献1参照。)。また、大気中での駆動を前提とはしているが、離調度αと検出周波数のQ値との関係を数値制限した技術が開示されている(例えば、特許文献2参照。)。
また、単体で多軸を実現するセンサが近年開発されてきている(例えば、特許文献3参照。)。このような複合センサを用いることで、単体を複数軸実装するよりも、コスト、実装面積の両面で有利である。
コストおよび実装面積の両面で有利な単体で多軸を実現するセンサを用い、充分なコリオリ変位に対する利得を稼ぐためには、駆動周波数と検出周波数を近づける必要がある。
しかしながら、図14に示すように、一構造多軸センサには駆動周波数に対して検出周波数が複数存在するために、検出周波数同士も近づいてしまう。このため、複数軸の検出同士にもカップリングが発生し、プロセスによるわずかなアンバランスによっても、他軸感度が悪化する要因となる。ここでいう他軸感度とは例えば第1軸周りに発生した角速度を第1軸と交差する第2軸の角速度として誤認する大きさの割合である。具体的には、例えばX軸まわりに100deg/secの角速度が発生した場合、Y軸まわりに角速度が全く発生していないにも関わらず、Y軸まわりに1deg/secが検出されれば他軸感度は1%となる。
一般的に単軸の角速度センサは他軸感度1%程度が量産スペックとなっている。しかし、多軸の複合センサはこの検出周波数同士のカップリングの影響で数%程度の他軸感度しか実現できていない。
他軸感度が悪化すると、例えばロボット、車両などの制御において他軸の角速度も誤差要因となり、ドリフトを増大させ、積分時の角度誤差を著しく悪化させるため、頻繁に傾斜センサなどで補正をかけないと、正常な制御ができない。
例えば、10倍の利得を得たい時には離調度を1.05もしくは0.95にするように設計すればよい。このとき、駆動と検出の周波数の差は駆動周波数を基準に考えると5%であるが、工夫せずに作製すると対象性などの影響から、検出周波数は駆動周波数の低周波側、もしくは高周波側に偏ってしまう。このとき、単一の駆動周波数に対して、それぞれの軸が利得を必要とすると、それぞれ5%駆動周波数に対して離すことになる。検出軸同士の周波数比は1%以下となり、例えば0.5%検出周波数同士が離れていたとすると、充分に検出のQ値が高い場合には100倍程度の利得があることになる。プロセスばらつきなどが原因で、第1軸周りにのみ角速度が印加された場合でも、その第1軸に対応するコリオリ力方向と完全に平行に振動子は変位せずに、例えば第2軸に対応するコリオリ力方向にも変位する。このときの振動漏れの割合が100倍の利得を持つことになり、他軸感度を非常に悪化させる。
特開2005−241382号公報 特開2002-310662号公報 特開2005−31096号公報
解決しようとする問題点は、一構造多軸センサには駆動周波数に対して検出周波数が複数存在するために、検出周波数は駆動周波数の低周波側、もしくは高周波側に偏ってしまい、検出周波数同士も近づいてしまうことから、複数軸の検出同士にもカップリングが発生し、プロセスによるわずかなアンバランスによっても、他軸感度が悪化する要因となる点である。
本発明は、駆動モード周波数の低周波側と高周波側にそれぞれ別の検出モード周波数を持つように、振動子を支持する弾性支持体のばね定数を異ならせることで、他軸感度の向上を可能にする。
本発明の慣性センサは、基板に対して浮遊した状態で変位可能に支持された振動子と、前記振動子の変位を検出する変位検出部とを備えた慣性センサであって、前記振動子は、駆動モード周波数の低周波側と高周波側にそれぞれ別の検出モード周波数を有することを特徴とする。
本発明の慣性センサでは、駆動モード周波数の低周波側と高周波側にそれぞれ別の検出モード周波数を有することから、二つの検出モード周波数を離すことができる。これによって、駆動と検出のカップリングによる利得を得つつ、他軸の検出同士のカップリングを最小限にして、他軸感度が抑えられる。
本発明の慣性センサの製造方法は、基板に対して浮遊した状態で変位可能に支持された振動子と、前記振動子を支持する第1弾性支持体と第2弾性支持体と、前記振動子の変位を検出する変位検出部とを備えた慣性センサの製造方法であって、前記振動子の駆動モード周波数の低周波側と高周波側にそれぞれ別の検出モード周波数を有するように、第1弾性支持体と第2弾性支持体とをばね定数が異なるように形成することを特徴とする。
本発明の慣性センサの製造方法では、駆動モード周波数の低周波側と高周波側にそれぞれ別の検出モード周波数を有するように、第1弾性支持体と第2弾性支持体とをばね定数が異なるように形成することから、第1弾性支持体の振動周波数と第2弾性支持体の振動周波数は異なることになる。したがって、どちらか一方が低周波側の検出モード周波数を持ち、他方側が前記低周波側より高い周波数の高周波側の検出モード周波数を持つことになるので、第1弾性支持体と第2弾性支持体とは別々の検出モード周波数を持つことになる。これによって、駆動と検出のカップリングによる利得を得つつ、他軸の検出同士のカップリングを最小限にして、他軸感度が抑えられる。
本発明の慣性センサによれば、駆動モード周波数の低周波側と高周波側にそれぞれ別の検出モード周波数を有するため、他軸の検出同士のカップリングを最小限にして、他軸感度を抑えることができるので、ロボット、車両などの制御において、他軸の検出誤差が低減され、高精度な検出が可能になるという利点がある。これによって、従来のように頻繁に傾斜センサなどで補正をかける必要がなくなり、正常な制御ができるようになるという利点がある。
本発明の慣性センサの製造方法によれば、駆動モード周波数の低周波側と高周波側にそれぞれ別の検出モード周波数を有するように、第1弾性支持体と第2弾性支持体とをばね定数が異なるように形成するため、他軸の検出同士のカップリングを最小限にして、他軸感度が抑えることができる慣性センサを製造することができる。これによって、ロボット、車両などの制御において、他軸の検出誤差が低減され、高精度な検出が可能になるという慣性センサの提供が可能になるという利点がある。
本発明の慣性センサに係わる一実施の形態(第1実施例)を、図1および図2によって説明する。図1および図2では、一例として、角速度センサを含む多軸複合センサからなる慣性センサを示す。図1の(1)は慣性センサを示す概略構成断面図であり、(2)は振動子および上部に配置された電極の構成例の概略を示す斜視図である。図2の(1)は振動子、弾性支持体および電極の位置関係を示す正面図であり、(2)は平面図である。
図1および図2に示すように、第1基板100に支持部12が形成されていて、この支持部12に弾性支持体13−1〜13−4の一端側が支持されている。各弾性支持体13−1〜13−4の他端側には、上記第1基板100および後に説明する第2基板200から離間した状態で振動子11が支持されている。また、この振動子11の変位を検出して信号を出力する変位検出部14が、例えば第2基板200の上記振動子11に対向する側に備えられている。ここでは、振動子11上方に設けた電極211−1〜211−4と振動子11との容量変化によって、振動子11の変位を検出する構成となっている。また、振動子11上方に設けた駆動用の電極212によって、振動子11が例えば3次元座標系における第3軸(例えばZ軸)方向に駆動されるようになっている。また、振動子11の下方の第1基板100には、例えば振動子11の駆動をモニタする電極111が形成されている。
上記振動子11が、駆動モード周波数の低周波側と高周波側にそれぞれ別の検出モード周波数を有するように、上記弾性支持体13−1〜13−4は、例えば、X軸方向の弾性支持体(第1弾性支持体)13−1、13−3とY軸方向の弾性支持体(第2弾性支持体)13−2、13−4とは、異なるばね定数となるように形成されている。すなわち、振動子を挟んで対向する位置の弾性支持体を同一のばね定数としている。これは、各モードの振動質量は共通であるため、弾性支持体13のばね定数を調節することで振動周波数を制御することができるためである。図3に示すように、例えば駆動周波数の両側に5%ずつ検出周波数同士を離したいときには、ω=2πf=√(k/m)、(ここで、ωは振動数、fは振動子の振動周波数、kは弾性支持体13のばね定数である)の関係から、ばね定数を21%離してやればよいことになる。
例えば、ばねの長さで制御する場合は、ばねの長さの2乗に共振周波数は反比例するために、振動子を支えるばねの長さを例えば第1軸方向のばねにたいして第2軸方向のばねを√(1/1.1)=0.95倍の長さに調整することで駆動周波数を跨いで第1軸、第2軸の検出周波数を10%離すことができる。
ばねの幅は共振周波数に理想的には影響を与えないために、ばねの幅のみで調整することは現実的には難しい。長さとのアスペクト比で不要なモードが出る場合に微調整する程度に考えるのが適当である。
ばねの厚さで制御する場合は、ばねの厚さに梁の曲げの1次の共振周波数は比例するために、第1軸方向のばねに対して、第2軸方向のばねを1.1倍の厚さに調整することで、第1軸、第2軸の検出周波数を10%離すことができる。
ばねの材質で調整する場合は、材質のヤング率と密度の比の平方根√(E/ρ)に比例するために、10%の差が出るような材質を選定すれば、第1軸、第2軸の検出周波数を10%離すことができる。
ばねにスリットや溝、孔などを入れてばねを弱くして検出周波数に差を設ける方法もある。
上記本発明の慣性センサ1は、3次元座標系における第1軸(例えばX軸)方向の加速度および第2軸(例えばY軸)周りの角速度を検出する際に、振動子11と、この振動子11を3次元座標系における第3軸(例えばZ軸)方向に加速度、角速度の必要応答性に対して充分に高い周波数で振動させる励振手段(駆動電極212)と、この変位を検出する変位検出部14(加速度、角速度検出用の電極211−1〜211−4)と、この変位検出部14で得た信号において、低周波成分と励振周波数周りの成分を分離する信号分離手段(図示せず)と、低周波成分において、第1軸(例えばX軸)方向の加速度を求める演算手段(図示せず)と、第2軸(例えばY軸)周りの角速度を求める角速度演算手段(図示せず)とを有することで、角速度と加速度の双方を検出できる。
以下に、上記慣性センサ1の動作原理を説明する。
最初に、角速度の検出方法について説明する。
振動子11と駆動電極212の間に、振動子11をその共振周波数で駆動するような交流電圧を前述した第3軸(例えば3次元座標系におけるZ軸)方向に印加し、振動子11と駆動電極212間に静電力を発生させて、振動子11を周期的に駆動させる。
ここで、第1軸(例えば3次元座標系におけるX軸)周りに角速度を印加すると、第2軸(例えば3次元座標系におけるY軸)方向にコリオリ力Fcoriolisが発生する。このコリオリ力Fcoriolisは下記式によって表される。
coriolis=2mvΩ
ここでmは振動子11の質量、vは駆動方向の振動速度、Ωは外部から印加される角速度である。
コリオリ力が第2軸(例えば3次元座標系におけるY軸)方向に発生すると、振動子11に力が印加され、第2軸方向に変位する。図4に示すように、振動子11は重心位置と弾性支持体13−1〜4の支持位置の高さが異なるために、コリオリ力によりモーメントが発生し、捻り方向に振動する。なお、駆動電極212による駆動方向はZ方向である。この捻り方向の変位を4つの電極211−1〜211−4の静電容量変化により検出する。
例えば、4つの電極211−1〜211−4のうち、傾いて隙間が広がった側の2電極211−1、211−4は静電容量C1、C4が減少し、傾いて隙間が狭まった側の2電極211−2、211−3は静電容量C2、C3が増加する。広がった側同士で容量C1+C4の和を取り、狭まった同士で容量C2+C3の和を取った後に、それぞれの電極の容量の和同士の差分(C1+C4)−(C2+C3)を取ることにより、効率よく捻りによる変位、つまり角速度を検出することができる。
また、第2軸(例えば3次元座標系におけるY軸)周りに角速度を印加すると、第1軸(例えば3次元座標系におけるX軸)方向にコリオリ力が発生する。同様に4つの電極211−1〜211−4の静電容量変化により第2軸周りに発生する角速度を検出できるため、2軸分の角速度を検出可能である。
このとき、第1軸方向のばねと第2軸方向のばねを適切な長さに設定することにより、駆動共振周波数の低周波側と高周波側に第1軸の検出周波数と、第2軸の検出周波数を移動させることが可能であり、それぞれの離調度も個別に設定可能である。ここで、図5に示すように、検出モードのQ値が期待する利得よりも充分高い時に、増倍効果のはっきりした2以上の利得を稼ぐには、離調度を0.71〜1.22の間に設定すればよい。同様に5倍以上の利得は離調度を0.90〜1.09の間に設定すればよい。10倍以上の場合は0.95〜1.04に設定すればよい。但し、高い利得を稼ごうとすると、それだけプロセスばらつきに対して弱くなり、調整機構が必須となり、コストアップの要因となるので、注意が必要である。
次に加速度の検出方法について示す。
振動子11の質量をmとし、この振動子11に所定方向の加速度αが作用すると、この加速度αと同じ方向にF=mαとなる力が作用する。また、力が加わった際の弾性支持体13の変位xはF=kxで表されるため、x∝αとなり、変位を検出することで加速度を知ることができる。
第1軸(例えば3次元座標系におけるX軸)周りに加速度が発生すると、角速度の場合と同様に、慣性力によるモーメントが発生し、捻り方向に変位が発生する。この捻り方向への変位を電極211−1〜211−4の静電容量変化として検出する。第1軸周りの加速度と、第2軸周りの角速度による変位の方向が同一であるが、一般的に加速度は精々200Hzまでを検出すればよく、角速度に関しては振動子11の振動周波数(一般的に数kHz〜数十kHz)近辺に現れるために、フィルタなどによって容易に分離可能である。
また、第2軸(例えば3次元座標系におけるY軸)周りの加速度に関しても同様である。
ここで、図6(1)に、多軸の角速度と加速度を同時に検出できる慣性センサ1における駆動のモードの一例を示す。また図6(2)、(3)に、この慣性センサ1における検出のモードの一例を示す。図6(2)はX軸周りの回転を検出する検出モードを示したものであり、図6(2)はY軸周りの回転を検出する検出モードを示したものである。
上記慣性センサ1は、半導体プロセスにより形成された後、セラミックパッケージなどを用いて大気圧よりも低い雰囲気に減圧封止される。慣性センサ1のような数kHz〜数十kHzの共振を用いる場合、内部損失などの構造減衰よりも、雰囲気による減衰のほうが遥かに大きいことが知られている。このため、減圧封止することで、駆動、検出のQ値を向上させることが可能である。このとき、例えば1Pa以下の高真空にすると、脱ガスの処理やパッケージの堅牢性の確保などが必要となり、製造プロセスの負荷が大きくなり、また製造コストもかかる。一方、100Pa〜程度の真空度であれば、熱処理などによる脱ガスの影響をほとんど無視でき、パッケージも簡素化できる。
次に、本発明の慣性センサの製造方法に係わる一実施の形態(製造方法の第1実施例)を、図7〜図11によって説明する。図7〜図11では、一例として、前記第1実施例で説明した角速度センサを含む多軸複合センサからなる慣性センサ1の製造工程を示す。
図7(1)に示すように、第1層31、第2層32、第3層33が順に積層された三層構造を持つ基板30を用いる。このような基板30としては、SOI基板がある。ここでは、下層の第1層31にシリコン層、第2層32に絶縁層、上層の第3層33にシリコン層を形成したものを用いた。上記絶縁層には酸化シリコン、窒化シリコン等の絶縁体を用いることができる。ここで、両側の第1、第2層31、32には導電性を持たせている。例えばn型不純物もしくはp型不純物をドーピングすることにより導電性を持たせている。また、上層の第3層33のほうが、下層の第1層31よりも薄く形成されている。これは上層のシリコン層で弾性支持体を形成するためで、所定の厚さになったときに可撓性を持たせるために薄く形成されている。下層の第1層31は質量部(振動子)を形成するために厚く形成されている。
上記基板(SOI基板)30を加工することで多軸センサを作製する。まず、図7(2)に示すように、基板30の下面を、反応性イオンエッチングなどを用いて第1層31を除去加工して所定ブロックに分割する。このエッチング工程では酸化シリコン層とシリコン層の間に充分なエッチング選択比があるために、第2層(酸化シリコン層)32をエッチングストッパとして用いることができる。
次に、図7(3)に示すように、第2層(酸化シリコン層)32に対してエッチングを行い、酸化シリコン層を除去する。このときは上部の第3層(シリコン層)33がエッチングストッパとして機能する。
次に、図8(1)に示すように、下部基板となる第1基板100を用意する。この第1基板100には、溝110が形成され、この溝110に電極111が形成されている。
次に、図8(2)に示すように、上記第1基板100を基板30の第1層31の下面に接合する。この接合には例えば陽極接合を用いる。シリコン・シリコン酸化膜接合、シリコン・シリコン接合、金属・金属接合などの手法を用いてもよい。
続いて、上部の第3層33の上面から弾性支持体、質量部となる振動子の一部を覆うマスクを用いて第3層33を選択的にエッチングする。その結果、図9(1)の平面図および(2)の概略構成断面図に示すような、振動子11とこの振動子11を支持する弾性支持体13とこの弾性支持体13を支持する支持部12が第1基板100上に形成された構造体が得られる。このとき、各モードの振動質量は共通であるため、弾性支持体13のばね定数を調節することで振動周波数を制御することができる。前記図3に示すように、例えば駆動周波数の両側に5%ずつ検出周波数同士を離したいときには、ω=2πf=√(k/m)、(ここで、ωは振動数、fは振動子の振動周波数、kは弾性支持体13のばね定数である)の関係から、ばね定数を21%離してやればよいことになる。
例えば、ばねの長さで制御する場合は、ばねの長さの2乗に共振周波数は反比例するために、振動子を支えるばねの長さを例えば第1軸方向のばねにたいして第2軸方向のばねを√(1/1.1)=0.95倍の長さに調整することで駆動周波数を跨いで第1軸、第2軸の検出周波数を10%離すことができる。
ばねの幅は共振周波数に理想的には影響を与えないために、ばねの幅のみで調整することは現実的には難しい。長さとのアスペクト比で不要なモードが出る場合に微調整する程度に考えるのが適当である。
ばねの厚さで制御する場合は、ばねの厚さに梁の曲げの1次の共振周波数は比例するために、第1軸方向のばねに対して、第2軸方向のばねを1.1倍の厚さに調整することで、第1軸、第2軸の検出周波数を10%離すことができる。
ばねの材質で調整する場合は、材質のヤング率と密度の比の平方根√(E/ρ)に比例するために、10%の差が出るような材質を選定すれば、第1軸、第2軸の検出周波数を10%離すことができる。
ばねにスリットや溝、孔などを入れてばねを弱くして検出周波数に差を設ける方法もある。
実際に半導体プロセスでの利便性を考えると、厚さ、材質に差をつけることは難しいため、長さでの調節や、スリットなどのばねを弱くする工夫を設けるのが現実的である。
次に、図10に示すような、第2基板200を用意し、その下面側に配線用の溝210を加工する。この加工には、通常のシリコンエッチングなどの方法を用いることができる。さらに溝210内に電極(検出電極)211および電極(駆動電極)212を形成する。
次に、図11に示すように、上記第2基板200を陽極接合などの接合方法を用いて、上記振動子11、弾性支持体13等を構成した上記基板30に接合する。ここで、第2基板200には複数の錘状貫通孔(図示せず)が形成されており、下部のシリコン導電層を観察可能である。ここで第2基板200の上面に金などの金属を蒸着することで、錘状貫通孔の壁面に金属層を堆積させることで各配線用端子を形成し、不要な金属膜をエッチングなどで除去すれば、図示したような慣性センサ1が得られる。その後、上記慣性センサ1は、図示はしないがパッケージに実装される。
上記慣性センサ1の製造方法によれば、真空度を大気圧に近い状態にしてもQ値を高めることができるようになるため、外部からパッケージ内部への気体のリークや、パッケージ内部で発生するガスなどの影響を防ぐことができるので、パッケージの気密構造を簡素化でき、パッケージコストの低減ができるという利点がある。また、真空度を高めてQ値を高めるのと比較して、検出側のQ値の上昇を抑えることができるので、角速度印加時の減衰振動の安定時間を短くすることができ、慣性センサのSN比や応答性の向上を図ることができるという利点がある。
次に、本発明の慣性センサに係わる一実施の形態(第2実施例)を、図12および図13によって説明する。図12および図13では、一例として、前記第1実施例とは電極構成が異なる慣性センサを示す。したがって、本第2実施例の慣性センサ2は、前記第1実施例の慣性センサ1において、振動子、弾性支持体および振動子上方の電極の構成が異なるのみで、その他の構成は前記第1実施例の慣性センサ1と同様である。なお、図12の(1)は振動子および上部に配置された電極の構成例の概略を示す斜視図であり、(2)は慣性センサを示す概略構成断面図である。図13の(1)は振動子、弾性支持体および電極の位置関係を示す正面図であり、(2)は平面図である。
図12および図13に示すように、第1基板100に支持部12が形成されていて、この支持部12に弾性支持体13−1〜13−4の一端側が支持されている。各弾性支持体13−1〜13−4の他端側には、上記第1基板100および後に説明する第2基板200から離間した状態で振動子11が支持されている。また、この振動子11の変位を検出して信号を出力する変位検出部14が、例えば第2基板200の上記振動子11に対向する側に備えられている。ここでは、振動子11上方に設けた電極211−1〜211−4と振動子11との容量変化によって、振動子11の変位を検出する構成となっている。また、振動子11上方に設けた駆動用の電極212−1、212−2は、交互に電圧を印加することで、振動子11を振り子のように第1軸(例えばX軸)のまわりに駆動させる。また、振動子11の下方の第1基板100には、例えば振動子11の駆動をモニタする電極111が形成されている。
上記各弾性支持体13−1〜4は、上記振動子11が、駆動モード周波数の低周波側と高周波側にそれぞれ別の検出モード周波数を有するように、例えば、振動子11の対角方向の弾性支持体(第1弾性支持体)13−1、13−3と、振動子11の別の対角方向の弾性支持体(第2弾性支持体)13−2、13−4とは、異なるばね定数となるように形成されている。すなわち、振動子の対角方向で対向する位置の弾性支持体を同一のばね定数としている。
次に、上記慣性センサ2の動作方法を説明する。図12に示したように、電極212−1と電極212−2に交互に電圧を印加し、振動子11を振り子のように第1軸のまわりに駆動させる。この駆動方向に対して、第1軸周りに角速度が加わると、第3軸(例えばZ軸)方向にコリオリ力が働き、振動子は角速度の大きさに応じて第3軸方向に動く。これを電極211−1〜211−4の静電容量変化により検出する。第3軸周りに角速度が加わると、第2軸(例えばY軸)方向にコリオリ力が働く。このとき、振動子11は支持点と重心がずれているために、振り子運動をする。この運動をしたときには、電極211−1〜211−4と振動子11との間の容量が変化し、例えば電極211−1、211−4と振動子11との間で検出容量が増加した場合には、電極211−2、211−3と振動子11との間で検出容量が減少する。この差分をとることで、第1軸周りの角速度と分離が可能となる。
また、第1実施例と同様に、各モードの振動質量は共通であり、モード形状に関連する弾性支持体13−1〜13−4のばね定数を調整することで、前記図3に示したように、駆動周波数を跨いで二つの検出周波数を両側に配置することができる。
本発明の慣性センサに係る一実施の形態(第1実施例)を示した図面である。 本発明の慣性センサに係る一実施の形態(第1実施例)を示した図面である。 第1実施例の慣性センサの振動モードと検出モードとの関係を説明する図である。 第1実施例の慣性センサの振動モードを説明する斜視模式図である。 利得と離調度との関係図である。 第1実施例の慣性センサの検出モードを説明する斜視模式図である。 本発明の慣性センサの製造方法に係る一実施の形態(第1実施例)を示した製造工程図である。 本発明の慣性センサの製造方法に係る一実施の形態(第1実施例)を示した製造工程図である。 本発明の慣性センサの製造方法に係る一実施の形態(第1実施例)を示した製造工程図である。 本発明の慣性センサの製造方法に係る一実施の形態(第1実施例)を示した製造工程図である。 本発明の慣性センサの製造方法に係る一実施の形態(第1実施例)を示した製造工程図である。 本発明の慣性センサに係る一実施の形態(第2実施例)を示した図面である。 本発明の慣性センサに係る一実施の形態(第2実施例)を示した図面である。 従来の慣性センサの振動モードと検出モードとの関係を説明する図である。
符号の説明
1…慣性センサ、11…振動子、14…変位検出部、100…基板

Claims (5)

  1. 基板に対して浮遊した状態で変位可能に支持された振動子と、
    前記振動子の変位を検出する変位検出部とを備えた慣性センサにおいて、
    前記振動子は、駆動モード周波数の低周波側と高周波側にそれぞれ別の検出モード周波数を有する
    ことを特徴とする慣性センサ。
  2. 前記振動子は、ばね定数が異なる第1弾性支持体と第2弾性支持体とによって支持されている
    ことを特徴とする請求項1記載の慣性センサ。
  3. 前記変位検出部は前記振動子の多軸方向の変位を検出する
    ことを特徴とする請求項1記載の慣性センサ。
  4. 前記振動子は減圧された雰囲気中に封止されている
    ことを特徴とする請求項1記載の慣性センサ。
  5. 基板に対して浮遊した状態で変位可能に支持された振動子と、
    前記振動子を支持する第1弾性支持体と第2弾性支持体と、
    前記振動子の変位を検出する変位検出部とを備えた慣性センサの製造方法において、
    前記振動子の駆動モード周波数の低周波側と高周波側にそれぞれ別の検出モード周波数を有するように、第1弾性支持体と第2弾性支持体とをばね定数が異なるように形成する
    ことを特徴とする慣性センサの製造方法。
JP2006167759A 2006-06-16 2006-06-16 慣性センサおよび慣性センサの製造方法 Expired - Fee Related JP4983107B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167759A JP4983107B2 (ja) 2006-06-16 2006-06-16 慣性センサおよび慣性センサの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167759A JP4983107B2 (ja) 2006-06-16 2006-06-16 慣性センサおよび慣性センサの製造方法

Publications (2)

Publication Number Publication Date
JP2007333642A true JP2007333642A (ja) 2007-12-27
JP4983107B2 JP4983107B2 (ja) 2012-07-25

Family

ID=38933246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167759A Expired - Fee Related JP4983107B2 (ja) 2006-06-16 2006-06-16 慣性センサおよび慣性センサの製造方法

Country Status (1)

Country Link
JP (1) JP4983107B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204541A (ja) * 2008-02-28 2009-09-10 Asahi Kasei Electronics Co Ltd 静電容量型センサ
US8601873B2 (en) 2010-05-10 2013-12-10 Denso Corporation Angular velocity sensor
CN112729268A (zh) * 2019-10-28 2021-04-30 精工爱普生株式会社 惯性测量装置、电子设备以及移动体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287956A (ja) * 1996-04-18 1997-11-04 Miyota Kk 角速度センサ
JPH10170273A (ja) * 1996-12-11 1998-06-26 Toyota Motor Corp 角速度検出装置
JPH11337344A (ja) * 1998-05-25 1999-12-10 Murata Mfg Co Ltd 角速度センサ
JP2007232710A (ja) * 2006-01-31 2007-09-13 Nec Tokin Corp 振動ジャイロ用振動子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287956A (ja) * 1996-04-18 1997-11-04 Miyota Kk 角速度センサ
JPH10170273A (ja) * 1996-12-11 1998-06-26 Toyota Motor Corp 角速度検出装置
JPH11337344A (ja) * 1998-05-25 1999-12-10 Murata Mfg Co Ltd 角速度センサ
JP2007232710A (ja) * 2006-01-31 2007-09-13 Nec Tokin Corp 振動ジャイロ用振動子

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204541A (ja) * 2008-02-28 2009-09-10 Asahi Kasei Electronics Co Ltd 静電容量型センサ
US8601873B2 (en) 2010-05-10 2013-12-10 Denso Corporation Angular velocity sensor
CN112729268A (zh) * 2019-10-28 2021-04-30 精工爱普生株式会社 惯性测量装置、电子设备以及移动体
CN112729268B (zh) * 2019-10-28 2023-07-11 精工爱普生株式会社 惯性测量装置、电子设备以及移动体

Also Published As

Publication number Publication date
JP4983107B2 (ja) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4687577B2 (ja) 慣性センサ
US7513155B2 (en) Inertial sensor
US8739626B2 (en) Micromachined inertial sensor devices
JP5301767B2 (ja) 慣性センサ
EP2246706B1 (en) Physical quantity sensor
US8250916B2 (en) Inertial sensor
KR100492105B1 (ko) 수평 가진 수직형 mems 자이로스코프 및 그 제작 방법
JP5450451B2 (ja) 垂直方向に集積した電子回路およびウェハスケール密封包装を含むx−y軸二重質量音叉ジャイロスコープ
US9273962B2 (en) Physical quantity sensor and electronic device
KR101371149B1 (ko) 멤즈 기반의 자이로스코프
CN111551161A (zh) Mems振动式陀螺仪结构及其制造方法
US9731958B2 (en) Microelectromechanical system and fabricating process having decoupling structure that includes attaching element for fastening to carrier
JP6512006B2 (ja) センサ装置
JP4983107B2 (ja) 慣性センサおよび慣性センサの製造方法
WO2018003692A1 (ja) 物理量センサ
JP2010169401A (ja) 検出素子、微小電気機械装置および電子機器
JP6146592B2 (ja) 物理量センサー、電子機器
JP2012242240A (ja) ジャイロセンサー、電子機器
JP2012112819A (ja) 振動ジャイロ
JP4362739B2 (ja) 振動型角速度センサ
JP2006153481A (ja) 力学量センサ
US20230266126A1 (en) Physical Quantity Sensor, Inertial Measurement Unit, And Manufacturing Method
US20150096374A1 (en) Angular velocity sensor and manufacturing method of the same
JP6657842B2 (ja) 角速度センサ装置
JP6294463B2 (ja) センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090604

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091007

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees