JP2014001646A - 内燃機関の冷却装置 - Google Patents

内燃機関の冷却装置 Download PDF

Info

Publication number
JP2014001646A
JP2014001646A JP2012135915A JP2012135915A JP2014001646A JP 2014001646 A JP2014001646 A JP 2014001646A JP 2012135915 A JP2012135915 A JP 2012135915A JP 2012135915 A JP2012135915 A JP 2012135915A JP 2014001646 A JP2014001646 A JP 2014001646A
Authority
JP
Japan
Prior art keywords
cooling water
internal combustion
combustion engine
egr
heater core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012135915A
Other languages
English (en)
Inventor
Yoshio Yamashita
芳雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012135915A priority Critical patent/JP2014001646A/ja
Publication of JP2014001646A publication Critical patent/JP2014001646A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

【課題】EGRクーラ内における凝縮水の発生を抑制できる内燃機関の冷却装置を提供する。
【解決手段】冷却装置1は、内燃機関100を経由した冷却水がLPL−EGRクーラ132を経てからヒータコア51に流れる第1状態と、内燃機関100を経由した冷却水がヒータコア51を経てからLPL−EGRクーラ132へ流れる第2状態との間で冷却水の流通状態を切り替え可能なクーラントコントロールバルブ15を有し、内燃機関100の暖機完了前は第1状態で冷却水が流通し、内燃機関100の暖機完了後は第2状態で冷却水が流通するように、クーラントコントロールバルブ15を制御する。
【選択図】図1B

Description

本発明は、車両に搭載された内燃機関に適用され、内燃機関の冷却水と車載空調ユニットのヒータコアとの間で熱交換を行う内燃機関の冷却装置に関する。
内燃機関からの冷却水をヒータコア及びEGRクーラの順番で流し、これらを流れた冷却水を再び内燃機関に戻す経路を備えた内燃機関の冷却装置が知られている(特許文献1)。その他、本発明に関連する先行技術文献として特許文献2〜4が存在する。
特開2011−214566号公報 特開2004−211643号公報 特開2008−274900号公報 特開2008−180180号公報
特許文献1の冷却装置は、内燃機関からの冷却水とヒータコアとの間で熱交換が行われて温度が低下した状態の冷却水がEGRクーラに導かれる。そのため、特に内燃機関の暖機完了前の状況ではEGRクーラに導かれる冷却水温が過剰に低下してEGRクーラに導かれた排気中の水分が凝縮する可能性がある。
そこで、本発明は、EGRクーラ内における凝縮水の発生を抑制できる内燃機関の冷却装置を提供することを目的とする。
本発明の内燃機関の冷却装置は、車両に搭載され、かつ排気をEGRクーラで冷却して吸気系に供給するEGRシステムが設けられた内燃機関に適用され、前記内燃機関の冷却水と車載空調ユニットに含まれるヒータコアとの間で熱交換を行うことが可能な内燃機関の冷却装置であって、前記内燃機関を経由した冷却水が前記EGRクーラを経てから前記ヒータコアに流れる第1状態と、前記内燃機関を経由した冷却水が前記ヒータコアを経てから前記EGRクーラへ流れる第2状態との間で冷却水の流通状態を切り替え可能な切替手段と、前記内燃機関の暖機完了前は前記第1状態で冷却水が流通し、前記内燃機関の暖機完了後は前記第2状態で冷却水が流通するように、前記切替手段を制御する切替制御手段と、を備えたものである(請求項1)。
この冷却装置によれば、内燃機関の暖機完了前は内燃機関を経由した冷却水がEGRクーラを経てからヒータコアに流れる第1状態で流通する。このため、暖機完了前に内燃機関で暖められた冷却水がEGRクーラに先に流れるからEGRクーラ内で凝縮水が発生することを抑制しながらEGRクーラ自体を暖めることができる。そのため、早期のEGRの実行が可能となる。そして、EGRクーラでの凝縮水の発生を抑制しつつ、EGRクーラを流れる排気によって暖められた冷却水がヒータコアに流れるから車載空調ユニットの暖房性能も向上する。一方、内燃機関の暖機完了後はヒータコアとの熱交換で冷却水温が低下した状態で、冷却水がEGRクーラに流れる第2の経路で冷却水が流通するため、EGRクーラによって排気(EGRガス)を効果的に冷却できる。
本発明の冷却装置の一態様として、前記内燃機関には、排気を導く排気通路が設けられており、前記排気通路には、通過した排気を温度低下させる排気系装置が設けられており、前記EGRシステムは、前記排気系装置の下流から排気を取り出して吸気系に供給するEGR装置を含み、前記切替手段は、前記内燃機関を経由し、前記EGRクーラへ向かう冷却水の流れを制限する制限状態に切り替え可能であり、前記切替制御手段は、前記内燃機関の暖機完了前において、冷却水温が前記EGRクーラを通る排気の露点に達するまで前記制限状態を維持し、冷却水温が前記露点以上となったことを条件として、前記制限状態を解除して前記第1状態に切り替えるてもよい(請求項2)。この態様によれば、冷却水温が排気の露点未満の場合はEGRクーラへの冷却水の流れが制限されるため、EGRクーラでの凝縮水の発生を防止しつつ内燃機関の暖機を促進できる。なお、制限するとはEGRクーラへ向かう冷却水の流れを完全に止める遮断だけでなく、上限値よりも低い流量でその流れを許容する場合も含む。この態様においては、前記排気系装置として、ターボチャージャのタービン及び排気を浄化する排気浄化装置の少なくとも一つが設けられてもよい(請求項3)。ターボチャージャのタービンや排気浄化装置は相応の熱容量を有しているため、これらを排気が流れることによりその温度が低下する。
本発明の冷却装置の一態様として、前記車載空調ユニットは、車室内に通じる車室内経路と、車室外に通じる車室外経路と、前記ヒータコアと熱交換した空気を前記車室内経路と前記車室外経路とに配分する割合を変化させることが可能な空気分配手段とを更に含んでもよい(請求項4)。この態様によれば、ヒータコアと熱交換した空気の状態に応じてその空気を車室内に導く配分と車室外に導く配分とを変化させることができる。
上記態様において、前記車載空調ユニットは、外気を取り込んで前記ヒータコアに導くためのブロアモータと、前記内燃機関の冷却水温が所定の基準を超えて高温の場合又は前記内燃機関の排気温度が所定の基準を超えて高温の場合において暖房要求がないときに、前記ヒータコアと熱交換した空気が前記車室外経路に導かれるように前記ブロアモータを作動させるとともに前記空気配分手段を操作する空調制御手段と、を更に備えてもよい(請求項5)。冷却水温又は排気温度が高温の場合には暖房要求が無い場合でも空気をヒータコアと熱交換させて車外に排出させることにより、ヒータコアの熱を排熱できる。これにより、ヒータコアによる冷却水の冷却能力の低下を抑えることができる。
本発明の冷却装置の一態様として、前記EGRシステムは、前記内燃機関の吸気系に供給すべき排気の量である要求EGR量を、前記EGRクーラと前記ヒータコアとの間の冷却水温に応じて変化させてもよい(請求項6)。この態様によれば、冷却水温の変化に従って変化するEGRクーラによる排気の冷却効率の変化に合わせて要求EGR量を増減できる。したがって、可能な限り要求EGR量を増加させることによってエミッションの低下を実現できる。
以上説明したように、本発明の冷却装置によれば、内燃機関の暖機完了前は内燃機関を経由した冷却水がEGRクーラを経てからヒータコアに流れ、暖機完了前に内燃機関で暖められた冷却水がEGRクーラに先に流れるからEGRクーラ内で凝縮水が発生することを抑制しながらEGRクーラ自体を暖めることができる。そのため、早期のEGRの実行が可能となる。そして、EGRクーラでの凝縮水の発生を抑制しつつ、EGRクーラを流れる排気によって暖められた冷却水がヒータコアに流れるから車載空調ユニットの暖房性能も向上する。一方、内燃機関の暖機完了後はヒータコアとの熱交換で冷却水温が低下した状態で、冷却水がEGRクーラに流れため、EGRクーラによって排気を効果的に冷却できる。
本発明の一形態に係る内燃機関の要部を示した図。 本発明の一形態に係る内燃機関の冷却装置の全体構成を示した図。 クーラントコントロールバルブの概要を模式的に示した分解斜視図。 図2のクーラントコントロールバルブのアウター及びインナーのそれぞれを周方向に展開して複数の動作モードを説明する図。 車載空調ユニットの要部を示した図。 冷却装置の制御系を示したブロック図。 暖機制御の一例を示した説明図。 暖機制御の第1の変形例を示した説明図。 暖機制御の第2の変形例を示した説明図。 EGRシステム及び車載空調ユニットに対して行う第1の形態に係る制御ルーチンの一例を示したフローチャート。 ヒータコア冷却制御の内容を示した説明図。 要求EGR量の補正に用いる補正マップを視覚的に示した概念図。 EGRシステム及び車載空調ユニットに対して行う第2の形態に係る制御ルーチンの一例を示したフローチャート。 ヒータコア冷却制御(高温用)の内容を示した説明図。
(第1の形態)
図1Aに示すように、内燃機関100は不図示の車両に搭載される。内燃機関100は、直列4気筒型のディーゼルエンジンとして構成されており、エンジン本体101と、エンジン本体101に適用されたEGRシステム103とを含む。エンジン本体101は、シリンダ105が形成されたシリンダブロック104と、シリンダ105の開口部を塞ぐようにしてシリンダブロック104に取り付けられたシリンダヘッド106(図1B参照)とを備える。エンジン本体101への燃料供給は、シリンダ105毎に設けられたインジェクタ102aを含む燃料供給装置102にて行われる。
エンジン本体101には吸気通路107と排気通路108とが接続されている。吸気通路107には、エアクリーナ109、ターボチャージャ110のコンプレッサC、インタークーラ111、及びディーゼルスロットル112がそれぞれ設けられている。吸気通路107に取り込まれた空気は、ディーゼルスロットル112の下流に配置されたインテークマニホルド113によって各シリンダ105に分配される。排気通路108には、ターボチャージャ110のタービンT、排気浄化装置115、及び排気絞り弁116がそれぞれ設けられている。排気浄化装置115は酸化触媒117及びディーゼルパティキュレートフィルタ118を含む。各シリンダ105から排出された排気はエキゾーストマニホルド119にて集合されて、ターボチャージャ110のタービンTに導かれる。
EGRシステム103は、ハイプレッシャーループ型のEGR装置103Hと、ロープレッシャーループ型のEGR装置103Lとを含む2系統のシステムとして構成されている。EGR装置103Hは、エキゾーストマニホルド119とインテークマニホルド113とを接続するHPL−EGR通路121と、このHPL−EGR通路121に設けられてEGRガス量を調整するHPL−EGRバルブ122とを含んでいる。なお、HPL−EGR通路121には、EGRガスを冷却するEGRクーラ(不図示)を設けることもできる。一方、EGR装置103Lは、排気浄化装置115と排気絞り弁116との間の排気取出口131aと、エアクリーナ109とターボチャージャ110のコンプレッサCとの間の排気導入口131bとを接続するLPL−EGR通路131と、このLPL−EGR通路131に設けられEGRガスを冷却するLPL−EGRクーラ132と、排気導入口131bに隣接して設けられたLPL−EGRバルブ133とを備える。EGR装置103Lが供給するEGRガス量の調整は、LPL−EGRバルブ133及び排気絞り弁116のそれぞれの開度を協調して操作することによって実施される。
ターボチャージャ110のタービンTや排気浄化装置115を排気が通過すると、これらに排気の熱が奪われて排気の温度が低下する。そのため、ターボチャージャ110のタービンT及び排気浄化装置115の少なくとも一つは本発明に係る排気系装置に相当する。EGR装置103Lは、その排気取出口131aをタービンTと排気浄化装置115との間に変更し、これらの間から排気を取り出すこともできる。また、ターボチャージャ110を搭載しない形態に内燃機関100を変更した場合、EGR装置103Lに相当するEGR装置はハイプレッシャー型又はロープレッシャー型の区別がされないが、このEGR装置によって排気浄化装置115の下流から排気が取り出される。さらに、排気浄化装置115の下流にタービンTが設けられた形態に内燃機関100を変更した場合、EGR装置103Lは、排気取出口131aをタービンTの下流に設けて実施することができる。また、EGR装置103の排気取出口131aを排気浄化装置115とタービンTとの間に設けて実施した場合、EGR装置103はハイプレッシャー型のEGR装置として機能する。
図1Bに示すように、冷却装置1は内燃機関100に適用されている。冷却装置1はシリンダブロック104及びシリンダヘッド105のエンジン本体101の各所に冷却水を供給するとともに、EGRシステム103の各種要素やオイルクーラ140等の補機類や車両に搭載された車載空調ユニット50に含まれるヒータコア51等に冷却水を供給して、これらの装置と冷却水とを熱交換させる。なお、車載空調ユニット50の詳細は後述する。
図1Bに矢印線によって模式的に示したが、冷却装置1には、シリンダブロック104を経由してシリンダヘッド106から排出された冷却水を再びシリンダブロック104へ供給するための複数の経路13A〜13Dが設けられている。冷却装置1には各経路13A〜13Dを流れる冷却水の流通状態を切り替えるため、シリンダヘッド106に形成された冷却通路106aの出口側に設けられ、各経路13A〜13Dが接続された切替手段としてのクーラントコントロールバルブ(CCV)15が設けられている。CCV15の詳細な構成は後述する。CCV15とシリンダヘッド106との間にはこれらの間を流れる冷却水の冷却水温に応じた信号を出力する第1水温センサ16Aが設けられている。
第1経路13Aにはラジエータ18、サーモスタット19及びウォータポンプ20が設けられており、第1経路13Aの出口側の一端はシリンダブロック104に接続されている。第2経路13Bはその出口側の一端が第1経路13Aのサーモスタット19とウォータポンプ20との間に接続されている。第3経路13Cはその両端がCCV15に接続されCCV15を起点としたループ状の経路であり、この第3経路13CにはLPL−EGRクーラ132とヒータコア51とが設けられている。第3経路13CのLPL−EGRクーラ132とヒータコア51との間にはこれらの間を流れる冷却水の冷却水温に応じた信号を出力する第2水温センサ16Bが設けられている。第3経路13Cには図1のa方向又はb方向のいずれかの方向に冷却水が流れる。第4経路13DにはHPL−EGRバルブ122及びオイルクーラ140が設けられており、第4経路13Dの出口側の一端は第1経路13Aのサーモスタット19とウォータポンプ20との間に接続されている。
第3経路13Cを流れる冷却水の流通方向の切り替えはCCV15の操作によって実施される。すなわち、CCV15は、第3経路13Cのa方向に冷却水が流れることによって内燃機関100を経由した冷却水がLPL−EGRクーラ132を経てからヒータコア51に流れ、第2経路13Bの入口側に至る第1状態と、第3経路13Cのb方向に冷却水が流れることによって内燃機関100を経由した冷却水がヒータコア51を経てからLPL−EGRクーラ132に流れ、第2経路13Bの入口側に至る第2状態との間で冷却水の流通状態を切り替えることができる。なお、上述したように、EGR装置103HのHPL−EGR通路121にHPL−EGRクーラを設けた場合、第3経路13Cには、LPL−EGRクーラ132とともに、又はLPL−EGRクーラ132の代わりに、HPL−EGRクーラを設けることもできる。第3経路13CにHPL−EGRクーラを設けた場合には、HPL−EGRクーラを通るEGRガスで暖められた冷却水をヒータコア51に導くことができるので、車載空調ユニット50の暖房性能を向上させることができる。
図2及び図3に示したように、CCV15は円筒状のアウター25と、中心線CLの回りに回転可能な状態でアウター25の内周に嵌め合わされるインナー26とを有している。アウター25にはシリンダヘッド5から排出された冷却水が導かれる導入ポート30と、上述した各経路13A〜13Dが接続される複数のポート31a〜31eと、その他のポート32a、32bとがそれぞれ形成されている。ポート32a及びポート32bは接続路21にて互いに連結されている。アウター25の内周面の所定位置には、半径方向外側に向かって内周面から後退し、かつ中心線CL方向に延びるアウター溝33が形成されている。インナー26はアウター25の内周面と密着してポート31a等を閉鎖できる円筒面状の遮蔽面34を有している。また、インナー26には遮蔽面34よりも半径方向内側に後退し、それぞれ独立した3つのインナー溝35A〜35Cが形成されている。なお、各インナー溝35A〜35Cの上方は円板状の仕切部36が残存するとともに遮蔽面34が半円筒状に残存する状態で削り込まれている。インナー26がこのように削り込まれていることによって、アウター25の中心線CL上に位置する導入ポート30はインナー26がアウター25に嵌め合わされた状態で常時開放される。
図3に示したように、第1インナー溝35Aはアウター25のポート32b、31cの両方と同時に重なることが可能となるようにその寸法及び位置がそれぞれ設定されている。同様に、第2インナー溝35Bは第1インナー溝35Aの下方に位置し、アウター25のポート31b、31dの両者と同時に重なることが可能となるようにその寸法及び位置がそれぞれ設定されている。また、第3インナー溝35Cはアウター25のポート31c、31bと同時に重なることが可能となるようにその寸法及び位置がそれぞれ設定されている。
図3に示すように、CCV15はアウター25に対してインナー26が矢印線で示すように回転移動することによって、5つのモード1〜モード5が選択的に成立し得る。本形態ではモード間を移行するために必要な回転移動量θ[deg]は図示のθ1〜θ4に設定されている。
モード1は、アウター25の上部に設けられた3つのポート31a、31e、32aがインナー26の遮蔽面34にてそれぞれ閉鎖された状態である。したがって、CCV15がモード1の場合は、導入ポート30から流入した冷却水の流通がCCV15にて遮断される。
モード2は、アウター25の上部のポート31a、31eが遮蔽面34にて閉鎖される一方で、ポート32aが開放される。そして、アウター25のポート32b、31cの両者と第1インナー溝35Aとが重なることにより、これらのポート32b、31cが第1インナー溝35Aを介して接続され、かつアウター25のポート31b、31dの両者と第2インナー溝35Bとが重なることにより、これらのポート31b、31dが第2インナー溝35Bを介して接続される。これにより、導入ポート30から流入した冷却水はポート32a及びポート32bを経由してポート31cから第3経路13Cに導かれる。そして、LPL−EGRクーラ132→ヒータコア51→ポート31d→ポート31b→第2経路13Bの順序で冷却水が流通する。モード2の場合は導入ポート30から流入した冷却水がLPL−EGRクーラ132を経てからヒータコア51に流れるので、CCV15がモード2に操作された状態は上述した第1状態に相当する。モード1からモード2へ移行する過渡は、図3の二点鎖線で示すように、アウター25のポート32aがインナー26の遮蔽面34によって一部が遮蔽され、残りが開放された中間開度状態となる。このため、第3経路13Cに沿ってLPL−EGRクーラ132に向かう冷却水の流れはモード2の上限値よりも低い流量に制限された状態となる。過渡時におけるその流量はインナー26の回転移動量θを徐々に変化させることにより連続的に変化する。
モード3は、アウター25の上部のポート31eが開放されることを除いてモード2と同じ状態である。そのため、導入ポート30から流入した冷却水の一部がポート31eを経由して第4経路13Dに導かれて、HPL−EGRバルブ122及びオイルクーラ140の順序で冷却水が流通する。冷却水の残りは、モード2の場合と同じ状態で流通する。すなわち、その残りの冷却水はポート32a及びポート32bを経由してポート31cから第3経路13Cに導かれる。そして、LPL−EGRクーラ132→ヒータコア51→ポート31d→ポート31b→第2経路13Bの順序で冷却水が流通する。モード3の場合もモード2の場合と同様に導入ポート30から流入した冷却水がLPL−EGRクーラ132を経てからヒータコア51に流れるので、CCV15がモード3に操作された状態は上述した第1状態に相当する。モード2からモード3へ移行する過渡は、図3の二点鎖線で示すように、アウター25のポート31eがインナー26の遮蔽面34によって一部が遮蔽され、残りが開放された中間開度状態となる。このため、第4経路13Dに沿ってHPL−EGRバルブ122及びオイルクーラ140に向かう冷却水の流れはモード3の上限値よりも低い流量に制限された状態となる。過渡時におけるその流量はインナー26の回転移動量θを徐々に変化させることにより連続的に変化する。
モード4は、アウター25の上部のポート31aが遮蔽面34にて閉鎖される一方でポート32a、31eが開放される。そして、アウター25のポート31c、31bの両者とインナー26の第3インナー溝35Cとが重なることにより、これらのポート31c、31bが第3インナー溝31Cを介して接続される。さらに、アウター25のポート32b及びアウター溝33の両者がインナー26の第1インナー溝35Aと重なるとともに、アウター25のポート31d及びアウター溝33の両者がインナー26の第2インナー溝35Bとが重なる。そのため、ポート32bとポート31dとは、第1インナー溝35A、アウター溝33及び第2インナー溝35Bを介して接続される。以上により、導入ポート30から流入した冷却水の一部は、ポート31eを経由して第4経路13Dに導かれて、HPL−EGRバルブ122及びオイルクーラ140の順序で冷却水が流通する。冷却水の残りはポート32a及びポート32bを経由してポート31dから第3経路13Cに導かれる。そして、ヒータコア51→LPL−EGRクーラ132→ポート31c→ポート31b→第2経路13Bの順序で冷却水が流通する。モード4の場合は導入ポート30から流入した冷却水がヒータコア51を経てからLPL−EGRクーラ132に流れるので、CCV15がモード4に操作された状態は上述した第2状態に相当する。
モード5は、アウター25の上部のポート31aが開放されることを除いてモード4と同じ状態である。そのため、導入ポート30から流入した冷却水の一部がポート31aを経由して第1経路13Aに導かれて、ラジエータ18及びサーモスタット19の順序で冷却水が流通する。冷却水の残りは、モード4の場合と同じ状態で流通する。すなわち、その残りは、ポート31eを経由して第4経路13Dに導かれて、HPL−EGRバルブ122及びオイルクーラ140の順序で冷却水が流通し、かつポート32a及びポート32bを経由してポート31dから第3経路13Cに導かれ、そして、ヒータコア51→LPL−EGRクーラ132→ポート31c→ポート31b→第2経路13Bの順序で冷却水が流通する。モード5の場合も導入ポート30から流入した冷却水がヒータコア51を経てからLPL−EGRクーラ132に流れるので、CCV15がモード5に操作された状態は上述した第2状態に相当する。
次に、図4を参照しながら車載空調ユニット50の詳細を説明する。車載空調ユニット50はヒータコア51と、車室内の空気である内気又は車室外の空気である外気との間で熱交換を行うことにより車室内を暖房するとともに、外気又は内気とエバポレータ52との間で熱交換を行うことにより車室内を冷房する装置である。車載空調ユニット50はヒータコア51及びエバポレータ52が搭載される通路状のユニット本体53を有している。ユニット本体53には外気を取り込む外気吸入路54と、内気を取り込む内気吸入路55とが接続されている。外気吸入路54と内気吸入路55との合流位置には、外気導入状態と内気導入状態とを切り替えるための第1ドア56Aが設けられている。第1ドア56Aは位置aと位置bとの間で回転軸線Ax1の回りに回転できる。第1ドア56Aが位置bに操作された場合は外気吸入路54が開放されると同時に内気吸入路55が閉鎖されて外気導入状態に切り替えられる。反対に、第1ドア56Aが位置aに操作された場合は内気吸入路55が開放されると同時に外気吸入路54が閉鎖されて内気導入状態に切り替えられる。
第1ドア56Aの下流側には外気又は内気をユニット本体53に取り込むためのブロアモータ57が設けられている。ブロアモータ57にはインペラ57aが取り付けられている。ブロアモータ57の下流側にはエバポレータ52とヒータコア51とがそれぞれ配置されている。エバポレータ52とヒータコア51との間にはブロアモータ57にて取り込まれエバポレータ52を通過した空気がヒータコア51に導かれる配分を調整する第2ドア56Bが設けられている。第2ドア56Bは位置cから位置dまでの間で連続的に、回転軸線Ax2の回りに回転でき、これらの位置間の任意の位置でホールドできる。第2ドア56Bが位置cに操作されると、ヒータコア51に導かれる空気が遮断される。一方、第2ドアBが位置dに操作されると、空気の全量がヒータコア51に導かれる。第2ドア56Bが中間位置c′から位置dのいずれかの位置に操作されることにより、ヒータコア51に導かれる空気の配分を調整できる。これにより、車室内に供給する空気の温度を調整することができる。
ヒータコア51の下流には車室内に通じる車室内経路58と、車室外に通じる車室外経路59とが配置されており、これらの経路58、59は互いに合流するようにしてユニット本体53に接続されている。車室内経路58と車室外経路59との合流位置には第3ドア56Cが設けられている。第3ドア56Cは位置eから位置fまでの間で連続的に、回転軸線Ax3の回りに回転でき、これらの位置間の任意の位置でホールドできる。第3ドア56Cが位置eに操作されると、車室内経路58が開放されると同時に車室外経路59が閉鎖されるため、ヒータコア51等で熱交換された空気の全量が車室内に導かれる。反対に、第3ドア56Cが位置fに操作されると車室内経路58が閉鎖されると同時に車室外経路59が開放されるため、その空気の全量が車室外に導かれる。したがって、第3ドア56Cが位置eから位置fの間のいずれかの位置に操作されることにより車室内に導かれる空気の量を調整できる。つまり、第3ドア56Cの操作によって車室内に導かれる暖気又は冷気の風量を調整することができる。第3ドア56Cは、ヒータコア51と熱交換した空気を車室内経路58と車室外経路59とに配分する割合を変化させることができるので、本発明に係る空気分配手段として機能する。
図5に示すように、冷却装置1、EGRシステム103及び車載空調ユニット50のそれぞれは電子制御装置(ECU)60にて制御される。ECU60は各種のセンサから運転パラメータを取得して内燃機関100の運転制御を行うことができるコンピュータとして構成されている。以下、ECU60が行う制御のうち、本発明に関連する制御を主に説明する。
ECU60は内燃機関100の暖機完了前にCCV15を操作して以下の暖機制御を行う。図6は第1水温センサ16Aの検出値(第1冷却水温)と、CCV15の作動状態(インナー26の回転移動量)とが対応付けられている。ECU60は図6に示した対応関係に基づいて、第1冷却水温の変化に合わせてCCV15を制御する。
まず、第1冷却水温が40°C未満の場合、ECU60はCCV15を上述のモード1に操作して冷却水の流通を制限する。第1冷却水温が40°C以上50°C未満の場合、ECU60は第1冷却水温の温度上昇に従ってモード1の状態から徐々にCCV15の回転移動量を増加させ、LPL−EGRクーラ132へ向かう冷却水の流量を増加させる。50°CはLPL−EGRクーラ132に導かれる排気の露点に相当する。したがって、第1冷却水温が露点に達するまでLPL−EGRクーラ132へ供給される冷却水の流量が制限された状態に維持される。このため、LPL−EGRクーラ132での凝縮水の発生を防止しつつ内燃機関100の暖機を促進できる。第1冷却水温が50°Cに達した場合、ECU60はCCV15をモード1から完全にモード2に切り替える。つまり、第1冷却水温が露点以上となったことを条件としてLPL−EGRクーラ132へ向かう冷却水の流れが制限された制限状態が解除され、冷却水がLPL−EGRクーラ132へ上限値の流量で供給される。
図1に示した第4経路13Dには、暖機完了前において冷却要求度が比較的低い要素であるHPL−EGRバルブ122及びオイルクーラ140が設けられている。そのため、ECU60は第1冷却水温が70°Cに達する前においてCCV15をモード2に維持して第4経路13Dへの冷却水の流通を遮断する。そして、ECU60は第1冷却水温が70°Cに達してから、CCV15の回転移動量をモード2の状態から第1冷却水温の温度上昇に従って徐々に増加させて、第1冷却水温が80°Cに達した場合にモード2からモード3へ完全に移行させ、第4経路13Dへの冷却水の流通を完全に解放する。
第1冷却水温が80°Cに達してモード3への移行が完了したら直ちにCCV15をモード3からモード4に移行させる。CCV15がモード3からモード4へ移行すると、上述したように第3経路13Cの流れが反対向きとなり、第3経路13Cを流れる冷却水はヒータコア51からLPL−EGRクーラ132に向かう。
第1冷却水温が80°C以上82°C未満の場合、ECU60はCCV15の回転移動量をモード4の状態から第1冷却水温の温度上昇に従って徐々に増加させて第1経路13Aに向かう冷却水の流量を増加させる。82°Cはサーモスタット19の開弁温度に相当し、第1冷却水温が当該温度に達した場合に暖機が完了したと見なされる。第1冷却水温が82°Cに達した場合、つまり内燃機関100の暖機が完了した場合は、CCV15をモード5へ完全に移行し、第1経路13Aに向かう冷却水の流通制限を解除し、上限値の流量の冷却水が第1経路13Aに流れるようにしてラジエータ18と熱交換させる。
このように、ECU60が第1冷却水温に応じてCCV15を制御することで、内燃機関100の暖機完了前は冷却水がLPL−EGRクーラ132を経てからヒータコア51に流れ、内燃機関100で暖められた冷却水がLPL−EGRクーラ132へ先に流れるからLPL−EGRクーラ132内で凝縮水が発生することを抑制しながらLPL−EGRクーラ132自体を暖めることができる。そのため、早期のEGRの実行が可能となる。そして、LPL−EGRクーラ132での凝縮水の発生を抑制しつつ、LPL−EGRクーラ132を流れる排気によって暖められた冷却水がヒータコア51に流れるから車載空調ユニットの暖房性能も向上する。一方、内燃機関100の暖機完了後は、ヒータコア51を経てからLPL−EGRクーラ132に流れ、ヒータコア51との熱交換で冷却水温が低下した状態で、冷却水がEGRクーラに流れるため、LPL−EGRクーラ132による排気(EGRガス)を効果的に冷却できる。
図6に示したCCV15の操作手順は一例であり、暖機完了の前後で第3経路13Cを流れる冷却水の流通方向が切り替わることを限度として、例えば図7及び図8に示すように適宜変更できる。図7の手順では、ECU60は第1冷却水温が70°Cになったことを条件としてモード1からモード2へ完全に移行させる。図7の場合は第1冷却水温が露点(50°C)以上となってもLPL−EGRクーラ132への冷却水の流通が制限されているので、内燃機関100の暖機促進効果は図6の場合に比べて高くなる利点がある。
また、図8の手順では、ECU60は第1冷却水温が55°C以上65°C未満の範囲で、CCV15をモード2から再度モード1に戻す。そして、ECU60は第1冷却水温が65°C以上となってからCCV15の回転移動量を第1冷却水温の温度上昇に従って徐々に増加させて第1冷却水温が70°Cに達した時点でモード2に完全に切り替えられ、続いて第1冷却水温が80°Cに達した時点でモード3に完全に切り替えられるようにする。図8の場合は、CCV15を上記範囲で再度モード1に戻すことにより、冷却水とLPL−EGRクーラ132の排気との熱交換が制限されるから、内燃機関100の暖機促進効果は図6の場合に比べて高くなる利点がある。図6〜図8にそれぞれ示された暖機制御をECU60が実行することにより、ECU60は本発明に係る切替制御手段として機能する。
次に、図9及び図10を参照しながら、ECU60がEGRシステム103及び車載空調ユニット50に対して行う制御について説明する。図9の制御ルーチンのプログラムはECU60に保持されており適時に読み出されて実行される。ステップS11において、ECU60は第1水温センサ16Aの検出値(第1冷却水温)T1が80°Cを超えているか否かを判定する。第1冷却水温T1が80°Cを超えていない場合は処理を保留し、第1冷却水温T1が80°Cを超えた場合はステップS12に進む。
ステップS12において、ECU60は車載空調ユニット50のヒータコア51を冷却するためのヒータコア冷却制御を実行する。
ヒータコア冷却制御は、図10に示したようにユーザによる暖房要求の有無と、車載空調ユニット50のブロアモータ57、第1ドア56A、第2ドア56B及び第3ドア56Cの各作動状態とが対応付けられた制御となる。ユーザによる暖房要求の有無は、車室内に設けられた不図示のスイッチの作動状態により判定される。なお、設定温度に応じて空調装置50が自ら暖房要求を発生させる場合もあり得る。
暖房要求がなく、ブロアモータ57がOFFで、かつ第1ドア56Aの現在位置が位置aの場合は、第1ドア56Aを位置aから位置bに切り替える(図4も参照)。そして、第2ドア56Bを位置dに操作してユニット本体53に取り込まれた外気の全量がヒータコア51に導かれるようにし、かつ第3ドア56Cを位置fに操作してヒータコア51を通過した空気が車外に排出されるようにする。また、暖房要求がなく、ブロアモータ57がOFFで、かつ第1ドア56Aの現在位置が位置bの場合は、第1ドア56Aを位置bに維持する。そして、第2ドア56Bを位置dに操作してユニット本体53に取り込まれた外気の全量がヒータコア51に導かれるようにし、かつ第3ドア56Cを位置eから位置fの間の適宜の位置に操作して風量調整する。このように、暖房要求がない場合においてもユニット本体53に外気を取り込み、その全量をヒータコア51に導いているので、車両走行中にヒータコア51が冷却される。これにより、冷却水の温度を下げることができるので、内燃機関100の冷却効率が向上する。
一方、暖房要求がある場合の制御は一般的な空調制御と同じである。すなわち、内気導入又は外気導入の選択に応じて第1ドア56Aが位置a又は位置b(図4参照)に操作され、設定温度及び設定風量に応じて第2ドア56Bが位置C′から位置dまでの間の適宜の位置に、第3ドア56Cが位置eから位置fまでの間の適宜の位置にそれぞれ操作される。
図9に戻り、ステップS13において、ECU60は内燃機関100の吸気系に供給すべき排気(EGRガス)の量である要求EGR量を、第2水温センサ16Bの検出値(第2冷却水温)に応じて変化させ、これによって要求EGR量を補正する。そして、ECU60は補正された要求EGR量の排気が内燃機関100の吸気系に供給されるように、EGRシステム103に含まれるHPL−EGRバルブ122、LPL−EGRバルブ133、及び排気絞り弁116の各開度を制御する。この補正は、図11に示した補正マップをECU60が参照して現在の第2冷却水温に対応した補正係数を特定し、その補正係数を内燃機関100の運転状態に基づいて別ルーチンで演算された要求EGR量に乗じることにより実施される。図11から明らかなように、この補正係数は第2冷却水温が高くなるほど小さくなるように補正マップにて定義されている。このように、第2冷却水温に応じて要求EGR量が補正されるため、第2冷却水温の変化に従って変化するLPL−EGRクーラ132による排気の冷却効率の変化に合わせて要求EGR量を増減できる。したがって、可能な限り要求EGR量を増加させることによってエミッションの低下を実現できる。
(第2の形態)
次に、図12及び図13を参照しながら本発明の第2の形態を説明する。第2の形態はEGRシステム103及び車載空調ユニット50に対する制御を除き、第1の形態と共通する。したがって、第2の形態において、冷却装置1、EGRシステム103及び車載空調ユニット50の各物理構成に関しては図1及び図4に示された構成がそれぞれ適用され、暖機制御に関しては図6〜図8に示された制御内容がそれぞれ適用される。
図12の制御ルーチンのプログラムはECU60に保持されており適時に読み出されて実行される。ステップS21〜ステップS23の制御は図9の制御ルーチンの制御と同じであるから説明を省略する。ステップS24において、ECU60は高温対応要求の有無を判定する。高温対応要求は内燃機関100の第1冷却水温が所定の基準を超えて高温である場合又は内燃機関100の排気温度が所定の基準を超えて高温の場合に成立する。例えば、図1Aに示した排気浄化装置115の酸化触媒117に燃料を供給してディーゼルパティキュレートフィルタ118の堆積物を燃焼させて、ディーゼルパティキュレートフィルタ118の浄化性能を再生する再生処理の実施時などは、排気浄化装置115で発生した熱によって排気温度が高温となる。このような場合に高温対応要求が成立する。高温対応要求がある場合はステップS25に進み、高温対応要求がない場合は以後の処理をスキップして今回のルーチンを終える。
ステップS25において、ECU60はヒータコア51を冷却するヒータコア冷却制御の制御内容を、図10から図13の高温用に切り替える。その後、ステップS23に処理を戻して第1の形態と同様に要求EGR量を補正する。図13に示したように、ステップS25で実行される高温用のヒータコア冷却制御は、ユーザによる暖房要求の有無と、車載空調ユニット50のブロアモータ57、第1ドア56A、第2ドア56B及び第3ドア56Cの各作動状態とが対応付けられた制御となる。ECU60は、図13のステップS25を実行することにより、本発明に係る空調制御手段として機能する。
暖房要求がなく、ブロアモータ57がOFFで、かつ第1ドア56Aの現在位置が位置aの場合は、ブロアモータ57をOFFからONに切り替えるとともに第1ドア56Aを位置aから位置bに切り替える。そして、第2ドア56Bを位置dに操作してユニット本体53に取り込まれた外気の全量がヒータコア51に導かれるようにし、かつ第3ドア56Cを位置fに操作してヒータコア51を通過した空気が車外に排出されるようにする。また、暖房要求がなく、ブロアモータ57がOFFで、かつ第1ドア56Aの現在位置が位置bの場合は、ブロアモータ57をOFFからONに切り替えるとともに第1ドア56Aを位置bに維持する。そして、第2ドア56Bを位置dに操作してユニット本体53に取り込まれた外気の全量がヒータコア51に導かれるようにし、かつ第3ドア56Cを位置eから位置fの間の適宜の位置に操作して風量調整する。このように、冷却水温又は排気温度が高温で高温対応要求がある場合は、ユーザによる暖房要求がない場合でもブロアモータ57を作動させることにより、外気を取り込んでヒータコア51と熱交換させ、ヒータコア51と熱交換を行った空気を車外に排出させることができる。これにより、ヒータコア51の熱が排熱される。そのため、ヒータコア51による冷却水の冷却能力の低下を抑えることができる。
一方、暖房要求がある場合の制御は、ブロアモータ57の出力を通常運転時よりも強める。その他の要素に対する制御は通常の空調制御と同様である。ブロアモータ57の出力を通常よりも強めることにより、ヒータコア51と熱交換する空気の流量を強め、ヒータコア51の排熱効果を高めることができる。
本発明は上記形態に限定されず、本発明の要旨の範囲内において種々の形態にて実施できる。上記形態のCCV15は部品点数が少なく小型化が容易で、かつ制御パラメータも回転移動量だけである利点があるが、本発明に係る切替手段の構成は上記形態のCCV15に限らない。複数のバルブや配管を組み合わせて、冷却水の流通状態を第1状態と第2状態との間で切り替え可能な装置を構成し、当該装置を本発明に係る切替手段として機能させることもできる。
上記形態では冷却水温を水温センサの検出値から特定しているが、センサを用いることは一例にすぎない。例えば、内燃機関の運転状態や冷却水の流量、冷却装置の構成要素の熱容量等の各種のパラメータに基づいて演算することにより、任意の位置における冷却水温を推定により特定することも可能である。
本発明が対象とするEGRクーラは、上記各形態のロープレッシャーループ型のEGR装置に含まれるLPL−EGRクーラだけではない。ハイプレッシャーループ型のEGR装置にHPL−EGRクーラを搭載した場合には、このHPL−EGRクーラを本発明の対象とすることもできる。さらに、これらのEGRクーラを本発明の対象とすることもできる。また、本発明を適用できるEGRシステムは上記各形態のような2系統の装置構成のシステムに限らず、ハイプレッシャーループ型のEGR装置又はロープレッシャーループ型のEGR装置のいずれか一方を備えたEGRシステムに対しても本発明を適用することができる。さらに、ターボチャージャが搭載されない内燃機関の場合、それに適用されるEGR装置は、ハイプレッシャーループ型又はロープレッシャーループ型の区別がなくなるが、このようなEGR装置に含まれるEGRクーラも本発明の対象となり得る。
1 冷却装置
15 CCV(切替手段)
50 車載空調ユニット
51 ヒータコア
56C 第3ドア(空気分配手段)
57 ブロアモータ
58 車室内経路
59 車室外経路
60 ECU(切替制御手段、空調制御手段)
100 内燃機関
103 EGRシステム
115 排気浄化装置(排気系装置)
132 LPL−EGRクーラ(EGRクーラ)
T ターボチャージャのタービン(排気系装置)

Claims (6)

  1. 車両に搭載され、かつ排気をEGRクーラで冷却して吸気系に供給するEGRシステムが設けられた内燃機関に適用され、前記内燃機関の冷却水と車載空調ユニットに含まれるヒータコアとの間で熱交換を行うことが可能な内燃機関の冷却装置であって、
    前記内燃機関を経由した冷却水が前記EGRクーラを経てから前記ヒータコアに流れる第1状態と、前記内燃機関を経由した冷却水が前記ヒータコアを経てから前記EGRクーラへ流れる第2状態との間で冷却水の流通状態を切り替え可能な切替手段と、
    前記内燃機関の暖機完了前は前記第1状態で冷却水が流通し、前記内燃機関の暖機完了後は前記第2状態で冷却水が流通するように、前記切替手段を制御する切替制御手段と、
    を備えたことを特徴とする内燃機関の冷却装置。
  2. 前記内燃機関には、排気を導く排気通路が設けられており、
    前記排気通路には、通過した排気を温度低下させる排気系装置が設けられており、
    前記EGRシステムは、前記排気系装置の下流から排気を取り出して吸気系に供給するEGR装置を含み、
    前記切替手段は、前記内燃機関を経由し、前記EGRクーラへ向かう冷却水の流れを制限する制限状態に切り替え可能であり、
    前記切替制御手段は、前記内燃機関の暖機完了前において、冷却水温が前記EGRクーラを通る排気の露点に達するまで前記制限状態を維持し、冷却水温が前記露点以上となったことを条件として、前記制限状態を解除して前記第1状態に切り替える請求項1に記載の冷却装置。
  3. 前記排気系装置として、ターボチャージャのタービン及び排気を浄化する排気浄化装置の少なくとも一つが設けられている請求項2に記載の冷却装置。
  4. 前記車載空調ユニットは、車室内に通じる車室内経路と、車室外に通じる車室外経路と、前記ヒータコアと熱交換した空気を前記車室内経路と前記車室外経路とに配分する割合を変化させることが可能な空気分配手段とを更に含む請求項1〜3のいずれか一項に記載の冷却装置。
  5. 前記車載空調ユニットは、外気を取り込んで前記ヒータコアに導くためのブロアモータと、前記内燃機関の冷却水温が所定の基準を超えて高温の場合又は前記内燃機関の排気温度が所定の基準を超えて高温の場合において暖房要求がないときに、前記ヒータコアと熱交換した空気が前記車室外経路に導かれるように前記ブロアモータを作動させるとともに前記空気配分手段を操作する空調制御手段と、を更に備える請求項4に記載の冷却装置。
  6. 前記EGRシステムは、前記内燃機関の吸気系に供給すべき排気の量である要求EGR量を、前記EGRクーラと前記ヒータコアとの間の冷却水温に応じて変化させる請求項1〜5のいずれか一項に記載の冷却装置。
JP2012135915A 2012-06-15 2012-06-15 内燃機関の冷却装置 Pending JP2014001646A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012135915A JP2014001646A (ja) 2012-06-15 2012-06-15 内燃機関の冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012135915A JP2014001646A (ja) 2012-06-15 2012-06-15 内燃機関の冷却装置

Publications (1)

Publication Number Publication Date
JP2014001646A true JP2014001646A (ja) 2014-01-09

Family

ID=50035054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012135915A Pending JP2014001646A (ja) 2012-06-15 2012-06-15 内燃機関の冷却装置

Country Status (1)

Country Link
JP (1) JP2014001646A (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101542990B1 (ko) 2014-06-05 2015-08-07 현대자동차 주식회사 이지알쿨러로 냉각수를 선택적으로 공급하는 냉각수 제어밸브
KR101558394B1 (ko) * 2014-07-24 2015-10-07 현대자동차 주식회사 통합 유량 제어밸브를 갖는 엔진시스템
WO2016043229A1 (ja) * 2014-09-18 2016-03-24 日立オートモティブシステムズ株式会社 冷却システムの制御装置及び冷却システムの制御方法
KR20160034451A (ko) * 2014-09-19 2016-03-30 현대자동차주식회사 차량용 냉각시스템 및 그 제어방법
JP2016065516A (ja) * 2014-09-25 2016-04-28 マツダ株式会社 エンジンの冷却システム
JP2016065514A (ja) * 2014-09-25 2016-04-28 マツダ株式会社 エンジンの冷却システム
JP2016065515A (ja) * 2014-09-25 2016-04-28 マツダ株式会社 エンジンの冷却システム
JP2016121577A (ja) * 2014-12-24 2016-07-07 三菱自動車工業株式会社 エンジンの冷却液循環構造
JP2016138452A (ja) * 2015-01-26 2016-08-04 マツダ株式会社 エンジンの冷却装置
JP2016138513A (ja) * 2015-01-28 2016-08-04 株式会社Ihiシバウラ エンジン
JP2016156340A (ja) * 2015-02-25 2016-09-01 トヨタ自動車株式会社 内燃機関の冷却装置
WO2017007235A1 (ko) * 2015-07-06 2017-01-12 인지컨트롤스 주식회사 차량용 멀티밸브
JP2017025884A (ja) * 2015-07-28 2017-02-02 日産自動車株式会社 排熱利用システム
JP2017160814A (ja) * 2016-03-08 2017-09-14 株式会社豊田中央研究所 内燃機関
JP2018044550A (ja) * 2013-03-21 2018-03-22 日立オートモティブシステムズ株式会社
DE112016004767T5 (de) 2015-10-19 2018-07-19 Denso Corporation Ventilsteuerungsvorrichtung
CN111022172A (zh) * 2019-11-28 2020-04-17 哈尔滨东安汽车动力股份有限公司 一种双球阀式集成热管理模块
CN113294267A (zh) * 2020-02-21 2021-08-24 丰田自动车株式会社 内燃机的冷却系统

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018044550A (ja) * 2013-03-21 2018-03-22 日立オートモティブシステムズ株式会社
DE102014117876B4 (de) 2014-06-05 2022-10-20 Hyundai Motor Company Kühlmittelsteuerventil, das einem AGR-Kühler selektiv Kühlmittel zuführt
US9670884B2 (en) 2014-06-05 2017-06-06 Hyundai Motor Company Coolant control valve that selectively supplies EGR cooler with coolant
KR101542990B1 (ko) 2014-06-05 2015-08-07 현대자동차 주식회사 이지알쿨러로 냉각수를 선택적으로 공급하는 냉각수 제어밸브
KR101558394B1 (ko) * 2014-07-24 2015-10-07 현대자동차 주식회사 통합 유량 제어밸브를 갖는 엔진시스템
US10344664B2 (en) 2014-09-18 2019-07-09 Hitachi Automotive Systems, Ltd. Control device and method for cooling system
CN106795801A (zh) * 2014-09-18 2017-05-31 日立汽车系统株式会社 冷却系统的控制装置以及冷却系统的控制方法
JP2016061232A (ja) * 2014-09-18 2016-04-25 日立オートモティブシステムズ株式会社 冷却システムの制御装置及び冷却システムの制御方法
WO2016043229A1 (ja) * 2014-09-18 2016-03-24 日立オートモティブシステムズ株式会社 冷却システムの制御装置及び冷却システムの制御方法
CN105736115A (zh) * 2014-09-19 2016-07-06 现代自动车株式会社 用于车辆的冷却系统及其控制方法
KR20160034451A (ko) * 2014-09-19 2016-03-30 현대자동차주식회사 차량용 냉각시스템 및 그 제어방법
KR101637680B1 (ko) * 2014-09-19 2016-07-08 현대자동차주식회사 차량용 냉각시스템 및 그 제어방법
US9733029B2 (en) 2014-09-19 2017-08-15 Hyundai Motor Company Cooling system for vehicle and controlling method thereof
JP2016065515A (ja) * 2014-09-25 2016-04-28 マツダ株式会社 エンジンの冷却システム
JP2016065516A (ja) * 2014-09-25 2016-04-28 マツダ株式会社 エンジンの冷却システム
JP2016065514A (ja) * 2014-09-25 2016-04-28 マツダ株式会社 エンジンの冷却システム
US10047662B2 (en) 2014-09-25 2018-08-14 Mazda Motor Corporation Cooling system for engine
US9957878B2 (en) 2014-09-25 2018-05-01 Mazda Motor Corporation Cooling system for engine
JP2016121577A (ja) * 2014-12-24 2016-07-07 三菱自動車工業株式会社 エンジンの冷却液循環構造
WO2016121318A1 (ja) * 2015-01-26 2016-08-04 マツダ株式会社 エンジンの冷却装置
JP2016138452A (ja) * 2015-01-26 2016-08-04 マツダ株式会社 エンジンの冷却装置
JP2016138513A (ja) * 2015-01-28 2016-08-04 株式会社Ihiシバウラ エンジン
JP2016156340A (ja) * 2015-02-25 2016-09-01 トヨタ自動車株式会社 内燃機関の冷却装置
WO2017007235A1 (ko) * 2015-07-06 2017-01-12 인지컨트롤스 주식회사 차량용 멀티밸브
JP2017025884A (ja) * 2015-07-28 2017-02-02 日産自動車株式会社 排熱利用システム
DE112016004767T5 (de) 2015-10-19 2018-07-19 Denso Corporation Ventilsteuerungsvorrichtung
US10539064B2 (en) 2015-10-19 2020-01-21 Denso Corporation Valve control device
US10563565B2 (en) 2015-10-19 2020-02-18 Denso Corporation Valve control device
JP2017160814A (ja) * 2016-03-08 2017-09-14 株式会社豊田中央研究所 内燃機関
CN111022172A (zh) * 2019-11-28 2020-04-17 哈尔滨东安汽车动力股份有限公司 一种双球阀式集成热管理模块
CN113294267A (zh) * 2020-02-21 2021-08-24 丰田自动车株式会社 内燃机的冷却系统

Similar Documents

Publication Publication Date Title
JP2014001646A (ja) 内燃機関の冷却装置
JP6417315B2 (ja) 車両用内燃機関の冷却装置
JP5993759B2 (ja) エンジンの吸気冷却装置
KR101945823B1 (ko) 자동차의 통합 기능형 열교환 장치
JP6213322B2 (ja) 内燃機関
JP5403171B2 (ja) エンジンの冷却装置
JP5825184B2 (ja) エンジン冷却装置
JP2013024110A (ja) エンジン冷却装置
JP2005016364A (ja) エンジンの冷却装置
JP2007046599A (ja) 内燃機関の排気マニフォールド組立体、同組立体を備えた内燃機関の排出ガス制御装置及び同制御方法
JP2008051019A (ja) 内燃機関の排気熱回収装置
JP5617721B2 (ja) Egr装置付き過給エンジンの制御装置
WO2013011768A1 (ja) エンジンの冷却回路
JP5267654B2 (ja) エンジンの冷却装置
US20190331018A1 (en) Arrangement and method for tempering exhaust gas recirculation devices, and motor vehicle
JP2012184754A (ja) 冷却装置
JP2010164021A (ja) 排気冷却システム
JP6421597B2 (ja) 吸気温度制御装置
JP2021038726A (ja) 吸気装置及び吸気システム
JP5088337B2 (ja) 内燃機関の排気冷却構造および内燃機関の排気冷却構造の制御装置
JP6593144B2 (ja) 冷却水バルブ制御機構
JP6911634B2 (ja) 内燃機関冷却制御装置
JP2012145008A (ja) 内燃機関の制御装置
JP6648536B2 (ja) 内燃機関の暖機促進システム
JP2016156340A (ja) 内燃機関の冷却装置