JP2013543278A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2013543278A5 JP2013543278A5 JP2013539840A JP2013539840A JP2013543278A5 JP 2013543278 A5 JP2013543278 A5 JP 2013543278A5 JP 2013539840 A JP2013539840 A JP 2013539840A JP 2013539840 A JP2013539840 A JP 2013539840A JP 2013543278 A5 JP2013543278 A5 JP 2013543278A5
- Authority
- JP
- Japan
- Prior art keywords
- doped
- tunnel layer
- layer
- tunnel
- doped tunnel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 6
- 229910000673 Indium arsenide Inorganic materials 0.000 claims description 4
- 238000000231 atomic layer deposition Methods 0.000 claims description 4
- 238000000407 epitaxy Methods 0.000 claims description 4
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 claims description 4
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 4
- 238000000927 vapour-phase epitaxy Methods 0.000 claims description 4
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 3
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/950,912 | 2010-11-19 | ||
| US12/950,912 US11417788B2 (en) | 2010-11-19 | 2010-11-19 | Type-II high bandgap tunnel junctions of InP lattice constant for multijunction solar cells |
| PCT/US2011/052898 WO2012067715A2 (en) | 2010-11-19 | 2011-09-23 | TYPE-II HIGH BANDGAP TUNNEL JUNCTIONS OF InP LATTICE CONSTANT FOR MULTIJUNCTION SOLAR CELLS |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2013543278A JP2013543278A (ja) | 2013-11-28 |
| JP2013543278A5 true JP2013543278A5 (enExample) | 2014-11-13 |
Family
ID=44721114
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2013539840A Pending JP2013543278A (ja) | 2010-11-19 | 2011-09-23 | 多接合型太陽電池に関してInP格子定数を有する広バンドギャップのタイプIIトンネル接合 |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US11417788B2 (enExample) |
| EP (1) | EP2641275B1 (enExample) |
| JP (1) | JP2013543278A (enExample) |
| KR (1) | KR101908742B1 (enExample) |
| CN (2) | CN107863400A (enExample) |
| CA (1) | CA2810895C (enExample) |
| WO (1) | WO2012067715A2 (enExample) |
Families Citing this family (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10283658B2 (en) * | 2011-02-09 | 2019-05-07 | The Board Of Regents Of The University Of Oklahoma | Interband cascade devices |
| CN102751367A (zh) * | 2012-07-10 | 2012-10-24 | 厦门市三安光电科技有限公司 | 三结太阳能电池及其制备方法 |
| GB2504977B (en) | 2012-08-16 | 2017-10-04 | Airbus Defence & Space Gmbh | Laser power converter |
| CN102832274B (zh) * | 2012-09-05 | 2015-01-07 | 天津三安光电有限公司 | 倒装太阳能电池及其制备方法 |
| JP6446782B2 (ja) * | 2013-03-14 | 2019-01-09 | 株式会社リコー | 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法 |
| WO2014142340A1 (en) * | 2013-03-14 | 2014-09-18 | Ricoh Company, Ltd. | Compound semiconductor photovoltaic cell and manufacturing method of the same |
| JP2015038952A (ja) * | 2013-07-16 | 2015-02-26 | 株式会社リコー | 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法 |
| JP6550691B2 (ja) | 2013-07-30 | 2019-07-31 | 株式会社リコー | 化合物半導体太陽電池 |
| JP6582591B2 (ja) * | 2014-07-11 | 2019-10-02 | 株式会社リコー | 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法 |
| JP2016122752A (ja) * | 2014-12-25 | 2016-07-07 | 国立大学法人 東京大学 | 太陽電池 |
| DE102015006379B4 (de) * | 2015-05-18 | 2022-03-17 | Azur Space Solar Power Gmbh | Skalierbare Spannungsquelle |
| US20170084771A1 (en) * | 2015-09-21 | 2017-03-23 | The Boeing Company | Antimonide-based high bandgap tunnel junction for semiconductor devices |
| US10923610B2 (en) | 2015-09-30 | 2021-02-16 | Panasonic Intellectual Property Management Co., Ltd. | Solar cell and solar cell module |
| US10784396B2 (en) * | 2015-09-30 | 2020-09-22 | Panasonic Intellectual Property Management Co., Ltd. | Solar cell, solar cell module, and production method for solar cell |
| MD4510C1 (ro) * | 2016-06-23 | 2018-03-31 | Государственный Университет Молд0 | Procedeu de creştere a structurii n+-p-p+ InP pentru celule solare |
| TWI601298B (zh) * | 2017-02-10 | 2017-10-01 | 友達光電股份有限公司 | 光伏裝置 |
| DE102017005950A1 (de) * | 2017-06-21 | 2018-12-27 | Azur Space Solar Power Gmbh | Solarzellenstapel |
| KR101829743B1 (ko) | 2017-08-29 | 2018-02-20 | 아이피랩 주식회사 | 밴드 갭 조정을 위한 비대칭 삼차원 격자 구조체 |
| MD4554C1 (ro) * | 2017-10-18 | 2018-09-30 | Государственный Университет Молд0 | Procedeu de majorare a eficienţei celulelor fotovoltaice pe baza p+InP-p-InP-n+CdS |
| DE102020001185A1 (de) | 2020-02-25 | 2021-08-26 | Azur Space Solar Power Gmbh | Stapelförmige monolithische aufrecht-metamorphe lll-V-Mehrfachsolarzelle |
| KR102496459B1 (ko) * | 2020-05-07 | 2023-02-03 | 한양대학교 산학협력단 | 페로브스카이트/갈륨비소 탠덤형 태양 전지 및 이의 제조방법 |
Family Cites Families (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4667059A (en) * | 1985-10-22 | 1987-05-19 | The United States Of America As Represented By The United States Department Of Energy | Current and lattice matched tandem solar cell |
| US5019177A (en) * | 1989-11-03 | 1991-05-28 | The United States Of America As Represented By The United States Department Of Energy | Monolithic tandem solar cell |
| US5322572A (en) | 1989-11-03 | 1994-06-21 | The United States Of America As Represented By The United States Department Of Energy | Monolithic tandem solar cell |
| US5079601A (en) | 1989-12-20 | 1992-01-07 | International Business Machines Corporation | Optoelectronic devices based on intraband transitions in combinations of type i and type ii tunnel junctions |
| US5407491A (en) | 1993-04-08 | 1995-04-18 | University Of Houston | Tandem solar cell with improved tunnel junction |
| US5679963A (en) * | 1995-12-05 | 1997-10-21 | Sandia Corporation | Semiconductor tunnel junction with enhancement layer |
| US5923663A (en) | 1997-03-24 | 1999-07-13 | Compaq Computer Corporation | Method and apparatus for automatically detecting media connected to a network port |
| US6150603A (en) | 1999-04-23 | 2000-11-21 | Hughes Electronics Corporation | Bilayer passivation structure for photovoltaic cells |
| US6340788B1 (en) * | 1999-12-02 | 2002-01-22 | Hughes Electronics Corporation | Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications |
| US6316715B1 (en) | 2000-03-15 | 2001-11-13 | The Boeing Company | Multijunction photovoltaic cell with thin 1st (top) subcell and thick 2nd subcell of same or similar semiconductor material |
| US6586669B2 (en) | 2001-06-06 | 2003-07-01 | The Boeing Company | Lattice-matched semiconductor materials for use in electronic or optoelectronic devices |
| US7122733B2 (en) | 2002-09-06 | 2006-10-17 | The Boeing Company | Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds |
| US6765238B2 (en) * | 2002-09-12 | 2004-07-20 | Agilent Technologies, Inc. | Material systems for semiconductor tunnel-junction structures |
| US7812249B2 (en) | 2003-04-14 | 2010-10-12 | The Boeing Company | Multijunction photovoltaic cell grown on high-miscut-angle substrate |
| DE102004004765A1 (de) * | 2004-01-29 | 2005-09-01 | Rwe Space Solar Power Gmbh | Aktive Zonen aufweisende Halbleiterstruktur |
| US7638792B2 (en) * | 2005-03-23 | 2009-12-29 | Nec Corporation | Tunnel junction light emitting device |
| CN101882656B (zh) * | 2005-10-29 | 2014-03-12 | 三星显示有限公司 | 半导体器件及其制造方法 |
| KR100726324B1 (ko) * | 2005-12-05 | 2007-06-11 | 주식회사 레이칸 | 산화막 구경을 갖는 장파장 표면방출 레이저 소자 및 그제조방법 |
| US8124957B2 (en) | 2006-02-22 | 2012-02-28 | Cree, Inc. | Low resistance tunnel junctions in wide band gap materials and method of making same |
| JP2010538495A (ja) * | 2007-09-07 | 2010-12-09 | アンバーウェーブ・システムズ・コーポレーション | 多接合太陽電池 |
| US9722131B2 (en) * | 2009-03-16 | 2017-08-01 | The Boeing Company | Highly doped layer for tunnel junctions in solar cells |
-
2010
- 2010-11-19 US US12/950,912 patent/US11417788B2/en active Active
-
2011
- 2011-09-23 CN CN201710803810.4A patent/CN107863400A/zh active Pending
- 2011-09-23 WO PCT/US2011/052898 patent/WO2012067715A2/en not_active Ceased
- 2011-09-23 JP JP2013539840A patent/JP2013543278A/ja active Pending
- 2011-09-23 CA CA2810895A patent/CA2810895C/en active Active
- 2011-09-23 EP EP11764066.4A patent/EP2641275B1/en active Active
- 2011-09-23 KR KR1020137006454A patent/KR101908742B1/ko active Active
- 2011-09-23 CN CN2011800501461A patent/CN103189998A/zh active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2013543278A5 (enExample) | ||
| Treu et al. | Enhanced luminescence properties of InAs–InAsP core–shell nanowires | |
| Dick et al. | The morphology of axial and branched nanowire heterostructures | |
| Mohseni et al. | Monolithic III‐V nanowire solar cells on graphene via direct van der waals epitaxy | |
| Ketterer et al. | Untangling the electronic band structure of wurtzite GaAs nanowires by resonant Raman spectroscopy | |
| Zheng et al. | Recent progress towards quantum dot solar cells with enhanced optical absorption | |
| Sourribes et al. | Mobility enhancement by Sb-mediated minimisation of stacking fault density in InAs nanowires grown on silicon | |
| Mohseni et al. | In x Ga1–x As nanowire growth on graphene: Van der Waals epitaxy induced phase segregation | |
| Clark et al. | Diameter dependent growth rate and interfacial abruptness in vapor–liquid–solid Si/Si1− x Ge x heterostructure nanowires | |
| Munshi et al. | Position-controlled uniform GaAs nanowires on silicon using nanoimprint lithography | |
| Rudolph et al. | Direct observation of a noncatalytic growth regime for GaAs nanowires | |
| Hjort et al. | Electronic and structural differences between wurtzite and zinc blende InAs nanowire surfaces: experiment and theory | |
| Ren et al. | New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays | |
| Fukui et al. | Position-controlled III–V compound semiconductor nanowire solar cells by selective-area metal–organic vapor phase epitaxy | |
| JP2014514746A5 (enExample) | ||
| Ghasemi et al. | Assembling your nanowire: An overview of composition tuning in ternary III–V nanowires | |
| Xiao et al. | PbI2–MoS2 Heterojunction: van der Waals epitaxial growth and energy band alignment | |
| Ek et al. | Diameter limitation in growth of III-Sb-containing nanowire heterostructures | |
| Kim et al. | Submonolayer quantum dots for optoelectronic devices | |
| Cirlin et al. | Photovoltaic properties of p-doped GaAs nanowire arrays grown on n-type GaAs (111) B substrate | |
| Knutsson et al. | Atomic scale surface structure and morphology of InAs nanowire crystal superlattices: the effect of epitaxial overgrowth | |
| Friedl et al. | Remote doping of scalable nanowire branches | |
| Ishizaka et al. | Growth of wurtzite GaP in InP/GaP core–shell nanowires by selective-area MOVPE | |
| Shin et al. | Characteristics of strain-induced In x Ga1–x As nanowires grown on Si (111) substrates | |
| Norman et al. | InGaAs/GaAs QD superlattices: MOVPE growth, structural and optical characterization, and application in intermediate-band solar cells |