JP2013543278A5 - - Google Patents

Download PDF

Info

Publication number
JP2013543278A5
JP2013543278A5 JP2013539840A JP2013539840A JP2013543278A5 JP 2013543278 A5 JP2013543278 A5 JP 2013543278A5 JP 2013539840 A JP2013539840 A JP 2013539840A JP 2013539840 A JP2013539840 A JP 2013539840A JP 2013543278 A5 JP2013543278 A5 JP 2013543278A5
Authority
JP
Japan
Prior art keywords
doped
tunnel layer
layer
tunnel
doped tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013539840A
Other languages
English (en)
Japanese (ja)
Other versions
JP2013543278A (ja
Filing date
Publication date
Priority claimed from US12/950,912 external-priority patent/US11417788B2/en
Application filed filed Critical
Publication of JP2013543278A publication Critical patent/JP2013543278A/ja
Publication of JP2013543278A5 publication Critical patent/JP2013543278A5/ja
Pending legal-status Critical Current

Links

JP2013539840A 2010-11-19 2011-09-23 多接合型太陽電池に関してInP格子定数を有する広バンドギャップのタイプIIトンネル接合 Pending JP2013543278A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/950,912 2010-11-19
US12/950,912 US11417788B2 (en) 2010-11-19 2010-11-19 Type-II high bandgap tunnel junctions of InP lattice constant for multijunction solar cells
PCT/US2011/052898 WO2012067715A2 (en) 2010-11-19 2011-09-23 TYPE-II HIGH BANDGAP TUNNEL JUNCTIONS OF InP LATTICE CONSTANT FOR MULTIJUNCTION SOLAR CELLS

Publications (2)

Publication Number Publication Date
JP2013543278A JP2013543278A (ja) 2013-11-28
JP2013543278A5 true JP2013543278A5 (enExample) 2014-11-13

Family

ID=44721114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013539840A Pending JP2013543278A (ja) 2010-11-19 2011-09-23 多接合型太陽電池に関してInP格子定数を有する広バンドギャップのタイプIIトンネル接合

Country Status (7)

Country Link
US (1) US11417788B2 (enExample)
EP (1) EP2641275B1 (enExample)
JP (1) JP2013543278A (enExample)
KR (1) KR101908742B1 (enExample)
CN (2) CN107863400A (enExample)
CA (1) CA2810895C (enExample)
WO (1) WO2012067715A2 (enExample)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10283658B2 (en) * 2011-02-09 2019-05-07 The Board Of Regents Of The University Of Oklahoma Interband cascade devices
CN102751367A (zh) * 2012-07-10 2012-10-24 厦门市三安光电科技有限公司 三结太阳能电池及其制备方法
GB2504977B (en) 2012-08-16 2017-10-04 Airbus Defence & Space Gmbh Laser power converter
CN102832274B (zh) * 2012-09-05 2015-01-07 天津三安光电有限公司 倒装太阳能电池及其制备方法
JP6446782B2 (ja) * 2013-03-14 2019-01-09 株式会社リコー 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法
WO2014142340A1 (en) * 2013-03-14 2014-09-18 Ricoh Company, Ltd. Compound semiconductor photovoltaic cell and manufacturing method of the same
JP2015038952A (ja) * 2013-07-16 2015-02-26 株式会社リコー 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法
JP6550691B2 (ja) 2013-07-30 2019-07-31 株式会社リコー 化合物半導体太陽電池
JP6582591B2 (ja) * 2014-07-11 2019-10-02 株式会社リコー 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法
JP2016122752A (ja) * 2014-12-25 2016-07-07 国立大学法人 東京大学 太陽電池
DE102015006379B4 (de) * 2015-05-18 2022-03-17 Azur Space Solar Power Gmbh Skalierbare Spannungsquelle
US20170084771A1 (en) * 2015-09-21 2017-03-23 The Boeing Company Antimonide-based high bandgap tunnel junction for semiconductor devices
US10923610B2 (en) 2015-09-30 2021-02-16 Panasonic Intellectual Property Management Co., Ltd. Solar cell and solar cell module
US10784396B2 (en) * 2015-09-30 2020-09-22 Panasonic Intellectual Property Management Co., Ltd. Solar cell, solar cell module, and production method for solar cell
MD4510C1 (ro) * 2016-06-23 2018-03-31 Государственный Университет Молд0 Procedeu de creştere a structurii n+-p-p+ InP pentru celule solare
TWI601298B (zh) * 2017-02-10 2017-10-01 友達光電股份有限公司 光伏裝置
DE102017005950A1 (de) * 2017-06-21 2018-12-27 Azur Space Solar Power Gmbh Solarzellenstapel
KR101829743B1 (ko) 2017-08-29 2018-02-20 아이피랩 주식회사 밴드 갭 조정을 위한 비대칭 삼차원 격자 구조체
MD4554C1 (ro) * 2017-10-18 2018-09-30 Государственный Университет Молд0 Procedeu de majorare a eficienţei celulelor fotovoltaice pe baza p+InP-p-InP-n+CdS
DE102020001185A1 (de) 2020-02-25 2021-08-26 Azur Space Solar Power Gmbh Stapelförmige monolithische aufrecht-metamorphe lll-V-Mehrfachsolarzelle
KR102496459B1 (ko) * 2020-05-07 2023-02-03 한양대학교 산학협력단 페로브스카이트/갈륨비소 탠덤형 태양 전지 및 이의 제조방법

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4667059A (en) * 1985-10-22 1987-05-19 The United States Of America As Represented By The United States Department Of Energy Current and lattice matched tandem solar cell
US5019177A (en) * 1989-11-03 1991-05-28 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
US5322572A (en) 1989-11-03 1994-06-21 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
US5079601A (en) 1989-12-20 1992-01-07 International Business Machines Corporation Optoelectronic devices based on intraband transitions in combinations of type i and type ii tunnel junctions
US5407491A (en) 1993-04-08 1995-04-18 University Of Houston Tandem solar cell with improved tunnel junction
US5679963A (en) * 1995-12-05 1997-10-21 Sandia Corporation Semiconductor tunnel junction with enhancement layer
US5923663A (en) 1997-03-24 1999-07-13 Compaq Computer Corporation Method and apparatus for automatically detecting media connected to a network port
US6150603A (en) 1999-04-23 2000-11-21 Hughes Electronics Corporation Bilayer passivation structure for photovoltaic cells
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
US6316715B1 (en) 2000-03-15 2001-11-13 The Boeing Company Multijunction photovoltaic cell with thin 1st (top) subcell and thick 2nd subcell of same or similar semiconductor material
US6586669B2 (en) 2001-06-06 2003-07-01 The Boeing Company Lattice-matched semiconductor materials for use in electronic or optoelectronic devices
US7122733B2 (en) 2002-09-06 2006-10-17 The Boeing Company Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
US6765238B2 (en) * 2002-09-12 2004-07-20 Agilent Technologies, Inc. Material systems for semiconductor tunnel-junction structures
US7812249B2 (en) 2003-04-14 2010-10-12 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
DE102004004765A1 (de) * 2004-01-29 2005-09-01 Rwe Space Solar Power Gmbh Aktive Zonen aufweisende Halbleiterstruktur
US7638792B2 (en) * 2005-03-23 2009-12-29 Nec Corporation Tunnel junction light emitting device
CN101882656B (zh) * 2005-10-29 2014-03-12 三星显示有限公司 半导体器件及其制造方法
KR100726324B1 (ko) * 2005-12-05 2007-06-11 주식회사 레이칸 산화막 구경을 갖는 장파장 표면방출 레이저 소자 및 그제조방법
US8124957B2 (en) 2006-02-22 2012-02-28 Cree, Inc. Low resistance tunnel junctions in wide band gap materials and method of making same
JP2010538495A (ja) * 2007-09-07 2010-12-09 アンバーウェーブ・システムズ・コーポレーション 多接合太陽電池
US9722131B2 (en) * 2009-03-16 2017-08-01 The Boeing Company Highly doped layer for tunnel junctions in solar cells

Similar Documents

Publication Publication Date Title
JP2013543278A5 (enExample)
Treu et al. Enhanced luminescence properties of InAs–InAsP core–shell nanowires
Dick et al. The morphology of axial and branched nanowire heterostructures
Mohseni et al. Monolithic III‐V nanowire solar cells on graphene via direct van der waals epitaxy
Ketterer et al. Untangling the electronic band structure of wurtzite GaAs nanowires by resonant Raman spectroscopy
Zheng et al. Recent progress towards quantum dot solar cells with enhanced optical absorption
Sourribes et al. Mobility enhancement by Sb-mediated minimisation of stacking fault density in InAs nanowires grown on silicon
Mohseni et al. In x Ga1–x As nanowire growth on graphene: Van der Waals epitaxy induced phase segregation
Clark et al. Diameter dependent growth rate and interfacial abruptness in vapor–liquid–solid Si/Si1− x Ge x heterostructure nanowires
Munshi et al. Position-controlled uniform GaAs nanowires on silicon using nanoimprint lithography
Rudolph et al. Direct observation of a noncatalytic growth regime for GaAs nanowires
Hjort et al. Electronic and structural differences between wurtzite and zinc blende InAs nanowire surfaces: experiment and theory
Ren et al. New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays
Fukui et al. Position-controlled III–V compound semiconductor nanowire solar cells by selective-area metal–organic vapor phase epitaxy
JP2014514746A5 (enExample)
Ghasemi et al. Assembling your nanowire: An overview of composition tuning in ternary III–V nanowires
Xiao et al. PbI2–MoS2 Heterojunction: van der Waals epitaxial growth and energy band alignment
Ek et al. Diameter limitation in growth of III-Sb-containing nanowire heterostructures
Kim et al. Submonolayer quantum dots for optoelectronic devices
Cirlin et al. Photovoltaic properties of p-doped GaAs nanowire arrays grown on n-type GaAs (111) B substrate
Knutsson et al. Atomic scale surface structure and morphology of InAs nanowire crystal superlattices: the effect of epitaxial overgrowth
Friedl et al. Remote doping of scalable nanowire branches
Ishizaka et al. Growth of wurtzite GaP in InP/GaP core–shell nanowires by selective-area MOVPE
Shin et al. Characteristics of strain-induced In x Ga1–x As nanowires grown on Si (111) substrates
Norman et al. InGaAs/GaAs QD superlattices: MOVPE growth, structural and optical characterization, and application in intermediate-band solar cells