CN107863400A - 用于多结太阳能电池的InP晶格常数的II型高带隙隧道结 - Google Patents

用于多结太阳能电池的InP晶格常数的II型高带隙隧道结 Download PDF

Info

Publication number
CN107863400A
CN107863400A CN201710803810.4A CN201710803810A CN107863400A CN 107863400 A CN107863400 A CN 107863400A CN 201710803810 A CN201710803810 A CN 201710803810A CN 107863400 A CN107863400 A CN 107863400A
Authority
CN
China
Prior art keywords
doping
tunnel
band gap
layer
tunnel layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710803810.4A
Other languages
English (en)
Inventor
R·L·吴
D·C·罗
J·C·布瓦维尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of CN107863400A publication Critical patent/CN107863400A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/88Tunnel-effect diodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明的名称是用于多结太阳能电池的InP晶格常数的II型高带隙隧道结。公开了包括p‑掺杂的AlGaInAs隧道层和n‑掺杂的InP隧道层的II型隧道结。进一步公开了在光电子电池之间并入高带隙II型隧道结的太阳能电池。

Description

用于多结太阳能电池的InP晶格常数的II型高带隙隧道结
本申请是分案申请,原申请的申请日为2011年9月23日、申请号为2011800501461(PCT/US2011/052898)、发明名称为“用于多结太阳能电池的InP晶格常数的II型高带隙隧道结”。
技术领域
本公开一般地涉及光电池,并且更具体地涉及具有高带隙、II型隧道结的InP晶格常数的太阳能电池。
背景技术
太阳能电池是能够通过光生伏打效应将日光能转换为电的器件。太阳能电池可具有一个或多个光电子电池或p-n结。多结太阳能电池具有串联整体连接的不止一个光电子电池。
由于对于污染和有限的可用资源的关注,对太阳能电池的兴趣已正在增长。该兴趣已用于陆地和空间应用。在空间应用中,太阳能电池已经使用超过40年,并且较高效太阳能电池的开发实现了有效负载能力的增长。
每瓦特由光电系统产生的电能的相对高的成本抑制了它在陆地应用中的广泛使用。日光至电的转换效率可能对于陆地PV系统是至关重要的,因为增加的效率对于系统的需要功率输出通常引起相关发电系统组件(如电池区域、模块或集光器区域、支撑结构和水平承压区域)的减少。例如,在将大约2至大约2000倍的日光集中至太阳能电池上的集中器太阳能电池系统中,电池效率的增加一般引起包括昂贵的太阳能电池和集中光学器件的区域的减少。太阳能电池效率的提高在系统水平上是极其有杠杆作用的,并且每瓦特美元($/watt)是系统水平上应用的典型品质因数。对于人造卫星,太阳能电池板代表整个系统成本的<10%,使得超过现有技术发电3%的太阳能电池效率的相关提高引起成本节省。太阳能接收器的成本是整个系统成本的一小部分的陆地集中器太阳能系统也是这样的。
为了增加这种太阳能电池的电能输出,已经叠置具有不同能带隙的多个子电池或层,使得每个子电池或层可吸收日光中宽能量分布的不同部分。这种布置是有利的,因为子电池中吸收的每个光子对应于子电池操作电压下收集的一个单位电荷,其大概线性地取决于子电池的半导体材料的带隙。因为输出功率是电压和电流的乘积,所以理想地有效率的太阳能电池具有很多子电池,每个仅吸收能量微不足道地大于它的带隙的光子。
用于形成光电池的化合物和合金的晶格常数是众所周知的。当这种材料被组合至具有不同材料的子电池的器件时,不同材料的晶格具有在小差别内的相同晶格常数是重要的。这避免了可大幅度降低器件效率的晶体结构中的缺陷的形成。当本文使用术语晶格匹配的时,它表示不多于大约0.3百分比的材料的晶格常数差别。优选地,使晶格常数匹配在大约0.2百分比或更少之内。
在任何多结器件中,电连接必须在子电池之间形成。优选地,这些单元间欧姆接触(IOC)在电池之间应当引起非常低的透射光损失。因此,这些接触应当具有最大的光透明度和最小的电阻。存在两种用于制造这种IOC、金属互连和隧道结(或隧道二极管)的已知方法。金属互连可提供低的电阻,但是它们光透明度差并且难以制作。金属互连的复杂加工导致器件效率和可靠性的可观损失。因此,非常优选隧道结。可生产具有在其间具有隧道结的多个子电池的整体集成器件。但是通过在接触的子电池之间的晶格匹配,隧道结必须满足多个要求如低电阻率、低光损失和结晶学相容性。最重要地,它们必须具备高的峰值电流密度。
一种类型的已用于与InP晶格常数晶格匹配的多结太阳能电池中的隧道结是高掺杂的AlGalnAs同质结型隧道二极管。同质结是具有相同带隙但不同类型掺杂的两个类似层之间的半导体界面,在本情况中,是n-掺杂的AlGalnAs和p-掺杂的AlGalnAs层之间的界面。
图1图解了现有技术InP型双结太阳能电池100,下文中称为“现有技术电池”100。如图1中可见的,现有技术电池100包括第一子电池102和第二子电池104。第一子电池102包括第一GalnPAs发射极和基极120。第一子电池102进一步包括置于第一GalnPAs发射极和基极120上的窗口层110和置于第一GalnPAs发射极和基极120的对侧(或底部)的p-掺杂的InP背面电场(back-surface field)(BSF)层130。第二子电池104包括第二GalnPAs发射极和基极170,其具有置于其顶部上的n-掺杂的InP窗口160和置于其对侧(或底部)的BSF层180。第一和第二GalnPAs发射极和基极120、170分别具有1.1电子伏特(eV)和0.8eV的带隙能。在第一和第二子电池102、104之间是AlGalnAs同质结型隧道二极管190。AlGalnAs同质结型隧道结190包括n-掺杂的AlGalnAs隧道层150和p-掺杂的AlGalnAs隧道层140。
其它类型的已用于与InP晶格常数晶格匹配的多结太阳能电池的隧道结包括II型、低带隙GalnAs/GaAsSb隧道二极管、晶格失配的AlGalnAs/AlGaAs和晶格失配的AlGalnAs/GaAs隧道二极管。但是,低带隙、II型隧道结减少可用于第二子电池的光的量,导致更低转换效率。此外,砷化物型、晶格失配的AlGalnAs/AlGaAs和AlGalnAs/GaAs隧道二极管包括晶格失配材料,并且可能需要应变平衡,其增加了生长过程中的复杂性并且常常降低光电子电池的性能。而且,晶格失配材料方法的可重复性是差的并且维持良好材料质量是困难的。
对于提供具有低的光损失和电损失的提高的峰值隧道电流的InP晶格常数的隧道结存在需要。这种隧道结能够使多结太阳能电池在更高的太阳能强度下运行,而未损害可导致更高能量转换效率的整体器件性能。
发明内容
本公开提供InP晶格常数的改进的II型、高带隙隧道结,用于在多结结构中最优选使用的太阳能(光电)电池。与常规太阳能电池比较,公开的II型、高带隙隧道结使太阳能电池能够以成本上很小的改变达到效率和性能增加。
根据本公开的一方面,提供了隧道结,其包括:p-掺杂的隧道层;和n-掺杂的隧道层;其中所述隧道结具有InP晶格常数。
有利地,所述p-掺杂的隧道层是Al(Ga)InAs的p-掺杂材料;并且所述n-掺杂的隧道层是选自InP、GalnPAs、AlAsSb、AlInAsSb和AlInPAs的n-掺杂材料。
优选地,所述p-掺杂的隧道层是选自x大于或等于0.25直到并且包括x=l的AlxGal-xInAs的p-掺杂材料;并且所述n-掺杂的隧道层是选自InP、GalnPAs、AlAsSb、AlInAsSb和AlInPAs的n-掺杂材料。
优选地,所述p-掺杂的隧道层和所述n-掺杂的隧道层具有l×l019/cm3至l×l020/cm3的掺杂水平。
优选地,所述p-掺杂的隧道层具有大于1.25eV的带隙,并且所述n-掺杂的隧道层具有大于1.35eV的带隙。
优选地,所述p-掺杂的隧道层具有1.25eV的带隙,并且所述n-掺杂的隧道层具有1.35eV的带隙。
优选地,所述p-掺杂的和所述n-掺杂的隧道层在选自金属有机气相外延反应器、氢化物气相外延反应器、分子束外延反应器、化学束外延反应器和原子层沉积反应器的反应器中顺序生长。
根据本公开的另一方面,提供了一种光子器件,其包括:高带隙、II型隧道结,该隧道结包括p-掺杂的隧道层和n-掺杂的隧道层,其中所述高带隙、II型隧道结具有InP晶格常数。
有利地,所述p-掺杂的隧道层是Al(Ga)InAs的p-掺杂材料;并且所述n-掺杂的隧道层是选自InP、GalnPAs、AlAsSb、AlInAsSb和AlInPAs的n-掺杂材料。
优选地,所述p-掺杂的隧道层是选自具有x大于或等于0.25直到并且包括x=l的AlxGal-xInAs的p-掺杂材料;并且所述n-掺杂的隧道层是选自InP、GalnPAs、AlAsSb、AlInAsSb和AlInPAs的n-掺杂材料。
优选地,p-掺杂的隧道层和所述n-掺杂的隧道层具有l×l019/cm3至l×l020/cm3的掺杂水平。
优选地,所述p-掺杂的隧道层具有大于1.25eV的带隙,并且所述n-掺杂的隧道层具有大于1.35eV的带隙。
优选地,所述p-掺杂的隧道层具有1.25eV的带隙,并且所述n-掺杂的隧道层具有1.35eV的带隙。
优选地,所述光子器件进一步包括第一光电池,其被置于所述II型隧道结的第一侧上;和第二光电池,其被置于所述II型隧道结的第二侧上。
有利地,所述光子器件倒置生长。
有利地,所述光子器件正立生长。
有利地,所述光子器件进一步包括与所述第一和第二光电池电连接的一个或多个其它光电池。
优选地,所述第一光电池和所述第二光电池选自InP、AlInAs、AlAsSb、AlInAsSb、AlInPAs、AlGalnAs、GalnPAs、GalnAs、AlGaAsSb、GaAsSb以及它们的组合。
有利地,光子器件进一步包括与所述第一和第二光电池电连接的一个或多个其它光电池。
优选地,所述一个或多个其它光电子电池具有置于其间的所述高带隙、II型隧道结。
根据本公开,公开了包括p-掺杂的AlGalnAs隧道层和n-掺杂的InP隧道层的高带隙、II型隧道结。
根据本公开,公开了包括高带隙、II型隧道结的InP晶格常数的多结太阳能电池。高带隙II型隧道结包括p-掺杂的AlGalnAs隧道层和n-掺杂的InP隧道层。
根据本公开,公开了形成隧道结的方法,其包括在金属有机气相外延(MetalOrganic Vapor Phase Epitaxial)(MOVPE)反应器中生长AlGalnAs和InP掺杂的隧道层,以形成II型高带隙隧道结。
本公开的一个优势是提供具有通过p-n结增加隧道电流的隧道结。
本公开的另一优势是提供具有更窄的空间电荷区的隧道结,增加了隧道穿透几率,并且增加了用于处理更高太阳能强度的隧道二极管的峰值隧道电流。
本公开的另一优势是提供具有改进的材料生长过程的隧道结。
本公开的另一优势是提供比现有的同质结型隧道二极管和II型GaAsSb/GalnAs隧道结具有更高带隙的隧道结。
本公开的另一优势是提供比现有隧道结具有更高光透明度(λ>920nm)的隧道结,因而减少光寄生损失(parasitic loss)。
本公开的另一优势是通过改变相应的掺杂极性和掺杂水平提供充当窗口、BSF和隧道结层的单带隙二元半导体层。这降低了电池结构设计和相应的MOVPE生长过程的复杂性。
本公开的其它特征和优势由以下连同附图——其通过实例阐明本公开的原则——理解的优选实施方式的更详细描述将变得明显。但是,本公开的范围不限于该优选实施方式。
附图简述
图1图解了现有技术InP型双结太阳能电池。
图2图解了根据本公开的太阳能电池的示例性实施方式。
图3图解了通过本公开隧道结形成的II型异质结的n-掺杂的InP层和p-掺杂的AlGalnAs层的交错带隙排列。
图4图解了使用根据本公开的高带隙、II型隧道结的InP型三结太阳能电池。
图5显示了与1.2和1.4suns的现有技术多结太阳能电池比较,15.5suns(15.5倍阳光聚光)的本公开多结太阳能电池的电流和电压之间的关系图。
在可能的任何情况,相同参考数字将贯穿附图使用以表示相同的部分。
详述
图2图解了根据本公开的实施方式的器件200。器件200是光子器件。在该实施方式中,器件200是太阳能电池。在另一实施方式中,器件200可以是多结太阳能电池。在另一实施方式中,器件200可以是其它光子器件,如用于将光转换为电的激光能转换器或传感器。将宽光谱的光能转换为电能的太阳能电池以及将单一波长下的光转换为电能的激光能转换器都是从提高的隧道结性能获益的光子器件的实例。
如图2中可见的,器件200是InP型双结太阳能电池,意指它包括两个光电池。各个光电池可被称为子电池。器件200包括第一光电池202和第二光电池204。第一光电池202包括第一发射极和基极220。在该示例性实施方式中,第一发射极和基极220是具有InP晶格常数的GalnPAs发射极和基极。在另一实施方式中,第一发射极和基极220可以是III-V材料,如,但不限于具有与InP相同晶格常数的不同带隙的AlAsSb、AlGaAsSb、AlInAs、InP、AlGalnAs、GalnAs、GaAsSb或GalnPAs。在一个实施方式中,第一发射极和基极220包括单独的发射极层和基极层(未显示),发射极层最接近入射光。
第一光电池202具有1.1eV的带隙。在另一实施方式中,第一光电池202可具有大约0.73至2.45eV的带隙。在另一实施方式中,第一光电池202可具有大约1.0至1.1eV的带隙。在仍另一实施方式中,第一光电池202可具有大约1.0至1.1eV的带隙,并且可被包括在三结或更多结的太阳能电池中。第一光电池202对于第一光活性子电池层波长敏感。如本文使用,“波长”可指单一离散波长,或“波长”可包括层材料获得良好光至电转换效率的波长范围。
第一光电池202进一步包括窗口层210。窗口层210置于第一发射极和基极220的第一侧220a上,其最接近由箭头L表示的入射光布置。如本文使用,相关术语“顶部”和“底部”分别用于表示最接近和最远离入射光的表面。同样,当用于比较两个层时,“上方”或“下方”或“在……上面”指更接近太阳的层,并且“更低”或“在……以下”或“在……下面”指离太阳或其它照明源更远的层。窗口层210可以是提供大于大约1.1eV带隙能的InP、AlGalnAs、AlInAs、AlAsSb、AlGaAsSb、GalnPAs组合物。窗口层210具有两种功能。窗口层210的第一种功能是减少第一光电子电池202的前表面220a上的少数载流子再结合(即钝化)。此外,窗口材料的光学性能必须使得尽可能多的光被传输至第一光活性子电池202和任何可置于其下面的其它光活性子电池层(未显示),其中光生电荷载流子可被更有效地收集。如果在窗口层210中存在可观的光吸收,窗口层中产生的载流子不太可能被随后收集,并且因此窗口中的光吸收降低了整体转换效率。
器件200可任选地包括置于最接近入射光L——其显示为由箭头指示的方向冲击——的器件200顶部上的抗反射(AR)层或涂层(未显示)。在一个实施方式中,AR涂层可置于窗口层210顶部。AR涂层意欲最小化电池上方的透光介质(如空气、玻璃或聚合物)和器件200的半导体层之间的表面反射,从而使得更多光子能够进入器件200。AR涂层可以由本领域众所周知的材料如TiO2、Ta2O5、SiO2和MgF2制造。AR涂层的厚度可变化,但一般在大约0.04和0.35微米之间。尽管AR涂层可施加至器件200,但是在其它构造中,另一个子电池可叠置或施加在器件200上,另一隧道结位于其间。
第一光电池202进一步包括置于第一发射极和基极220的底部上的p-掺杂的BSF层230。在该示例性实施方式中,p-掺杂的BSF层230是p-掺杂的InP BSF层。在另一实施方式中,p-掺杂的BSF层230可以是AlGalnAs、GaAsSb、AlAsSb、AlGaAsSb、AlInAs、GalnPAs和它们的合金层。在一个实施方式中,使BSF层230与InP晶格匹配。在另一实施方式中,BSF层230可以是具有Matthews-Blakeslee厚度以下厚度的一致应变层。p-掺杂的BSF层230减少了在第一发射极和基极220的后表面的少数载流子再结合。p-掺杂的BSF层230具有的光学性能允许可由p-掺杂的BSF层230下的子电池使用的光传输通过p-掺杂的BSF层230,和/或p-掺杂的BSF层230中的少数载流子性质必须使得由p-掺杂的BSF层230中的光吸收产生的电子和空穴在器件200的p-n结处被有效地收集。少数载流子电子在第一发射极和基极220的p-n结290处收集。BSF层230和第一发射极和基极220中的p-掺杂一般从BSF层230处的最高浓度缓慢变化至第一发射极和基极220的基极层(未显示)处的最低浓度,从而形成从BSF层230朝向发射极和基极220扫过电子的电场。
第二光电池204包括第二发射极和基极270。在该示例性实施方式中,第二发射极和基极270是具有InP晶格常数的GalnPAs层。在另一实施方式中,第二发射极和基极270可以是具有InP晶格常数的GalnAs、GaAsSb、AlGalnAs、AlGaAsSb、GalnPAs和它们的合金。第二发射极和基极270的带隙低于第一发射极和基极220的带隙。
在该示例性实施方式中,第二光电池204具有大约0.8eV的带隙。在另一实施方式中,第二光电池204可具有大约0.73至2.0eV的带隙。在另一实施方式中,第二光电池204可具有大约0.73至0.8eV的带隙。在仍另一实施方式中,第二光电池204可具有大约0.73至0.8eV的带隙,并且被包括在与InP晶格匹配的三结或更多结的太阳能电池中。
第二光电池204进一步包括置于第二发射极和基极270顶部上的n-掺杂的窗口层260。n-掺杂的窗口层260的一般特性类似于窗口层210的窗口特性。n-掺杂的窗口260具有大约2×1018/cm3和2×1019/cm3之间的n-掺杂浓度。在另一实施方式中,n-掺杂的窗口260具有大约l×l019/cm3的n-掺杂浓度,以形成大电场和钝化p-n结270。
第二光电池204进一步包括第二发射极和基极270下方的第二背面电场(BSF)层280。在一个实施方式中,第二BSF层280可以是InP、AlGalnAs、AlAsSb、GaAsSb、AlGaAsSb或GalnPAs更宽带隙层。在一个实施方式中,第二BSF层280与InP晶格匹配。在另一实施方式中,BSF层280可以是具有Matthews-Blakeslee厚度以下厚度的一致应变层。第二BSF层280提供类似于窗口层210的钝化作用,并且具有类似于p-掺杂的InP BSF层230的特性的BSF特性。因此,第二BSF层280减少了第二发射极和基极270的背面270b的少数载流子再结合。第二BSF层280还必须具有这样的光学性能,其允许大多数可由第二BSF层下的任何子电池使用的光传输通过第二BSF层,和/或第二BSF层280中的少数载流子性质必须使得由第二BSF层280中的光吸附产生的电子和空穴在电池204中被有效地收集。
器件200进一步包括高掺杂、高带隙、II型隧道结,其可被称为隧道结或p-n结290。该p-n结具有电串联连接第一光电池202和第二光电池204的InP晶格常数。II型表示,提供更有利的能带布置,其中带电颗粒可以以较少能量隧穿p-n结。这引起更窄的空间电荷区,增加了隧道穿透几率,并且增加了用于处理更高的太阳能强度的隧道二极管的峰值隧道电流。在高水平下掺杂p-n结290的目的是减少带电载流子隧穿p-n结290的阻力。
p-n结290包括高p-掺杂的隧道层240和高n-掺杂的隧道层250。高p-掺杂的隧道层240与InP是晶格匹配的。对于这些隧道层,掺杂水平在1×1019/cm3至1×1020/cm3的范围内。在一个实施方式中,n-掺杂的InP隧道层250可用作隧道二极管的隧道层以及隧道二极管下面的子电池的窗口层。
在一个实施方式中,高p-掺杂的隧道层240可以是高p-掺杂的Al(Ga)InAs隧道层。在另一实施方式中,高p-掺杂的隧道层240是具有x>0.25或x=l的AlxGal-xInAs。高p-掺杂的隧道层240具有大于或等于1.25eV的带隙。在一个实施方式中,高p-掺杂的隧道层240具有大于1.25eV的带隙。在另一实施方式中,高p-掺杂的隧道层240具有1.45eV的带隙。
高n-掺杂的隧道层250是与InP晶格匹配的。在一个实施方式中,高n-掺杂的隧道层250是高带隙III-V半导体,其具有InP晶格常数并且可形成具有p-掺杂的隧道层的II型能带布置。在另一实施方式中,高n-掺杂的隧道层是具有大于或等于1.35eV的带隙和InP晶格常数的高n-掺杂的InP、AlInPAs、AlAsSb或AlGaAsSb隧道层。在一个实施方式中,高n-掺杂的InP隧道层250是具有1.35eV带隙的InP隧道层。
高p-掺杂的隧道层240的带隙必须等于或大于1.25eV,以形成具有高n-掺杂的隧道层250的II型交错隧道结。对于更高的带隙,可使用AlInPAs的n-掺杂的隧道层、AlInAs的p-掺杂的隧道层。必须维持带隙差别或Al-组合物差别,以形成II型交错隧道二极管。
太阳能电池200可进一步包括在BSF层280下面的基底(未显示)。在一个实施方式中,基底可以是InP。在另一实施方式中,基底可以是硅、GaSb、CdTe、InP/Si模板或InGaAs/Si模板或其它半导体。在一个实施方式中,基底可被单面抛光或双面抛光。在一个实施方式中,基底可具有(100)的表面方向和300-1000μm或更多的厚度。在一个实施方式中,基底可被n型或p型掺杂。在一个实施方式中,基底被p型掺杂。在一个实施方式中,基底可掺杂至大于5×l018/cm3,以能够欧姆接触至金属接触层。
窗口层210可在其上具有浓掺杂的n型盖层(cap layer),使用标准光刻技术对其形成图案。设计该图案以留下大面积的窗口层对入射光敞开。该盖层可具有金属接触层,其被形成图案以仅接触盖层,留下大面积的窗口对入射光敞开。金属接触层使得能够与太阳能电池进行欧姆接触,用于随后装配至提供电路的电源。
在不损害整体器件性能的情况下,p-n结290在器件200的隧道结中提供改进的光透明度和改进的峰值隧穿电流,其引起在更高的太阳能强度下更高的能量转换效率。p-n结290能够在更高的太阳能强度下运行,因此提高了更高的太阳能转换效率。
AlGalnAs和InP掺杂的隧道层240、250在金属有机气相外延(MOVPE)反应器中顺序地生长,以形成p-n结290——在本情况中是隧道结二极管。而且,器件200和器件组件(窗口、BSF)在MOVPE反应器中生长。在另一实施方式中,p-n结290可在金属有机气相外延(MOVPE)反应器、分子束外延(MBE)反应器、化学束外延(CBE)反应器、氢化物气相外延(HVPE)反应器或原子层沉积(ALD)反应器中生长。
图2中显示的器件200是正立太阳能电池构造,或换句话说,器件200以新的层在先前层之上并且最后是多结电池的最高带隙电池进行生长。在另一实施方式中,器件200可倒置或多结电池的最高带隙电池首先生长。生长的顺序取决于正立或倒置构造而改变,但是对于测试和室外操作,最高带隙电池置于最接近太阳。在一个实施方式中,器件200可以是具有高带隙、II型隧道结的倒置InP-型多结电池。根据本公开,p-掺杂的隧道层总在p-掺杂的BSF层和n-掺杂的隧道层之间,并且n-掺杂的隧道层在p-掺杂的隧道层和n-掺杂的窗口层之间。
根据本公开,隧道结290中的材料(AlGalnAs/InP)的带隙高于现有方案,例如当与分别具有0.73/0.77eV带隙的GalnAs/GaAsSb的隧道结比较时,其允许更高的光透明度,以便更低的寄生损失。本公开提供了具有1.25eV的AlGalnAs的带隙的p-n结290,并且InP的带隙是1.35eV,其与二极管上具有1.25eV带隙的现有技术AlGalnAs同质结型隧道二极管比较。在一个实施方式中,隧道结290的带隙在0.73eV至2.0eV范围内,与InP晶格常数是晶格匹配的。在另一实施方式中,隧道结290的带隙大于1.25eV。在一个实施方式中,隧道结290具有比现有方案更大的光透明度(λ)。
利用甚至更高带隙的半导体合金例如AlInAs、AlAsSb和AlInPAs的其它实施方式对于扩大的波长范围可具有甚至更大的光透明度。隧道结290中使用的材料(如,AlGalnAs/InP)的能带偏移(band offset)形成II型异质结构隧道结二极管,其减少了带电颗粒隧穿p-n结所需的能量的量。这导致更窄的空间电荷区,增加了隧道穿透几率并且增加了用于处理更高的太阳能强度的隧道二极管的峰值隧道电流。
异质结型隧道二极管将合金层放在器件的形成具有隧道结的p-区的II型能带布置的区域(p-n结的n-区)中。通常,隧道穿透几率可由以下方程式近似:
其中Eg是结型半导体层的带隙,并且w是p-n结的耗尽宽度(depletion width)。
该方程式表明,隧道穿透几率随着结的带隙减少而增加。在由p-n结290形成的II型异质结中,n-掺杂的层和p-掺杂的层的带隙如图3中显示地交错。该能带布置将Eg降低至Eg eff——在异质结界面的p-侧的价带边缘和n-侧的导带边缘之间的能隙。因为Eg eff小于同质结的Eg,II型隧道结的隧道穿透几率的确比同质结的更高。
可被称为高带隙、II型隧道结二极管的p-n结290可将光电子电池——其由InP、AlInAs、AlInAsP、AlAsSb、AlInAsSb、AlGaAsSb、AlGalnAs、GalnPAs、GalnAs、GaAsSb和它们的组合形成——整体集成至InP晶格常数的多结太阳能电池中。在一个实施方式中,高带隙(例如AlGalnAs/InP)II型隧道结二极管可使得单结太阳能电池能够在与用于空间或陆地应用的预期器件的第一层(如p型BSF或n型窗口)相反极性的基底上生长。
另外,AlGalnAs/InP II型隧道结二极管可实现制作超高效率(>33%)半导体直接结合的多结太阳能电池、碳纳米管结合的(CNT结合的)多结太阳能电池和具有处于InP晶格常数的组件子电池的多结太阳能电池。例如,处于InP晶格常数的低带隙(~0.7-1.2-eV)组件子电池正成为超高效率(>33%)多结太阳能电池结构中的关键组件之一。
在另一实施方式中,AlGalnAs/InP II型隧道结二极管可用于多结太阳能电池中,由于更高的峰值隧穿电流和更低的寄生光损失,形成具有更高性能的期望带隙结合的太阳能电池。
图4图解了多结光电器件400的实施方式。光电器件400可以是多结太阳能电池。如图4中可见的,显示了包括第一光电池410、第二光电池420和第三光电池430的多结太阳能电池400。在相邻电池间放置的是如上所述的p-n结290。
多结太阳能电池400进一步包括基底450。在该示例性实施方式中,基底450是InP基底。在另一实施方式中,基底450可以是转移至有效基底上的具有InP晶格常数的InP层或III-V半导体层,有效基底如InP或GalnAs与Si、Ge、GaAs、InAs、GaP、GaSb、聚合物、金属基底结合的混合模板。而且,多结太阳能电池400可进一步包括如上所述的窗口层和BSF层。
图5显示了与使用同质结AlGalnAs/AlGalnAs隧道二极管在1.2和1.4suns的两个示例性现有技术多结太阳能电池的电流和电压函数比较,15.5suns的根据本公开的多结太阳能电池的电流和电压函数(IV曲线)。如图5中可见的,使用该公开中所述的II型隧道二极管的太阳能电池提供这样的IV曲线,其如预期的在15.5suns下起作用,并且具有超过运行太阳能电池所需的电流的峰值隧穿电流,能够在该浓度下处理0.25A/cm2的电流密度。
虽然为了说明的目的,已经详细地描述了本公开的具体实施方式,但是可在不脱离本公开的精神和范围的情况下做出各种改进和提高。因此,本公开除了被所附权利要求限制以外不被限制。

Claims (20)

1.隧道结,其包括:
p-掺杂的隧道层;和
n-掺杂的隧道层;
其中所述隧道结具有InP晶格常数。
2.权利要求1所述的隧道结,其中所述p-掺杂的隧道层是Al(Ga)InAs的p-掺杂材料;并且所述n-掺杂的隧道层是选自InP、GalnPAs、AlAsSb、AlInAsSb和AlInPAs的n-掺杂材料。
3.权利要求1或2所述的隧道结,其中所述p-掺杂的隧道层是选自x大于或等于0.25直到并且包括x=l的AlxGal-xInAs的p-掺杂材料;并且所述n-掺杂的隧道层是选自InP、GalnPAs、AlAsSb、AlInAsSb和AlInPAs的n-掺杂材料。
4.权利要求1-3中任一项所述的隧道结,其中所述p-掺杂的隧道层和所述n-掺杂的隧道层具有l×l019/cm3至l×l020/cm3的掺杂水平。
5.权利要求1-4中任一项所述的隧道结,其中所述p-掺杂的隧道层具有大于1.25eV的带隙,并且所述n-掺杂的隧道层具有大于1.35eV的带隙。
6.权利要求1-4中任一项所述的隧道结,其中所述p-掺杂的隧道层具有1.25eV的带隙,并且所述n-掺杂的隧道层具有1.35eV的带隙。
7.权利要求1-6中任一项所述的隧道结,其中所述p-掺杂的和所述n-掺杂的隧道层在选自金属有机气相外延反应器、氢化物气相外延反应器、分子束外延反应器、化学束外延反应器和原子层沉积反应器的反应器中顺序生长。
8.光子器件(200),其包括:
高带隙、II型隧道结(290),其包括:
p-掺杂的隧道层(240);和
n-掺杂的隧道层(250);
其中所述高带隙、II型隧道结(290)具有InP晶格常数。
9.权利要求8所述的光子器件,其中所述p-掺杂的隧道层(240)是Al(Ga)InAs的p-掺杂材料;并且所述n-掺杂的隧道层(250)是选自InP、GalnPAs、AlAsSb、AlInAsSb和AlInPAs的n-掺杂材料。
10.权利要求8或9所述的光子器件,其中所述p-掺杂的隧道层是选自具有x大于或等于0.25直到并且包括x=l的AlxGal-xInAs的p-掺杂材料;并且所述n-掺杂的隧道层是选自InP、GalnPAs、AlAsSb、AlInAsSb、AlInPAs、GaInPAs、GaInAs、AlGaAsSb、GaAsSb以及它们的组合的n-掺杂材料。
11.权利要求8或9中任一项所述的光子器件,其中p-掺杂的隧道层(240)和所述n-掺杂的隧道层(250)具有l×l019/cm3至l×l020/cm3的掺杂水平。
12.权利要求8-11中任一项所述的光子器件,其中所述p-掺杂的隧道层(240)具有大于1.25eV的带隙,并且所述n-掺杂的隧道层(250)具有大于1.35eV的带隙。
13.权利要求8-11中任一项所述的光子器件,其中所述p-掺杂的隧道层(240)具有1.25eV的带隙,并且所述n-掺杂的隧道层(250)具有1.35eV的带隙。
14.权利要求8-13中任一项所述的光子器件,进一步包括:
第一光电池(202),其被置于所述II型隧道结(290)的第一侧上;和
第二光电池(204),其被置于所述II型隧道结(290)的第二侧上。
15.权利要求14所述的光子器件,进一步包括:
与所述第一和第二光电池电连接的一个或多个其它光电池。
16.权利要求14或15所述的光子器件,其中所述第一光电池(202)和所述第二光电池(204)选自InP、AlInAs、AlAsSb、AlInAsSb、AlInPAs、AlGalnAs、GalnPAs、GalnAs、AlGaAsSb、GaAsSb以及它们的组合。
17.权利要求14-16中任一项所述的光子器件,其中所述一个或多个其它光电子电池具有置于其间的所述高带隙、II型隧道结。
18.制作光电器件的方法,其包括:
生长p-掺杂的隧道层;和
生长n-掺杂的隧道层;
其中所述p-掺杂的和n-掺杂的隧道层形成具有InP晶格常数的高带隙、II型隧道结。
19.权利要求18所述的方法,
其中所述p-掺杂的和n-掺杂的隧道层在选自金属有机气相外延反应器、氢化物气相外延反应器、分子束外延反应器、化学束外延反应器和原子层沉积反应器的反应器中顺序生长。
20.权利要求18或19所述的方法,其进一步包括:
生长由所述高带隙、II型隧道结分开的两个或更多个光电池。
CN201710803810.4A 2010-11-19 2011-09-23 用于多结太阳能电池的InP晶格常数的II型高带隙隧道结 Pending CN107863400A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/950,912 2010-11-19
US12/950,912 US11417788B2 (en) 2010-11-19 2010-11-19 Type-II high bandgap tunnel junctions of InP lattice constant for multijunction solar cells
CN2011800501461A CN103189998A (zh) 2010-11-19 2011-09-23 用于多结太阳能电池的InP晶格常数的II型高带隙隧道结

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2011800501461A Division CN103189998A (zh) 2010-11-19 2011-09-23 用于多结太阳能电池的InP晶格常数的II型高带隙隧道结

Publications (1)

Publication Number Publication Date
CN107863400A true CN107863400A (zh) 2018-03-30

Family

ID=44721114

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2011800501461A Pending CN103189998A (zh) 2010-11-19 2011-09-23 用于多结太阳能电池的InP晶格常数的II型高带隙隧道结
CN201710803810.4A Pending CN107863400A (zh) 2010-11-19 2011-09-23 用于多结太阳能电池的InP晶格常数的II型高带隙隧道结

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2011800501461A Pending CN103189998A (zh) 2010-11-19 2011-09-23 用于多结太阳能电池的InP晶格常数的II型高带隙隧道结

Country Status (7)

Country Link
US (1) US11417788B2 (zh)
EP (1) EP2641275B1 (zh)
JP (1) JP2013543278A (zh)
KR (1) KR101908742B1 (zh)
CN (2) CN103189998A (zh)
CA (1) CA2810895C (zh)
WO (1) WO2012067715A2 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10283658B2 (en) * 2011-02-09 2019-05-07 The Board Of Regents Of The University Of Oklahoma Interband cascade devices
CN102751367A (zh) * 2012-07-10 2012-10-24 厦门市三安光电科技有限公司 三结太阳能电池及其制备方法
GB2504977B (en) * 2012-08-16 2017-10-04 Airbus Defence & Space Gmbh Laser power converter
CN102832274B (zh) * 2012-09-05 2015-01-07 天津三安光电有限公司 倒装太阳能电池及其制备方法
JP2015038952A (ja) * 2013-07-16 2015-02-26 株式会社リコー 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法
JP6446782B2 (ja) * 2013-03-14 2019-01-09 株式会社リコー 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法
CN105190911B (zh) * 2013-03-14 2018-04-20 株式会社理光 化合物半导体光伏电池和其制造方法
JP6550691B2 (ja) * 2013-07-30 2019-07-31 株式会社リコー 化合物半導体太陽電池
JP6582591B2 (ja) 2014-07-11 2019-10-02 株式会社リコー 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法
JP2016122752A (ja) * 2014-12-25 2016-07-07 国立大学法人 東京大学 太陽電池
DE102015006379B4 (de) * 2015-05-18 2022-03-17 Azur Space Solar Power Gmbh Skalierbare Spannungsquelle
US20170084771A1 (en) * 2015-09-21 2017-03-23 The Boeing Company Antimonide-based high bandgap tunnel junction for semiconductor devices
US10923610B2 (en) 2015-09-30 2021-02-16 Panasonic Intellectual Property Management Co., Ltd. Solar cell and solar cell module
US10784396B2 (en) * 2015-09-30 2020-09-22 Panasonic Intellectual Property Management Co., Ltd. Solar cell, solar cell module, and production method for solar cell
MD4510C1 (ro) * 2016-06-23 2018-03-31 Государственный Университет Молд0 Procedeu de creştere a structurii n+-p-p+ InP pentru celule solare
TWI601298B (zh) * 2017-02-10 2017-10-01 友達光電股份有限公司 光伏裝置
DE102017005950A1 (de) * 2017-06-21 2018-12-27 Azur Space Solar Power Gmbh Solarzellenstapel
KR101829743B1 (ko) 2017-08-29 2018-02-20 아이피랩 주식회사 밴드 갭 조정을 위한 비대칭 삼차원 격자 구조체
MD4554C1 (ro) * 2017-10-18 2018-09-30 Государственный Университет Молд0 Procedeu de majorare a eficienţei celulelor fotovoltaice pe baza p+InP-p-InP-n+CdS
DE102020001185A1 (de) 2020-02-25 2021-08-26 Azur Space Solar Power Gmbh Stapelförmige monolithische aufrecht-metamorphe lll-V-Mehrfachsolarzelle
KR102496459B1 (ko) * 2020-05-07 2023-02-03 한양대학교 산학협력단 페로브스카이트/갈륨비소 탠덤형 태양 전지 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679963A (en) * 1995-12-05 1997-10-21 Sandia Corporation Semiconductor tunnel junction with enhancement layer
CN1914744A (zh) * 2004-01-29 2007-02-14 Rwe太空太阳能有限责任公司 具有作用区的半导体结构
US20100229930A1 (en) * 2009-03-16 2010-09-16 The Boeing Company Highly doped layer for tunnel junctions in solar cells
CN101882656A (zh) * 2005-10-29 2010-11-10 三星电子株式会社 半导体器件及其制造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4667059A (en) * 1985-10-22 1987-05-19 The United States Of America As Represented By The United States Department Of Energy Current and lattice matched tandem solar cell
US5322572A (en) 1989-11-03 1994-06-21 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
US5019177A (en) * 1989-11-03 1991-05-28 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
US5079601A (en) 1989-12-20 1992-01-07 International Business Machines Corporation Optoelectronic devices based on intraband transitions in combinations of type i and type ii tunnel junctions
US5407491A (en) 1993-04-08 1995-04-18 University Of Houston Tandem solar cell with improved tunnel junction
US5923663A (en) 1997-03-24 1999-07-13 Compaq Computer Corporation Method and apparatus for automatically detecting media connected to a network port
US6150603A (en) 1999-04-23 2000-11-21 Hughes Electronics Corporation Bilayer passivation structure for photovoltaic cells
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
US6316715B1 (en) 2000-03-15 2001-11-13 The Boeing Company Multijunction photovoltaic cell with thin 1st (top) subcell and thick 2nd subcell of same or similar semiconductor material
US6586669B2 (en) 2001-06-06 2003-07-01 The Boeing Company Lattice-matched semiconductor materials for use in electronic or optoelectronic devices
US7122733B2 (en) 2002-09-06 2006-10-17 The Boeing Company Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
US6765238B2 (en) * 2002-09-12 2004-07-20 Agilent Technologies, Inc. Material systems for semiconductor tunnel-junction structures
US7812249B2 (en) 2003-04-14 2010-10-12 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
JP5273516B2 (ja) * 2005-03-23 2013-08-28 日本電気株式会社 トンネル接合発光素子
KR100726324B1 (ko) * 2005-12-05 2007-06-11 주식회사 레이칸 산화막 구경을 갖는 장파장 표면방출 레이저 소자 및 그제조방법
US8124957B2 (en) 2006-02-22 2012-02-28 Cree, Inc. Low resistance tunnel junctions in wide band gap materials and method of making same
US8344242B2 (en) * 2007-09-07 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679963A (en) * 1995-12-05 1997-10-21 Sandia Corporation Semiconductor tunnel junction with enhancement layer
CN1914744A (zh) * 2004-01-29 2007-02-14 Rwe太空太阳能有限责任公司 具有作用区的半导体结构
CN101882656A (zh) * 2005-10-29 2010-11-10 三星电子株式会社 半导体器件及其制造方法
US20100229930A1 (en) * 2009-03-16 2010-09-16 The Boeing Company Highly doped layer for tunnel junctions in solar cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y.GU 等: "High-efficiency InP based four-junction solar cells", 《LASERS AND ELECTRO-OPTICS SOCIETY, 2003. LEOS 2003. THE 16TH ANNUAL MEETING OF THE IEEE》 *

Also Published As

Publication number Publication date
KR20140009119A (ko) 2014-01-22
EP2641275A2 (en) 2013-09-25
KR101908742B1 (ko) 2018-10-16
CA2810895A1 (en) 2012-05-24
US20120125392A1 (en) 2012-05-24
JP2013543278A (ja) 2013-11-28
CN103189998A (zh) 2013-07-03
US11417788B2 (en) 2022-08-16
WO2012067715A2 (en) 2012-05-24
EP2641275B1 (en) 2022-07-06
WO2012067715A3 (en) 2012-12-06
CA2810895C (en) 2018-10-16

Similar Documents

Publication Publication Date Title
CN107863400A (zh) 用于多结太阳能电池的InP晶格常数的II型高带隙隧道结
TWI600173B (zh) 在中間電池中具有低能隙吸收層之多接面太陽能電池及其製造方法
Akinoglu et al. Beyond 3rd generation solar cells and the full spectrum project. Recent advances and new emerging solar cells
CN101221993B (zh) 纳米壁太阳能电池和光电子器件
US6300557B1 (en) Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters
CN101740647B (zh) 具有两个变质层的四结倒置变质多结太阳能电池
US7812249B2 (en) Multijunction photovoltaic cell grown on high-miscut-angle substrate
CN101499495B (zh) 倒置变形多结太阳能电池中的异质结子电池
US20120285524A1 (en) Solar cells having a transparent composition-graded buffer layer
US20080257405A1 (en) Multijunction solar cell with strained-balanced quantum well middle cell
Nakai et al. GaAs/InGaP core–multishell nanowire-array-based solar cells
US20110303268A1 (en) HIGH EFFICIENCY InGaAsN SOLAR CELL AND METHOD OF MAKING
KR101783971B1 (ko) 금속 디스크 어레이를 구비한 적층형 태양전지
US8962992B2 (en) Dilute group III-V nitride intermediate band solar cells with contact blocking layers
Miyashita et al. Inverted lattice-matched triple junction solar cells with 1.0 eV GaInNAsSb subcell by MOCVD/MBE hybrid growth
Alferov et al. III-V heterostructures in photovoltaics
Hubbard et al. InAs quantum dot enhancement of GaAs solar cells
Goodnick et al. Solar cells
Tsakalakos Introduction to photovoltaic physics, applications, and technologies
Ataşer et al. Effects of band gap alignment and temperature on device performance of GaInP/Ga (In) As monolithic tandem solar cells
JP2013172072A (ja) 2接合太陽電池
Yamaguchi et al. Super-high-efficiency III-V tandem and multi-junction cells
Geldasa Solar Energy Conversion Efficiency, Growth Mechanism and Design of III–V Nanowire-Based Solar Cells
Ramiro Alternative Solar-Cell Technologies
YAMAGUCHI SUPER-HIGH-EFFICIENCY III–V TANDEMAND MULTIJUNCTION CELLS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180330