JP2013512872A - 触媒及びアミンの製造方法 - Google Patents

触媒及びアミンの製造方法 Download PDF

Info

Publication number
JP2013512872A
JP2013512872A JP2012541435A JP2012541435A JP2013512872A JP 2013512872 A JP2013512872 A JP 2013512872A JP 2012541435 A JP2012541435 A JP 2012541435A JP 2012541435 A JP2012541435 A JP 2012541435A JP 2013512872 A JP2013512872 A JP 2013512872A
Authority
JP
Japan
Prior art keywords
catalyst
range
oxygen
hydrogen
catalytically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012541435A
Other languages
English (en)
Other versions
JP5755237B2 (ja
Inventor
クバネク ペトル
メーガーライン ヴォルフガング
メルダー ヨハン−ペーター
ハイデマン トーマス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of JP2013512872A publication Critical patent/JP2013512872A/ja
Application granted granted Critical
Publication of JP5755237B2 publication Critical patent/JP5755237B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/14Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups
    • C07C209/16Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups with formation of amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • C07C209/26Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds by reduction with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/08Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
    • C07D295/084Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
    • C07D295/088Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen

Abstract

第一級もしくは第二級のアルコール、アルデヒド及び/又はケトンと、水素及び、アンモニア、第一級の及び第二級のアミンの群から選択される窒素化合物とを、担持された銅とニッケルとコバルトを含有する触媒の存在下で反応させることによってアミンを製造する方法において、該触媒の触媒活性物質が、その水素による還元の前に、アルミニウム、銅、ニッケル、コバルト及びスズの酸素含有の化合物を含有し、かつそれぞれY23、La23、Ce23もしくはHf23として計算して0.2〜5.0質量%の範囲においてイットリウム、ランタン、セリウム及び/又はハフニウムの酸素含有の化合物を含有することを特徴とする方法並びに上記定義の触媒。

Description

本発明は、酸化アルミニウムと銅とニッケルとコバルトを含有する触媒並びに第一級もしくは第二級のアルコール、アルデヒド及び/又はケトンと水素及びアンモニア、第一級の及び第二級のアミンの群から選択される窒素化合物とを、銅とニッケルとコバルトを含有する担持された触媒の存在下に反応させることによるアミンの製造方法に関する。
該方法の生成物は、とりわけ燃料添加剤(US3,275,554号A;DE2125039号A及びDE3611230号A)、界面活性剤、医薬品及び植物保護剤、エポキシ樹脂用の硬化剤、ポリウレタン用の触媒、第四級アンモニウム化合物の製造のための中間生成物、可塑剤、腐食防止剤、人工樹脂、イオン交換体、テキスタイル助剤、染料、加硫促進剤及び/又は乳化剤の製造に際しての中間生成物として使用される。
EP963975号A1及びEP1106600号A2(両者ともBASF AG)は、触媒活性物質が22〜40質量%(もしくは22〜45質量%)のジルコニウムの酸素含有の化合物と、1〜30質量%の銅の酸素含有の化合物と、それぞれ15〜50質量%(もしくは5〜50質量%)のニッケル及びコバルトの酸素含有の化合物とを含有する触媒を使用した、アルコールもしくはアルデヒド又はケトン及び窒素化合物からのアミンの製造方法を記載している。またWO03/076386号A及びEP1431271号A1(両者ともBASF AG)は、アミノ化のための上述の型の触媒を教示している。Sn含有率は教示されていない。
EP514692号A2(BASF AG)は、アルカノールからCu、Ni、場合によりCo、ZrO2及び/又はAl23を含有する触媒の存在下でアミンを製造する方法に関する。その好ましい触媒は、55質量%のAl23、36質量%のCu及び7質量%のNiからなる(実施例1)。Sn含有率は教示されていない。
WO03/051508号A1(Huntsman Petrochemical Corp.)は、更なる一実施態様においてCrをZrの代わりに含有する特定のCu/Ni/Zr/Sn含有の触媒(第4頁第10〜16行)を使用した、アルコールのアミノ化のための方法に関する。このWO出願に記載される触媒は、酸化アルミニウムとコバルトを含有しない。
WO2007/036496号A(BASF AG)は、ジエチレングリコール(DEG)とアンモニアとを遷移金属−不均一系触媒の存在下で反応させることによってアミノジグリコール(ADG)及びモルホリンを製造する方法において、該触媒の触媒活性物質が、水素での処理の前に、アルミニウム及び/又はジルコニウム、銅、ニッケル及びコバルトの酸素含有の化合物を含有し、かつ触媒成形体が特定形状を有する方法を記載している。Sn含有率は教示されていない。
DE2844984号A1(Shell Int.Res.)は、25個までの炭素原子を有するアルコール、アルデヒドもしくはケトンと、アンモニア、第一級アミンもしくは第二級アミンとを、Cu、Sn及び場合によりアルカリ金属もしくはアルカリ土類金属を、例えば酸化アルミニウムなどの多孔質担体上で含む触媒上で反応させることによってアミンを製造する方法を記載している。これらの触媒は、ニッケルとコバルトを含有しない。
EP839574号A2及びEP839575号A2(両者ともBASF AG)は、アルコールのアミノ化のための触媒であって、Ni、Co、Cu、Ruを、例えば酸化アルミニウム、二酸化ケイ素、二酸化チタン、二酸化ジルコニウムなどの多孔質の金属酸化物担体上で含む前記触媒を記載している。数ある可能な助触媒(Promotor)としてSnが挙げられている。触媒活性と触媒安定性は、改善に値するものである。
US6,147,261号(Shell Oil Corp.)は、規定のヒドロキシアルカナールのアミノ化のためのニッケル及び/又はコバルトの触媒であって、任意に例えば酸化アルミニウム、酸化マグネシウム、シリカなどの担体を含む前記触媒を教示している。好ましい触媒は、ラネーコバルト及びラネーニッケルである。記載される触媒は、Snを含有しない。
US6,534,441号B1(Union Carbide)は、低級脂肪族アルカン誘導体の還元的アミノ化のための触媒であって、その活性物質がNiとReとの相乗効果から利を得るべき前記触媒を記載している。かかる触媒は、5〜65質量%のシリカを含むアルミノケイ酸塩担体を基礎としている。該触媒は、周期律表の数多くの族、とりわけ第IVA族(Sn)、第IB族(Cu)、第VIII族(Ni,Co)からの1つの助触媒を含んでもよい。
WO98/26868号A1(Batelle Memorial Institute)は、Niを基礎とする水相中での反応用の触媒であって、Cu、Sn、Ag、Re、Ru又はそれらの組み合わせの群からの1つの助触媒を含む前記触媒を記載している。助触媒の含有率は、5質量%未満である。アルコール/アルデヒド/ケトンのアミノ化は、記載されていない。同様に、酸化アルミニウム担体は、記載された担体に属しない。
WO2004/084887号A1(DuPont)は、レブリン酸及び芳香族アミンからピロリドン誘導体を製造する方法(還元的アミノ化)をクレームしている。特に貴金属を種々の担体、例えばとりわけアルミナなどの上にも含む、数多くの種々の触媒が使用される。Snは含まれていない。
DE1953263号A(BASF AG)は、コバルト、ニッケル及び銅を酸化アルミニウム上に含有する触媒であって、触媒全体に対して5〜80質量%の、特に10〜30質量%の金属含量を有し、前記金属含量に対して計算して、70〜95質量%のコバルトとニッケルとからの混合物及び5〜30質量%の銅を含有する前記触媒を開示している。例えば、前記触媒は、Al23上の、10質量%のCoO、10質量%のNiO及び4質量%のCuOという組成を有する。該触媒はSnを含有せず、かつ触媒活性と触媒安定性は改善に値するものである。
WO2008/006750号A1(BASF AG)は、規定の、Pb、Bi、Sn、Sb及び/又はInでドープされた、二酸化ジルコニウムと銅とニッケルとコバルトを含有する触媒と、該触媒を、第一級アルコールもしくは第二級アルコール、アルデヒド及び/又はケトンと水素及びアンモニア、第一級もしくは第二級アミンとの反応によりアミンを製造する方法で用いる使用に関する。酸化アルミニウム担体は教示されていない。
WO2009/080507号A1(BASF AG)は、規定の、Sn及びCoでドープされた、二酸化ジルコニウム含有の、銅含有の及びニッケル含有の触媒と、該触媒を、第一級もしくは第二級のアルコール、アルデヒド及び/又はケトンと水素及びアンモニア、第一級もしくは第二級のアミンとを反応させることによってアミンを製造する方法で用いる使用に関する。酸化アルミニウム担体は教示されていない。
WO2009/080506号A1(BASF AG)は、規定の、Pb、Bi、Sn、Mo、Sb及び/又はPでドープされた、二酸化ジルコニウムとニッケルと鉄を含有する触媒と、該触媒を、第一級もしくは第二級のアルコール、アルデヒド及び/又はケトンと水素及びアンモニア、第一級もしくは第二級のアミンとを反応させることによってアミンを製造する方法で用いる使用に関する。酸化アルミニウム担体は教示されていない。好ましくは、該触媒は、CuとCoを含有しない。
WO2009/080508号A1(BASF AG)は、規定の、Pb、Bi、Sn及び/又はSbでドープされた、二酸化ジルコニウムと銅とニッケルとコバルトと鉄を含有する触媒と、該触媒を、第一級もしくは第二級のアルコール、アルデヒド及び/又はケトンと水素及びアンモニア、第一級もしくは第二級のアミンとを反応させることによってアミンを製造する方法で用いる使用に関する。酸化アルミニウム担体は教示されていない。
WO2009/114438号A2(Huntsman Petrochem.Corp.)は、シクロヘキサンジメタノールの、水素及びZrO2担持された金属触媒、例えばZrO2/Cu/Ni/Snの存在下でのアミノ化に関する。
同一出願日での並行欧州特許出願(BASF SE)は、規定の、酸化アルミニウムと銅とニッケルとコバルトとスズを含有する触媒と、該触媒を、第一級もしくは第二級アルコール、アルデヒド及び/又はケトンからアミンを製造する方法で用いる使用に関する。
先行技術の非常に活性な触媒を、特にまたEP963975号A1及びEP1106600号A2(前記参照)による触媒を使用する場合には、出発物質(アルコール、アルデヒド、ケトン)においては、高められた温度で強められて、(場合により中間的に生ずる)カルボニル官能の脱カルボニル化がもたらされることがある。一酸化炭素(CO)の水素化によるメタンの形成は、放散される大きい水素化熱に基づき、"暴走の危険性"に導く、すなわち反応器内の制御不能な温度上昇に導く。COがアミンによって受け止められる場合に、メチル基含有の二次成分の形成がもたらされる。
更に、先行技術からの非常に活性なアミノ化触媒、とりわけ二酸化ジルコニウムをベースとする触媒を使用した場合には、不所望なエーテル分解がもたらされ、かつ経済上関心が持たれる生成物の、例えばADG及びモルホリン(MOR)などの収率はそれゆえ改善に値するものである。
ジエチレングリコール(DEG)のアミノ化に際して、例えば頻繁に不所望なメトキシエタノールもしくはメトキシエチルアミンの形成がもたらされる。メトキシエタノールは有毒であり、その物理的特性に基づきモルホリンからは不完全にのみ分離できるにすぎず、そのため仕様及び品質に関する問題を引き起こすことがある。
ジエチレングリコール(DEG)のアミノ化の例では、"脱カルボニル化"は、特に不所望な成分(メタノール、メトキシエタノール、メトキシエチルアミン、N−メチルモルホリン及びメトキシ−エチル−モルホリン)の総和と見なされ、それらはDEGからメトキシエタノールを介する反応ネットワークに従って生ずる:
Figure 2013512872
第一級もしくは第二級のアルコールのアミノ化の反応機構としては、アルコールがまず金属中心で脱水されて相応のアルデヒドとなると思われる。この場合、銅又はニッケルも、脱水素化成分として、おそらく特に重要である。アミノ化のためにアルデヒドを使用する場合には、この工程は不要である。
形成されるアルデヒドもしくは使用されるアルデヒドは、アンモニア又は第一級もしくは第二級のアミンとを、脱水と引き続いての水素化のもとに反応させることによりアミノ化することができる。アルデヒドと上述の窒素化合物とのこの縮合は、おそらく触媒の酸性中心によって触媒される。しかしながら、不所望な副反応において、アルデヒドは脱カルボニル化されることがある、すなわちアルデヒド官能はCOとして離脱される。その脱カルボニル化もしくはメタン化は、おそらく金属中心で行われる。COは、水素化触媒で水素化されてメタンとなるので、そのメタン形成は脱カルボニル化の程度を示している。脱カルボニル化によって、上述の不所望な副生成物、例えば前記の場合にはメトキシエタノール及び/又はメトキシエチルアミンなどの副生成物が生ずる。
アルデヒドとアンモニア又は第一級もしくは第二級のアミンとの所望の縮合と、アルデヒドの不所望な脱カルボニル化とは、所望の縮合がおそらく酸触媒されている一方で、不所望な脱カルボニル化が金属中心によって触媒されている並発反応である。
本発明の課題は、アルデヒドもしくはケトンの水素化アミノ化及びアルコールのアミノ化の従来の方法の経済性を高めることと、1もしくは複数の先行技術の欠点、特に上述の複数の欠点を取り除くことであった。産業上容易に製造でき、かつ上述のアミノ化を高い転化率、高い収率、空時収量(RZA)、選択性で、同時に触媒成形体の高い機械的安定性と、低い"暴走の危険性"において実施可能にする触媒が見出されることが望まれていた。それゆえ該触媒は、高い活性と、反応条件下で高い化学的及び機械的な安定性とを有することが望ましい。更に、出発物質の化学構造に基づき直鎖状の及び環状のプロセス生成物が得られる相応のアミノ化法で前記触媒を使用することにより、改善された選択性で、1種以上の直鎖状のプロセス生成物がもたらされうる。特に、より高い収率の経済的に関心が持たれる生成物、例えばアミノジグリコール及びモルホリンなどをDEGから出発してもたらす触媒も見出されうる。更に、触媒寿命が改善されるべきである、つまり触媒失活に基づく反応器中での触媒交換が必要となるまでの時間が長くなるべきである。
[空時収量は、"生成物量/(触媒容量・時間)"(kg/(l 触媒・h))及び/又は"生成物量/(反応器容量・時間)"(kg/(l 反応器・h))で示される]。
それに応じて、第一級もしくは第二級のアルコール、アルデヒド及び/又はケトンと、水素及び、アンモニア、第一級の及び第二級のアミンの群から選択される窒素化合物とを、担持された銅とニッケルとコバルトを含有する触媒の存在下で反応させることによってアミンを製造する方法において、該触媒の触媒活性物質が、その水素による還元の前に、アルミニウム、銅、ニッケル、コバルト及びスズの酸素含有の化合物を含有し、かつそれぞれY23、La23、Ce23もしくはHf23として計算して0.2〜5.0質量%の範囲においてイットリウム、ランタン、セリウム及び/又はハフニウムの酸素含有の化合物を含有することを特徴とする方法が見出された。
更に、触媒活性物質が、その水素による還元の前に、アルミニウム、銅、ニッケル、コバルト及びスズの酸素含有の化合物を含有し、かつそれぞれY23、La23、Ce23もしくはHf23として計算して0.2〜5.0質量%の範囲においてイットリウム、ランタン、セリウム及び/又はハフニウムの酸素含有の化合物を含有する触媒が見出された。
特に、触媒活性物質が、その水素による還元の前に、
Al23として計算して15〜80質量%の範囲でアルミニウムの酸素含有の化合物を含有し、
CuOとして計算して1〜20質量%の範囲で銅の酸素含有の化合物を含有し、
NiOとして計算して5〜35質量%の範囲でニッケルの酸素含有の化合物を含有し、
CoOとして計算して5〜35質量%の範囲でコバルトの酸素含有の化合物を含有し、
SnOとして計算して0.2〜5.0質量%の範囲でスズの酸素含有の化合物を含有し、かつ
それぞれY23、La23、Ce23もしくはHf23として計算して0.2〜5.0質量%の範囲でイットリウム、ランタン、セリウム及び/又はハフニウムの酸素含有の化合物を含有する
触媒並びに該触媒を、上述のアミノ化方法において、特にDEGとアンモニアとの反応のための方法において用いる使用が見出された。
本発明による触媒及び本発明による方法で使用される触媒の触媒活性物質の組成についてのあらゆる表記は、その水素による還元前の触媒活性物質に対するものである。
文献においては、ニッケルと銅とコバルトとスズと酸化アルミニウムとY、La、Ce及び/又はHfでのドーピングの特定の組み合わせが、特に相乗作用をもたらすことや、この触媒が先行技術と比較してアルコール/アルデヒド/ケトンのアミノ化に際して好ましい、特に全選択性、触媒寿命及び方法安全性に関してよりよいことについての示唆は存在しない。
本発明によれば、第一級もしくは第二級のアルコール、アルデヒド及び/又はケトンをH2の存在下でアミノ化するための、例えばジエチレングリコール(DEG)をアンモニアによってアミノ化してアミノジグリコール及びモルホリンを得るための触媒の活性は、酸化アルミニウム−銅−ニッケル−コバルト触媒におけるスズ含量と、Y、La、Ce及び/又はHfの追加の特定の含量とによって、実質的に少なくとも同じままであるが、同時に不所望な脱カルボニル化反応の程度が低下され、こうしてアミノ化反応の選択性が高まることが明らかにされた。同時に、不所望な高沸点物形成の程度は抑えられ、それゆえアミノ化反応の選択性が改善される。また、触媒の寿命は、触媒を希土類金属のY、La、Hf及び/又はランタニドのCeでドープして触媒の失活を遅らせることによって高める(つまり長くする)ことができることも確認された。
本方法は、連続的にもしくは断続的に実施することができる。好ましくは連続的な操作様式である。
気相中での合成のためには、出発物質は、意図して、好ましくは循環ガス流において蒸発され、気体状態で反応器へと供給される。気相合成のために適したアミンは、その沸点及びその出発物質の沸点に基づきプロセス技術的にプロセスパラメータの範囲内で気相において保持されうるアミンである。その循環ガスは、一方で、出発物質の蒸発に利用され、他方でアミノ化のための反応相手として利用される。
循環ガス操作様式において、出発物質(アルコール、アルデヒド及び/又はケトン、水素及び窒素化合物)は循環ガス流において蒸発され、気体状態で反応器へと供給される。
出発物質(アルコール、アルデヒド及び/又はケトン、窒素化合物)は、水溶液として蒸発され、循環流と共に触媒床へと導くこともできる。
好ましい反応器は、管形反応器である。循環ガス流を伴う好適な反応器のための例は、Ullmannの工業化学百科事典、第5版、B4巻、第199〜238頁、"固定床型反応器(Fixed−Bed Reactors)"に見られる。
選択的に、該反応は、好ましくは管束型反応器もしくはモノストランド型設備(Monostranganlage)において行われる。
モノストランド型設備の場合に、反応が行われる管形反応器は、複数の(例えば2個のもしくは3個の)個々の管形反応器からなることがある。ここで随意に、好ましくは、供給物(出発物質及び/又はアンモニア及び/又はH2を含有する)及び/又は循環ガス及び/又は後接続された反応器からの反応器排出物の中間供給が可能である。
循環ガス量は、好ましくは、40〜1500m3(作業圧で)/[m3(触媒の非タッピング体積(Schuettvolumen))・h]の範囲にあり、特に100〜700m3(作業圧で)/[m3(触媒の非タッピング体積)・h]の範囲にある。
循環ガスは、好ましくは少なくとも10容量%のH2、好ましくは50〜100容量%のH2、殊に80〜100容量%のH2を含有する。
液相中での合成のためには、蒸発が困難に可能であるか又は熱的に不安定なあらゆる出発物質及び生成物が適している。この場合に、更なる利点として、蒸発及びアミンの再凝縮をプロセスにおいて省けることが加わる。
本発明による方法において、触媒は、好ましくは、触媒活性物質と、場合により触媒が成形体として使用される場合には成形助剤(例えばグラファイトもしくはステアリン酸など)とのみからなる触媒、従って他の触媒活性の混和物を含有しない触媒の形で使用される。
この関連においては、酸化物系の担体材料である酸化アルミニウム(Al23)が触媒活性物質に属するものと見なされる。
触媒は、粉末へと粉砕される触媒活性材料を反応容器へと仕込むか、又は触媒活性物質を、粉砕し、成形助剤と混合し、成形し、そして熱処理した後に、触媒成形体として、例えばタブレットとして、球状物として、環状物として、押出物(例えばストランド)として、反応器内に配置するという形態で使用される。
該触媒の成分の濃度の表示(質量%)は、それぞれ特段の記載がない限り、完成した触媒の触媒活性物質であって、その最後の熱処理の後で、かつその水素による還元の前のものに対するものである。
最後の熱処理の後で、かつ水素による還元の前の触媒の触媒活性物質は、触媒活性成分の質量と上述の触媒担持材料の質量との合計として定義され、かつ該触媒活性物質は、実質的に以下の成分:酸化アルミニウム(Al23)、銅、ニッケル、コバルト、スズの酸素含有の化合物並びにイットリウム、ランタン、セリウム及び/又はハフニウムの酸素含有の化合物を含有する。
上述の触媒活性物質の成分の合計は、通常は、70〜100質量%、好ましくは80〜100質量%、特に好ましくは90〜100質量%、特に>95質量%、殊に>98質量%、特に>99質量%、例えば特に好ましくは100質量%である。
本発明による触媒及び本発明による方法で使用される触媒の触媒活性材料は、更に、周期系の第IA族ないし第VIA族及び第IB族ないし第VIIB族及び第VIII族から選択される、1つ以上の元素(酸化数0)又はその無機化合物もしくは有機化合物を含有してよい。
かかる元素もしくはそれらの化合物の例は、遷移金属、例えばMnもしくはMnO2、Wもしくはタングステン酸化物、Taもしくはタンタル酸化物、Nb又はニオブ酸化物もしくはニオブシュウ酸塩、V又はバナジウム酸化物もしくはピロリン酸バナジル;ランタニド、例えばPrもしくはPr23;アルカリ土類金属酸化物、例えばSrO;アルカリ土類金属炭酸塩、例えばMgCO3、CaCO3及びBaCO3;ホウ素酸化物(B23)である。
好ましくは、本発明による触媒及び本発明による方法で使用される触媒の触媒活性物質は、レニウム、ルテニウム、鉄及び/又は亜鉛を、それぞれ金属形(酸化数=0)でもイオン形(酸化数≠0)、特に酸化形でも含有しない。
好ましくは、本発明による触媒及び本発明による方法で使用される触媒の触媒活性物質は、銀及び/又はモリブデンを、それぞれ金属形(酸化数=0)でもイオン形(酸化数≠0)、特に酸化形でも含有しない。
特に好ましい一実施態様においては、本発明による触媒及び本発明による方法で使用される触媒の触媒活性物質は、他の触媒活性成分を、金属形(酸化数=0)でもイオン形(酸化数≠0)でも含有しない。特に好ましい実施態様においては、該触媒活性物質は、他の金属又は金属化合物でドープされていない。しかしながら、好ましくは、Cu、Co、Ni、Sn、Y、La、Ce、Hfの金属取得に由来する通常の連行微量元素はそこから除外される。
好ましくは、触媒の触媒活性物質は、ケイ素、ジルコニウム及び/又はクロムの酸素含有の化合物を含有しない。
該触媒の触媒活性物質は、その水素による還元前に、それぞれY23、La23、Ce23もしくはHf23として計算して0.2〜5.0質量%の範囲において、特に0.4〜4.0質量%の範囲において、更に特に0.6〜3.0質量%の範囲において、更に特に好ましくは0.7〜2.5質量%の範囲において、イットリウム、ランタン、セリウム及び/又はハフニウムの酸素含有の化合物を含有する。
該触媒の触媒活性物質は、その水素による還元前に、SnOとして計算して、好ましくは0.2〜5.0質量%の範囲において、特に0.4〜4.0質量%の範囲において、更に特に0.6〜3.0質量%の範囲において、更に特に好ましくは0.7〜2.5質量%の範囲において、スズの酸素含有の化合物を含有する。
該触媒の触媒活性物質は、その水素による還元前に、CoOとして計算して、好ましくは5.0〜35質量%の範囲において、特に10〜30質量%の範囲において、更に特に12〜28質量%の範囲において、殊に15〜25質量%の範囲において、コバルトの酸素含有の化合物を含有する。
該触媒の触媒活性物質は、その水素による還元前に、更に、好ましくは
Al23として計算して15〜80質量%の範囲で、特に30〜70質量%の範囲で、更に特に35〜65質量%の範囲で、アルミニウムの酸素含有の化合物を含有し、
CuOとして計算して1〜20質量%の範囲で、特に2〜18質量%の範囲で、更に特に5〜15質量%の範囲で、銅の酸素含有の化合物を含有し、かつ
NiOとして計算して5〜35質量%の範囲で、特に10〜30質量%の範囲で、更に特に12〜28質量%の範囲で、殊に15〜25質量%の範囲で、ニッケルの酸素含有の化合物を含有する。
ニッケルの銅に対するモル比は、好ましくは1より大きく、特に好ましくは1.2より大きく、更に特に好ましくは1.8〜8.5の範囲にある。
本発明による触媒及び本発明による方法で使用される触媒のBET表面積(ISO9277:1995)は、好ましくは30〜250m2/gの範囲であり、特に90〜200m2/gの範囲であり、更に特に95〜190m2/gの範囲であり、特に100〜160m2/gの範囲である。これらの範囲は、特に400〜600℃、特に420〜550℃の範囲での触媒製造時のか焼温度によって達成される(下記参照)。
本発明による方法で使用される触媒の製造のためには、種々の方法が可能である。これらの触媒は、例えば成分の水酸化物、炭酸塩、酸化物及び/又は別の塩の粉末状混合物を水と共に素練りし、引き続きこうして得られた材料の押出及びアニール(熱処理)をすることによって得られる。
好ましくは、本発明による触媒の製造のために沈降法が使用される。このように、例えば該触媒は、ニッケル成分、コバルト成分、銅成分及びドープ成分を、これらの元素を含有する水性塩溶液から、塩基を用いて難溶性の酸素含有のアルミニウム化合物のスラリーの存在下に一緒に沈降させ、引き続き得られた沈降物を洗浄し、乾燥させ、そしてか焼させることによって得ることができる。難溶性の酸素含有のアルミニウム化合物としては、例えば酸化アルミニウム、酸化アルミニウム水和物、リン酸アルミニウム、ホウ酸アルミニウム及びケイ酸アルミニウムを使用することができる。難溶性のアルミニウム化合物のスラリーは、前記化合物の微粒粉末を水中に激しい撹拌下に懸濁させることによって製造することができる。好ましくは、前記のスラリーは、難溶性のアルミニウム化合物を水性アルミニウム塩溶液から塩基を用いて沈降させることによって得られる。
好ましくは、本発明による触媒は、全てのその成分の一緒の沈降(混合沈降)によって製造される。そのために、目的に応じて、触媒成分を含有する水性塩溶液は、熱中でかつ撹拌下に、沈降が完全になるまで、水性塩基、例えば炭酸ナトリウム、水酸化ナトリウム、炭酸カリウムもしくは水酸化カリウムと混合される。アルカリ金属不含の塩基、例えばアンモニア、炭酸アンモニウム、炭酸水素アンモニウム、カルバミン酸アンモニウム、シュウ酸アンモニウム、マロン酸アンモニウム、ウロトロピン、尿素などを用いても作業することが可能である。使用される塩の種類は、一般に重要ではない:この方法では主として塩の水溶性が問題となるので、前記の比較的に高濃縮された塩溶液の製造のために必要となる良好なその水溶性が基準となる。個々の成分の塩の選択に際して、もちろん、不所望な沈降を引き起こすか又は錯形成によって沈降を阻害もしくは抑制するという妨害をもたらさないかかるアニオンとの塩のみが選択されることは当然のものと見なされる。
この沈降反応で得られる沈殿物は、一般に、化学的に不均一であり、とりわけ使用される金属の酸化物、酸化物水和物、水酸化物、炭酸塩及び不溶性かつ塩基性の塩である。該沈殿物の濾過可能性については、それらが熟成された場合に、すなわち沈降のいくらかの時間後でもなおも、場合により熱中もしくは空気の導通下に放置した場合に適切に見なされることがある。
この沈降法により得られた沈殿物は、本発明による触媒へと通常のように再加工される。まず、該沈殿物は洗浄される。洗浄過程の時間によって、かつ洗浄水の温度と量によって、沈降剤として場合により使用される(鉱物性)塩基によって供給されるアルカリ金属の含量が影響されうる。一般に、洗浄時間の延長又は洗浄水の温度の増加によって、アルカリ金属の含量は低減される。洗浄後に、被沈降物は、一般に80〜200℃で、好ましくは100〜150℃で乾燥され、次いでか焼される。か焼は、一般に、300〜800℃の温度で、好ましくは400〜600℃の温度で、特に420〜550℃の温度で実施される。
本発明による触媒は、例えば粉末の形で又は成形体、例えばストランド、タブレット、球状物もしくは環状物の形で存在する酸化アルミニウム(Al23)の浸漬によっても製造できる。
該酸化アルミニウムは、例えば無定形で、ガンマ形で、シータ形で及び/又はデルタ形で、オキソ水酸化アルミニウム(ベーマイト)として、好ましくは無定形で使用される。
成形体の製造は、通常の方法に従って行うことができる。
浸漬は、同様に、通常の方法に従って、例えばA.B.Stiles著の触媒の製造−研究室用及び産業上の調製(Catalyst Manufacture−Laboratory and Commersial Preparations),Marcel Dekker,New York(1983)に記載されるようにして、それぞれの相応の金属塩溶液を1つ以上の浸漬段階で塗布することによって行われる。その際、金属塩としては、例えば相応の硝酸塩、酢酸塩もしくは塩化物が使用される。その材料は、前記浸漬に引き続き乾燥され、場合によりか焼される。
浸漬は、いわゆる"初期湿潤(incipient wetness)"法に従って、酸化アルミニウムを、その吸水能に相応して最大ないし飽和にまで浸漬溶液で湿潤させて行われる。しかしながら、その浸漬は、上澄み溶液においても行われうる。
多段階の浸漬法の場合に、個々の浸漬工程の間で乾燥させ、場合によりか焼させることが適切である。多段階の浸漬は、好ましくは特に、酸化アルミニウムにより多量の金属量を加えるべき場合に使用されるべきである。
酸化アルミニウムへの金属成分の塗布のために、その浸漬は、全ての金属塩で同時に又は個々の金属塩の任意の順序で順次に行うことができる。
引き続き、浸漬によって製造された触媒は乾燥され、好ましくは、例えば既に上述のか焼温度範囲でか焼もされる。
か焼の後に、該触媒は、規定の粒度にまで粉砕することによって調整されるか又はその粉砕の後にグラファイトもしくはステアリン酸などの成形助剤と混合されるのであれば別だが、適宜コンディショニングされ、圧縮器を用いて成形体、例えばタブレットへと圧縮され、そして熱処理される。アニール温度は、その際に、好ましくはか焼の際の温度に相当する。
このようにして製造された触媒は、触媒活性金属を、その酸素含有の化合物の混合物の形で、すなわち酸化物及び混合酸化物として含有する。
例えば上記のように製造された触媒は、そのままで貯蔵され、場合により取り扱われる。その触媒としての使用前に、それらは通常は事前に還元される。しかしながら、該触媒は、事前の還元を行わなくても使用でき、その際に水素化アミノ化の条件下で、反応器中に存在する水素によって還元される。
事前の還元のためには、触媒は、まず好ましくは150〜200℃で、例えば12〜20時間の時間にわたり窒素−酸素−雰囲気に晒され、引き続きなおも約24時間まで、好ましくは200〜400℃で水素雰囲気中で処理される。この事前の還元の場合には、触媒中に存在する酸素含有の金属化合物の一部は相応の金属に還元されるので、これらは異なる種類の酸素化合物と一緒に触媒の活性形で存在する。
本発明による触媒の更なる利点は、その機械的安定性、すなわちその硬度である。その機械的安定性は、いわゆる側面圧縮強度(Seitendruckfestigkeit)の測定によって測定できる。このためには、触媒成形体は、例えば触媒タブレットは、2つの平行板の間で次第に増加する力をもって負荷され、その際、この負荷は、例えば触媒タブレットの外被側で、触媒成形体の破壊が生ずるまで行うことができる。その触媒成形体の破壊時に記録された力が側面圧縮強度である。
本発明による方法は、好ましくは連続的に実施され、その際、該触媒は好ましくは固定床として反応器内に配置されている。その際に、触媒の固定床は、上方へ流動させても、下方へと流動させてもよい。その際に、ガス流は、温度、圧力及び量によって、難沸騰性(高沸点)の反応生成物も気相中に残るように調整される。アミノ化剤は、アミノ化されるべきアルコール性ヒドロキシル基もしくはアルデヒド基もしくはケト基に対して、化学量論的量で、化学量論量未満でもしくは化学量論量より多くの量で使用することができる。
好ましくは、アルコール、アルデヒドもしくはケトンを第一級もしくは第二級のアミンでアミノ化する場合に、該アミンは、アミノ化されるべきアルコール性のヒドロキシル基、アルデヒド基もしくはケト基1モルあたりに、ほぼ化学量論量でもしくは僅かに化学量論量より多くの量で使用される。
アミン成分(窒素化合物)は、好ましくは、それぞれ1つ以上の使用されるアルコール、アルデヒド及び/又はケトンに対して、0.90〜100倍のモル量で、特に1.0〜10倍のモル量で使用される。
特に、アンモニアは、一般に反応されるべきアルコール性のヒドロキシル基、アルデヒド基もしくはケト基1モルあたりに、1.5〜250倍の、好ましくは2〜100倍の、特に2〜10倍のモル過剰で使用される。より大過剰のアンモニアも第一級もしくは第二級のアミンも可能である。
有利には、5〜800標準立方メートル/h、特に20〜300標準立方メートル/hの排ガス量で運転される。(標準立方メートル=標準条件に換算した体積)
出発物質の第一級もしくは第二級のアルコール基、アルデヒド基もしくはケト基のアミノ化は、液相中又は気相中で実施することができる。気相での固定床法が好ましい。
液相中での作業の場合には、出発物質(アルコール、アルデヒドもしくはケトンとアンモニアもしくはアミン)は、同時に、液相で一般に5〜30MPa(50〜300バール)の圧力で、好ましくは5〜25MPaの圧力で、特に好ましくは15〜25MPaの圧力で、かつ一般に80〜350℃の温度で、特に100〜300℃の温度で、好ましくは120〜270℃の温度で、特に好ましくは130〜250℃の温度で、特に170〜230℃の温度で、水素を含めて、通常は、好ましくは外部から加熱される固定床反応器に存在する触媒中に導かれる。その際、ダウンフロー方式(Rieselfahrweise)も可能であるし、アップフロー方式(Sumpffahrweise)も可能である。触媒負荷量は、一般に、0.05〜5、好ましくは0.1〜2、特に好ましくは0.2〜0.6kg(アルコール、アルデヒドもしくはケトン)/リットル(触媒の非タッピング体積)・時間の範囲である。場合により、出発物質を好適な溶剤、例えばテトラヒドロフラン、ジオキサン、N−メチルピロリドンもしくはエチレングリコールジメチルエーテルで希釈することが行われてよい。反応物を、反応容器への供給前に既に、特に好ましくは反応温度にまで加熱していることが好適である。気相での作業の場合には、気体状の出発物質(アルコール、アルデヒドもしくはケトンとアンモニアもしくはアミン)は、蒸発のために十分に大きく選択されたガス流において、好ましくは水素において、一般に0.1〜40MPa(1〜400バール)の圧力で、好ましくは0.1〜10MPaの圧力で、特に好ましくは0.1〜5MPaの圧力で水素の存在下で触媒に導かれる。アルコールのアミノ化のための温度は、一般に80〜350℃、特に100〜300℃、好ましくは120〜270℃、特に好ましくは160〜250℃である。アルデヒド及びケトンの水素化アミノ化の場合の反応温度は、一般に80〜350℃、特に90〜300℃、好ましくは100〜250℃である。その際に、触媒の固定床は、上方へ流動させても、下方へと流動させてもよい。必要なガス流は、好ましくは循環ガス操作様式によって得られる。触媒負荷量は、一般に、0.01〜2、好ましくは0.05〜0.5kg(アルコール、アルデヒドもしくはケトン)/リットル(触媒の非タッピング体積)・時間の範囲である。
水素は、反応へと、1モルのアルコール成分、アルデヒド成分もしくはケトン成分当たりに、一般に5〜400lの量で、好ましくは50〜200lの量で供給され、その際、リットルの表記は、それぞれ標準状態に換算されたものである(S.T.P.)。
アルデヒドもしくはケトンのアミノ化は、アルコールのアミノ化の実施において、アルデヒド及びケトンのアミノ化において、少なくとも化学量論量の水素が存在せねばならない点で異なる。
液相中での作業の場合も気相中での作業の場合も、より高い温度及びより高い全圧及び触媒負荷量を使用することが可能である。所定の温度で、アミノ化剤、アルコール、アルデヒドもしくはケトン及び形成された反応生成物並びに場合により併用される溶剤の分圧の合計から生ずる反応容器内の圧力は、適宜、水素の圧入によって所望の反応圧へと高められる。
液相における連続的作業の場合も、気相における連続的作業の場合も、過剰のアミノ化剤を、水素と一緒に循環に導くことができる。
触媒が固定床として配置されている場合に、反応の選択性のためには、触媒成形体を反応器内で不活性充填体と混合すること、いわば"希釈"することが好ましいことがある。かかる触媒調製物における充填体の割合は、20〜80容量部、特に30〜60容量部、殊に40〜50容量部であってよい。
反応の過程で形成された反応水(それぞれ転化されたアルコール基、アルデヒド基もしくはケト基1モル当たり1モル)は、一般に、転化度、反応速度、選択性及び触媒寿命に対して妨げとなる作用を示さず、かつそれゆえ適切には反応生成物の後処理に際して初めて、例えば蒸留によりこれから除去される。
反応排出物が適切に減圧された後、この反応排出物から過剰の水素と、場合によっては存在する過剰のアミノ化剤が除去され、かつ得られた反応粗生成物は、例えば分別精留によって精製される。適した後処理法は、例えばEP1312600号A及びEP1312599号A(両者ともBASF AG)の中で記載されている。過剰のアミノ化剤及び水素は、好ましくは再び反応領域へと返送される。場合により完全に転化されていないアルコール成分、アルデヒド成分もしくはケトン成分についても同じことが言える。
転化されていない出発材料と、場合によっては生じる適した副生成物は、合成へと再び返送されうる。転化されていない出発物質は、断続的もしくは連続的な操作様式で、分離器中における循環ガス流中での該生成物の凝縮後に新たに触媒床へと流通させることができる。
本発明による方法でのアミノ化剤は、アンモニアの他に、第一級の及び第二級のアミンである。
本発明による方法で製造可能なものは、例えば式I
Figure 2013512872
[式中、
1、R2は、水素(H)、アルキル、例えばC1〜C20−アルキル、シクロアルキル、例えばC3〜C12−シクロアルキル、アルコキシアルキル、例えばC2〜C30−アルコキシアルキル、ジアルキルアミノアルキル、例えばC3〜C30−ジアルキルアミノアルキル、アリール、アラルキル、例えばC7〜C20−アラルキル及びアルキルアリール、例えばC7〜C20−アルキルアリールであるか、又は一緒になって−(CH2j−X−(CH2k−であり、
3、R4は、水素(H)、アルキル、例えばC1〜C20−アルキル、シクロアルキル、例えばC3〜C12−シクロアルキル、ヒドロキシアルキル、例えばC1〜C20−ヒドロキシアルキル、アミノアルキル、例えばC1〜C20−アミノアルキル、ヒドロキシアルキルアミノアルキル、例えばC2〜C20−ヒドロキシアルキルアミノアルキル、アルコキシアルキル、例えばC2〜C30−アルコキシアルキル、ジアルキルアミノアルキル、例えばC3〜C30−ジアルキルアミノアルキル、アルキルアミノアルキル、例えばC2〜C30−アルキルアミノアルキル、R5−(OCR67CR89n−(OCR67)、アリール、ヘテロアリール、アラルキル、例えばC7〜C20−アラルキル、ヘテロアリールアルキル、例えばC4〜C20−ヘテロアリールアルキル、アルキルアリール、例えばC7〜C20−アルキルアリール、アルキルヘテロアリール、例えばC4〜C20−アルキルヘテロアリール及びY−(CH2m−NR5−(CH2qであるか、又は一緒になって−(CH2l−X−(CH2m−であり、又は
2及びR4は、一緒になって、−(CH2l−X−(CH2m−であり、
5、R10は、水素(H)、アルキル、例えばC1〜C4−アルキル、アルキルフェニル、例えばC7〜C40−アルキルフェニルであり、
6、R7、R8、R9は、水素(H)、メチルもしくはエチルであり、
Xは、CH2、CHR5、酸素(O)、硫黄(S)もしくはNR5であり、
Yは、N(R102、ヒドロキシ、C2〜C20−アルキルアミノアルキルもしくはC3〜C20−ジアルキルアミノアルキルであり、
nは、1〜30の整数であり、かつ
j、k、l、m、qは、1〜4の整数である]で示されるアミンである。
従って、本発明による方法は、好ましくは、アミンIの製造のために使用され、その場合に、式II
Figure 2013512872
の第一級もしくは第二級のアルコール及び/又は式VIもしくはVII
Figure 2013512872
のアルデヒド及び/又はケトンは、式III
Figure 2013512872
[式中、R1、R2、R3及びR4は、上述の意味を有する]の窒素化合物と反応される。
出発物質のアルコールは、またアミノアルコールであってもよく、例えば式IIによるアミノアルコールであってもよい。
基R2及びR4についての定義から明らかなように、反応は相応するアミノアルコール、アミノケトンもしくはアミノアルデヒドにおいて分子内でも行われうる。
それに応じて、アミンIの製造のために、純粋に形式的に、窒素化合物IIIの水素原子は、1モル当量の水を遊離しつつ、R4(R3)CH−基によって置き換えられる。
本発明による方法は、また好ましくは、式IV
Figure 2013512872
[式中、
11及びR12は、水素(H)、アルキル、例えばC1〜C20−アルキル、シクロアルキル、例えばC3〜C12−シクロアルキル、アリール、ヘテロアリール、アラルキル、例えばC7〜C20−アラルキル及びアルキルアリール、例えばC7〜C20−アルキルアリールであり、
Zは、CH2、CHR5、酸素(O)、NR5もしくはNCH2CH2OHを意味し、かつ
1、R6、R7は、上述の意味を有する]の環状アミンの製造において、式V
Figure 2013512872
のアルコールとアンモニア又は式VIII
1−NH2 (VIII)
の第一級アミンとの反応によって使用される。
化合物I、II、III、IV、V、VI及びVII中の置換基R1〜R12、変項X、Y、Z並びに添え字j、k、l、m、n及びqは、互いに無関係に以下の意味を有する:
1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12
− 水素(H)、
3、R4
− アルキル、C1〜C20−アルキル、有利にはC1〜C14−アルキル、例えばメチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、s−ブチル、t−ブチル、n−ペンチル、イソペンチル、s−ペンチル、ネオペンチル、1,2−ジメチルプロピル、n−ヘキシル、イソヘキシル、s−ヘキシル、シクロペンチルメチル、n−ヘプチル、イソヘプチル、シクロヘキシルメチル、n−オクチル、イソオクチル、2−エチルヘキシル、n−デシル、2−n−プロピル−n−ヘプチル、n−トリデシル、2−n−ブチル−n−ノニル及び3−n−ブチル−n−ノニル、
− ヒドロキシアルキル、例えばC1〜C20−ヒドロキシアルキル、好ましくはC1〜C8−ヒドロキシアルキル、特に好ましくはC1〜C4−ヒドロキシアルキル、例えばヒドロキシメチル、1−ヒドロキシエチル、2−ヒドロキシエチル、1−ヒドロキシ−n−プロピル、2−ヒドロキシ−n−プロピル、3−ヒドロキシ−n−プロピル及び1−(ヒドロキシ−メチル)エチル、
− アミノアルキル、例えばC1〜C20−アミノアルキル、有利にはC1〜C8−アミノアルキル、例えばアミノメチル、2−アミノエチル、2−アミノ−1,1−ジメチルエチル、2−アミノ−n−プロピル、3−アミノ−n−プロピル、4−アミノ−n−ブチル、5−アミノ−n−ペンチル、N−(2−アミノエチル)−2−アミノエチル及びN−(2−アミノエチル)アミノメチル、
− ヒドロキシアルキルアミノアルキル、例えばC2〜C20−ヒドロキシアルキルアミノアルキル、有利にはC3〜C8−ヒドロキシアルキルアミノアルキル、例えば(2−ヒドロキシエチルアミノ)メチル、2−(2−ヒドロキシエチルアミノ)エチル及び3−(2−ヒドロキシエチルアミノ)プロピル、
− R5−(OCR67CR89n−(OCR67)、好ましくはR5−(OCHR7CHR9n−(OCR67)、特に好ましくはR5−(OCH2CHR9n−(OCR67)、
− アルキルアミノアルキル、例えばC2〜C30−アルキルアミノアルキル、好ましくはC2〜C20−アルキルアミノアルキル、特に好ましくはC2〜C8−アルキルアミノアルキル、例えばメチルアミノメチル、2−メチル−アミノエチル、エチルアミノメチル、2−エチルアミノエチル及び2−(イソプロピルアミノ)エチル、(R5)HN−(CH2q
− Y−(CH2m−NR5−(CH2q
− ヘテロアリールアルキル、例えばC4〜C20−ヘテロアリールアルキル、例えばピリド−2−イルメチル、フラン−2−イルメチル、ピロール−3−イルメチル及びイミダゾール−2−イルメチル、
− アルキルヘテロアリール、例えばC4〜C20−アルキルヘテロアリール、例えば2−メチル−3−ピリジニル、4,5−ジメチル−イミダゾール−2−イル、3−メチル−2−フラニル及び5−メチル−2−ピラジニル、
− ヘテロアリール、例えばN、Oからの少なくとも1つのヘテロ原子を有するC3〜C5−ヘテロアリール、例えば2−ピリジニル、3−ピリジニル、4−ピリジニル、ピラジニル、ピロール−3−イル、イミダゾール−2−イル、2−フラニル及び3−フラニル、
1、R2、R3、R4
− シクロアルキル、例えばC3〜C12−シクロアルキル、有利にはC3〜C8−シクロアルキル、例えばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル及びシクロオクチル、特に有利にはシクロペンチル及びシクロヘキシル、
− アルコキシアルキル、例えばC2〜C30−アルコキシアルキル、有利にはC2〜C20−アルコキシアルキル、特に有利にはC2〜C8−アルコキシアルキル、例えばメトキシメチル、エトキシメチル、n−プロポキシメチル、イソプロポキシメチル、n−ブトキシメチル、イソブトキシメチル、s−ブトキシメチル、t−ブトキシメチル、1−メトキシエチル及び2−メトキシエチル、特に有利にはC2〜C4−アルコキシアルキル、
− ジアルキルアミノアルキル、例えばC3〜C30−ジアルキルアミノアルキル、有利にはC3〜C20−ジアルキルアミノアルキル、特に有利にはC3〜C10−ジアルキルアミノアルキル、例えばN,N−ジメチルアミノメチル、(N,N−ジブチルアミノ)メチル、2−(N,N−ジメチルアミノ)エチル、2−(N,N−ジエチルアミノ)エチル、2−(N,N−ジブチルアミノ)エチル、2−(N,N−ジ−n−プロピルアミノ)エチル及び2−(N,N−ジ−イソプロピルアミノ)エチル、3−(N,N−ジメチルアミノ)プロピル、(R52N−(CH2q
− アリール、例えばC6〜C14−アリール、例えばフェニル、1−ナフチル、2−ナフチル、1−アントリル、2−アントリル及び9−アントリル、特に有利にはフェニル、1−ナフチル及び2−ナフチル、特に有利にはフェニル、
− アルキルアリール、例えばC7〜C20−アルキルアリール、有利にはC7〜C12−アルキルフェニル、例えば2−メチルフェニル、3−メチルフェニル、4−メチルフェニル、2,4−ジメチルフェニル、2,5−ジメチルフェニル、2,6−ジメチルフェニル、3,4−ジメチルフェニル、3,5−ジメチルフェニル、2,3,4−トリメチルフェニル、2,3,5−トリメチルフェニル、2,3,6−トリメチルフェニル、2,4,6−トリメチルフェニル、2−エチルフェニル、3−エチルフェニル、4−エチルフェニル、2−n−プロピルフェニル、3−n−プロピルフェニル及び4−n−プロピルフェニル、
− アラルキル、例えばC7〜C20−アラルキル、有利にはC7〜C12−フェニルアルキル、例えばベンジル、p−メトキシベンジル、3,4−ジメトキシベンジル、1−フェネチル、2−フェネチル、1−フェニルプロピル、2−フェニルプロピル、3−フェニルプロピル、1−フェニルブチル、2−フェニルブチル、3−フェニルブチル及び4−フェニルブチル、特に有利にはベンジル、1−フェネチル及び2−フェネチル、
− R3及びR4又はR2及びR4は、一緒になって−(CH2l−X−(CH2m−基、例えば−(CH23−、−(CH24−、−(CH25−、−(CH26−、−(CH27−、−(CH2)−O−(CH22−、−(CH2)−NR5−(CH22−、−(CH2)−CHR5−(CH22−、−(CH22−O−(CH22−、−(CH22−NR5−(CH22−、−(CH22−CHR5−(CH22−、−CH2−O−(CH23−、−CH2−NR5−(CH23−、−CH2−CHR5−(CH23−であり、
1、R2
− アルキル、例えばC1〜C20−アルキル、有利にはC1〜C8−アルキル、例えばメチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、s−ブチル、t−ブチル、n−ペンチル、イソペンチル、s−ペンチル、ネオペンチル、1,2−ジメチルプロピル、n−ヘキシル、イソヘキシル、s−ヘキシル、n−ヘプチル、イソヘプチル、n−オクチル、イソオクチル、2−エチルヘキシル、特に有利にはC1〜C4−アルキル、又は
− R1及びR2は、一緒になって−(CH2j−X−(CH2k−基、例えば−(CH23−、−(CH24−、−(CH25−、−(CH26−、−(CH27−、−(CH2)−O−(CH22−、−(CH2)−NR5−(CH22−、−(CH2)−CHR5−(CH22−、−(CH22−O−(CH22−、−(CH22−NR5−(CH22−、−(CH22−CHR5−(CH22−、−CH2−O−(CH23−、−CH2−NR5−(CH23−、−CH2−CHR5−(CH23−であり、
5、R10
− アルキル、有利にはC1〜C4−アルキル、例えばメチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、s−ブチル及びt−ブチル、有利にはメチル及びエチル、特に有利にはメチル、
− アルキルフェニル、有利にはC7〜C40−アルキルフェニル、例えば2−メチルフェニル、3−メチルフェニル、4−メチルフェニル、2,4−ジメチルフェニル、2,5−ジメチルフェニル、2,6−ジメチルフェニル、3,4−ジメチルフェニル、3,5−ジメチルフェニル、2−、3−、4−ノニルフェニル、2−、3−、4−デシルフェニル、2,3−、2,4−、2,5−、3,4−、3,5−ジノニルフェニル、2,3−、2,4−、2,5−、3,4−及び3,5−ジデシルフェニル、殊にC7〜C20−アルキルフェニル、
6、R7、R8、R9
− メチル又はエチル、有利にはメチル、
11、R12
− アルキル、例えばC1〜C20−アルキル、シクロアルキル、例えばC3〜C12−シクロアルキル、アリールヘテロアリール、アラルキル、例えばC7〜C20−アラルキル及びアルキルアリール、例えばC7〜C20−アルキルアリール(それぞれ上述の定義の通り)、
X:
− CH2、CHR5、酸素(O)、硫黄(S)又はNR5、有利にはCH2及びO、
Y:
− N(R102、好ましくはNH2及びN(CH32
− ヒドロキシ(OH)、
− C2〜C20−アルキルアミノアルキル、有利にはC2〜C16−アルキルアミノアルキル、例えばメチルアミノメチル、2−メチルアミノエチル、エチルアミノメチル、2−エチルアミノエチル及び2−(イソプロピルアミノ)エチル、
− C3〜C20−ジアルキルアミノアルキル、有利にはC3〜C16−ジアルキルアミノアルキル、例えばジメチルアミノメチル、2−ジメチルアミノエチル、2−ジエチルアミノエチル、2−(ジ−n−プロピルアミノ)エチル及び2−(ジイソプロピルアミノ)エチル、
Z:
− CH2、CHR5、O、NR5もしくはNCH2CH2OH、
j、l:
− 1〜4の整数(1、2、3もしくは4)、有利には2及び3、特に有利には2、
k、m、q:
− 1〜4の整数(1、2、3もしくは4)、有利には2、3及び4、特に有利には2及び3、
n:
− 1〜30の整数、有利には1〜8の整数(1、2、3、4、5、6、7もしくは8)、特に有利には1〜6の整数。
アルコールとしては、上述の前提条件のもとで、事実上あらゆる脂肪族OH官能を有する第一級もしくは第二級のアルコールが適している。アルコールは、直鎖状、分枝鎖状もしくは環状であってよい。第二級アルコールは、第一級アルコールと同様にアミノ化される。更に、該アルコールは、水素化アミノ化の条件下で不活性に挙動する、置換基もしくは官能基、例えばアルコキシ基、アルケニルオキシ基、アルキルアミノ基もしくはジアルキルアミノ基、又は場合によっては水素化アミノ化の条件下で水素化される、置換基もしくは官能基、例えばCC−二重結合又はCC−三重結合を有してよい。多価アルコール、例えばジオールもしくはトリオール、特にグリコールなどのアルコールがアミノ化されるべき場合には、反応条件を手動で制御することによって、好ましくはアミノアルコール、環状アミン又は複数回アミノ化された生成物を得ることができる。
1,2−ジオールのアミノ化は、反応条件の選択に応じて、特に1−アミノ−2−ヒドロキシ化合物又は1,2−ジアミノ化合物をもたらす。
1,4−ジオールのアミノ化は、反応条件の選択に応じて、1−アミノ−4−ヒドロキシ化合物、1,4−ジアミノ化合物又は1つの窒素原子を有する5員環(ピロリジン)をもたらす。
1,6−ジオールのアミノ化は、反応条件の選択に応じて、1−アミノ−6−ヒドロキシ化合物、1,6−ジアミノ化合物又は1つの窒素原子を有する7員環(ヘキサメチレンイミン)をもたらす。
1,5−ジオールのアミノ化は、反応条件の選択に応じて、1−アミノ−5−ヒドロキシ化合物、1,5−ジアミノ化合物又は1つの窒素原子を有する6員環(ピペリジン、1,5−ジ−ピペリジニル−ペンタン)をもたらす。
ジグリコール(DEG)からは、従って、NH3を用いたアミノ化によって、モノアミノジグリコール(=ADG=H2N−CH2CH2−O−CH2CH2−OH)、ジアミノジグリコール(H2N−CH2CH2−O−CH2CH2−NH2)又はモルホリンを得ることができる。ここで特に、プロセス生成物としてはADGが好ましい。
ジエタノールアミンからは、相応して特に好ましくはピペラジンが得られる。トリエタノールアミンからは、N−(2−ヒドロキシエチル)−ピペラジンを得ることができる。
好ましくは、例えば以下のアルコールがアミノ化される:
メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、n−ペンタノール、n−ヘキサノール、2−エチルヘキサノール、トリデカノール、ステアリルアルコール、パルミチルアルコール、シクロブタノール、シクロペンタノール、シクロヘキサノール、ベンジルアルコール、2−フェニル−エタノール、2−(p−メトキシフェニル)エタノール、2−(3,4−ジメトキシフェニル)エタノール、1−フェニル−3−ブタノール、エタノールアミン、n−プロパノールアミン、イソプロパノールアミン、2−アミノ−1−プロパノール、1−メトキシ−2−プロパノール、3−アミノ−2,2−ジメチル−1−プロパノール、n−ペンタノールアミン(1−アミノ−5−ペンタノール)、n−ヘキサノールアミン(1−アミノ−6−ヘキサノール)、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−アルキルジエタノールアミン、ジイソプロパノールアミン、3−(2−ヒドロキシエチルアミノ)プロパン−1−オール、2−(N,N−ジメチルアミノ)エタノール、2−(N,N−ジエチルアミノ)エタノール、2−(N,N−ジ−n−プロピルアミノ)エタノール、2−(N,N−ジ−イソプロピルアミノ)エタノール、2−(N,N−ジ−n−ブチルアミノ)エタノール、2−(N,N−ジ−イソブチルアミノ)エタノール、2−(N,N−ジ−s−ブチルアミノ)エタノール、2−(N,N−ジ−t−ブチルアミノ)エタノール、3−(N,N−ジメチルアミノ)プロパノール、3−(N,N−ジエチルアミノ)プロパノール、3−(N,N−ジ−n−プロピルアミノ)プロパノール、3−(N,N−ジ−イソプロピルアミノ)プロパノール、3−(N,N−ジ−n−ブチルアミノ)プロパノール、3−(N,N−ジ−イソブチルアミノ)プロパノール、3−(N,N−ジ−s−ブチルアミノ)プロパノール、3−(N,N−ジ−t−ブチルアミノ)プロパノール、1−ジメチルアミノ−ペンタノール−4,1−ジ−エチルアミノ−ペンタノール−4、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、ジグリコール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、2,2−ビス[4−ヒドロキシシクロヘキシル]プロパン、メトキシエタノール、プロポキシエタノール、ブトキシエタノール、ポリプロピルアルコール、ポリエチレングリコールエーテル、ポリプロピレングリコールエーテル及びポリブチレングリコールエーテル。最後に挙げたポリアルキレングリコールエーテルは、本発明による反応において、その遊離のヒドロキシル基の変換によって相応のアミンに変換される。
特に好ましいアルコールは、メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、s−ブタノール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、2−エチルヘキサノール、シクロヘキサノール、脂肪アルコール、エチレングリコール、ジエチレングリコール(DEG)、トリエチレングリコール(TEG)、2−(2−ジメチルアミノエトキシ)エタノール、N−メチルジエタノールアミン及び2−(2−ジメチルアミノエトキシ)エタノールである。
本発明による方法で使用可能なケトンとしては、上述の前提条件のもとで、事実上あらゆる脂肪族及び芳香族のケトンが適している。脂肪族ケトンは、直鎖状、分枝鎖状もしくは環状であってよく、これらのケトンはヘテロ原子を含有してよい。更に、該ケトンは、水素化アミノ化の条件下で不活性に挙動する、置換基もしくは官能基、例えばアルコキシ基、アルケニルオキシ基、アルキルアミノ基もしくはジアルキルアミノ基、又は場合によっては水素化アミノ化の条件下で水素化される、置換基もしくは官能基、例えばCC−二重結合又はCC−三重結合を有してよい。多価ケトンがアミノ化されるべき場合、反応条件を手動で制御することによって、アミノケトン、アミノアルコール、環状アミン又は複数回アミノ化された生成物を得ることができる。
有利には、例えば以下のケトンがアミノ化して水素化される:
アセトン、エチルメチルケトン、メチルビニルケトン、イソブチルメチルケトン、ブタノン、3−メチルブタン−2−オン、ジエチルケトン、テトラロン、アセトフェノン、p−メチルアセトフェノン、p−メトキシアセトフェノン、m−メトキシアセトフェノン、1−アセチルナフタリン、2−アセチルナフタリン、1−フェニル−3−ブタノン、シクロブタノン、シクロペンタノン、シクロペンテノン、シクロヘキサノン、シクロヘキセノン、2,6−ジメチルシクロヘキサノン、シクロヘプタノン、シクロドデカノン、アセチルアセトン、メチルグリオキサール及びベンゾフェノン。
本発明による方法で使用可能なアルデヒドとしては、上述の前提条件のもとで、実質上あらゆる脂肪族及び芳香族のアルデヒドが適している。脂肪族アルデヒドは、直鎖状、分枝鎖状もしくは環状であってよく、これらのアルデヒドはヘテロ原子を含有してよい。更に、該アルデヒドは、水素化アミノ化の条件下で不活性に挙動する、置換基もしくは官能基、例えばアルコキシ基、アルケニルオキシ基、アルキルアミノ基もしくはジアルキルアミノ基、又は場合によっては水素化アミノ化の条件下で水素化される、置換基もしくは官能基、例えばCC−二重結合又はCC−三重結合を有してよい。多価アルデヒドもしくはケトアルデヒドがアミノ化されるべき場合、反応条件を手動で制御することによって、アミノアルコール、環状アミン又は複数回アミノ化された生成物を得ることができる。
有利には、例えば以下のアルデヒドがアミノ化して水素化される:
ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n−ブチルアルデヒド、イソブチルアルデヒド、ピバリンアルデヒド、n−ペンタナール、n−ヘキサナール、2−エチルヘキサナール、2−メチルペンタナール、3−メチルペンタナール、4−メチルペンタナール、グリオキサール、ベンズアルデヒド、p−メトキシベンズアルデヒド、p−メチルベンズアルデヒド、フェニルアセトアルデヒド、(p−メトキシフェニル)アセトアルデヒド、(3,4−ジメトキシフェニル)アセトアルデヒド、4−ホルミルテトラヒドロピラン、3−ホルミルテトラヒドロフラン、5−ホルミルバレロニトリル、シトロネラール、リスメラール、アクロレイン、メタクロレイン、エチルアクロレイン、シトラール、クロトンアルデヒド、3−メトキシプロピオンアルデヒド、3−アミノプロピオンアルデヒド、ヒドロキシピバリンアルデヒド、ジメチロールプロピオンアルデヒド、ジメチロールブチルアルデヒド、フルフラール、グリオキサール、グルタルアルデヒド並びにヒドロホルミル化オリゴマー及びポリマー、例えばヒドロホルミル化ポリイソブテン(ポリイソブテンアルデヒド)又は1−ペンテンとシクロペンテンとの複分解によって得られかつヒドロホルミル化されたオリゴマー。
水素の存在下でのアルコール、アルデヒドもしくはケトンの水素化アミノ化に際してのアミノ化剤として、アンモニアも、第一級もしくは第二級の、脂肪族もしくは脂環式の又は芳香族のアミンを使用することができる。
アミノ化剤としてアンモニアを使用する場合に、アルコール性のヒドロキシル基もしくはアルデヒド基もしくはケト基は、まず第一級アミノ基(−NH2)に変換される。こうして形成された第一級アミンは、更なるアルコールもしくはアルデヒドもしくはケトンによって相応の第二級アミンに変換され、そして該アミンは更に他のアルコールもしくはアルデヒドもしくはケトンによって、相応の、好ましくは対称性の第三級アミンへと反応しうる。反応バッチ又は出発物質流(連続的な操作様式の場合)の組成に応じて、かつ使用される反応条件、つまり圧力、温度、反応時間(触媒負荷量)に応じて、前記のようにして、希望通りに第一級の、第二級のもしくは第三級のアミンを製造できる。
多価アルコールもしくはジアルデヒドあるいはオリゴアルデヒドもしくはジケトンあるいはオリゴケトンもしくはケトアルデヒドから、前記のようにして、分子内の水素化アミノ化によって、例えばピロリジン、ピペリジン、ヘキサメチレンイミン、ピペラジン及びモルホリンなどの環状アミンを製造することができる。
アンモニアと同様に、第一級もしくは第二級のアミンをアミノ化剤として使用することができる。
好ましくは、これらのアミノ化剤は、非対称に置換されたジアルキルアミンもしくはトリアルキルアミン、例えばエチルジイソプロピルアミン及びエチルジシクロヘキシルアミンの製造のために使用される。例えば、以下のモノアルキルアミン及びジアルキルアミンがアミノ化剤として使用される:モノメチルアミン、ジメチルアミン、モノエチルアミン、ジエチルアミン、n−プロピルアミン、ジ−n−プロピルアミン、イソプロピルアミン、ジイソプロピルアミン、イソプロピルエチルアミン、n−ブチルアミン、ジ−n−ブチルアミン、s−ブチルアミン、ジ−s−ブチルアミン、イソブチルアミン、n−ペンチルアミン、s−ペンチルアミン、イソペンチルアミン、n−ヘキシルアミン、s−ヘキシルアミン、イソヘキシルアミン、シクロヘキシルアミン、アニリン、トルイジン、ピペリジン、モルホリン及びピロリジン。
本発明による方法で特に好ましくは製造されるアミンは、例えばモルホリン(モノアミノジグリコールから)、モノアミノジグリコール、モルホリン及び/又は2,2′−ジモルホリノジエチルエーテル(DMDEE)(DEG及びアンモニアから)、6−ジメチルアミノヘキサノール−1(ヘキサンジオール及びジメチルアミン(DMA)から)、トリエチルアミン(エタノール及びジエチルアミン(DEA)から)、ジメチルエチルアミン(エタノール及びDMAから)、N−(C1〜C4−アルキル)モルホリン(DEG及びモノ(C1〜C4−アルキル)アミンから)、N−(C1〜C4−アルキル)ピペリジン(1,5−ペンタンジオール及びモノ(C1〜C4−アルキル)アミンから)、ピペラジン及び/又はジエチレントリアミン(DETA)(N−(2−アミノエチル)−エタノールアミン(AEEA)及びアンモニアから)、N−メチルピペラジン(ジエタノールアミン及びMMAから)、N,N′−ジメチルピペラジン(N−メチルジエタノールアミン及びMMAから)、1,2−エチレンジアミン(EDA)及び/又はジエチレントリアミン(DETA)及び/又はPIP(モノエタノールアミン(MEOA)及びアンモニアから)、2−エチルヘキシルアミン及びビス(2−エチルヘキシル)アミン(2−エチルヘキサノール及びNH3から)、トリデシルアミン及びビス(トリデシル)アミン(トリデカノール及びNH3から)、n−オクチルアミン(n−オクタノール及びNH3から)、1,2−プロピレンジアミン(2−ヒドロキシプロピルアミン及びNH3から)、1−ジエチルアミノ−4−アミノペンタン(1−ジエチルアミノ−4−ヒドロキシペンタン及びNH3から)、N,N−ジ(C1〜C4−アルキル)シクロヘキシルアミン(シクロヘキサノン及び/又はシクロヘキサノール及びジ(C1〜C4−アルキル)アミンから)、例えばN,N−ジメチル−N−シクロヘキシルアミン(DMCHA)、ポリイソブテンアミン(PIBA;例えばnないし1000を有する)(ポリイソブテンアルデヒド及びNH3から)、N,N−ジイソプロピル−N−エチルアミン(ヒューニッヒ塩基)(N,N−ジイソプロピルアミン及びアセトアルデヒドから)、N−メチル−N−イソプロピルアミン(MMIPA)(モノメチルアミン及びアセトンから)、n−プロピルアミン(例えばモノ/ジ−n−プロピルアミン、N,N−ジメチル−N−n−プロピルアミン(DMPA))(プロピオンアルデヒド及び/又はn−プロパノール及びNH3もしくはDMAから)、N,N−ジメチル−N−イソプロピルアミン(DMIPA)(i−プロパノール及び/又はアセトン及びDMAから)、N,N−ジメチル−N−ブチルアミン(1−、2−もしくはイソ−ブタノール及び/又はブタナール、i−ブタナールもしくはブタノン及びDMA)、2−(2−ジ(C1〜C4−アルキル)アミノエトキシ)エタノール及び/又はビス(2−ジ(C1〜C4−アルキル)アミノエチル)エーテル(DEG及びジ(C1〜C4−アルキル)アミンから)、1,2−エチレンジアミン(EDA)、モノエタノールアミン(MEOA)、ジエチレントリアミン(DETA)及び/又はピペラジン(PIP)(モノエチレングリコール(MEG)及びアンモニアから)、1,8−ジアミノ−3,6−ジオキサ−オクタン及び/又は1−アミノ−8−ヒドロキシ−3,6−ジオキサ−オクタン(トリエチレングリコール(TEG)及びアンモニアから)、1−メトキシ−2−プロピルアミン(1−メトキシ−イソプロピルアミン、MOIPA)(1−メトキシ−2−プロパノール及びアンモニアから)、N−シクロドデシル−2,6−ジメチルモルホリン(Dodemorph)(シクロドデカノン及び/又はシクロドデカノール及び2,6−ジメチルモルホリンから)、ポリエーテルアミン(相応のポリエーテルアルコール及びアンモニアから)である。該ポリエーテルアルコールは、例えば200〜5000g/モルの範囲の分子量を有するポリエチレングリコールもしくはポリプロピレングリコールであり、その相応のポリエーテルアミンは、例えばBASF社から商品名PEA D230、D400、D2000、T403もしくはT5000で入手される。
全ての圧力の表記は、絶対圧力に対するものである。
実施例
比較例1
Ni−Co−Cu/ZrO2を基礎とするアミノ化触媒の製造(EP963975号Aによる比較試験)
硝酸ニッケルと、硝酸コバルトと、硝酸銅と、酢酸ジルコニウムとからなり、2.39質量%のNiOと、2.39質量%のCoOと、0.94質量%のCuOと、2.82質量%のZrO2とを含有する水溶液を、同時に1つの撹拌容器内で一定流において20質量%の炭酸ナトリウム水溶液を用いて70℃の温度で、ガラス電極で測定したpH値7.0を保持するように沈殿させた。得られた懸濁液を濾過し、そして濾過ケークを完全脱塩水で、濾液の導電率が約20μSとなるまで洗浄した。次いで、該濾過ケークを150℃の温度で乾燥棚においてもしくは噴霧乾燥機において乾燥させた。こうして得られた水酸化物−炭酸塩−混合物を、ここで450〜500℃の温度で4時間の時間にわたりか焼した。こうして製造された触媒は、以下の組成を有していた:28質量%のNiO、28質量%のCoO、11質量%のCuO及び33質量%のZrO2。該触媒を、3質量%のグラファイトと混合し、成形してタブレットにした。その酸化物タブレットを還元した。還元は、280℃で実施し、その際、昇温速度は3℃/分であった。まず、50分間にわたりN2中10%のH2で還元させ、引き続き20分間にわたりN2中25%のH2で還元させ、次いで10分間にわたりN2中50%のH2で還元させ、次いで10分間にわたりN2中75%のH2で還元させ、そして最後に3時間にわたり100%のH2で還元させた。%の表記は、それぞれ容量%である。還元された触媒の不動態化は、室温で希釈された空気(最大で5容量%のO2含有率を有するN2中の空気)において実施した。
比較例2
Ni−Cu−Mo/ZrO2を基礎とするアミノ化触媒の製造(EP696572号Aによる比較試験)
硝酸ニッケルと、硝酸銅と、酢酸ジルコニウムとからなり、4.48質量%(NiOとして計算した)のNiと、1.52質量%(CuOとして計算した)のCuと、2.28質量%(ZrO2として計算した)のZrとを含有する水溶液を、同時に1つの撹拌容器内で一定流において20質量%の炭酸ナトリウム水溶液を用いて70℃の温度で、ガラス電極で測定したpH値7.0を保持するように沈殿させた。得られた懸濁液を濾過し、そして濾過ケークを完全脱塩水で、濾液の導電率が約20μSとなるまで洗浄した。次いで、まだ湿っている濾過ケーク中に、12.9gのアンモニウムヘプタモリブデートを、NiOとして計算して50gのニッケル塩当たりに混加し、こうして以下に示される酸化物混合物が得られた。引き続き、該濾過ケークを150℃の温度で乾燥棚においてもしくは噴霧乾燥機において乾燥させた。乾燥させた水酸化物−炭酸塩の混合物を、次いで、430〜460℃の温度で、4時間に時間にわたりか焼させた。こうして製造された触媒は、以下の組成:50質量%のNiO、17質量%のCuO、1.5質量%のMoO3及び31.5質量%のZrO2を有していた。こうして得られた触媒に、3質量%のグラファイトを加え、圧縮し、最後に成形してタブレットにした。該タブレットを引き続き還元させた。該還元は、290℃において、20容量%の水素及び80容量%の窒素からなる混合物を用いて実施した。その際の加熱速度は、3℃/分であった。還元された触媒の不動態化は、室温で希釈された空気(最大で5容量%のO2含有率を有するN2中の空気)において実施した。
比較例3
Ni−Co−Cu−Sn/ZrO2を基礎とするアミノ化触媒の製造(WO2008/006750号A1による比較試験)
該触媒は、比較例1と同様にして製造した。しかし、硝酸ニッケル、硝酸銅及び硝酸コバルトの量は相応して変更し、そして硝酸塩溶液にさらに付加的に二塩化スズを添加した。上述のようにして得られた水酸化物−炭酸塩の混合物を、450℃の温度で4時間の時間にわたりか焼させた。こうして得られたものに、3質量%のグラファイトを加え、圧縮し、そして最後に成形してタブレットにした。該タブレットを引き続き還元させた。該還元は、290℃において、20容量%の水素及び80容量%の窒素からなる混合物を用いて実施した。その際の加熱速度は、3℃/分であった。還元された触媒の不動態化は、室温で希釈された空気(最大で5容量%のO2含有率を有するN2中の空気)において実施した。こうして得られた触媒は、以下の表Iに示される組成を有していた。
実施例4
硝酸ニッケルと、硝酸コバルトと、硝酸銅と、硝酸アルミニウムと、塩化スズ(II)とからなり、3.9%のNiと、3.9%のCoと、1.9%のCuと、5.5%のAl23と、0.5%のSnとを含有する水溶液を、同時に1つの撹拌容器内で一定流において20質量%の炭酸ナトリウム水溶液を用いて65〜70℃の温度で、ガラス電極で測定したpH値5.7を保持するように沈殿させた。沈殿の後に、1時間にわたり空気を吹き込み、次いで溶液のpHを炭酸ナトリウム溶液を用いて7.4の値に調整した。得られた懸濁液を濾過し、そして濾過ケークを完全脱塩水で、濾液の導電率が約20mSとなるまで洗浄した。次いで、濾過ケークを、150℃の温度で乾燥棚内で乾燥させた。このようにして得られた水酸化物・炭酸塩の混合物を、ここで500℃の温度で4時間にわたりか焼させた。該触媒材料を、引き続き、3質量%のグラファイトと混合し、成形して3×3mmのタブレットにした。このようにして得られたタブレットを、280〜300℃の温度で、少なくとも12時間にわたり水素中で還元させる。還元された触媒の不動態化は、室温で希釈された空気(最大で5容量%のO2含有率を有するN2中の空気)において実施した。こうして得られた触媒は、以下の表Iに示される組成を有していた。
実施例5
該触媒は、実施例4と同様にして製造した。しかし、硝酸ニッケル、硝酸銅、硝酸コバルト、硝酸アルミニウム及び塩化スズ(II)の量は相応して変更し、そして該硝酸溶液にさらに硝酸イットリウムを添加した。こうして得られた触媒は、以下の表Iに示される組成を有していた。
実施例6
該触媒は、実施例4と同様にして製造した。しかし、硝酸ニッケル、硝酸銅、硝酸コバルト、硝酸アルミニウム及び塩化スズ(II)の量は相応して変更し、そして該硝酸溶液にさらに硝酸ランタンを添加した。こうして得られた触媒は、以下の表Iに示される組成を有していた。
実施例7
該触媒は、実施例4と同様にして製造した。しかし、硝酸ニッケル、硝酸銅、硝酸コバルト、硝酸アルミニウム及び塩化スズ(II)の量は相応して変更し、そして該硝酸溶液にさらに硝酸セリウムを添加した。こうして得られた触媒は、以下の表Iに示される組成を有していた。
実施例8
該触媒は、実施例4と同様にして製造した。しかし、硝酸ニッケル、硝酸銅、硝酸コバルト、硝酸アルミニウム及び塩化スズ(II)の量は相応して変更し、そして該硝酸溶液にさらに硝酸ハフニウムを添加した。こうして得られた触媒は、以下の表Iに示される組成を有していた。
実施例9
該触媒は、実施例4と同様にして製造した。しかし、硝酸ニッケル、硝酸銅、硝酸コバルト及び塩化スズ(II)の量は相応して変更した。前記硝酸溶液にさらに硝酸ランタンを添加し、そして硝酸アルミニウム溶液の代わりに、微分散された酸化アルミニウム粉末(BASF SE社製のD10−10)を混ぜ入れた。こうして得られた触媒を、更に実施例4と同様に処理した。こうして得られた触媒は、以下の表Iに示される組成を有していた。
連続運転される管形反応器中での触媒試験の実施
ジエチレングリコール(DEG)のアミノ化
14mmの内径と、中央に取り付けられた熱電対と、89mlの全容量を有する加熱された管形反応器を、下方部において一層のガラス球(15ml)で充填し、その上に30mlの還元されたアミノ化触媒(約1.0〜1.6mmの破片の形、それは還元され不動態化されたタブレットから製造された)で充填し、最後に残りの部分を再びガラス球で充填した。反応の前に、触媒を最高280℃で水素(25Nl/h)(Nl=標準リットル=標準条件(20℃、1バール(絶対圧力))に換算された体積)下で常圧下で24時間にわたり活性化させた。該反応器を通じて、下から上へと、35g/hのDEGと、35g/hの液状NH3と、7Nl/hの水素とを配量した。該反応器を、約190℃〜210℃の温度及び200バールの全圧で保持した。反応温度は、約65〜70%のDEG転化率が達成されるように選択した。該反応器から出てくる混合物を冷却し、常圧に解放した。種々の時点で、反応混合物から試料を採取し、クロマトグラフィーによって分析した。このために、30m長のGCカラム"RTX−5 Amine"を、温度プログラム:80℃で/15分間、30分で290℃にまで加熱、290℃で/15分間で使用した。
例1ないし9の触媒についての得られた反応混合物の組成を以下の表IIに示す。
表I
Figure 2013512872
*) 触媒組成(質量%);100質量%までの残部は担体である。
**)ISO9277:1995
Figure 2013512872
後処理:
その都度の純粋な生成物は、水含有の粗製物から、真空下で、常圧で又は高められた圧力で精留することによって、公知の方法に従って得ることができる。純粋な生成物は、その場合に、直接的に純粋な形で生じるか又は水との共沸混合物として生ずる。水含有の共沸混合物は、濃縮されたアルカリ液による液−液−抽出によって、純粋蒸留の前後で脱水することができる。共沸添加剤の存在下での公知法による蒸留による脱水も可能である。
粗製物もしくはその粗製物中の脂肪族アミンが殆どもしくは決して水と混和し得ない場合に、脱水は、公知法を用いた有機相と水相との分離によっても可能である。
結論:
アミノ化触媒の性能は、活性物質の化学組成を本発明のように変更したことで良好な触媒活性が得られ、先行技術に対して明らかに改善できた。経済的に関心が持たれるアミノ化生成物、例えばDEGアミノ化でのアミノジグリコール及びモルホリンの収率は、担体としてAl23を有する相応の触媒をNi、Co、Cu及びSn並びにY、La、CeもしくはHfでのドーピングと組み合わせて使用することによって高めることができる。特に、その際に、有用な直鎖状のアミノ化生成物、例えばDEGアミノ化でのアミノジグリコールの収率を高めることができる。更に、DEGアミノ化に際してメトキシエタノールの含分によって決まる不所望な脱カルボニル化と、エーテル分解の程度は明らかに下げることができる。特に、本発明による希土類元素ドーピングは、他の性能パラメータに悪影響を及ぼすことなく、より良好な触媒寿命をもたらす。

Claims (32)

  1. 第一級もしくは第二級のアルコール、アルデヒド及び/又はケトンと、水素及び、アンモニア、第一級の及び第二級のアミンの群から選択される窒素化合物とを、担持された銅とニッケルとコバルトを含有する触媒の存在下で反応させることによってアミンを製造する方法において、該触媒の触媒活性物質が、その水素による還元の前に、アルミニウム、銅、ニッケル、コバルト及びスズの酸素含有の化合物を含有し、かつそれぞれY23、La23、Ce23もしくはHf23として計算して0.2〜5.0質量%の範囲においてイットリウム、ランタン、セリウム及び/又はハフニウムの酸素含有の化合物を含有することを特徴とする前記方法。
  2. 請求項1に記載の方法において、触媒の触媒活性物質が、その水素による還元の前に、それぞれY23、La23、Ce23もしくはHf23として計算して0.4〜4.0質量%の範囲においてイットリウム、ランタン、セリウム及び/又はハフニウムの酸素含有の化合物を含有することを特徴とする前記方法。
  3. 請求項1又は2に記載の方法において、触媒の触媒活性物質が、その水素による還元の前に、SnOとして計算して0.2〜5.0質量%の範囲で、スズの酸素含有の化合物を含有することを特徴とする前記方法。
  4. 請求項1から3までのいずれか1項に記載の方法において、触媒の触媒活性物質が、その水素による還元の前に、SnOとして計算して0.4〜4.0質量%の範囲で、スズの酸素含有の化合物を含有することを特徴とする前記方法。
  5. 請求項1から4までのいずれか1項に記載の方法において、触媒の触媒活性物質が、その水素による還元の前に、CoOとして計算して5.0〜35質量%の範囲で、コバルトの酸素含有の化合物を含有することを特徴とする前記方法。
  6. 請求項1から5までのいずれか1項に記載の方法において、触媒の触媒活性物質が、その水素による還元の前に、CoOとして計算して10〜30質量%の範囲で、コバルトの酸素含有の化合物を含有することを特徴とする前記方法。
  7. 請求項1から6までのいずれか1項に記載の方法において、触媒の触媒活性物質が、その水素による還元の前に、
    Al23として計算して15〜80質量%の範囲で、アルミニウムの酸素含有の化合物を含有し、
    CuOとして計算して1.0〜20質量%の範囲で、銅の酸素含有の化合物を含有し、かつ
    NiOとして計算して5.0〜35質量%の範囲で、ニッケルの酸素含有の化合物を含有することを特徴とする前記方法。
  8. 請求項1から6までのいずれか1項に記載の方法において、触媒の触媒活性物質が、その水素による還元の前に、
    Al23として計算して30〜70質量%の範囲で、アルミニウムの酸素含有の化合物を含有し、
    CuOとして計算して2.0〜18質量%の範囲で、銅の酸素含有の化合物を含有し、かつ
    NiOとして計算して10〜30質量%の範囲で、ニッケルの酸素含有の化合物を含有することを特徴とする前記方法。
  9. 請求項1から8までのいずれか1項に記載の方法において、触媒において、ニッケルの銅に対するモル比が1より大きいことを特徴とする前記方法。
  10. 請求項1から9までのいずれか1項に記載の方法において、触媒の触媒活性物質が、レニウム及び/又はルテニウムを含有しないことを特徴とする前記方法。
  11. 請求項1から10までのいずれか1項に記載の方法において、触媒の触媒活性物質が、鉄及び/又は亜鉛を含有しないことを特徴とする前記方法。
  12. 請求項1から11までのいずれか1項に記載の方法において、触媒の触媒活性物質が、ケイ素及び/又はジルコニウムの酸素含有の化合物を含有しないことを特徴とする前記方法。
  13. 請求項1から12までのいずれか1項に記載の方法において、触媒のBET表面積(ISO9277:1995)が、30〜250m2/gの範囲であることを特徴とする前記方法。
  14. 請求項1から13までのいずれか1項に記載の方法において、反応を80〜350℃の範囲の温度で実施することを特徴とする前記方法。
  15. 請求項1から14までのいずれか1項に記載の方法において、反応を、液相中で、5〜30MPaの範囲の絶対圧において、又は気相中で、0.1〜40MPaの範囲の絶対圧において実施することを特徴とする前記方法。
  16. 請求項1から15までのいずれか1項に記載の方法において、アミン成分(窒素化合物)を、使用されるアルコール、アルデヒド及び/又はケトンに対して、0.90倍ないし100倍のモル量で使用することを特徴とする前記方法。
  17. 請求項1から16までのいずれか1項に記載の方法において、触媒が反応器内に固定床として配置されていることを特徴とする前記方法。
  18. 請求項1から17までのいずれか1項に記載の方法において、連続的に実施することを特徴とする前記方法。
  19. 請求項18に記載の方法において、反応を管形反応器中で実施することを特徴とする前記方法。
  20. 請求項18又は19に記載の方法において、反応を循環ガス操作様式で実施することを特徴とする前記方法。
  21. 請求項1から20までのいずれか1項に記載の方法において、アルコール、アルデヒド及び/又はケトンを水溶液として使用することを特徴とする前記方法。
  22. 請求項1から21までのいずれか1項に記載の方法において、アンモニア、第一級もしくは第二級のアミンを水溶液として使用することを特徴とする前記方法。
  23. 請求項1から22までのいずれか1項に記載の方法であって、ジエチレングリコール(DEG)とアンモニアとを反応させることによってモノアミノジグリコール(ADG)及びモルホリンを製造するための前記方法。
  24. 請求項1から22までのいずれか1項に記載の方法であって、ジエチレングリコール(DEG)とモノ(C1〜C4−アルキル)アミンとを反応させることによってN−(C1〜C4−アルキル)モルホリンを製造するための前記方法。
  25. 請求項1から22までのいずれか1項に記載の方法であって、ジエチレングリコール(DEG)とジ(C1〜C4−アルキル)アミンとを反応させることによって2−(2−ジ(C1〜C4−アルキル)アミノエトキシ)エタノール及び/又はビス(2−ジ(C1〜C4−アルキル)アミノエチル)エーテルを製造するための前記方法。
  26. 請求項1から22までのいずれか1項に記載の方法であって、モノエチレングリコール(MEG)とアンモニアとを反応させることによってモノエタノールアミン(MEOA)及び/又は1,2−エチレンジアミン(EDA)を製造するための前記方法。
  27. 請求項1から22までのいずれか1項に記載の方法であって、モノエタノールアミン(MEOA)とアンモニアとを反応させることによって1,2−エチレンジアミン(EDA)を製造するための前記方法。
  28. 請求項1から22までのいずれか1項に記載の方法であって、ポリエーテルアミンを相応のポリエーテルアルコールとアンモニアとを反応させることによって製造するための前記方法。
  29. 請求項1から22までのいずれか1項に記載の方法において、N−(2−アミノエチル)エタノールアミン(AEEA)とアンモニアとを反応させることによってピペラジン及び/又はジエチレントリアミン(DETA)を製造するための前記方法。
  30. 請求項1から22までのいずれか1項に記載の方法であって、ポリイソブテンアルデヒドとアンモニアとを反応させることによってポリイソブテンアミン(PIBA)を製造するための前記方法。
  31. 触媒活性物質が、その水素による還元の前に、アルミニウム、銅、ニッケル、コバルト及びスズの酸素含有の化合物を含有し、かつそれぞれY23、La23、Ce23もしくはHf23として計算して0.2〜5.0質量%の範囲においてイットリウム、ランタン、セリウム及び/又はハフニウムの酸素含有の化合物を含有することを特徴とする触媒。
  32. 請求項31に記載の触媒であって、請求項2から13までのいずれか1項に定義されるように特徴付けられる前記触媒。
JP2012541435A 2009-12-03 2010-11-29 触媒及びアミンの製造方法 Active JP5755237B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09177915.7 2009-12-03
EP09177915 2009-12-03
PCT/EP2010/068376 WO2011067200A1 (de) 2009-12-03 2010-11-29 Katalysator und verfahren zur herstellung eines amins

Publications (2)

Publication Number Publication Date
JP2013512872A true JP2013512872A (ja) 2013-04-18
JP5755237B2 JP5755237B2 (ja) 2015-07-29

Family

ID=43971479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012541435A Active JP5755237B2 (ja) 2009-12-03 2010-11-29 触媒及びアミンの製造方法

Country Status (6)

Country Link
US (1) US8318982B2 (ja)
EP (1) EP2506965B1 (ja)
JP (1) JP5755237B2 (ja)
CN (1) CN102781571B (ja)
SA (1) SA110310895B1 (ja)
WO (1) WO2011067200A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017516841A (ja) * 2014-03-27 2017-06-22 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ジアルコールをベースとするエーテルアミン
JP2017536437A (ja) * 2014-09-25 2017-12-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 1,3−ジアルコールをベースとするポリエーテルアミン
JP2020522540A (ja) * 2017-06-09 2020-07-30 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se エチレンアミンの製造方法

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067200A1 (de) 2009-12-03 2011-06-09 Basf Se Katalysator und verfahren zur herstellung eines amins
WO2011067199A1 (de) 2009-12-03 2011-06-09 Basf Se Katalysator und verfahren zur herstellung eines amins
US8450530B2 (en) 2010-04-07 2013-05-28 Basf Se Process for preparing unsymmetric secondary tert-butylamines in the gas phase
US8445726B2 (en) 2010-04-07 2013-05-21 Basf Se Process for preparing unsymmetric secondary tert-butylamines in the liquid phase
US8455693B2 (en) 2010-05-21 2013-06-04 Basf Se Process for preparing 2-(2-tert-butylaminoethoxy)ethanol (tert-butylaminodiglycol, TBADG)
US8637668B2 (en) 2010-06-15 2014-01-28 Basf Se Process for preparing a cyclic tertiary methylamine
US8710269B2 (en) 2010-07-29 2014-04-29 Basf Se DMAPN having a low DGN content and a process for preparing DMAPA having a low DGN content
US8933223B2 (en) 2010-10-14 2015-01-13 Basf Se Process for preparing a cyclic tertiary amine
US8912361B2 (en) 2011-03-08 2014-12-16 Basf Se Process for preparing di-, tri- and polyamines by homogeneously catalyzed alcohol amination
US8637709B2 (en) 2011-03-08 2014-01-28 Basf Se Process for the preparation of primary amines by homogeneously catalyzed alcohol amination
US9193666B2 (en) 2011-03-08 2015-11-24 Basf Se Process for preparing alkanolamines by homogeneously catalyzed alcohol amination
US8785693B2 (en) 2011-03-08 2014-07-22 Basf Se Process for the preparation of primary amines by homogeneously catalyzed alcohol amination
US9096497B2 (en) 2011-08-31 2015-08-04 Basf Se Process for preparing EDDN and EDMN
US8946459B2 (en) 2011-08-31 2015-02-03 Basf Se Process for preparing EDDN and/or EDMN by reacting EDFA and/or EDMFA with HCN
US8952156B2 (en) 2011-08-31 2015-02-10 Basf Se Process for working up reaction outputs from the hydrogenation of EDDN or EDMN
US9012638B2 (en) 2011-08-31 2015-04-21 Basf Se Process for preparing EDDN and/or EDMN by conversion of FACH and EDA
WO2013034532A1 (de) * 2011-09-09 2013-03-14 Bayer Intellectual Property Gmbh Verfahren zur herstellung von polyaminen
US9040451B2 (en) 2011-11-17 2015-05-26 Basf Se Process for producing Sn-comprising catalysts
US8884015B2 (en) 2012-06-01 2014-11-11 Basf Se Process for the preparation of a mono-N-alkypiperazine
IN2014DN10668A (ja) 2012-06-01 2015-08-28 Basf Se
US8981093B2 (en) 2012-06-06 2015-03-17 Basf Se Process for preparing piperazine
CN103920498B (zh) * 2013-01-10 2016-04-20 乐天化学株式会社 用于还原性胺化反应的催化剂及其应用
PL2978830T3 (pl) 2013-03-28 2019-08-30 The Procter & Gamble Company Kompozycje czyszczące zawierające polieteroaminę
MX2015013806A (es) 2013-03-28 2016-06-02 Basf Se Polieteraminas a base de 1,3-dialcoholes.
WO2014199349A2 (en) * 2013-06-13 2014-12-18 Basf Se Metal impregnated amorphous silicates for the selective conversion of ethanol to butadiene
GB201314600D0 (en) * 2013-08-15 2013-10-02 Univ Cardiff Catalyst for direct synthesis of hyrdogen peroxide
EP2842936A1 (en) 2013-08-26 2015-03-04 Basf Se Etheramines based on alkoxylated glycerine or trimethylolpropane.
CN103480380B (zh) * 2013-09-03 2015-04-22 万华化学集团股份有限公司 一种用于固定床苯胺精馏残渣资源化利用的催化剂及其制备方法
WO2015148360A1 (en) 2014-03-27 2015-10-01 The Procter & Gamble Company Cleaning compositions containing a polyetheramine
WO2015148361A1 (en) 2014-03-27 2015-10-01 The Procter & Gamble Company Cleaning compositions containing a polyetheramine
JP2017517560A (ja) 2014-03-27 2017-06-29 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ジアルコールをベースとするエーテルアミン
EP2940116B1 (en) 2014-04-30 2018-10-17 The Procter and Gamble Company Detergent
EP2940117B1 (en) 2014-04-30 2020-08-19 The Procter and Gamble Company Cleaning composition containing a polyetheramine
US9974985B2 (en) 2014-05-15 2018-05-22 Basf Se Etheramines based on 1,2-dialcohols
US10280237B2 (en) 2014-09-15 2019-05-07 Basf Se Salts of etheramines and polymeric acid
US9617502B2 (en) 2014-09-15 2017-04-11 The Procter & Gamble Company Detergent compositions containing salts of polyetheramines and polymeric acid
CN104262168B (zh) * 2014-09-22 2017-03-15 北京旭阳科技有限公司 一种己二胺的制备方法
US9631163B2 (en) 2014-09-25 2017-04-25 The Procter & Gamble Company Liquid laundry detergent composition
US9752101B2 (en) 2014-09-25 2017-09-05 The Procter & Gamble Company Liquid laundry detergent composition
BR112017005767A2 (pt) 2014-09-25 2017-12-12 Procter & Gamble composições de limpeza contendo uma polieteramina
US20160090552A1 (en) 2014-09-25 2016-03-31 The Procter & Gamble Company Detergent compositions containing a polyetheramine and an anionic soil release polymer
US9850452B2 (en) 2014-09-25 2017-12-26 The Procter & Gamble Company Fabric care compositions containing a polyetheramine
US9388368B2 (en) 2014-09-26 2016-07-12 The Procter & Gamble Company Cleaning compositions containing a polyetheramine
KR20170083085A (ko) 2014-11-10 2017-07-17 로디아 오퍼레이션스 직접 아민화 반응에 의한 아민을 형성하는 방법
GB201502411D0 (en) * 2015-02-13 2015-04-01 Univ Cardiff Catalyst for direct synthesis of hydrogen peroxide
EP3162880A1 (en) 2015-10-29 2017-05-03 The Procter and Gamble Company Liquid detergent composition
EP3162879B1 (en) 2015-10-29 2018-07-18 The Procter and Gamble Company Liquid detergent composition
CN107011194B (zh) * 2016-01-27 2019-03-19 中国科学院大连化学物理研究所 一种由乙醇醛还原胺化制备醇胺及二胺的方法
EP3411352A4 (en) 2016-02-04 2019-09-04 Rhodia Operations MACROPOROUS CATALYST FOR THE PREPARATION OF ALIPHATIC AMINES
EP3257924A1 (en) 2016-06-17 2017-12-20 The Procter and Gamble Company Liquid detergent composition
EP3279301A1 (en) 2016-08-04 2018-02-07 The Procter & Gamble Company Water-soluble unit dose article comprising a cleaning amine
CN110709380A (zh) 2017-06-09 2020-01-17 巴斯夫欧洲公司 制备亚乙基胺的方法
WO2018224316A1 (de) 2017-06-09 2018-12-13 Basf Se Verfahren zur herstellung von ethylenaminen
CN107497488B (zh) * 2017-09-11 2020-07-14 大连理工大学 一种高加氢选择性Au-Pd单原子合金催化剂的制备方法及应用
CN107857704B (zh) * 2017-11-21 2020-04-10 万华化学集团股份有限公司 一种制备3-氨甲基-3,5,5-三甲基环己胺的方法及用于该方法的催化剂
CN107983367B (zh) * 2017-12-08 2020-10-27 西安近代化学研究所 一种还原胺化催化剂及制备方法
CN108525675A (zh) * 2018-04-08 2018-09-14 上海应用技术大学 一种用于催化还原胺化制备胺类化合物的磁性碳/钯-钴多元复合催化剂、制备方法和应用
TWI677374B (zh) * 2018-11-06 2019-11-21 國立清華大學 非勻相鎳系氧化鋁載體觸媒的製備方法、其製備之非勻相鎳系氧化鋁載體觸媒及合成聚醚胺的方法
US20220177410A1 (en) 2019-03-06 2022-06-09 Basf Se Method for the production of ethyleneamines
CN110102259A (zh) * 2019-05-18 2019-08-09 福建师范大学 一种负载纳米铁的协同耦合活性炭基材料的制备方法
US20230025575A1 (en) * 2019-12-03 2023-01-26 Basf Se Process for preparing amines over a copper catalyst
KR102622834B1 (ko) * 2020-11-30 2024-01-09 롯데케미칼 주식회사 모르폴린의 제조 방법
CN117531520A (zh) * 2022-08-01 2024-02-09 厦门大学 一种催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532324A (en) * 1984-01-25 1985-07-30 Texaco, Inc. Catalytic process for the coproduction of morpholine and 2-(2-hydroxyethoxy)ethylamine from diethylene glycol
JPH10174875A (ja) * 1996-10-31 1998-06-30 Basf Ag アルキレンオキシド、アルコール、アルデヒドおよびケトンのアミノ化用触媒、およびその製造方法
WO2008006750A1 (de) * 2006-07-14 2008-01-17 Basf Se Verfahren zur herstellung eines amins
JP2009510018A (ja) * 2005-09-30 2009-03-12 ビーエーエスエフ ソシエタス・ヨーロピア アミノジグリコール(adg)およびモルホリンの製造法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL296139A (ja) 1963-08-02
BE757840A (fr) 1969-10-23 1971-04-22 Basf Ag Procede de preparation d'amines a partir d'alcools
NL169595C (nl) 1970-05-21 1982-08-02 Shell Int Research Werkwijze voor de bereiding van aminen en van smeerolien en vloeibare motorbrandstoffen die deze bevatten.
BE871092A (nl) 1977-10-17 1979-04-09 Shell Int Research Werkwijze ter bereiding van een amine
US4582904A (en) * 1982-05-24 1986-04-15 Air Products And Chemicals, Inc. Amine production via condensation reactions using rare earth metal hydrogen phosphates as catalysts
GB8519425D0 (en) * 1985-08-01 1985-09-04 Ici Plc Amine production
DE3611230A1 (de) 1986-04-04 1987-10-08 Basf Ag Polybutyl- und polyisobutylamine, verfahren zu deren herstellung und diese enthaltende kraft- und schmierstoffzusammensetzungen
US5210306A (en) * 1989-08-08 1993-05-11 Union Carbide Chemicals & Plastics Technology Corporation Promoted amines catalysis
DE4116367A1 (de) 1991-05-18 1992-11-19 Basf Ag Verfahren zur herstellung von aminen
DE4428004A1 (de) 1994-08-08 1996-02-15 Basf Ag Verfahren zur Herstellung von Aminen
DE4446893A1 (de) * 1994-12-27 1996-07-04 Basf Ag Verfahren zur Herstellung von aliphatischen alpha,omega-Aminonitrilen
DE19644107A1 (de) 1996-10-31 1998-05-07 Basf Ag Katalysatoren für die Aminierung von Alkylenoxiden, Alkoholen, Aldehyden und Ketonen
US5977013A (en) 1996-12-19 1999-11-02 Battelle Memorial Institute Catalyst and method for aqueous phase reactions
DE19826396A1 (de) 1998-06-12 1999-12-16 Basf Ag Verfahren zur Herstellung von Aminen
JP4221532B2 (ja) * 1998-06-26 2009-02-12 三菱瓦斯化学株式会社 メチルアミン製造用触媒及び該触媒を用いたメチルアミン類の製造方法
US6147261A (en) 1998-11-23 2000-11-14 Shell Oil Corporation Diaminoalkane syntheses via selective amination of hydroxyaldehydes
US6534441B1 (en) 1999-03-06 2003-03-18 Union Carbide Chemicals & Plastics Technology Corporation Nickel-rhenium catalyst for use in reductive amination processes
DE50007278D1 (de) * 1999-12-06 2004-09-09 Basf Ag Verfahren zur Herstellung von Aminen
DE10153410A1 (de) 2001-10-30 2003-05-15 Basf Ag Verfahren zur Auftrennung von wasserhaltigen Rohamingemischen aus der Aminsynthese
DE10153411A1 (de) 2001-10-30 2003-05-15 Basf Ag Verfahren zur Auftrennung von wasserhaltigen Rohamingemischen aus der Aminsynthese
US7196033B2 (en) 2001-12-14 2007-03-27 Huntsman Petrochemical Corporation Advances in amination catalysis
DE10211101A1 (de) 2002-03-14 2003-09-25 Basf Ag Katalysatoren und Verfahren zur Herstellung von Aminen
DE10261193A1 (de) 2002-12-20 2004-07-01 Basf Ag Verfahren zur Herstellung eines Armins
US6743819B1 (en) 2003-03-24 2004-06-01 E. I. Du Ponte De Nemours And Company Production of 5-methyl-N-aryl-2-pyrrolidone and 5-methyl-N-cycloalkyl-2-pyrrolidone by reductive amination of levulinic acid with aryl amines
EP2225028A1 (de) 2007-12-21 2010-09-08 Basf Se Verfahren zur herstellung eines amins
CN101903096B (zh) 2007-12-21 2013-04-03 巴斯夫欧洲公司 生产胺的方法
CN101903092B (zh) 2007-12-21 2013-03-20 巴斯夫欧洲公司 生产胺的方法
CN101903095B (zh) 2007-12-21 2013-07-10 巴斯夫欧洲公司 制备胺的方法
EP2225031A1 (de) 2007-12-21 2010-09-08 Basf Se Verfahren zur herstellung eines amins
EP2225030B1 (de) 2007-12-21 2012-04-18 Basf Se Verfahren zur herstellung eines amins
WO2009080515A1 (de) 2007-12-21 2009-07-02 Basf Se Verfahren zur herstellung eines amins
JP2011513489A (ja) 2008-03-10 2011-04-28 ハンツマン ペトロケミカル エルエルシー シクロヘキサンジメタノールの直接アミン化によるシクロヘキサンジメタンアミンの製造
WO2010031719A1 (de) 2008-09-19 2010-03-25 Basf Se Verfahren zur kontinuierlichen herstellung eines amins unter verwendung eines aluminium-kupfer-katalysators
US8148295B2 (en) * 2009-02-16 2012-04-03 Millennium Inorganic Chemicals, Inc. Catalyst promoters in vanadium-free mobile catalyst
WO2011067200A1 (de) 2009-12-03 2011-06-09 Basf Se Katalysator und verfahren zur herstellung eines amins
WO2011067199A1 (de) 2009-12-03 2011-06-09 Basf Se Katalysator und verfahren zur herstellung eines amins

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532324A (en) * 1984-01-25 1985-07-30 Texaco, Inc. Catalytic process for the coproduction of morpholine and 2-(2-hydroxyethoxy)ethylamine from diethylene glycol
JPH10174875A (ja) * 1996-10-31 1998-06-30 Basf Ag アルキレンオキシド、アルコール、アルデヒドおよびケトンのアミノ化用触媒、およびその製造方法
JP2009510018A (ja) * 2005-09-30 2009-03-12 ビーエーエスエフ ソシエタス・ヨーロピア アミノジグリコール(adg)およびモルホリンの製造法
WO2008006750A1 (de) * 2006-07-14 2008-01-17 Basf Se Verfahren zur herstellung eines amins

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017516841A (ja) * 2014-03-27 2017-06-22 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ジアルコールをベースとするエーテルアミン
JP2017536437A (ja) * 2014-09-25 2017-12-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 1,3−ジアルコールをベースとするポリエーテルアミン
JP2020522540A (ja) * 2017-06-09 2020-07-30 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se エチレンアミンの製造方法
JP7105812B2 (ja) 2017-06-09 2022-07-25 ビーエーエスエフ ソシエタス・ヨーロピア エチレンアミンの製造方法

Also Published As

Publication number Publication date
WO2011067200A1 (de) 2011-06-09
JP5755237B2 (ja) 2015-07-29
EP2506965B1 (de) 2016-11-09
SA110310895B1 (ar) 2014-04-16
US8318982B2 (en) 2012-11-27
US20110137029A1 (en) 2011-06-09
CN102781571B (zh) 2015-06-17
EP2506965A1 (de) 2012-10-10
CN102781571A (zh) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5755237B2 (ja) 触媒及びアミンの製造方法
JP5755236B2 (ja) アミンの製造のための触媒及びアミンの製造方法
JP5637684B2 (ja) アミンの製造方法
JP5528349B2 (ja) アミンの製造方法
JP5656840B2 (ja) アルミニウム−銅触媒を用いた、アミンの連続的な製造方法
US7754922B2 (en) Process for preparing amines and zirconium dioxide- and nickel-containing catalysts for use therein
US8268995B2 (en) Processes for preparing amines and catalysts for use therein
US7750189B2 (en) Method for producing an amine
US8293945B2 (en) Method for producing an amine
US7919655B2 (en) Method for producing an amine
US8324430B2 (en) Processes for preparing amines and catalysts for use therein
JP2009543830A (ja) アミンの製造方法
US20100274008A1 (en) Method for the production of an amine
US20100274009A1 (en) Method for producing an amine
TWI490186B (zh) 製備胺之觸媒及方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150526

R150 Certificate of patent or registration of utility model

Ref document number: 5755237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250