JP2013258895A - 半導体装置及びその駆動方法 - Google Patents

半導体装置及びその駆動方法 Download PDF

Info

Publication number
JP2013258895A
JP2013258895A JP2013101908A JP2013101908A JP2013258895A JP 2013258895 A JP2013258895 A JP 2013258895A JP 2013101908 A JP2013101908 A JP 2013101908A JP 2013101908 A JP2013101908 A JP 2013101908A JP 2013258895 A JP2013258895 A JP 2013258895A
Authority
JP
Japan
Prior art keywords
voltage level
signal
transistor
circuit
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013101908A
Other languages
English (en)
Other versions
JP2013258895A5 (ja
Inventor
Kazunori Watanabe
一徳 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2013101908A priority Critical patent/JP2013258895A/ja
Publication of JP2013258895A publication Critical patent/JP2013258895A/ja
Publication of JP2013258895A5 publication Critical patent/JP2013258895A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】チャージポンプ回路への電源電圧の供給を停止及び再開する際、容量素子からの電荷の放電を低減し、電源電圧の供給を再開してから入力信号を昇圧する際に要する時間を短くすることである。
【解決手段】電荷転送素子及び容量素子を有し、入力信号の電圧レベルを昇圧した出力信号を出力する昇圧回路部と、出力信号の電圧レベルをモニターする検出回路と、検出回路で得られる電圧レベルに従って、入力信号の電圧レベルの昇圧を制御する信号を昇圧部に出力する制御回路と、を有し、昇圧回路部は、容量素子及び電荷転送素子に電気的に接続されたスイッチを有する半導体装置とする。
【選択図】図1

Description

本発明はチャージポンプ回路として機能する半導体装置及びその駆動方法に関する。特に本発明は、電源を切ってもチャージポンプ回路が有する容量素子に蓄積されている電荷を保持可能な半導体装置及びその駆動方法に関する。
なお本明細書において、半導体装置とは、半導体素子を含む装置のことをいう。したがって本明細書で説明するチャージポンプ回路は、半導体装置である。
複数の電荷転送素子及び容量素子を用いたチャージポンプ回路は、入力される定電圧の信号を昇圧して出力する回路として知られている。なお前述の電荷転送素子としては、ダイオードやトランジスタを挙げられる。
チャージポンプ回路の基本的な回路構成については、下記特許文献1に記載されている。
特開2000−270541号公報
チャージポンプ回路は、電源電圧の供給が行われているとき、入力信号を昇圧して出力するよう動作している。またチャージポンプ回路は、電源電圧の供給が停止しているとき、回路の動作は停止している。ここでいう回路の動作とは、クロック信号や制御信号による、電荷の転送や、入力信号の昇圧である。
前述の電源電圧の供給を停止する場合、チャージポンプ回路では、入力信号の昇圧を行うために容量素子に蓄積していた電荷をその都度放電することになる。チャージポンプ回路では、電源電圧の供給を再開する場合、放電した電荷を容量素子に再度蓄積する必要があり、入力信号を昇圧して出力するまでの時間が長くなってしまうといった問題が生じる。
上述の課題に鑑み、本発明の一態様は、チャージポンプ回路への電源電圧の供給を停止及び再開する際、容量素子からの電荷の放電を低減し、電源電圧の供給を再開してから入力信号を昇圧する際に要する時間を短くすることを課題の一とする。
本発明の一態様は、電荷転送素子及び容量素子を有し、入力信号の電圧レベルを昇圧した出力信号を出力する昇圧回路部と、出力信号の電圧レベルをモニターする検出回路と、検出回路で得られる電圧レベルに従って、入力信号の電圧レベルの昇圧を制御する信号を昇圧回路部に出力する制御回路と、を有し、昇圧回路部は、容量素子及び電荷転送素子に電気的に接続されたスイッチを有する半導体装置である。
本発明の一態様は、電荷転送素子及び容量素子を有し、入力信号の電圧レベルを昇圧した出力信号を出力する昇圧回路部と、出力信号の電圧レベルをモニターする検出回路と、検出回路で得られる電圧レベルに従って、入力信号の電圧レベルの昇圧を制御する信号を昇圧回路部に出力する制御回路と、を有し、昇圧回路部は、容量素子及び電荷転送素子に電気的に接続されたスイッチを有し、スイッチがトランジスタであり、該トランジスタが有する半導体層は、酸化物半導体である半導体装置である。
本発明の一態様において、電荷転送素子は、ダイオード素子である半導体装置が好ましい。
本発明の一態様は、電源電圧の供給が停止する期間では、昇圧回路部の容量素子及び電荷転送素子に電気的に接続されたスイッチをオフにし、電源電圧の供給が行われる期間では、スイッチをオンにする、半導体装置の駆動方法である。
本発明の一態様において、スイッチは、チャネル幅あたりのオフ電流が1×10−22A/μm以下のトランジスタである半導体装置の駆動方法が好ましい。
本発明の一態様において、トランジスタの半導体層は、酸化物半導体である半導体装置の駆動方法が好ましい。
上記本発明の一態様では、チャージポンプ回路への電源電圧の供給を停止及び再開する際、容量素子からの電荷の放電を低減し、電源電圧の供給を再開してから入力信号を昇圧する際に要する時間を短くすることができる。
チャージポンプ回路の回路図。 チャージポンプ回路の回路図。 オフ電流を説明するためのアレニウスプロット図。 制御回路の回路図。 チャージポンプ回路のタイミングチャート図。 チャージポンプ回路の回路図。 チャージポンプ回路の回路図及びタイミングチャート図。 チャージポンプ回路の回路図。 半導体装置が有するトランジスタの断面図。
以下、本発明の実施の形態について図面を参照しながら説明する。但し、本発明の構成は多くの異なる態様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって本実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する本発明の構成において、同じ物を指し示す符号は異なる図面間において共通とする。
なお、各実施の形態の図面等において示す各構成の大きさ、層の厚さ、信号波形は、明瞭化のために誇張されて表記している場合がある。よって、必ずしもそのスケールに限定されない。
また、トランジスタの「ソース」や「ドレイン」の機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書においては、「ソース」や「ドレイン」の用語は、入れ替えて用いることができるものとする。
また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって形成されている場合なども含む。
(実施の形態1)
本実施の形態では、半導体装置であるチャージポンプ回路の回路構成及びその駆動方法について説明する。
図1に示すチャージポンプ回路100は、昇圧回路部101、検出回路102、及び制御回路103を有する。昇圧回路部101は、電荷転送素子104、電荷転送素子105、容量素子106、容量素子107及びスイッチ108を有する。
昇圧回路部101は、入力信号Vinの電圧レベルを昇圧した、出力信号Voutを出力する。具体的には、入力信号Vinにより入力される電荷を容量素子106の一方の電極に接続されたノードC1に保持し、ノードC1が電気的に浮遊状態となる際に、容量素子106の他方の電極の電圧レベルを上昇させることでノードC1の電圧レベルを入力信号Vinの電圧レベルからさらに上昇させて昇圧する。ノードC1での電圧レベルの昇降により、電荷がノードC2に転送され、ノードC2の電圧レベルを上昇させることができる。
なお本実施の形態で説明する本発明の一態様としては、昇圧回路部101の構成として、入力信号Vinの電圧レベルを昇圧して出力信号Voutを出力する例を説明するが、入力信号Vinの電圧レベルを降圧して出力信号Voutを出力する場合であっても本発明の一態様とすることができる。
電荷転送素子104は、一例としては、入力信号Vinが入力されるノードからノードC1への電荷転送を行う素子である。また電荷転送素子105は、ノードC1からノードC2への電荷転送を行う素子である。電荷転送素子104及び電荷転送素子105としては、ダイオード素子またはトランジスタを用いればよい。なお電荷転送素子104及び電荷転送素子105によって、転送される電荷は、正電荷または負電荷であればよく、電荷の転送によって昇圧回路部101での昇圧または降圧を実現可能な素子であればよい。
また容量素子107の一方の電極にあたるノードC2は、スイッチ108がオンのとき、出力信号Voutが出力されるノードに電気的に接続される。またノードC2は、スイッチ108がオフのとき、電気的に浮遊状態となり、容量素子107に電荷が保持された状態となる。また容量素子の他方の電極には、一定の電圧レベルの信号が供給され、図1に示す例ではグラウンド線GNDに接続している。
なお図1では、昇圧回路部101が有する電荷転送素子及び容量素子を2組示したが、3段以上の多段に設けることで、昇圧する電圧レベルを大きくとることができる。
スイッチ108は、ノードC2と、出力信号Voutが出力されるノードとの電気的な接続を制御する。具体的には、チャージポンプ回路100への電源電圧の供給が行われている時にはスイッチをオンにし、チャージポンプ回路100への電源電圧の供給が停止しているときにはスイッチをオフにする。スイッチ108がオンになることで、チャージポンプ回路100は、入力信号Vinの電圧レベルを昇圧した、出力信号Voutを出力することができる。また、スイッチ108がオフになることで、チャージポンプ回路100は、電源電圧の供給が停止しても、容量素子106及び容量素子107からの電荷の放電を低減し、電源電圧の供給を再開してから入力信号Vinを昇圧する際に要する時間を短くすることができる。
検出回路102は、出力信号Voutの電圧レベルをモニターするための回路である。具体的に検出回路102は、出力信号Voutが出力されるノードに抵抗素子を接続し、該抵抗素子を用いて抵抗分割して得られる電圧レベルを信号S1として制御回路103に出力する回路である。
制御回路103は、検出回路102から出力される信号S1に従って、容量素子106の他方の電極に対して、信号S2を出力する回路である。信号S2は、信号S1に従ってクロック信号を間欠的に出力して得られる信号である。
なお昇圧回路部101が有する電荷転送素子及び容量素子が3段以上の多段に構成されている場合、信号S2は、該信号S2を反転した信号とともに用いる。この場合、例えば、奇数段の容量素子の他方の電極には、信号S2を出力し、偶数段の容量素子の他方の電極には、信号S2を反転した信号を出力すればよい。
図1に示す昇圧回路部101及び検出回路102について具体的な回路構成とした、チャージポンプ回路100の回路図を図2に示す。
図2に示す昇圧回路部101は、ダイオード素子111、ダイオード素子112、容量素子106、容量素子107及びトランジスタ113を有する。
図1に示す電荷転送素子104として、ダイオード素子111を用いることで、入力信号Vinが入力されるノードの電圧レベルがノードC1の電圧レベルより大きいとき、入力信号Vinが入力されるノードからノードC1への正電荷の電荷転送を行うことができ、且つ入力信号Vinが入力されるノードの電圧レベルがノードC1の電圧レベルより小さいとき、ノードC1を電気的に浮遊状態とすることができる。また図1に示す電荷転送素子105として、ダイオード素子112を用いることで、ノードC2の電圧レベルがノードC1の電圧レベルより小さいとき、ノードC1からノードC2への電荷転送を行うことができ、且つノードC2の電圧レベルがノードC1の電圧レベルより大きいとき、ノードC1を電気的に浮遊状態とすることができる。
なお電荷転送素子間において、コイル素子、抵抗素子及び容量素子の少なくともいずれか一を組み合わせて設ける構成としてもよい。
なお電荷転送素子としては、図2に示したようなダイオード素子の他、トランジスタをスイッチングさせることで、入力信号Vinが入力されるノードとノードC1との間の電荷転送、及びノードC1とノードC2との間の電荷転送を実現することができる。
またスイッチとして用いることのできるトランジスタ113は、トランジスタのチャネル幅あたりのオフ電流を1×10−22A/μm以下と、シリコンを半導体層に有するトランジスタのオフ電流と比べて、極めて小さい値とすることにより、ダイオード素子112、容量素子107、及びトランジスタ113、で囲まれたノードC2での電荷の保持が可能となる。
本実施の形態では、トランジスタのチャネル幅あたりのオフ電流を1×10−22A/μm以下と極めて低減するための構成として、酸化物半導体層にチャネルが形成されるトランジスタを用いることが好適である。なお図面において、トランジスタ113は、酸化物半導体層にチャネルが形成されるトランジスタであることを示すために、OSの符号を付している。
なお、上記において、酸化物半導体材料の代わりに酸化物半導体材料と同等のオフ電流特性が実現できる材料を用いても良い。例えば、炭化シリコンをはじめとするワイドギャップ材料(より具体的には、例えば、エネルギーギャップEgが3eVより大きい半導体材料)などを適用することができる。また、トランジスタの代わりにMEMSスイッチ等を用いて配線間の接続を切り離すことにより、電荷の保持を実現する構成としてもよい。
なお制御回路103を構成するトランジスタは、 トランジスタ113の半導体層とは異なる半導体層とすることができる。。例えば制御回路103を構成するトランジスタは、シリコン層またはシリコン基板にチャネルが形成されるトランジスタとすることができる。
ここで、トランジスタ113の半導体層に用いる酸化物半導体について詳述する。
トランジスタの半導体層に用いる酸化物半導体としては、少なくともインジウム(In)または亜鉛(Zn)を含むことが好ましい。特にIn及びZnを含むことが好ましい。また、それらに加えて、酸素を強く結びつけるスタビライザーを有することが好ましい。スタビライザーとしては、ガリウム(Ga)、スズ(Sn)、ジルコニウム(Zr)、ハフニウム(Hf)及びアルミニウム(Al)の少なくともいずれかを有すればよい。
また、他のスタビライザーとして、ランタノイドである、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)のいずれか一種または複数種を有してもよい。
例えば、In−Sn−Ga−Zn系酸化物、In−Ga−Zn系酸化物、In−Sn−Zn系酸化物、In−Zr−Zn系酸化物、In−Al−Zn系酸化物、Sn−Ga−Zn系酸化物、Al−Ga−Zn系酸化物、Sn−Al−Zn系酸化物、In−Hf−Zn系酸化物、In−La−Zn系酸化物、In−Ce−Zn系酸化物、In−Pr−Zn系酸化物、In−Nd−Zn系酸化物、In−Sm−Zn系酸化物、In−Eu−Zn系酸化物、In−Gd−Zn系酸化物、In−Tb−Zn系酸化物、In−Dy−Zn系酸化物、In−Ho−Zn系酸化物、In−Er−Zn系酸化物、In−Tm−Zn系酸化物、In−Yb−Zn系酸化物、In−Lu−Zn系酸化物、In−Zn系酸化物、Sn−Zn系酸化物、Al−Zn系酸化物、Zn−Mg系酸化物、Sn−Mg系酸化物、In−Mg系酸化物、In−Ga系の材料、In系酸化物、Sn系酸化物、Zn系酸化物などを用いることができる。
なお、ここで、例えば、In−Ga−Zn系酸化物とは、In、Ga及びZnを主成分として有する酸化物という意味であり、In、Ga及びZnの比率は問わない。
また、酸化物半導体として、InMO(ZnO)(m>0)で表記される材料を用いてもよい。なお、Mは、Ga、Fe、Mn及びCoから選ばれた一の金属元素または複数の金属元素を示す。また、酸化物半導体として、InSnO(ZnO)(n>0)で表記される材料を用いてもよい。
例えば、In:Ga:Zn=3:1:2、In:Ga:Zn=1:1:1またはIn:Ga:Zn=2:2:1の原子数比のIn−Ga−Zn系酸化物やその組成の近傍の酸化物を用いることができる。または、In:Sn:Zn=1:1:1、In:Sn:Zn=2:1:3またはIn:Sn:Zn=2:1:5の原子数比のIn−Sn−Zn系酸化物やその組成の近傍の酸化物を用いるとよい。
なお、例えば、In、Ga、Znの原子数比がIn:Ga:Zn=a:b:c(a+b+c=1)である酸化物の組成が、原子数比がIn:Ga:Zn=A:B:C(A+B+C=1)の酸化物の組成の近傍であるとは、a、b、cが、式(1)を満たすことをいう。
(a―A)+(b―B)+(c―C)≦r (1)
rとしては、例えば、0.05とすればよい。他の酸化物でも同様である。
しかし、これらに限られず、必要とする半導体特性(電界効果移動度、しきい値電圧等)に応じて適切な組成のものを用いればよい。また、必要とする半導体特性を得るために、キャリア濃度や不純物濃度、欠陥密度、金属元素と酸素の原子数比、原子間距離、密度等を適切なものとすることが好ましい。
また、酸化物半導体を半導体層に用いるトランジスタは、酸化物半導体を高純度化することにより、オフ電流(ここでは、オフ状態のとき、たとえばソース電位を基準としたときのゲート電位との電位差がしきい値電圧以下のときのドレイン電流とする)を十分に低くすることが可能である。例えば、加熱成膜により水素や水酸基を酸化物半導体中に含ませないようにし、または成膜後の加熱により膜中から除去し、高純度化を図ることができる。
なお酸化物半導体を高純度化して極小となるオフ電流を検出するためには、比較的サイズの大きいトランジスタを作製し、オフ電流を測定することで、実際に流れるオフ電流を見積もることができる。図3に、サイズの大きいトランジスタとして、チャネル幅Wを1m(1000000μm)、チャネル長Lを3μmとした際に、温度を150℃、125℃、85℃、27℃と変化させた際のチャネル幅W1μmあたりのオフ電流のアレニウスプロットを示す。図3からもわかるように、27℃でのオフ電流は3×10−26A/μmと極めて小さいことがわかる。なお、昇温してオフ電流を測定したのは、室温では電流の計測が極めて小さいため、測定が困難だったためである。
高純度化されることにより、チャネル形成領域にIn−Ga−Zn系酸化物を用いたトランジスタで、チャネル長が10μm、半導体膜の膜厚が30nm、ドレイン電圧が1V〜10V程度の範囲である場合、オフ電流を、1×10−13A以下とすることが可能である。またチャネル幅あたりのオフ電流(オフ電流をトランジスタのチャネル幅で除した値)を1×10−23A/μm(10yA/μm)から1×10−22A/μm(100yA/μm)程度とすることが可能である。
以上がトランジスタ113の半導体層に用いる酸化物半導体についての説明である。
トランジスタのチャネル幅あたりのオフ電流を1×10−22A/μm以下と、シリコンを半導体層に有するトランジスタのオフ電流と比べて、オフ電流が極めて小さいトランジスタ113は、トランジスタ113がオンであれば、ノードC2の電荷に応じた電位の出力信号Voutを外部回路に出力することができる。またトランジスタ113をオフとすることで、チャージポンプ回路100への電源電圧の供給が停止ししても、ノードC1及びノードC2の電荷を保持することができる。
また検出回路を構成する抵抗素子114A及び抵抗素子114Bは、出力信号Voutが出力されるノードに接続されることで、出力信号Voutの電圧レベルに応じた信号S1を生成し、制御回路103に出力することができる。
また図4に示す図は、図1及び図2で示した制御回路103の具体的な回路の一例である。
図4に示す制御回路103は、オペアンプ201、オペアンプ202、基準電圧生成回路203、フリップフロップ回路204、セレクタ回路205及び発振回路206を有する。
オペアンプ201の非反転入力端子及びオペアンプ202の反転入力端子には、検出回路102より出力される信号S1が入力される。またオペアンプ201の反転入力端子には、基準電圧生成回路203より電圧レベルVrefHが入力される。またオペアンプ202の非反転入力端子には、基準電圧生成回路203より電圧レベルVrefLが入力される。なお電圧レベルVrefHは、電圧レベルVrefLより大きい電圧レベルである。
フリップフロップ回路204は、セット−リセット型のフリップフロップ回路である。セット端子(S)にはオペアンプ201の出力信号が入力される。リセット端子(R)にはオペアンプ202の出力信号が入力され、出力端子(Q)に出力がなされる。
セレクタ回路205は、フリップフロップ回路204の出力信号に従って、発振回路206より出力されるクロック信号か、グラウンド線GNDのグラウンド電位かを切り替えて信号S2として出力する。信号S2は、上述したように、図1または図2の昇圧回路部101が有する容量素子106の他方の電極に出力される。
上述した図4の回路構成とすることにより、制御回路103は、信号S1の電圧レベルがVrefL以下になるとセレクタ回路205は信号S2としてクロック信号を出力するよう切り替え、信号S1の電圧レベルがVrefH以上になるとセレクタ回路205は信号S2としてグラウンド電位を出力するよう切り替えて動作することができる。言い換えれば、制御回路103は、信号S1の電圧レベルがVrefL以下になると昇圧回路部101での昇圧を行うための信号を信号S2として出力し、信号S1の電圧レベルがVrefH以上になると昇圧回路部101での昇圧を中断するための信号を信号S2として出力することとなる。
次いで図1に示すチャージポンプ回路100の通常時の動作、及び電源電圧の供給を停止及び再開する際の動作について図5に示すタイミングチャート図を用いて説明する。
なお図1に示すチャージポンプ回路100への、電源電圧の供給を停止または再開、及びスイッチ108のオン又はオフの制御を行う回路として、チャージポンプ回路100の外部に電源制御回路を設ける構成とすればよい。一例としては、図6に示すように、チャージポンプ回路100の外部に設けることができる電源制御回路151により、スイッチ108のオン又はオフの制御、及びチャージポンプ回路100が有する制御回路103への電源電圧の供給の停止または再開を制御すればよい。
図5に示すタイミングチャート図では、電源電圧の供給の有無を表す配線の電圧レベルV_line、スイッチ108のオンまたはオフの状態を表すSW、信号S1、信号S2、ノードC1及びノードC2の電圧レベル(それぞれV_C1、V_C2)を示す。
図5に示す電圧レベルV_lineは、電源電圧の供給の有無を表すものである。例えば、電圧レベルV_lineが高電源電位VDDの電圧レベルの期間のとき、チャージポンプ回路100に電源電圧の供給が行われ、電圧レベルV_lineが低電源電位V_GNDの電圧レベルの期間のとき、チャージポンプ回路100への電源電圧の供給が停止する。なお図5中、電源電圧の供給をする期間をP_on、電源電圧の供給を停止する期間をP_offと表している。
また図5に示すスイッチ108のオンまたはオフの状態を表すSWは、スイッチ108がオンのとき’ON’と表記し、スイッチ108がオフのとき’OFF’と表記している。図5に示すようにスイッチ108のオン又はオフは、電源電圧の供給の切り替えと同じタイミングで行われる。
また図5に示す信号S1は、電源電圧の供給が行われる期間では、制御回路103が有する基準電圧生成回路203が出力する電圧レベルVrefHと電圧レベルVrefLとの間で電圧レベルの昇降を繰り返すよう制御される。また図5に示す信号S1は、電源電圧の供給が停止する期間では、電圧レベルV_lineの低電源電位V_GNDまで電圧レベルが低下する。
図5に示すタイミングチャート図では、スイッチ108をオフに切り替えると、信号S1は低電源電位V_GNDまで電圧レベルが低下する。また図5に示すタイミングチャート図では、スイッチ108をオンに切り替えると、信号S1は、ノードC1及びノードC2に保持された電荷に従って、電圧レベルの立ち上がりを急峻なものとすることができる。
また図5に示す信号S2は、電圧レベルCLK_H及び電圧レベルCLK_Lによるトグル動作を、間欠的に行う。なお電圧レベルCLK_Hは、高電源電位VDDと同電位であってもよい。また電圧レベルCLK_Lは、低電源電位V_GNDと同電位であってもよい。
また図5に示すV_C1は、入力信号Vinの電圧レベルからクロック信号の電圧レベルCLK_H分だけ上昇した電圧レベル(Vin+CLK_H)と、低電源電位V_GNDとの間で、Vinを基準として昇降を繰り返す電圧レベルである。
また図5に示すV_C1は、信号S2の電圧レベルの変動に従って、入力信号Vinの電圧レベルが変動したものとなる。具体的にV_C1は、信号S2の電圧レベルを表す波形の立ち上がり及び立ち下がりに従って、電圧レベルが変動する。
また図5に示すV_C2は、出力信号Voutの電圧レベルの変動がVout_min乃至Vout_maxまでとすると、電源電圧の供給が行われる期間では、電圧レベルVout_min乃至Vout_maxの間で電圧レベルの昇降を繰り返すよう制御される電圧レベルである。また図5に示すV_C2は、電源電圧の供給が停止する期間では、電源電圧の供給を停止した際の電圧レベルを保持するよう制御される。また図5に示すV_C2は、電源電圧の供給を再開すると、出力信号が出力されるノードに、ノードC2に保持された電荷を放電するため、電位が低下する。
図5に示すタイミングチャート図では、スイッチ108をオフに切り替えた際の、ノードC2の電圧レベルを保持する。このノードC2での電圧レベルの保持は、スイッチ108をオフにすることにより、ノードC2からの電荷の放電を極力低減することで、実現することができる。またスイッチ108の代わりに、上述した、チャネル幅あたりのオフ電流が1×10−22A/μm以下のトランジスタを用いても、ノードC2からの電荷の放電を極力低減することを実現することができる。
図5に示すタイミングチャート図の動作について説明する。
電源電圧の供給をする期間であるP_on時、信号S1の電圧レベルは、検出回路102でのリーク電流等により、低下する。信号S1の電圧レベルが電圧レベルVrefL以下になると、制御回路103から出力される信号S2は定電圧の信号からクロック信号に切り替わる。該クロック信号のトグル動作に従って、ノードC1の電圧レベルV_C1が上昇または下降する。電圧レベルV_C1の上昇時における電荷のノードC2への転送に伴い、ノードC2の電圧レベルが上昇する。スイッチ108はP_on時、常時オンであるため、ノードC2の電圧レベルの上昇に伴い、信号S1の電圧レベルが上昇する。信号S1の電圧レベルが電圧レベルVrefH以上になると、制御回路103から出力される信号S2はクロック信号から定電圧の信号に切り替わる。
電源電圧の供給を停止する期間であるP_off時、信号S1の電圧レベルは、スイッチ108をオフにすることで、低電源電位V_GNDまで電圧レベルが低下する。また信号S2は、電源電圧の供給が停止しているためCLK_L、すなわちグラウンド線GNDの電圧レベルである低電源電位V_GNDと同電位なる。一方、ノードC1及びノードC2の電圧レベルV_C1及び電圧レベルV_C2は、スイッチ108をオフに切り替えることで、電荷の放電を極力低減でき、電圧レベルの保持を行うことができる。すなわち図5のタイミングチャート図の例でいえば、ノードC1では入力信号Vinの電圧レベルを保持し、ノードC2では電源電圧の供給があった際の電圧レベルを保持することができる。
P_offから電源電圧の供給を再度するP_onに切り替えた際の、信号S1の電圧レベルは、スイッチをオンに切り替えることで、ノードC1及びノードC2に保持された電荷に従って、電圧レベルの立ち上がりを急峻なものとすることができる。この電圧レベルの立ち上がり、及び制御回路103から出力される信号S2のクロック信号のトグル動作に従って、ノードC2の電圧レベルが上昇する。ノードC2の電圧レベルの上昇が、電源電圧の供給の開始から電圧レベルがVout_maxに達するまでにかかる期間は、図5に図示する例でいえば、期間T_ret1となる。図5に示すタイミングチャート図において、期間T_ret1を具体的にいえば、クロック信号の立ち上がり3回分に相当する。
ここで図1に示すチャージポンプ回路100の構成と比較のため、図1に示すチャージポンプ回路100からスイッチ108を除いた回路図を図7(A)に、及びそのタイミングチャート図を図7(B)に示す。図7(A)及び図7(B)に示す回路図及びタイミングチャート図において、図1及び図5と共通する点については、上記説明を援用するものとする。
図7(A)及び図7(B)に示す回路図及びタイミングチャート図の動作について説明する。
電源電圧の供給をする期間であるP_on時、信号S1の電圧レベルは、検出回路102でのリーク電流等により、低下する。信号S1の電圧レベルが電圧レベルVrefL以下になると、制御回路103から出力される信号S2は定電圧の信号からクロック信号に切り替わる。該クロック信号のトグル動作に従って、ノードC1の電圧レベルV_C1が上昇または下降する。電圧レベルV_C1の上昇時における電荷のノードC2への転送に伴い、ノードC2の電圧レベルが上昇する。ノードC2の電圧レベルの上昇に伴い、信号S1の電圧レベルが上昇する。信号S1の電圧レベルが電圧レベルVrefH以上になると、制御回路103から出力される信号S2はクロック信号から定電圧の信号に切り替わる。
電源電圧の供給を停止する期間であるP_off時、信号S1の電圧レベルは、低電源電位V_GNDまで電圧レベルが低下する。信号S2は、信号S1の電圧レベルが電圧レベルVrefL以下になるものの、電源電圧の供給が停止しており、グラウンド線GNDの電圧レベルである低電源電位V_GNDとなる。また、ノードC1の電圧レベルV_C1は、容量素子から電荷転送素子105を介して電荷の放電がなされることで、電圧レベルが低下していき、最終的にグラウンド線GNDの電圧レベルである低電源電位V_GNDとなる。及びノードC2の電圧レベルV_C2もまた、グラウンド線GNDの電圧レベルである低電源電位V_GNDとなる。
P_offから電源電圧の供給を再度するP_onに切り替えた際の、信号S1の電圧レベルは、グラウンド線GNDの電圧レベルである低電源電位V_GNDとなっている。そのため、制御回路103から出力される信号S2のクロック信号のトグル動作に従って、ノードC2の電圧レベルが上昇する。ただしノードC2の電圧レベルの上昇が、電源電圧の供給の開始から電圧レベルがVout_maxに達するまでにかかる期間は、図7に図示する例でいえば、期間T_ret2となる。図7Bに示すタイミングチャート図において、期間T_ret2を具体的にいえば、クロック信号の立ち上がり5回分に相当する。すなわち、スイッチ108の制御がない場合、電源電圧の供給を再開してから入力信号を昇圧する際に要する時間が長くなってしまう。
図5に示すタイミングチャート図の期間T_ret1と図7に示すタイミングチャート図の期間T_ret2とを比較してもみてもわかるように、電源電圧の供給を停止して、その後再開する構成において、本実施の形態で示す図1のチャージポンプ回路100の回路構成とすることで、電源電圧の供給を再開してから入力信号を昇圧する際に要する時間を短くすることができる。
以上が、図1に示すチャージポンプ回路100の通常時の動作、及び電源電圧の供給を停止及び再開する際の動作に関する説明である。
以上説明したように、本実施の形態のチャージポンプ回路の構成では、チャージポンプ回路への電源電圧の供給を停止及び再開をする際、容量素子からの電荷の放電を低減し、電源電圧の供給を再開してから入力信号を昇圧する際に要する時間を短くすることができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態2)
本実施の形態では、上記実施の形態1で説明した図2のチャージポンプ回路100の変形例について説明する。
図8に示すチャージポンプ回路500は、昇圧回路部501、検出回路102、及び制御回路103を有する。
昇圧回路部501は、実施の形態1の図2におけるダイオード素子111及び容量素子106を、多段に形成したダイオード素子111A、ダイオード素子111B、ダイオード素子111C、並びに容量素子106A、容量素子106B及び容量素子106Cで置き換えた構成である。なお奇数段目に設けられる容量素子106A及び容量素子106Cの他方の電極には、制御回路103より信号S2が出力される。また偶数段目に設けられる容量素子106Bの他方の電極には、制御回路103より信号S2が反転した信号であるS2Bが出力される。
昇圧回路部501において、ダイオード素子111A、ダイオード素子111B、ダイオード素子111C、並びに容量素子106A、容量素子106B及び容量素子106Cを設け、図8に示す配置とすることで、入力信号Vinをより昇圧した出力信号Voutとして出力することのできるチャージポンプ回路とすることができる。図8に示すチャージポンプ回路としても、チャージポンプ回路への電源電圧の供給を停止及び再開を行う際、容量素子からの電荷の放電を低減し、電源電圧の供給を再開してから入力信号を昇圧する際に要する時間を短くすることができる。
本実施の形態は、上記実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態3)
本実施の形態では、上記実施の形態1で説明したスイッチとして機能する、酸化物半導体層にチャネルが形成されるトランジスタと、制御回路が有するシリコンにチャネルが形成されるトランジスタと、積層して設けた半導体装置の断面図の構成について図9に示し、説明する。
なお図9に示す半導体装置の断面図の構成では、下層部を構成する制御回路が有するトランジスタの一例として、nチャネル型トランジスタ331及びpチャネル型トランジスタ332を示し、上層部を構成するトランジスタとして酸化物半導体層にチャネルが形成されるトランジスタ300を示す。
図9に示す半導体装置は、下部素子層321にシリコン材料がチャネル領域に用いられたnチャネル型トランジスタ331及びpチャネル型トランジスタ332を有し、配線層322を間に挟んで、上部素子層323にトランジスタ300を有する。
図9におけるnチャネル型トランジスタ331は、半導体材料(例えば、シリコンなど)を含む基板333上にBOX層334を介して設けられたSOI層335と、SOI層335に形成されたn型不純物領域336と、ゲート絶縁層337と、ゲート電極338とを有する。SOI層335には、n型不純物領域336の他、図示していないが、金属間化合物領域及びチャネル形成領域が設けられる。またpチャネル型トランジスタ332は、SOI層335中にp型不純物領域339が形成されている。
nチャネル型トランジスタ331及びpチャネル型トランジスタ332が有するSOI層335の間には素子分離絶縁層342が設けられており、nチャネル型トランジスタ331及びpチャネル型トランジスタ332を覆うように絶縁層340が設けられている。なお、nチャネル型トランジスタ331及びpチャネル型トランジスタ332は、図9に示すようにゲート電極338の側面にサイドウォールを設け、不純物濃度が異なる領域を含むn型不純物領域336及びp型不純物領域339としてもよい。
n型不純物領域336及びp型不純物領域339上の絶縁層340は開口部を有し、開口部を埋めるように配線341が設けられている。絶縁層340及び配線341上の配線層322では、絶縁層344、配線351、配線352及び配線353が設けられている。配線351は、トランジスタ300のソース配線として機能させることができる。配線352は、トランジスタ300のゲート電極として機能させることができる。配線353は、トランジスタ300のドレイン配線として機能させることができる。
なお下部素子層321の絶縁層340中の配線341、配線層322の絶縁層344中の配線351、配線352及び配線353は、デュアルダマシン法を用いて形成すればよい。また、コンタクトプラグを形成して異なる配線層間の接続を図ってもよい。
半導体材料を具備するSOI層335を用いたnチャネル型トランジスタ331及びpチャネル型トランジスタ332は、トランジスタ300に比べて、高速動作及び微細化が可能である。
配線層322の上面は、CMP(Chemical Mechanical Polishing)処理を施して、トランジスタ300の形成を行えばよい。
トランジスタ300は、絶縁層344及び配線352上に、積層して島状に形成されたゲート絶縁層361及び酸化物半導体膜362を有する。またトランジスタ300は、島状に形成されたゲート絶縁層361及び酸化物半導体膜362上及び配線353に接続されるソース電極363A、及び島状に形成されたゲート絶縁層361及び酸化物半導体膜362上及び配線351に接続されるドレイン電極363Bを有する。またトランジスタ300は、島状に形成されたゲート絶縁層361及び酸化物半導体膜362上、絶縁層344上、ソース電極363A及びドレイン電極363B上に絶縁層364を有する。またトランジスタ300は、絶縁層364を間に挟んで、島状に形成されたゲート絶縁層361及び酸化物半導体膜362上にバックゲート電極365を有する。トランジスタ300は、絶縁層345で覆われる。
バックゲート電極365を有するトランジスタ300は、バックゲート電極365にしきい値電圧を制御するためのバックゲート電圧を入力する構成とすることができる。バックゲート電圧を制御してトランジスタ300のしきい値電圧を制御する構成とすることで、トランジスタ300でのオフ電流の低減を、より確実に行うことができる。
以上説明したように本実施の形態における半導体装置の構成は、シリコンをチャネル領域に用いたトランジスタと酸化物半導体膜をチャネル領域に用いたトランジスタとを積層して設けることができる。そのため、各素子の省スペース化ができ、半導体装置の小型化を図ることができる。
本実施の形態は、上記実施の形態と適宜組み合わせて実施することが可能である。
C1 ノード
C2 ノード
S1 信号
S2 信号
T_ret1 期間
T_ret2 期間
W1 チャネル幅
V_C1 電圧レベル
V_C2 電圧レベル
VrefH 電圧レベル
VrefL 電圧レベル
V_line 電圧レベル
Vin 入力信号
Vout 出力信号
Vout_max 電圧レベル
Vout_min 電圧レベル
CLK_H 電圧レベル
CLK_L 電圧レベル
100 チャージポンプ回路
101 昇圧回路部
102 検出回路
103 制御回路
104 電荷転送素子
105 電荷転送素子
106 容量素子
106A 容量素子
106B 容量素子
106C 容量素子
107 容量素子
108 スイッチ
111 ダイオード素子
111A ダイオード素子
111B ダイオード素子
111C ダイオード素子
112 ダイオード素子
113 トランジスタ
114A 抵抗素子
114B 抵抗素子
151 電源制御回路
201 オペアンプ
202 オペアンプ
203 基準電圧生成回路
204 フリップフロップ回路
205 セレクタ回路
206 発振回路
300 トランジスタ
321 下部素子層
322 配線層
323 上部素子層
331 nチャネル型トランジスタ
332 pチャネル型トランジスタ
333 基板
334 BOX層
335 SOI層
336 n型不純物領域
337 ゲート絶縁層
338 ゲート電極
339 p型不純物領域
340 絶縁層
341 配線
342 素子分離絶縁層
344 絶縁層
345 絶縁層
351 配線
352 配線
353 配線
361 ゲート絶縁層
362 酸化物半導体膜
363A ソース電極
363B ドレイン電極
364 絶縁層
365 バックゲート電極
500 チャージポンプ回路
501 昇圧回路部

Claims (6)

  1. 電荷転送素子及び容量素子を有し、入力信号の電圧レベルを昇圧した出力信号を出力する昇圧回路部と、
    前記出力信号の電圧レベルをモニターする検出回路と、
    前記検出回路で得られる前記電圧レベルに従って、前記入力信号の電圧レベルの昇圧を制御する信号を前記昇圧回路部に出力する制御回路と、を有し、
    前記昇圧回路部は、前記容量素子及び前記電荷転送素子に電気的に接続されたスイッチを有する半導体装置。
  2. 電荷転送素子及び容量素子を有し、入力信号の電圧レベルを昇圧した出力信号を出力する昇圧回路部と、
    前記出力信号の電圧レベルをモニターする検出回路と、
    前記検出回路で得られる前記電圧レベルに従って、前記入力信号の電圧レベルの昇圧を制御する信号を前記昇圧回路部に出力する制御回路と、を有し、
    前記昇圧回路部は、前記容量素子及び前記電荷転送素子に電気的に接続されたスイッチを有し、
    前記スイッチがトランジスタであり、該トランジスタが有する半導体層は、酸化物半導体である半導体装置。
  3. 請求項1または請求項2において、前記電荷転送素子は、ダイオード素子である半導体装置。
  4. 請求項1乃至請求項3のいずれか一の半導体装置を有し、
    電源電圧の供給が停止する期間では、前記昇圧回路部の前記容量素子及び前記電荷転送素子に電気的に接続された前記スイッチをオフにし、
    前記電源電圧の供給が行われる期間では、前記スイッチをオンにする、
    半導体装置の駆動方法。
  5. 請求項4において、前記スイッチは、チャネル幅あたりのオフ電流が1×10−22A/μm以下のトランジスタである半導体装置の駆動方法。
  6. 請求項5において、前記トランジスタの半導体層は、酸化物半導体である半導体装置の駆動方法。
JP2013101908A 2012-05-18 2013-05-14 半導体装置及びその駆動方法 Withdrawn JP2013258895A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013101908A JP2013258895A (ja) 2012-05-18 2013-05-14 半導体装置及びその駆動方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012114473 2012-05-18
JP2012114473 2012-05-18
JP2013101908A JP2013258895A (ja) 2012-05-18 2013-05-14 半導体装置及びその駆動方法

Publications (2)

Publication Number Publication Date
JP2013258895A true JP2013258895A (ja) 2013-12-26
JP2013258895A5 JP2013258895A5 (ja) 2016-06-16

Family

ID=49580789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101908A Withdrawn JP2013258895A (ja) 2012-05-18 2013-05-14 半導体装置及びその駆動方法

Country Status (2)

Country Link
US (1) US20130307496A1 (ja)
JP (1) JP2013258895A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019221087A (ja) * 2018-06-21 2019-12-26 ルネサスエレクトロニクス株式会社 電源回路

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8947158B2 (en) * 2012-09-03 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9385592B2 (en) 2013-08-21 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Charge pump circuit and semiconductor device including the same
JP6383616B2 (ja) 2013-09-25 2018-08-29 株式会社半導体エネルギー研究所 半導体装置
KR102267237B1 (ko) 2014-03-07 2021-06-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 전자 기기
US9312280B2 (en) 2014-07-25 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6906978B2 (ja) 2016-02-25 2021-07-21 株式会社半導体エネルギー研究所 半導体装置、半導体ウェハ、および電子機器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06351229A (ja) * 1993-06-08 1994-12-22 Sony Corp 出力電圧安定化機能付チャージポンプ式昇圧回路
JP2002051538A (ja) * 2000-05-24 2002-02-15 Toshiba Corp 電位検出回路及び半導体集積回路
JP2010068565A (ja) * 2008-09-08 2010-03-25 Rohm Co Ltd チャージポンプ回路の制御回路、制御方法およびそれらを利用した電源回路
JP2010213368A (ja) * 2009-03-06 2010-09-24 Seiko Epson Corp Dc−dcコンバータ回路、電気光学装置及び電子機器
JP2011171700A (ja) * 2009-10-21 2011-09-01 Semiconductor Energy Lab Co Ltd 電圧調整回路

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5734290A (en) * 1996-03-15 1998-03-31 National Science Council Of R.O.C. Charge pumping circuit having cascaded stages receiving two clock signals
JP3394133B2 (ja) * 1996-06-12 2003-04-07 沖電気工業株式会社 昇圧回路
US6470060B1 (en) * 1999-03-01 2002-10-22 Micron Technology, Inc. Method and apparatus for generating a phase dependent control signal
JP3691421B2 (ja) * 2001-09-27 2005-09-07 シャープ株式会社 スイッチドキャパシタ型安定化電源回路
US7072193B2 (en) * 2004-05-19 2006-07-04 Toppoly Optoelectronics Corp. Integrated charge pump DC/DC conversion circuits using thin film transistors
JP2005339658A (ja) * 2004-05-26 2005-12-08 Toshiba Corp 昇圧回路
JP4851903B2 (ja) * 2005-11-08 2012-01-11 株式会社東芝 半導体チャージポンプ
JP2008005148A (ja) * 2006-06-21 2008-01-10 Nec Electronics Corp スイッチ素子駆動回路および半導体装置
JP2008029098A (ja) * 2006-07-20 2008-02-07 Oki Electric Ind Co Ltd 昇圧回路
US7906415B2 (en) * 2006-07-28 2011-03-15 Xerox Corporation Device having zinc oxide semiconductor and indium/zinc electrode
KR100812086B1 (ko) * 2006-11-30 2008-03-07 동부일렉트로닉스 주식회사 반도체 소자의 전압조절장치
TWI329407B (en) * 2007-02-16 2010-08-21 Richtek Technology Corp Charge pump regulator and method for producing a regulated voltage
JP5154152B2 (ja) * 2007-07-04 2013-02-27 ルネサスエレクトロニクス株式会社 昇圧電源回路
KR100865852B1 (ko) * 2007-08-08 2008-10-29 주식회사 하이닉스반도체 레귤레이터 및 고전압 발생기
US7847618B2 (en) * 2008-01-08 2010-12-07 International Business Machines Corporation Peak power reduction methods in distributed charge pump systems
JP5011182B2 (ja) * 2008-03-24 2012-08-29 ルネサスエレクトロニクス株式会社 チャージポンプ回路
TWI357214B (en) * 2008-07-01 2012-01-21 Univ Nat Taiwan Phase locked loop (pll) with leakage current calib
US20100052771A1 (en) * 2008-08-29 2010-03-04 Hendrik Hartono Circuit for driving multiple charge pumps
US9269573B2 (en) * 2008-09-17 2016-02-23 Idemitsu Kosan Co., Ltd. Thin film transistor having crystalline indium oxide semiconductor film
JP5665299B2 (ja) * 2008-10-31 2015-02-04 三菱電機株式会社 シフトレジスタ回路
GB2466775B (en) * 2008-12-30 2011-06-22 Wolfson Microelectronics Plc Charge pump circuits
US7876079B2 (en) * 2009-03-24 2011-01-25 Infineon Technologies Ag System and method for regulating a power supply

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06351229A (ja) * 1993-06-08 1994-12-22 Sony Corp 出力電圧安定化機能付チャージポンプ式昇圧回路
JP2002051538A (ja) * 2000-05-24 2002-02-15 Toshiba Corp 電位検出回路及び半導体集積回路
JP2010068565A (ja) * 2008-09-08 2010-03-25 Rohm Co Ltd チャージポンプ回路の制御回路、制御方法およびそれらを利用した電源回路
JP2010213368A (ja) * 2009-03-06 2010-09-24 Seiko Epson Corp Dc−dcコンバータ回路、電気光学装置及び電子機器
JP2011171700A (ja) * 2009-10-21 2011-09-01 Semiconductor Energy Lab Co Ltd 電圧調整回路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019221087A (ja) * 2018-06-21 2019-12-26 ルネサスエレクトロニクス株式会社 電源回路
CN110635681A (zh) * 2018-06-21 2019-12-31 瑞萨电子株式会社 电源
JP7003003B2 (ja) 2018-06-21 2022-01-20 ルネサスエレクトロニクス株式会社 電源回路

Also Published As

Publication number Publication date
US20130307496A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP6619476B2 (ja) 半導体装置
JP2013258895A (ja) 半導体装置及びその駆動方法
JP7437561B2 (ja) 半導体装置
JP6487161B2 (ja) 半導体装置
US8816662B2 (en) DC-DC converter, semiconductor device and display device
JP5975907B2 (ja) 半導体装置
US9793801B2 (en) Semiconductor device and display device
KR102043469B1 (ko) 전원 회로, 및 그 구동 회로
JP6343507B2 (ja) Dcdcコンバータ
JP6460592B2 (ja) Dcdcコンバータ、及び半導体装置
US9058867B2 (en) Semiconductor device and driving method thereof
JP5830157B2 (ja) 半導体装置
JP2015046592A (ja) 半導体装置
JP2013074713A (ja) チャージポンプ及びこれを用いた電源装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170704

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20170907