JP2013216785A - 光学部品実装構造、波長選択デバイス、及び光学部品実装構造の製造方法 - Google Patents

光学部品実装構造、波長選択デバイス、及び光学部品実装構造の製造方法 Download PDF

Info

Publication number
JP2013216785A
JP2013216785A JP2012088567A JP2012088567A JP2013216785A JP 2013216785 A JP2013216785 A JP 2013216785A JP 2012088567 A JP2012088567 A JP 2012088567A JP 2012088567 A JP2012088567 A JP 2012088567A JP 2013216785 A JP2013216785 A JP 2013216785A
Authority
JP
Japan
Prior art keywords
optical component
light
mounting structure
optical
base member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012088567A
Other languages
English (en)
Inventor
Manabu Izaki
学 井崎
Satoshi Yoshikawa
智 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012088567A priority Critical patent/JP2013216785A/ja
Priority to US13/857,697 priority patent/US20130265645A1/en
Priority to CN2013101208568A priority patent/CN103364910A/zh
Publication of JP2013216785A publication Critical patent/JP2013216785A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/1805Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

【課題】光学部品の傾きを高い精度で制御することができる光学部品実装構造および波長選択デバイスを提供する。
【解決手段】光学部品実装構造10Aは、光を反射する反射面、及び光を透過する透過面のうち少なくとも一方を有する光学部品30と、光学部品30を載置する載置面22を有する基礎部材20と、光学部品30と基礎部材20の載置面22との間に介在し、光学部品30と載置面22とを固着させる接着剤層40とを備える。接着剤層40はフィラー42を含有し、フィラー42は、光学部品30と載置面22との間において実質的に単層で存在している。
【選択図】図1

Description

本発明は、光学部品実装構造、波長選択デバイス、及び光学部品実装構造の製造方法に関するものである。
特許文献1には、光学素子をフレーム上に実装するための接着構造が記載されている。この接着構造では、光学素子をフレームに対して接着固定する際、光学素子とフレームとの間に間隙を設けつつ高い位置精度で接着する為に、チクソ性の高い富フィラー型接着剤を用いている。そして、接着力が弱く且つ浮きが発生し易いという富フィラー型接着剤の欠点を、粘度の低い貧フィラー型接着剤により補っている。
また、特許文献2には、チャネルルーティング用の光ファイバー波長選択スイッチが記載されている。この波長選択スイッチでは、ビームが横方向に拡大されたのち、偏光回転装置によって波長成分毎に方向付けされる。次に、方向付けされたビームは各波長成分に対応する出力ポートに方向付けされる。この方向付けは、MEMSやLCOSアレイによって行われる。この文献には、ビームを横方向に拡大する為の光学部品や、ビームを方向付けする為の光学部品として、屈折率が調整された石英から成る部材(プリズム等)を用いることが記載されている。
特開2004−010758号公報 特表2009−508159号公報
例えば波長選択スイッチ等の光学装置において、プリズムやミラー等の光学部品を基礎部材上に固定する際には、光学部品の傾きを高い精度で制御する必要がある。特に、波長選択スイッチでは、光学部品の傾きが選択波長のずれの原因となるため、光学部品の傾きに対する要求精度は極めて高い。そこで、このような光学装置を製造する際には、例えば特許文献1に記載されているように、光学部品と基礎部材との間に或る程度の間隔を空けて光学部品を浮かせた状態でその隙間に接着剤を介在させ、光学部品の傾きを調整したのち接着剤を硬化させることが行われる。
しかしながら、このように光学部品を基礎部材から浮かせた状態で接着剤を硬化させると、光学装置間で接着剤の変形の度合いにばらつきが生じる。特に、接着剤にフィラーが含まれている場合には、フィラーの分布の偏りによってこのような現象が顕著となる。そして、この変形度合いのばらつきにより、接着剤硬化後の光学部品の傾きにばらつきが生じてしまう。したがって、光学部品の傾きを高い精度で制御することが困難となる。
本発明は、このような問題点に鑑みてなされたものであり、光学部品の傾きを高い精度で制御することができる光学部品実装構造、波長選択デバイス、及び光学部品実装構造の製造方法を提供することを目的とする。
上述した課題を解決するために、本発明による光学部品実装構造は、光を反射する反射面、及び光を透過する透過面のうち少なくとも一方を有する光学部品と、光学部品を載置する載置面を有する基礎部材と、光学部品と基礎部材の載置面との間に介在し、光学部品と載置面とを固着させる接着剤層とを備え、接着剤層がフィラーを含有し、フィラーが、光学部品と載置面との間において実質的に単層で存在していることを特徴とする。
この光学部品実装構造では、接着剤層に含まれるフィラーが、光学部品と載置面との間において実質的に単層で存在している。このような単層のフィラーは、光学部品と基礎部材の載置面との間隔を一定に保つ。したがって、この光学部品実装構造によれば、光学部品の傾きを高い精度で制御することができる。なお、実質的に単層とは、フィラーの割れや欠けによって生じた極めて小さい粒子をフィラーの層数に含まない意である。また、このように実質的に単層のフィラーを含む接着剤層は、例えば光学部品と基礎部材の載置面との間に接着剤を介在させたのち、光学部品を基礎部材に押し付ける(押圧する)ことによって実現される。
なお、温度変化による光学部品間の距離の変動を抑える為に、基礎部材の構成材料としては、例えばスーパーインバーといった熱膨張率の小さい材料が用いられることが好ましい。一方、光学部品の構成材料としては、光の透過特性や反射特性を考慮して、例えば屈折率が調整された石英などが選択される。したがって、光学部品の線膨張係数と、基礎部材の線膨張係数とが大きく異なることがある。そのような場合であっても、上述した光学部品実装構造によれば、温度変化によって光学部品と基礎部材との間に生じる応力を接着剤層の樹脂部分が吸収し、光学部品の割れ等を効果的に防ぐことができる。
また、本発明による別の光学部品実装構造は、光を反射する反射面、及び光を透過する透過面のうち少なくとも一方を有する光学部品と、光学部品を載置する載置面を有する基礎部材と、光学部品と基礎部材の載置面との間に介在し、光学部品と載置面とを固着させる接着剤層とを備え、接着剤層がフィラーを含有し、光学部品と載置面との間における接着剤層の厚さが、フィラーの平均粒径の2倍よりも小さいことを特徴とする。
このように、光学部品と載置面との間における接着剤層の厚さがフィラーの平均粒径の2倍よりも小さい場合、接着剤層中のフィラーは実質的に単層で存在するといえる。したがって、この光学部品実装構造によれば、単層のフィラーによって光学部品と基礎部材の載置面との間隔を一定に保つことができ、光学部品の傾きを高い精度で制御することができる。
また、光学部品実装構造は、フィラーの粒径分布の範囲が20μm以内であることを特徴としてもよい。このようにフィラーの粒径のばらつきが小さいことにより、光学部品の傾きを更に高い精度で制御することができる。
また、光学部品実装構造は、光学部品の線膨張係数が基礎部材の線膨張係数の10倍以上であることを特徴としてもよい。このように、光学部品及び基礎部材の各線膨張係数が大きく異なる場合であっても、上述した光学部品実装構造によれば、温度変化によって光学部品と基礎部材との間に生じる応力を接着剤層の樹脂部分が吸収し、光学部品の割れ等を効果的に防ぐことができる。そして、このように光学部品及び基礎部材の各線膨張係数が大きく異なる場合としては、例えば光学部品が硝子製であり、基礎部材がインバー製又はスーパーインバー製である場合が挙げられる。
また、光学部品実装構造は、基礎部材が、載置面を囲むように形成された溝を更に有することを特徴としてもよい。基礎部材がこのような溝を有する場合、接着剤層の態様としては例えば次の二つが考えられる。一つは、接着剤層の外縁が溝によって囲まれた領域内に収まっている態様であり、他の一つは、接着剤層の外縁が溝の内部に達している態様である。
接着剤層の外縁が溝によって囲まれた領域内に収まっている場合には、接着剤層の存在範囲が、溝によって囲まれた領域内に限定されることとなる。したがって、光学部品及び基礎部材の各線膨張係数が大きく異なる場合であっても、載置面に沿った面内方向における接着剤層の伸縮度合いを或る程度限定することができる。また、接着剤層の外縁が溝の内部に達している場合には、溝がない場合と比較して、基礎部材と接着剤層との接触面積が広くなる。したがって、基礎部材に対する光学部品の固定強度をより高めることができる。
また、光学部品実装構造は、複数の光学部品と、複数の載置面を有する基礎部材と、複数の光学部品と複数の載置面との間にそれぞれ介在する複数の接着剤層とを備え、複数の光学部品それぞれが、複数の光学部品に含まれる別の光学部品と光学的に結合されていることを特徴としてもよい。この光学部品実装構造によれば、単層のフィラーによって光学部品と基礎部材の載置面との間隔が一定に保たれるので、光学部品の傾きを高い精度で制御し、光学部品同士を高い精度で光結合することができる。
また、本発明による波長選択デバイスは、光を入力する光ポートと、光ポートから入力された光を拡幅する光拡大部と、光拡大部により拡幅された光を、該光の波長成分毎に異なる光路へ分光する分光素子と、分光素子により分光された各波長成分毎に異なる位置へ光を集光する集光レンズとを備え、光拡大部、分光素子、及び集光レンズのうち少なくとも一つの光学部品が、上述したいずれかの光学部品実装構造によって基礎部材上に実装されていることを特徴とする。この波長選択デバイスによれば、接着剤層に含まれる単層のフィラーによって、光拡大部、分光素子、或いは集光レンズといった光学部品と基礎部材との間隔を一定に保つことができる。したがって、光拡大部、分光素子、或いは集光レンズといった光学部品の傾きを高い精度で制御することができ、これらを高い精度で光結合することができる。また、これにより、選択波長のずれを効果的に抑えることができる。
また、波長選択デバイスは、光拡大部が、互いに光学的に結合された複数のプリズムによって構成されていることを特徴としてもよい。この波長選択デバイスによれば、光拡大部の複数のプリズムを高い精度で光結合することができる。
また、本発明による光学部品実装構造の製造方法は、光を反射する反射面、及び光を透過する透過面のうち少なくとも一方を有する光学部品を載置するための載置面を有する基礎部材の載置面に、フィラーを含有する接着剤を塗布する塗布工程と、光学部品を載置面上に載置する載置工程と、光学部品を載置面に向けて押圧することにより、フィラーを、光学部品と載置面との間において実質的に単層で存在させる押圧工程と、接着剤を硬化させて接着剤層を形成する硬化工程とを含むことを特徴とする。
基礎部材が、載置面を囲むように形成された溝を更に有し、押圧工程において、接着剤の余剰分を溝に逃がすことを特徴としてもよい。
本発明による光学部品実装構造、波長選択デバイス、及び光学部品実装構造の製造方法によれば、光学部品の傾きを高い精度で制御することができる。
図1は、本発明の第1実施形態に係る光学部品実装構造を示す側断面図である。 図2は、光学部品実装構造の組立図である。 図3は、フィラーの粒径分布の一例を示すグラフである。 図4は、光学部品実装構造の製造方法の一例を示すフローチャートである。 図5は、光学部品を基礎部材に接着する際の押圧力と、接着剤層の厚さとの関係の一例を示すグラフである。 図6は、第1実施形態の変形例として、光学部品実装構造の構成を示す側断面図である。 図7は、第1実施形態の別の変形例として、光学部品実装構造の構成を示す側断面図である。 図8は、本発明に係る光学部品実装構造の第2実施形態として、波長選択デバイスの構成を示す斜視図である。
以下、添付図面を参照しながら本発明による光学部品実装構造、波長選択デバイス、及び光学部品実装構造の製造方法の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
(第1の実施の形態)
図1は、本発明の第1実施形態に係る光学部品実装構造10Aを示す側断面図である。また、図2は、光学部品実装構造10Aの組立図である。これらの図に示される光学部品実装構造10Aは、基礎部材(ベース)20と、光学部品30と、接着剤層40(図2では省略)とを備えている。基礎部材20は、光学部品30を機械的に支持する部材であって、例えば金属製の板状部材によって構成される。基礎部材20は、光学部品30と、基礎部材20上に載置される他の光学部品との距離が周囲温度の変化によって変動しないように、線膨張係数が小さい材料(例えば、インバーやスーパーインバー等)から成ることが好ましい。基礎部材20の線膨張係数は、例えば1×10−6(/deg℃)である。
基礎部材20は主面21を有しており、主面21には、光学部品30を載置する載置面22が含まれる。載置面22は、所定の平面に沿った略平らな面であり、載置面22と対向する光学部品30の接着面31の形状と略同様の平面形状を有する。載置面22の面積は例えば20mm以下である。また、基礎部材20の主面21には、溝23が形成されている。溝23は、載置面22を囲むように載置面22の外周に沿って形成されており、図1に示されるように、接着剤層40を形成する際の接着剤の余剰分を収容する為に形成されている。
光学部品30は、光を反射する光反射面、及び光を透過する光透過面のうち少なくとも一方を有する。光学部品30としては、プリズム、レンズ、或いは偏波分離光学素子といった光透過性の光学部品や、ミラー或いは回折格子といった光反射性の光学部品が挙げられる。例えば図2には、光学部品30として、光透過面32及び33を有するプリズムが示されている。光学部品30が光透過性である場合、光学部品30の構成材料としては、例えば透過する光の波長に対して好適な屈折率を有するように成分が調整された硝子(石英など)が好適である。この場合、光学部品30の線膨張係数は、例えば1×10−5(/deg℃)以上であり、基礎部材20の線膨張係数の10倍以上となることがある。光学部品30の質量は、例えば10グラム以下である。
なお、一実施例では、光学部品30の光透過面(例えば図2に示された光透過面32、33)や光反射面は、載置面22を含む基礎部材20の主面21と交差する方向(典型的には主面21に対して垂直な方向)に延びており、これらの光透過面や光反射面において入出射する光の光軸は、主面21に沿って延びている。
また、光学部品30は、基礎部材20の載置面22と対向する接着面31を有する。接着面31は、光学部品30の光透過面や光反射面と交差する方向に延びる面であって、基礎部材20の載置面22に沿って延びている。
接着剤層40は、基礎部材20の載置面22と光学部品30の接着面31との間に介在し、基礎部材20と光学部品30とを互いに固着させる層である。接着剤層40は、熱や紫外線等によって硬化する樹脂41と、樹脂41中に多数混入されたフィラー42とを含有する。樹脂41は、例えばエポキシ樹脂、アクリル樹脂、或いはシリコーン樹脂といった有機材料を主に含んで構成されている。なお、上述したように、光学部品30の線膨張係数は、基礎部材20の線膨張係数よりも格段に大きくなることがある。そのような場合、周囲温度の変化に起因して基礎部材20と光学部品30との間に生じる応力(内部応力や、振動・衝撃などの外部応力を含み、載置面22に沿った方向に生じる)を緩和するため、樹脂41は硬化後も伸縮性が比較的高い材料から成ることが好ましい。フィラー42は、樹脂41とは異なる材質から成る微小な固形粒状物であり、例えば二酸化ケイ素、金属、或いはAlといった無機材料から成る。
図1に示されるように、フィラー42は、光学部品30と載置面22との間において実質的に単層で存在している。単層とは、載置面22の法線方向において、一つのフィラー42のみが配置されており複数のフィラー42が並んでいない状態をいう。したがって、光学部品30と載置面22との間における接着剤層40の厚さtは、その接着剤層40に含まれるフィラー42の粒径Lの平均値の2倍よりも小さい。なお、実質的に単層とは、フィラー42の割れや欠けによって生じた極めて小さい粒子をフィラー42の層数に含まない意である。
ここで、図3は、フィラー42の粒径分布の一例を示すグラフである。図3に示されるように、フィラー42の粒径Lは、例えば平均値Lを中心とする一定の分布を有する。そして、この粒径分布の範囲、すなわち粒径Lの最大値LMAXと最小値LMINとの差(LMAX−LMIN)は、20μm以内といった小さな値であることが好ましい。典型的には、最大値LMAXと平均値Lとの差(LMAX−L)、及び平均値Lと最小値LMINとの差(L−LMIN)が互いに等しく、それぞれ10μm以内となることが好ましい。
このような実質的に単層のフィラー42を含む接着剤層40は、例えば次のようにして形成されることができる。図4は、光学部品実装構造10Aの製造方法の一例を示すフローチャートである。まず、基礎部材20の載置面22上に、樹脂41及びフィラー42を含む接着剤を塗布する(塗布工程S11)。次に、光学部品30を載置面22上に載置する(載置工程S12)。このとき、例えば光学部品30の上面にレーザ光を当て、その反射光に基づいて光学部品30の傾きを測定しながら、光学部品30の傾きを調整するとよい。また、このとき、例えば光学部品30の位置を規定する治具に光学部品30の側面を押し当てながら光学部品30の位置決めを行うことによって、光学部品30の搭載位置を精度良く決定することができる。続いて、光学部品30の上面に押圧荷重を付加することにより、光学部品30を基礎部材20の載置面22に向けて押圧する(押圧工程S13)。これにより、光学部品30と基礎部材20との間に挟まれたフィラー42は実質的に単層となる。なお、この押圧工程S14では、接着剤の余剰分を溝23に逃がすとよい。その後、接着剤を硬化させて接着剤層40を形成する(硬化工程S14)。
ここで、図5は、光学部品30を基礎部材20に接着する際の押圧力と、接着剤層40の厚さtとの関係の一例を示すグラフである。図において、横軸は押圧力(単位:MPa)を示しており、縦軸は接着剤層40の厚さt(単位:μm)を示している。また、折線A1は、複数の接着剤層40における厚さtの分布の平均値を結ぶ線であり、線分A2は、各押圧力における接着剤層40の厚さtの分布範囲を表している。
図5を参照すると、押圧力が約0.013(MPa)であるとき、厚さtの分布の平均値は100(μm)であり、厚さtの分布範囲は±20(μm)であることがわかる。また、押圧力が約0.05(MPa)であるとき、厚さtの分布の平均値は60(μm)であり、厚さtの分布範囲は±12(μm)である。また、押圧力が約0.07(MPa)であるとき、厚さtの分布の平均値は53(μm)であり、厚さtの分布範囲は±7.5(μm)である。これらの数値に対し、0.12(MPa)といった比較的大きい押圧力である場合には、厚さtの分布の平均値は42(μm)と小さくなり、また、厚さtの分布範囲は±3(μm)と格段に小さくなる。
このように、光学部品30に対する押圧力が大きくなるほど、接着剤層40の厚さtが小さくなり、且つ厚さtの分布範囲が縮小されることがわかる。そして、押圧力が更に強くなると、厚さtはフィラー42の粒径L(図5中に破線A3として表示)に漸近することとなる。すなわち、光学部品30に対する押圧力が大きいほど、フィラー42が単層に近づく。好ましくは、押圧力が0.1(MPa)以上であれば、フィラー42を十分に単層化することができる。
以上に説明した光学部品実装構造10A及びその製造方法によって得られる効果について説明する。上述したように、光学部品実装構造10Aでは、接着剤層40に含まれるフィラー42が、光学部品30と載置面22との間において実質的に単層で存在している。或いは、光学部品30と載置面22との間における接着剤層40の厚さが、フィラー42の平均粒径の2倍よりも小さい。これにより、光学部品30と載置面22との間隔を、フィラー42の粒径Lによって規定される一定値に保つことができる。したがって、この光学部品実装構造10Aによれば、光学部品30の傾きを高い精度で制御することができる。
また、温度変化による光学部品30と他の光学部品との距離の変動を抑える為に、基礎部材20の構成材料としては、例えばスーパーインバーといった熱膨張率の小さい材料が用いられることが多い。一方、光学部品30の構成材料としては、光の透過特性や反射特性を考慮して、例えば屈折率が調整された硝子などが選択される。したがって、光学部品30の線膨張係数と、基礎部材20の線膨張係数とが大きく異なることがある。そのような場合であっても、本実施形態の光学部品実装構造10Aによれば、温度変化によって光学部品30と基礎部材20との間に生じる応力を接着剤層40の樹脂部分41が吸収し、光学部品30の割れ等を効果的に防ぐことができる。
また、上述したように、フィラー42の粒径分布の範囲は20μm以内(典型的には、平均値±10μm以内)であることが好ましい。このようにフィラー42の粒径Lのばらつきが小さいことにより、光学部品30の傾きを更に高い精度で制御することができる。
また、上述したように、光学部品30の線膨張係数は、基礎部材20の線膨張係数の10倍以上であってもよい。このように、光学部品30及び基礎部材20の各線膨張係数が大きく異なる場合であっても、本実施形態の光学部品実装構造10Aによれば、温度変化によって光学部品30と基礎部材20との間に生じる応力を接着剤層40の樹脂41が吸収し、光学部品30の割れ等を効果的に防ぐことができる。
再び図2を参照すると、本実施形態では、接着剤層40を形成する際の樹脂41の余剰分が溝23に溢れており、接着剤層40の外縁40aが溝23の内部に達している。これにより、溝23がない場合と比較して、基礎部材20と接着剤層40との接触面積を広くすることができる。したがって、基礎部材20に対する光学部品30の固定強度をより高めることができる。特に、載置面22の周囲の全体にわたって接着剤層40の外縁40aが溝23の内部に達している場合には、溝23に囲まれた基礎部材20の凸状部分がアンカーとして働き、載置面22に沿った方向における光学部品30の位置を、極めて強固に保持することができる。
(変形例)
図6は、上記実施形態の変形例として、光学部品実装構造10Bの構成を示す側断面図である。本変形例に係る光学部品実装構造10Bと上記実施形態に係る光学部品実装構造10Aとの相違点は、溝23に接着剤層40が達しているか否かである。すなわち、本変形例では、接着剤層40を形成する際の樹脂41の余剰分が溝23に溢れておらず、接着剤層40の外縁40aが溝23の内部に達していない。換言すれば、接着剤層40の外縁40aが、溝23によって囲まれた領域内に収まっている。
このように、接着剤層40の外縁40aが溝23によって囲まれた領域内に収まっている場合には、接着剤層40の存在範囲が、溝23によって囲まれた領域内に限定されることとなる。したがって、光学部品30及び基礎部材20の各線膨張係数が大きく異なる場合であっても、載置面22に沿った面内方向における樹脂41の伸縮度合いを或る程度限定することができるので、上記実施形態と比較して伸縮性が低い樹脂41を採用することが可能になる。
図7は、上記実施形態の別の変形例として、光学部品実装構造10Cの構成を示す側断面図である。本変形例に係る光学部品実装構造10Cと上記実施形態に係る光学部品実装構造10Aとの相違点は、溝23の有無である。すなわち、本変形例では、基礎部材20に溝23が形成されておらず、主面21は平坦となっている。そして、主面21の一部が載置面22として機能し、その上に、接着剤層40を介して光学部品30が実装されている。
このように、基礎部材20に溝23が形成されていない場合であっても、接着剤層40のフィラー42が実質的に単層で存在していることにより、上記実施形態と同様の作用効果を得ることができる。
(第2の実施の形態)
図8は、本発明に係る光学部品実装構造の第2実施形態として、波長選択デバイス50の構成を示す斜視図である。波長選択デバイス50は、光Pを入出力する複数の光ポート51と、光ポート51から入力された光Pを拡幅する光拡大部(ビームエキスパンダ)52と、光拡大部52により拡幅された光Pを、光Pの波長成分毎に異なる光路へ分光する分光素子53と、分光素子53により分光された各波長成分毎に異なる位置へ光を集光する集光レンズ54と、これらを支持する基礎部材60とを備えている。
この波長選択デバイス50において、一つの光ポート51から光Pが入力されると、この光Pは、コリメータアレイ57を通過したのち光拡大部52によって拡幅される。光拡大部52は、例えば互いに光学的に結合された複数のプリズムが光軸方向に並んで配置されて成る。光拡大部52によって拡幅された光Pは、分光素子53に入射する。分光素子53は、例えば一対の光透過型回折格子53a,53bによって構成されており、光Pは、これらの光透過型回折格子53a,53bを順に通過する。このとき、回折作用によって強め合った光の出射角は光Pの波長によって異なるため、光透過型回折格子53bから出射された光Pは、その波長に応じた光路へ出力される。
こうして分光素子53によって分光された光Pは、折り返しミラー55において反射したのち、集光レンズ54に入射する。そして、光Pは、集光レンズ54によって集光されつつ折り返しミラー56において反射し、MEMSミラーアレイ58に達する。MEMSミラーアレイ58は、複数の反射面が一列に並んで配置された構成を備えており、各反射面の角度は少しずつ異なっている。集光された光Pは、このMEMSミラーアレイ58の複数の反射面のうち光Pの波長に対応する反射面において反射する。その後、光Pは、上記経路を逆に辿って光ポート51に到達する。このとき、光Pの光路はMEMSミラーアレイ58によってその波長毎に異なっているので、光Pは、複数の光ポート51のうち光Pの波長に応じた光ポート51に到達する。こうして、光Pは、その波長に応じた光ポート51から選択的に出力される。
この波長選択デバイス50では、光拡大部52、分光素子53、及び集光レンズ54のうち少なくとも一つの光学部品が、第1実施形態の光学部品実装構造10A(若しくは10B、10C)によって基礎部材60上に実装されている。すなわち、基礎部材60に設けられた載置面上にこれらの光学部品が載置され、且つ、これらの光学部品と基礎部材60の載置面との間には、接着剤層(図1に示された接着剤層40に相当)が介在している。そして、この接着剤層はフィラーを含有しており、該フィラーは、光学部品と載置面との間において実質的に単層で存在している。
この波長選択デバイス50によれば、接着剤層に含まれる単層のフィラーによって、光拡大部52、分光素子53、或いは集光レンズ54といった光学部品と基礎部材60との間隔を一定に保つことができる。したがって、光拡大部52、分光素子53、或いは集光レンズ54といった光学部品の傾きを高い精度で制御することができ、これらを高い精度で光結合することができる。また、これにより、選択波長のずれを効果的に抑えることができる。
なお、この波長選択デバイス50を一つの光学部品実装構造として捉えることも可能である。その場合、この光学部品実装構造は、光拡大部52、分光素子53、及び集光レンズ54といった複数の光学部品と、複数の載置面を有する基礎部材60とを備え、更に、複数の光学部品と複数の載置面との間にそれぞれ介在する複数の接着剤層を備える。そして、複数の光学部品それぞれは、該複数の光学部品に含まれる別の光学部品と光学的に結合される。この光学部品実装構造では、単層のフィラーによって各光学部品と基礎部材60の載置面との間隔が一定に保たれるので、各光学部品の傾きを高い精度で制御し、光学部品同士を高い精度で光結合することができる。
以上、本発明に係る光学部品実装構造、波長選択デバイス、及び光学部品実装構造の製造方法の好適な実施形態について説明したが、本発明は必ずしも上記実施形態に限られず、その要旨を逸脱しない範囲で様々な変更が可能である。
10A〜10C…光学部品実装構造、20…基礎部材、21…主面、22…載置面、23…溝、30…光学部品、31…接着面、32,33…光透過面、40…接着剤層、41…樹脂、42…フィラー、50…波長選択デバイス、51…光ポート、52…光拡大部、53…分光素子、53a,53b…光透過型回折格子、54…集光レンズ、55,56…ミラー、57…コリメータアレイ、58…ミラーアレイ、60…基礎部材。

Claims (13)

  1. 光を反射する反射面、及び光を透過する透過面のうち少なくとも一方を有する光学部品と、
    前記光学部品を載置する載置面を有する基礎部材と、
    前記光学部品と前記基礎部材の前記載置面との間に介在し、前記光学部品と前記載置面とを固着させる接着剤層と
    を備え、
    前記接着剤層がフィラーを含有し、
    前記フィラーが、前記光学部品と前記載置面との間において実質的に単層で存在していることを特徴とする、光学部品実装構造。
  2. 光を反射する反射面、及び光を透過する透過面のうち少なくとも一方を有する光学部品と、
    前記光学部品を載置する載置面を有する基礎部材と、
    前記光学部品と前記基礎部材の前記載置面との間に介在し、前記光学部品と前記載置面とを固着させる接着剤層と
    を備え、
    前記接着剤層がフィラーを含有し、
    前記光学部品と前記載置面との間における前記接着剤層の厚さが、前記フィラーの平均粒径の2倍よりも小さいことを特徴とする、光学部品実装構造。
  3. 前記フィラーの粒径分布の範囲が20μm以内であることを特徴とする、請求項1または2に記載の光学部品実装構造。
  4. 前記光学部品の線膨張係数が前記基礎部材の線膨張係数の10倍以上であることを特徴とする、請求項1〜3のいずれか一項に記載の光学部品実装構造。
  5. 前記光学部品が硝子製であり、
    前記基礎部材がインバー製又はスーパーインバー製であることを特徴とする、請求項1〜4のいずれか一項に記載の光学部品実装構造。
  6. 前記基礎部材が、前記載置面を囲むように形成された溝を更に有することを特徴とする、請求項1〜5のいずれか一項に記載の光学部品実装構造。
  7. 前記接着剤層の外縁が、前記溝によって囲まれた領域内に収まっていることを特徴とする、請求項6に記載の光学部品実装構造。
  8. 前記接着剤層の外縁が前記溝の内部に達していることを特徴とする、請求項6に記載の光学部品実装構造。
  9. 複数の前記光学部品と、
    複数の前記載置面を有する前記基礎部材と、
    前記複数の光学部品と前記複数の載置面との間にそれぞれ介在する複数の前記接着剤層と
    を備え、
    前記複数の光学部品それぞれが、前記複数の光学部品に含まれる別の前記光学部品と光学的に結合されていることを特徴とする、請求項1〜8のいずれか一項に記載の光学部品実装構造。
  10. 光を入力する光ポートと、
    光ポートから入力された光を拡幅する光拡大部と、
    前記光拡大部により拡幅された光を、該光の波長成分毎に異なる光路へ分光する分光素子と、
    前記分光素子により分光された各波長成分毎に異なる位置へ前記光を集光する集光レンズと
    を備え、
    前記光拡大部、前記分光素子、及び前記集光レンズのうち少なくとも一つの光学部品が、請求項1〜9のいずれか一項に記載された光学部品実装構造によって前記基礎部材上に実装されていることを特徴とする、波長選択デバイス。
  11. 前記光拡大部が、互いに光学的に結合された複数のプリズムによって構成されていることを特徴とする、請求項10に記載の波長選択デバイス。
  12. 光を反射する反射面、及び光を透過する透過面のうち少なくとも一方を有する光学部品を載置するための載置面を有する基礎部材の前記載置面に、フィラーを含有する接着剤を塗布する塗布工程と、
    前記光学部品を前記載置面上に載置する載置工程と、
    前記光学部品を前記載置面に向けて押圧することにより、前記フィラーを、前記光学部品と前記載置面との間において実質的に単層で存在させる押圧工程と、
    前記接着剤を硬化させて接着剤層を形成する硬化工程と
    を含むことを特徴とする、光学部品実装構造の製造方法。
  13. 前記基礎部材が、前記載置面を囲むように形成された溝を更に有し、
    前記押圧工程において、前記接着剤の余剰分を前記溝に逃がすことを特徴とする、請求項12に記載の光学部品実装構造の製造方法。
JP2012088567A 2012-04-09 2012-04-09 光学部品実装構造、波長選択デバイス、及び光学部品実装構造の製造方法 Pending JP2013216785A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012088567A JP2013216785A (ja) 2012-04-09 2012-04-09 光学部品実装構造、波長選択デバイス、及び光学部品実装構造の製造方法
US13/857,697 US20130265645A1 (en) 2012-04-09 2013-04-05 Mounting structure for optical component, wavelength-selective device, and method for manufacturing mounting structure for optical component
CN2013101208568A CN103364910A (zh) 2012-04-09 2013-04-09 光学部件的安装构造、波长选择设备及光学部件的安装构造的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012088567A JP2013216785A (ja) 2012-04-09 2012-04-09 光学部品実装構造、波長選択デバイス、及び光学部品実装構造の製造方法

Publications (1)

Publication Number Publication Date
JP2013216785A true JP2013216785A (ja) 2013-10-24

Family

ID=49292107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012088567A Pending JP2013216785A (ja) 2012-04-09 2012-04-09 光学部品実装構造、波長選択デバイス、及び光学部品実装構造の製造方法

Country Status (3)

Country Link
US (1) US20130265645A1 (ja)
JP (1) JP2013216785A (ja)
CN (1) CN103364910A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036301A (ko) * 2015-09-24 2017-04-03 엘지이노텍 주식회사 카메라 모듈

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6349286B2 (ja) * 2015-01-26 2018-06-27 富士フイルム株式会社 光学装置及び電子内視鏡、並びに、光学装置の製造方法
CN104635316A (zh) * 2015-02-06 2015-05-20 上海索广映像有限公司 一种四棱镜接着治具及其工作原理
US9964729B2 (en) * 2015-03-10 2018-05-08 Alliance Fiber Optic Products, Inc. Micro-optics alignment and assembly using needle pin and temporary attachment
JP2017223893A (ja) * 2016-06-17 2017-12-21 株式会社リコー 光学装置、光学ユニット、表示装置、及びプリズム固定方法
JP7187838B2 (ja) * 2018-06-29 2022-12-13 セイコーエプソン株式会社 頭部装着型表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW560535U (en) * 1997-02-27 2003-11-01 Seiko Epson Corp Adhesive, liquid crystal device and electronic apparatus
US6639742B2 (en) * 2001-08-30 2003-10-28 3M Innovative Properties Company Apparatus and methods for mounting an optical element in an optical system
JP4875087B2 (ja) * 2005-09-08 2012-02-15 オクラロ(ニュージャージー)インコーポレイテッド 光波長選択ルータ
US7591561B2 (en) * 2005-10-13 2009-09-22 Nikon Corporation Liquid cooled mirror for use in extreme ultraviolet lithography
JPWO2008059695A1 (ja) * 2006-11-13 2010-02-25 コニカミノルタオプト株式会社 レンズユニット及びレンズユニットの製造方法、レンズ鏡胴及びレンズ鏡胴の製造方法、並びに撮像装置
JP5173382B2 (ja) * 2007-12-03 2013-04-03 キヤノン株式会社 プリズムユニット

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036301A (ko) * 2015-09-24 2017-04-03 엘지이노텍 주식회사 카메라 모듈
KR102545724B1 (ko) * 2015-09-24 2023-06-20 엘지이노텍 주식회사 카메라 모듈

Also Published As

Publication number Publication date
US20130265645A1 (en) 2013-10-10
CN103364910A (zh) 2013-10-23

Similar Documents

Publication Publication Date Title
JP2013216785A (ja) 光学部品実装構造、波長選択デバイス、及び光学部品実装構造の製造方法
JP5852040B2 (ja) 光学的アセンブリ
US11137557B2 (en) Optical assembly and manufacturing method thereof
JP2009139411A (ja) 偏光波長分離素子
JPWO2019193706A1 (ja) 光モジュール
JP2011003262A (ja) 偏光性回折素子
US20110317170A1 (en) Wedge pair for phase shifting
WO2020213411A1 (ja) 光接続構造
JP7319106B2 (ja) 格子部品およびその製造方法
JP2011112806A (ja) Mems光スキャナおよびその製造方法
JP4313675B2 (ja) ミラー、光学結像システム、およびそれらの使用
JP6129066B2 (ja) 半導体レーザモジュール及びその製造方法
JP2012208371A (ja) 光デバイス
TW200404406A (en) Piezoelectric tunable filter
JP4012537B2 (ja) 光モジュール及びその作製方法
JP4836534B2 (ja) ファラデー回転ミラーの製造方法
JP2008046271A (ja) 光モジュールの製造方法及び光モジュールの製造装置
JP2006098897A (ja) 光学部品およびその製造方法
JP5708379B2 (ja) 光モジュール
JP6195807B2 (ja) 光合波器および光合波器の製造方法
JP2003057566A (ja) 可変群遅延補償器
WO2021157454A1 (ja) 光学装置および光学部品
JP5148506B2 (ja) 光デバイスおよびこれを用いた光送受信器
WO2021095164A1 (ja) 光学装置
JP2015102759A (ja) 光モジュール