JP2013101016A - 不平衡率検出装置、および不平衡率検出方法 - Google Patents

不平衡率検出装置、および不平衡率検出方法 Download PDF

Info

Publication number
JP2013101016A
JP2013101016A JP2011244191A JP2011244191A JP2013101016A JP 2013101016 A JP2013101016 A JP 2013101016A JP 2011244191 A JP2011244191 A JP 2011244191A JP 2011244191 A JP2011244191 A JP 2011244191A JP 2013101016 A JP2013101016 A JP 2013101016A
Authority
JP
Japan
Prior art keywords
signal
phase
transfer function
unbalance rate
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011244191A
Other languages
English (en)
Other versions
JP5989327B2 (ja
JP2013101016A5 (ja
Inventor
Akihiro Ohori
彰大 大堀
Masayuki Hattori
将之 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2011244191A priority Critical patent/JP5989327B2/ja
Publication of JP2013101016A publication Critical patent/JP2013101016A/ja
Publication of JP2013101016A5 publication Critical patent/JP2013101016A5/ja
Application granted granted Critical
Publication of JP5989327B2 publication Critical patent/JP5989327B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Phase Differences (AREA)

Abstract

【課題】簡単な演算処理で不平衡率を検出することができる不平衡率検出装置を提供する。
【解決手段】三相交流の不平衡率を検出する不平衡率検出装置1において、検出された3つの相電圧信号をα軸電圧信号およびβ軸電圧信号に変換する三相/二相変換部21と、下記行列を用いてα軸電圧信号およびβ軸電圧信号から正相分の信号を抽出する正相分抽出部22と、下記行列の(1,2)要素と(2,1)要素を入れ換えた行列を用いて逆相分の信号を抽出する逆相分抽出部23と、抽出された正相分の信号と逆相分の信号とから不平衡率を算出する不平衡率算出部24とを備えた。
【数1】

【選択図】図1

Description

本発明は、三相交流の不平衡率を検出する不平衡率検出装置、および不平衡率検出方法に関する。
従来、三相交流の不平衡率を検出する不平衡率検出装置が開発されている。
図10は、従来の一般的な不平衡率検出装置を説明するためのブロック図である。
不平衡率検出装置100は、三相電力系統の三相交流電圧の不平衡率を検出するものである。なお、以下では三相電力系統の3つの相をそれぞれU相、V相およびW相とする。電圧センサ400は、三相電力系統の各線間電圧を検出するものであり、V相に対するU相の線間電圧を検出した線間電圧信号Vuv、W相に対するV相の線間電圧を検出した線間電圧信号Vvw、U相に対するW相の線間電圧を検出した線間電圧信号Vwuを不平衡率検出装置100に出力する。不平衡率検出装置100は、電圧センサ400より入力される線間電圧信号Vuv,Vvw,Vwuに基づいて不平衡率を検出する。
不平衡率検出装置100は、演算部200および表示部300を備えている。演算部200は、不平衡率を演算するものであり、例えばマイクロコンピュータなどによって実現されている。演算部200は、演算結果である不平衡率kを表示部300に出力する。表示部300は、演算結果を表示するものであり、モニタなどの表示手段によって実現されている。表示部300は、演算部200より入力された不平衡率kを表示する。演算部200は、基準電圧算出部201、正相電圧算出部202、逆相電圧算出部203、および不平衡率算出部204を備えている。
基準電圧算出部201は、電圧センサ400より入力される線間電圧信号Vuv,Vvw,Vwuから、下記(1)式により、基準電圧Vsを算出するものである。基準電圧算出部201は、算出した基準電圧Vsを正相電圧算出部202および逆相電圧算出部203に出力する。

Vs = (Vuv+Vvw+Vwu)/2 ・・・・・(1)
正相電圧算出部202は、線間電圧信号Vuv,Vvw,Vwuと、基準電圧算出部201より入力される基準電圧Vsとから、下記(2)式により、正相電圧Vpを算出するものである。正相電圧算出部202は、算出した正相電圧Vpを不平衡率算出部204に出力する。
逆相電圧算出部203は、線間電圧信号Vuv,Vvw,Vwuと、基準電圧算出部201より入力される基準電圧Vsとから、下記(3)式により、逆相電圧Vnを算出するものである。逆相電圧算出部203は、算出した逆相電圧Vnを不平衡率算出部204に出力する。
不平衡率算出部204は、正相電圧算出部202より入力される正相電圧Vpと逆相電圧算出部203より入力される逆相電圧Vnとから、下記(4)式により、不平衡率kを算出するものである。不平衡率算出部204は、算出した不平衡率kを表示部300に出力する。

k = (Vn/Vp)×100 [%] ・・・・・(4)
特開平10−232254号公報
しかしながら、不平衡率検出装置100の場合、演算部200で行われる演算処理が複雑になるという問題があった。
本発明は上記した事情のもとで考え出されたものであって、より簡単な演算処理で不平衡率を検出することができる不平衡率検出装置を提供することをその目的としている。
上記課題を解決するため、本発明では、次の技術的手段を講じている。
本発明の第1の側面によって提供される不平衡率検出装置は、三相交流に基づく3つの信号を第1の信号および第2の信号に変換する三相二相変換手段と、前記第1の信号に含まれる正相分の信号である第1の正相分信号と、前記第2の信号に含まれる正相分の信号である第2の正相分信号とを、それぞれ抽出する正相分抽出手段と、前記第1の信号に含まれる逆相分の信号である第1の逆相分信号と、前記第2の信号に含まれる逆相分の信号である第2の逆相分信号とを、それぞれ抽出する逆相分抽出手段と、前記正相分抽出手段によって抽出された前記第1の正相分信号および前記第2の正相分信号と、前記逆相分抽出手段によって抽出された前記第1の逆相分信号および前記第2の逆相分信号とから、不平衡率を算出する不平衡率算出手段とを備えており、前記正相分抽出手段は、前記第1の信号を第1の伝達関数によって信号処理し、前記第2の信号を第2の伝達関数によって信号処理し、これらを加算することで前記第1の正相分信号を抽出し、前記第1の信号を第3の伝達関数によって信号処理し、前記第2の信号を前記第1の伝達関数によって信号処理し、これらを加算することで前記第2の正相分信号を抽出し、前記逆相分抽出手段は、前記第1の信号を前記第1の伝達関数によって信号処理し、前記第2の信号を前記第3の伝達関数によって信号処理し、これらを加算することで前記第1の逆相分信号を抽出し、前記第1の信号を前記第2の伝達関数によって信号処理し、前記第2の信号を前記第1の伝達関数によって信号処理し、これらを加算することで前記第2の逆相分信号を抽出し、前記三相交流の基本波の角周波数をω0、時定数をTとした場合、前記第1の伝達関数は、
1(s)=(T・s+1)/{(T・s+1)2+(T・ω02
であり、前記第2の伝達関数は、
2(s)=−T・ω0/{(T・s+1)2+(T・ω02
であり、前記第3の伝達関数は、
3(s)=T・ω0/{(T・s+1)2+(T・ω02
であることを特徴とする。なお、「正相分の信号」とは、三相交流の基本波と周波数が同じで相順が同じ信号であり、「逆相分の信号」とは、三相交流の基本波と周波数が同じで相順が逆の信号である。
本発明の第1の側面によって提供される不平衡率検出装置は、三相交流に基づく3つの信号を第1の信号および第2の信号に変換する三相二相変換手段と、前記第1の信号に含まれる正相分の信号である第1の正相分信号と、前記第2の信号に含まれる正相分の信号である第2の正相分信号とを、それぞれ抽出する正相分抽出手段と、前記第1の信号に含まれる逆相分の信号である第1の逆相分信号と、前記第2の信号に含まれる逆相分の信号である第2の逆相分信号とを、それぞれ抽出する逆相分抽出手段と、前記正相分抽出手段によって抽出された前記第1の正相分信号および前記第2の正相分信号と、前記逆相分抽出手段によって抽出された前記第1の逆相分信号および前記第2の逆相分信号とから、不平衡率を算出する不平衡率算出手段とを備えており、前記正相分抽出手段は、前記第1の信号を第1の伝達関数によって信号処理し、前記第2の信号を第2の伝達関数によって信号処理し、これらを加算することで前記第1の正相分信号を抽出し、前記第1の信号を第3の伝達関数によって信号処理し、前記第2の信号を前記第1の伝達関数によって信号処理し、これらを加算することで前記第2の正相分信号を抽出し、前記逆相分抽出手段は、前記第1の信号を前記第1の伝達関数によって信号処理し、前記第2の信号を前記第3の伝達関数によって信号処理し、これらを加算することで前記第1の逆相分信号を抽出し、前記第1の信号を前記第2の伝達関数によって信号処理し、前記第2の信号を前記第1の伝達関数によって信号処理し、これらを加算することで前記第2の逆相分信号を抽出し、前記三相交流の基本波の角周波数をω0、時定数をTとした場合、前記第1の伝達関数は、
1(s)=(T2・s2+T・s+T2・ω0 2)/{(T・s+1)2+(T・ω02
であり、前記第2の伝達関数は、
2(s)=−T・ω0/{(T・s+1)2+(T・ω02
であり、前記第3の伝達関数は、
3(s)=T・ω0/{(T・s+1)2+(T・ω02
であることを特徴とする。
本発明の好ましい実施の形態においては、前記不平衡率算出手段は、前記第1の正相分信号をXα、前記第2の正相分信号をXβ、前記第1の逆相分信号をYα、前記第2の逆相分信号をYβとすると、下記式を用いて不平衡率kを算出する。
本発明の好ましい実施の形態においては、前記不平衡率算出手段によって算出された不平衡率を表示するための表示手段をさらに備えている。
本発明の好ましい実施の形態においては、前記3つの信号は、三相交流の各相電圧を検出した相電圧信号である。
本発明の好ましい実施の形態においては、前記3つの信号は、三相交流の各線間電圧を検出した線間電圧信号である。
本発明の第3の側面によって提供される不平衡率検出方法は、三相交流に基づく3つの信号を第1の信号および第2の信号に変換する第1の工程と、前記第1の信号を第1の伝達関数によって信号処理し、前記第2の信号を第2の伝達関数によって信号処理し、これらを加算することで第1の正相分信号を抽出する第2の工程と、前記第1の信号を第3の伝達関数によって信号処理し、前記第2の信号を前記第1の伝達関数によって信号処理し、これらを加算することで第2の正相分信号を抽出する第3の工程と、前記第1の信号を前記第1の伝達関数によって信号処理し、前記第2の信号を前記第3の伝達関数によって信号処理し、これらを加算することで第1の逆相分信号を抽出する第4の工程と、前記第1の信号を前記第2の伝達関数によって信号処理し、前記第2の信号を前記第1の伝達関数によって信号処理し、これらを加算することで第2の逆相分信号を抽出する第5の工程と、前記第2の工程によって抽出された前記第1の正相分信号と、前記第3の工程によって抽出された前記第2の正相分信号と、前記第4の工程によって抽出された前記第1の逆相分信号と、前記第5の工程によって抽出された前記第2の逆相分信号とから、不平衡率を算出する第6の工程とを備えており、前記三相交流の基本波の角周波数をω0、時定数をTとした場合、前記第1の伝達関数は、
1(s)=(T・s+1)/{(T・s+1)2+(T・ω02
であり、前記第2の伝達関数は、
2(s)=−T・ω0/{(T・s+1)2+(T・ω02
であり、前記第3の伝達関数は、
3(s)=T・ω0/{(T・s+1)2+(T・ω02
であることを特徴とする。
本発明によれば、正相分の信号と逆相分の信号とがそれぞれ容易に抽出され、これらの正相分の信号と逆相分の信号とから不平衡率が容易に算出される。したがって、簡単な演算処理で不平衡率を検出することができる。
本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
第1実施形態に係る不平衡率検出装置を説明するためのブロック図である。 回転座標変換および静止座標変換を伴う処理を線形時不変の処理に変換する方法について説明するためのブロック線図である。 回転座標変換および静止座標変換を伴う処理を線形時不変の処理に変換する方法について説明するためのブロック線図であり、行列で表したものである。 行列の計算を説明するためのブロック線図である。 回転座標変換を行ってからローパスフィルタ処理を行った後に静止座標変換を行う処理を示すブロック線図である。 行列GLPFの各要素である伝達関数を解析するためのボード線図である。 正相分の信号と逆相分の信号を説明するための図である。 回転座標変換を行ってからハイパスフィルタ処理を行った後に静止座標変換を行う処理を示すブロック線図である。 行列GHPFの各要素である伝達関数を解析するためのボード線図である。 従来の一般的な不平衡率検出装置を説明するためのブロック図である。
以下、本発明の実施の形態を、図面を参照して具体的に説明する。
図1は、第1実施形態に係る不平衡率検出装置を説明するためのブロック図である。
不平衡率検出装置1は、三相電力系統の三相交流電圧の不平衡率を検出するものである。電圧センサ4は、三相電力系統の各相電圧を検出するものであり、U相の相電圧を検出した相電圧信号Vu、V相の相電圧を検出した相電圧信号Vv、W相の相電圧を検出した相電圧信号Vwを不平衡率検出装置1に出力する。不平衡率検出装置1は、電圧センサ4より入力される相電圧信号Vu,Vv,Vwに基づいて不平衡率を検出する。
不平衡率検出装置1は、演算部2および表示部3を備えている。演算部2は、不平衡率を演算するものであり、例えばマイクロコンピュータなどによって実現されている。演算部2は、演算結果である不平衡率kを表示部3に出力する。表示部3は、演算結果を表示するものであり、モニタなどの表示手段によって実現されている。表示部3は、演算部2より入力された不平衡率kを表示する。演算部2は、三相/二相変換部21、正相分抽出部22、逆相分抽出部23、および不平衡率算出部24を備えている。
三相/二相変換部21は、電圧センサ4より入力される3つの相電圧信号Vu,Vv,Vwを、α軸電圧信号Vαおよびβ軸電圧信号Vβに変換するものである。三相/二相変換部21は、いわゆる三相/二相変換処理(αβ変換処理)を行うものであり、相電圧信号Vu,Vv,Vwを互いに直交するα軸成分とβ軸成分とにそれぞれ分解して、各軸成分をまとめることでα軸電圧信号Vαおよびβ軸電圧信号Vβを生成する。
三相/二相変換部21で行われる変換処理は、下記(5)式に示す行列式で表される。
正相分抽出部22および逆相分抽出部23は、三相/二相変換部21より入力されるα軸電圧信号Vαおよびβ軸電圧信号Vβから、基本波の正相分信号および逆相分信号を抽出するものである。正相分抽出部22および逆相分抽出部23は、本出願の発明者らが開発した、回転座標変換処理(dq変換処理)を改良した線形時不変の処理(以下では、「DQ−LTI変換処理」とする。)を利用したローパスフィルタを用いている。
DQ−LTI変換処理は、回転座標変換(dq変換)を行ってから所定の処理を行った後に静止座標変換(逆dq変換)を行うのと等価の処理を行うことができ、かつ、線形性および時不変性を有する信号処理である。回転座標変換および静止座標変換は非線形時変の処理なので、これらを用いた制御系の設計に線形制御理論を用いることができないし、システム解析もできない。DQ−LTI変換処理は、この問題を解消するために開発されたものであり、回転座標変換を行ってから所定の処理を行った後に静止座標変換を行うのと等価の処理を、伝達関数の行列を用いた演算処理としたものである。
まず、回転座標変換および静止座標変換を伴う処理を線形時不変の処理に変換する方法について説明する。
図2(a)は、回転座標変換および静止座標変換を伴う処理を説明するための図である。当該処理では、まず、信号αおよびβが、回転座標変換によって、信号dおよびqに変換される。信号dおよびqに対して、それぞれ所定の伝達関数F(s)で表される処理が行われ、信号d’およびq’が出力される。次に、信号d’およびq’が静止座標変換によって、信号α’およびβ’に変換される。図2(a)に示す非線形時変の処理を、図2(b)に示す線形時不変の伝達関数の行列Gを用いた処理に変換する。
図2(a)に示す回転座標変換は下記(6)式の行列式で表され、静止座標変換は下記(7)式の行列式で表される。
したがって、図2(a)に示す処理を、行列を用いて、図3(a)のように表すことができる。図3(a)に示す3つの行列の積を計算し、算出された行列を線形時不変の行列にすることで、図2(b)に示す行列Gを算出することができる。このとき、静止座標変換および回転座標変換の行列を行列の積に変換したうえで、算出を行う。
回転座標変換の行列は、下記(8)式に示す右辺の行列の積に変換することができる。
但し、jは虚数単位であり、exp()は自然対数の底eの指数関数であり、
である。なお、T-1は、Tの逆行列である。
となり、オイラーの公式より、exp(jθ)=cosθ+jsinθ、exp(−jθ)=cosθ−jsinθを代入して計算すると、
であることが、確認できる。
また、静止座標変換の行列は、下記(9)式に示す右辺の行列の積に変換することができる。当該行列の積の中央の行列は線形時不変の行列である。
但し、jは虚数単位であり、exp()は自然対数の底eの指数関数であり、
である。なお、T-1は、Tの逆行列である。
となり、オイラーの公式より、exp(jθ)=cosθ+jsinθ、exp(−jθ)=cosθ−jsinθを代入して計算すると、
であることが、確認できる。
上記(8)式および(9)式を用いて、図3(a)に示す3つの行列の積を計算して、行列Gを算出すると、下記(10)式のように計算される。
上記(10)式の中央の3つの行列の1行1列目の要素に注目し、これをブロック線図で表すと、図4に示すブロック線図になる。図4に示すブロック線図の入出力特性を計算すると、
となる。ただし、F(s)はインパルス応答f(t)をもつ一入力一出力伝達関数である。
ここで、θ(t)=ω0tとすると、θ(t)−θ(τ)=ω0t−ω0τ=ω0(t−τ)=θ(t−τ)となるので、図4に示すブロック線図の入出力特性は、インパルス応答f(t)exp(−jω0t)を持つ線形時不変系のものに等しい。インパルス応答f(t)exp(−jω0t)をラプラス変換すると、伝達関数F(s+jω0)が得られる。また、図4に示すブロック線図のexp(jθ(t))とexp(−jθ(t))とを入れ換えた場合の入出力特性は、伝達関数F(s−jω0)の入出力特性になる。
したがって、上記(10)式からさらに計算を進めると、
と計算される。
これにより、図3(a)に示す処理を、図3(b)に示す処理に変換することができる。図3(b)に示す処理は、回転座標変換を行ってから所定の伝達関数F(s)で表される処理を行った後に静止座標変換を行う処理と等価の処理であって、当該処理のシステムは線形時不変のシステムである。
ローパスフィルタの伝達関数は、時定数をTとすると、F(s)=1/(Ts+1)で表される。したがって、図5に示す処理、すなわち、回転座標変換を行ってからローパスフィルタ処理を行った後に静止座標変換を行う処理と等価の処理を示す伝達関数の行列GLPFは、上記(11)式を用いて、下記(12)式のように算出される。
図6は、行列GLPFの各要素である伝達関数を解析するためのボード線図である。同図(a)は行列GLPFの1行1列要素(以下では、「(1,1)要素」と記載する。他の要素についても同様に記載する。)および(2,2)要素の伝達関数を示しており、同図(b)は行列GLPFの(1,2)要素の伝達関数を示しており、同図(c)は行列GLPFの(2,1)要素の伝達関数を示している。同図は、系統電圧の基本波の周波数(以下では、「中心周波数」とする。また、中心周波数に対応する角周波数を「中心角周波数」とする。)が60Hzの場合(すなわち、角周波数ω0=120πの場合)のものであり、時定数Tを「0.1」,「1」,「10」,「100」とした場合を示している。
同図(a),(b)および(c)が示す振幅特性は、いずれも、中心周波数にピークがあり、振幅特性のピークは−6dB(=1/2)である。また、時定数Tが大きくなると、通過帯域が小さくなっている。同図(a)が示す位相特性は、中心周波数で0度になる。つまり、行列GLPFの(1,1)要素および(2,2)要素の伝達関数は、中心周波数(中心角周波数)の信号を位相を変化させることなく通過させる。同図(b)が示す位相特性は、中心周波数で90度になる。つまり、行列GLPFの(1,2)要素の伝達関数は、中心周波数(中心角周波数)の信号の位相を90度進めて通過させる。一方、同図(c)が示す位相特性は、中心周波数で−90度になる。つまり、行列GLPFの(2,1)要素の伝達関数は、中心周波数(中心角周波数)の信号の位相を90度遅らせて通過させる。以下に、三相/二相変換後の2つの信号に対する伝達関数の行列GLPFに示す処理を、図7を参照して検討する。
図7は、正相分の信号と逆相分の信号を説明するための図である。同図(a)は正相分の信号を示しており、同図(b)は逆相分の信号を示している。
同図(a)において、相電圧信号Vu,Vv,Vwの基本波の正相分信号を破線矢印のベクトルu,v,wで示している。ベクトルu,v,wは互いに120度ずつ向きが異なっており、時計回りの順番で並んで角周波数ω0で反時計回りの方向に回転している。前記正相分信号を三相/二相変換したα軸信号およびβ軸信号は、実線矢印のベクトルα,βで示される。ベクトルα,βは、時計回りの順番で90度向きが異なっており、角周波数ω0で反時計回りの方向に回転している。
つまり、α軸信号はβ軸信号より90度位相が進んでいる。α軸信号に行列GLPFの(1,1)要素の伝達関数に示す処理を行った場合、振幅が半分になって、位相は変化しない(図6(a)参照)。また、β軸信号に行列GLPFの(1,2)要素の伝達関数に示す処理を行った場合、振幅が半分になって、位相が90度進む(図6(b)参照)。したがって、両者の位相がα軸信号と同じ位相になるので、両者を加算することでα軸信号が再現される。一方、α軸信号に行列GLPFの(2,1)要素の伝達関数に示す処理を行った場合、振幅が半分になって、位相が90度遅れる(図6(c)参照)。また、β軸信号に行列GLPFの(2,2)要素の伝達関数に示す処理を行った場合、振幅が半分になって、位相は変化しない。したがって、両者の位相がβ軸信号と同じ位相になるので、両者を加算することでβ軸信号が再現される。
逆相分は相順が正相分とは逆方向になっている成分である。図7(b)において、相電圧信号Vu,Vv,Vwの基本波の逆相分信号を破線矢印のベクトルu,v,wで示している。ベクトルu,v,wは互いに120度ずつ向きが異なっており、反時計回りの順番で並んで角周波数ω0で反時計回りの方向に回転している。前記逆相分信号を三相/二相変換したα軸信号およびβ軸信号は、実線矢印のベクトルα,βで示される。ベクトルα,βは、反時計回りの順番で90度向きが異なっており、角周波数ω0で反時計回りの方向に回転している。
つまり、α軸信号はβ軸信号より90度位相が遅れている。α軸信号に行列GLPFの(1,1)要素の伝達関数に示す処理を行った場合、振幅が半分になって、位相は変化しない。また、β軸信号に行列GLPFの(1,2)要素の伝達関数に示す処理を行った場合、振幅が半分になって、位相が90度進む。したがって、両者の位相が逆位相になるので、両者を加算することで打ち消し合うことになる。一方、α軸信号にGLPFの(2,1)要素の伝達関数に示す処理を行った場合、振幅が半分になって、位相が90度遅れる。また、β軸信号に行列GLPFの(2,2)要素の伝達関数に示す処理を行った場合、振幅が半分になって、位相は変化しない。したがって、両者の位相が逆位相になるので、両者を加算することで打ち消し合うことになる。つまり、伝達関数の行列GLPFは、基本波の正相分信号を通過させ、逆相分信号を遮断する。また、基本波以外の周波数の信号(高調波など)は基本波より減衰されるので、伝達関数の行列GLPFに示す処理は、中心周波数の正相分信号を抽出するフィルタ処理であることが確認できる。
伝達関数の行列GLPFの(1,2)要素と(2,1)要素とを入れ換えた場合、上記とは逆に、正相分信号を遮断し、逆相分信号を通過させる。したがって、中心周波数の逆相分信号を抽出する場合には、伝達関数の行列GLPFの(1,2)要素と(2,1)要素とを入れ換えた行列を用いればよい。
正相分抽出部22は、三相/二相変換部21より入力されるα軸電圧信号Vαおよびβ軸電圧信号Vβから、基本波の正相分信号を抽出するものである。抽出された正相分信号Yαp,Yβpは、不平衡率算出部24に出力される。正相分抽出部22は、上記(12)式に示す、基本波の正相分信号を抽出するための伝達関数の行列GLPFに表される処理を行う。つまり、下記(13)式に示す処理を行っている。角周波数ω0は系統電圧の基本波の角周波数(例えば、ω0=120π[rad/sec](60[Hz]))があらかじめ設定されており、時定数Tはあらかじめ設計されている。
図1に戻って、正相分抽出部22は、回転座標変換および静止座標変換を行うことなく、静止座標系でフィルタリング処理を行っている。正相分抽出部22で行われる処理は、伝達関数の行列GLPFで示されるので、線形時不変の処理である。非線形時変処理である回転座標変換処理および静止座標変換処理が含まれていない線形時不変システムになっているので、線形制御理論を用いた制御系設計やシステム解析が可能となる。また、正相分信号Vαp,Vβpは、上記(13)式によって容易に算出される。
逆相分抽出部23は、三相/二相変換部21より入力されるα軸電圧信号Vαおよびβ軸電圧信号Vβから、基本波の逆相分信号を抽出するものである。抽出された逆相分信号Yαn,Yβnは、不平衡率算出部24に出力される。逆相分抽出部23は、上記(12)式に示す伝達関数の行列GLPFの(1,2)要素と(2,1)要素とを入れ換えた行列に表される処理を行う。つまり、基本波の逆相分信号を抽出するための処理を行っており、下記(14)式に示す処理を行っている。角周波数ω0は系統電圧の基本波の角周波数(例えば、ω0=120π[rad/sec](60[Hz]))があらかじめ設定されており、時定数Tはあらかじめ設計されている。
逆相分抽出部23は、回転座標変換および静止座標変換を行うことなく、静止座標系でフィルタリング処理を行っている。逆相分抽出部23で行われる処理は、伝達関数の行列GLPFの(1,2)要素と(2,1)要素とを入れ換えた行列で示されるので、線形時不変の処理である。非線形時変処理である回転座標変換処理および静止座標変換処理が含まれていない線形時不変システムになっているので、線形制御理論を用いた制御系設計やシステム解析が可能となる。また、逆相分信号Vαn,Vβnは、上記(14)式によって容易に算出される。
不平衡率算出部24は、正相分抽出部22より入力される正相分信号Vαp,Vβpと、逆相分抽出部23より入力される逆相分信号Vαn,Vβnとから、下記(15)式を用いて、不平衡率kを算出するものである。不平衡率算出部24は、算出した不平衡率kを表示部3に出力する。
本実施形態において、3つの相電圧信号Vu,Vv,Vwが互いに直交するα軸電圧信号Vαおよびβ軸電圧信号Vβに変換される。α軸電圧信号Vαおよびβ軸電圧信号Vβから、正相分信号Vαp,Vβpと逆相分信号Vαn,Vβnとが、それぞれDQ−LTI変換処理を利用したローパスフィルタによって容易に抽出される。そして、抽出された正相分信号Vαp,Vβpと逆相分信号Vαn,Vβnとから、不平衡率kが容易に算出される。したがって、簡単な演算処理で不平衡率を検出することができる。
なお、本実施形態においては、正相分信号Vαp,Vβpと逆相分信号Vαn,Vβnとから上記(15)式を用いて不平衡率kを算出する場合について説明したが、これに限られない。例えば、正相分信号Vαp,Vβpおよび逆相分信号Vαn,Vβnを、二相/三相変換処理(逆αβ変換処理)によって、それぞれ三相の正相分信号および逆相分信号に変換し、これらを用いて不平衡率kを算出するようにしてもよい。なお、この場合、上記(5)式に示す三相/二相変換処理の行列、上記(13)式に示す行列、および、二相/三相変換処理の行列の積を算出して、当該積の行列を用いて相電圧信号Vu,Vv,Vwから三相の正相分信号を直接算出するようにしてもよい。逆相分については、上記(13)式の代わりに上記(14)式を用いた積の行列を用いればよい。また、上記第1実施形態において、上記(5)式に示す演算、上記(13)または(14)式に示す演算に代えて、各行列の積を算出して、当該積の行列を用いた演算を行うようにしてもよい。
本実施形態においては、伝達関数の行列の各要素の時定数が同一である場合について説明したが、要素毎に異なる値を用いるようにしてもよい。例えば、α軸成分の速応性を向上させたり、安定性を高めたりするなどの付加特性を与えるように設計することもできる。
本実施形態においては、正相分抽出部22および逆相分抽出部23をそれぞれ個別に設計する場合について説明したが、これに限られない。時定数Tを共通にするようにして、正相分抽出部22および逆相分抽出部23を一度に設計するようにしてもよい。
本実施形態においては、正相分抽出部22および逆相分抽出部23で用いられる角周波数ω0をあらかじめ設定しておく場合について説明したが、これに限られない。信号処理のサンプリング周期が固定サンプリング周期の場合、系統電圧の基本波の角周波数を周波数検出装置などで検出して、検出された角周波数を角周波数ω0として用いるようにしてもよい。
上記第1実施形態においては、ローパスフィルタに代わる処理を行う場合について説明したが、ハイパスフィルタに代わる処理を行う構成としてもよい。以下に、ハイパスフィルタに代わる処理を行う場合を第2実施形態として説明する。
ハイパスフィルタの伝達関数は、時定数をTとすると、F(s)=Ts/(Ts+1)で表される。したがって、図8に示す処理、すなわち、回転座標変換を行ってからハイパスフィルタ処理を行った後に静止座標変換を行う処理と等価の処理を示す伝達関数の行列GHPFは、上記(11)式を用いて、下記(16)式のように算出される。
図9は、行列GHPFの各要素である伝達関数を解析するためのボード線図である。同図(a)は行列GHPFの(1,1)要素および(2,2)要素の伝達関数を示しており、同図(b)は行列GHPFの(1,2)要素の伝達関数を示しており、同図(c)は行列GHPFの(2,1)要素の伝達関数を示している。同図は、中心周波数が60Hzの場合のものであり、時定数Tを「0.1」,「1」,「10」,「100」とした場合を示している。
同図(a)が示す振幅特性は中心周波数近辺で減衰しており、中心周波数での振幅特性は−6dB(=1/2)である。また、時定数Tが大きくなると、遮断帯域が小さくなっている。同図(b)および(c)が示す振幅特性は、いずれも、中心周波数にピークがあり、振幅特性のピークは−6dB(=1/2)である。また、時定数Tが大きくなると、通過帯域が小さくなっている。また、同図(a)が示す位相特性は、中心周波数で0度になる。つまり、行列GHPFの(1,1)要素および(2,2)要素の伝達関数は、中心周波数の信号を位相を変化させることなく通過させる。同図(b)が示す位相特性は、中心周波数で−90度になる。つまり、行列GHPFの(1,2)要素の伝達関数は、中心周波数の信号の位相を90度遅らせて通過させる。一方、同図(c)が示す位相特性は、中心周波数で90度になる。つまり、行列GHPFの(2,1)要素の伝達関数は、中心周波数の信号の位相を90度進めて通過させる。以下に、三相/二相変換後の2つの信号に対する伝達関数の行列GHPFに示す処理を、図7を参照して検討する。
図7(a)において、基本波の正相分信号を三相/二相変換したα軸信号(ベクトルα)に行列GHPFの(1,1)要素の伝達関数に示す処理を行った場合、振幅が半分になって、位相は変化しない(図9(a)参照)。また、β軸信号(ベクトルβ)に行列GHPFの(1,2)要素の伝達関数に示す処理を行った場合、振幅が半分になって、位相が90度遅れる(図9(b)参照)。したがって、両者の位相が逆位相になるので、両者を加算することで打ち消し合うことになる。一方、α軸信号に行列GHPFの(2,1)要素の伝達関数に示す処理を行った場合、振幅が半分になって、位相が90度進む(図9(c)参照)。また、β軸信号に行列GHPFの(2,2)要素の伝達関数に示す処理を行った場合、振幅が半分になって、位相は変化しない。したがって、両者の位相が逆位相になるので、両者を加算することで打ち消し合うことになる。
同図(b)において、基本波の逆相分信号を三相/二相変換したα軸信号(ベクトルα)に行列GHPFの(1,1)要素の伝達関数に示す処理を行った場合、振幅が半分になって、位相は変化しない。また、β軸信号(ベクトルβ)に行列GHPFの(1,2)要素の伝達関数に示す処理を行った場合、振幅が半分になって、位相が90度遅れる。したがって、両者の位相がα軸信号と同じ位相になるので、両者を加算することでα軸信号が再現される。一方、α軸信号に行列GHPFの(2,1)要素の伝達関数に示す処理を行った場合、振幅が半分になって、位相が90度進む(図9(c)参照)。また、β軸信号に行列GHPFの(2,2)要素の伝達関数に示す処理を行った場合、振幅が半分になって、位相は変化しない。したがって、両者の位相がβ軸信号と同じ位相になるので、両者を加算することでβ軸信号が再現される。
つまり、伝達関数の行列GHPFは、基本波の逆相分信号を通過させ、正相分信号を遮断する。また、基本波以外の周波数の信号(高調波など)は、行列GHPFの(1,1)要素および(2,2)要素の伝達関数に示す処理を行った場合はそのまま通過し(図9(a)参照)、(1,2)要素および(2,1)要素の伝達関数に示す処理を行った場合は減衰するので(図9(b)、(c)参照)、ほぼそのまま通過する。したがって、伝達関数の行列GHPFに示す処理は、中心周波数の正相分信号だけを除去するノッチフィルタ処理であることが確認できる。
伝達関数の行列GHPFの(1,2)要素と(2,1)要素とを入れ換えた場合、上記とは逆に、逆相分信号を遮断し、正相分信号を通過させる。したがって、中心周波数の逆相分信号だけを除去する場合には、伝達関数の行列GHPFの(1,2)要素と(2,1)要素とを入れ換えた行列を用いればよい。
第2実施形態に係る不平衡率検出装置の内部構成を説明するためのブロック図は、図1に示す第1実施形態の不平衡率検出装置1のものと共通する。第2実施形態においては、図1に示す正相分抽出部22に代えて、ハイパスフィルタに代わる処理を行って逆相分を除去する正相分抽出部22’(図示しない)を備え、逆相分抽出部23に代えて、ハイパスフィルタに代わる処理を行って正相分を除去する逆相分抽出部23’(図示しない)を備えている。逆相分抽出部23’は、上記(16)式に示す行列GHPFを用いた下記(17)式に示す処理を行い、正相分抽出部22’は、上記(16)式に示す行列GHPFの(1,2)要素と(2,1)要素とを入れ換えた行列を用いた下記(18)式に示す処理を行う。なお、角周波数ω0は系統電圧の基本波の角周波数(例えば、ω0=120π[rad/sec](60[Hz]))があらかじめ設定されており、時定数Tはあらかじめ設計されている。この場合でも、正相分抽出部22’が基本波の正相分信号を抽出し、逆相分抽出部23’が基本波の逆相分信号を抽出することができる。
本実施形態においても、正相分信号Vαp,Vβpと逆相分信号Vαn,Vβnとをそれぞれ容易に抽出することができる。そして、抽出された正相分信号Vαp,Vβpと逆相分信号Vαn,Vβnとから、不平衡率kが容易に算出される。したがって、第1実施形態と同様の効果を奏することができる。
なお、第2実施形態においても、第1実施形態の場合と同様に、伝達関数の行列の各要素の時定数に異なる値を用いるようにしてもよいし、時定数Tを共通にするようにして、正相分抽出部22’および逆相分抽出部23’を一度に設計するようにしてもよい。また、周波数検出装置などで検出した系統電圧の基本波の角周波数を角周波数ω0として用いるようにしてもよい。
第2実施形態においては、正相分抽出部22’が基本波の逆相分の通過を抑制することで正相分を抽出し、逆相分抽出部23’が基本波(正相分)の通過を抑制することで逆相分を抽出する。したがって、α軸電圧信号Vαおよびβ軸電圧信号Vβに高調波成分が含まれていた場合、正相分抽出部22’および逆相分抽出部23’は、高調波成分も通過させてしまう。不平衡率を検出する電力系統に高調波成分が含まれている場合、基本波の正相分または逆相分をより精度よく抽出するためには、当該高調波成分の通過を抑制する構成を追加する必要がある。
この場合、正相分抽出部22’および逆相分抽出部23’において、抑制すべき高調波成分を除去するためのハイパスフィルタに代わる処理をさらに備えるようにすればよい。例えば、5次高調波を抑制すべき場合は、上記(16)式に示す行列GHPFにおいて、ω0を「−5ω0」とした行列を用いた処理を行えばよい。正相分抽出部22’および逆相分抽出部23’は抑制する必要がある高調波成分の次数に応じて設計すればよく、7次高調波、11次高調波を抑制すべき場合は、上記(16)式に示す行列GHPFにおいて、ω0をそれぞれ「7ω0」、「−11ω0」とした行列を用いた処理を行うようにすればよい。
上記第1または第2実施形態においては、正相分抽出部22(22’)および逆相分抽出部23(23’)がどちらもローパスフィルタに代わる処理またはハイパスフィルタに代わる処理を用いる場合について説明したが、これに限られない。例えば、正相分抽出部22がローパスフィルタに代わる処理を用いて正相分信号を通過させることで抽出し、逆相分抽出部23’がハイパスフィルタに代わる処理を用いて正相分信号の通過を抑制することで逆相分信号を抽出するようにしてもよい。また、正相分抽出部22’がハイパスフィルタに代わる処理を用いて逆相分信号の通過を抑制することで正相分信号を抽出し、逆相分抽出部23がローパスフィルタに代わる処理を用いて逆相分信号を通過させることで抽出するようにしてもよい。
上記第1または第2実施形態においては、電圧センサ4が相電圧を検出する場合について説明したが、これに限られない。例えば、電圧センサ4が線間電圧を検出する場合でも、本発明を適用することができる。この場合、三相/二相変換部21で行われる変換処理に、上記(5)式に示す行列式に代えて、下記(19)式に示す行列式を用いるようにすればよい。また、三相/二相変換部21に、線間電圧信号を相電圧信号に変換する構成を追加して、線間電圧信号Vuv,Vvw,Vwuを相電圧信号Vu,Vv,Vwに変換してから、上記(5)式でα軸電圧信号Vαおよびβ軸電圧信号Vβに変換するようにしてもよい。
また、電流センサから入力される電流信号Iu,Iv,Iwに基づいて不平衡率を検出するようにしてもよい。この場合は、上記第1または第2実施形態の構成をそのまま用いることができる。
上記第1または第2実施形態においては、算出された不平衡率kを表示部3に表示する場合について説明したが、これに限られない。例えば、不平衡率kが所定の閾値を超えた場合にブザーなどの音声で警告するようにしてもよい。
上記第1または第2実施形態においては、本発明に係る不平衡率検出装置を単体で用いる場合について説明したが、これに限られない。例えば、不平衡率検出装置を系統連系インバータシステムに組み込んで、不平衡率kが所定の閾値を超えた場合に、インバータを停止させ、三相電力系統との接続を切り離すようにしてもよい。この場合、不平衡率kを表示する必要はないので表示部3を設けなくてもよいし、系統連系インバータシステムの表示部に表示するようにしてもよい。また、系統連系インバータシステムの電圧センサが検出した電圧信号を、三相/二相変換部21に入力するようにすればよい。
本発明に係る不平衡率検出装置、および不平衡率検出方法は、上述した実施形態に限定されるものではない。本発明に係る不平衡率検出装置、および不平衡率検出方法の各部の具体的な構成は、種々に設計変更自在である。
1 不平衡率検出装置
2 演算部
21 三相/二相変換部
22 正相分抽出部
23 逆相分抽出部
24 不平衡率算出部
3 表示部
4 電圧センサ

Claims (7)

  1. 三相交流に基づく3つの信号を第1の信号および第2の信号に変換する三相二相変換手段と、
    前記第1の信号に含まれる正相分の信号である第1の正相分信号と、前記第2の信号に含まれる正相分の信号である第2の正相分信号とを、それぞれ抽出する正相分抽出手段と、
    前記第1の信号に含まれる逆相分の信号である第1の逆相分信号と、前記第2の信号に含まれる逆相分の信号である第2の逆相分信号とを、それぞれ抽出する逆相分抽出手段と、
    前記正相分抽出手段によって抽出された前記第1の正相分信号および前記第2の正相分信号と、前記逆相分抽出手段によって抽出された前記第1の逆相分信号および前記第2の逆相分信号とから、不平衡率を算出する不平衡率算出手段と、
    を備えており、
    前記正相分抽出手段は、
    前記第1の信号を第1の伝達関数によって信号処理し、前記第2の信号を第2の伝達関数によって信号処理し、これらを加算することで前記第1の正相分信号を抽出し、
    前記第1の信号を第3の伝達関数によって信号処理し、前記第2の信号を前記第1の伝達関数によって信号処理し、これらを加算することで前記第2の正相分信号を抽出し、
    前記逆相分抽出手段は、
    前記第1の信号を前記第1の伝達関数によって信号処理し、前記第2の信号を前記第3の伝達関数によって信号処理し、これらを加算することで前記第1の逆相分信号を抽出し、
    前記第1の信号を前記第2の伝達関数によって信号処理し、前記第2の信号を前記第1の伝達関数によって信号処理し、これらを加算することで前記第2の逆相分信号を抽出し、
    前記三相交流の基本波の角周波数をω0、時定数をTとした場合、
    前記第1の伝達関数は、
    1(s)=(T・s+1)/{(T・s+1)2+(T・ω02
    であり、
    前記第2の伝達関数は、
    2(s)=−T・ω0/{(T・s+1)2+(T・ω02
    であり、
    前記第3の伝達関数は、
    3(s)=T・ω0/{(T・s+1)2+(T・ω02
    である、
    ことを特徴とする不平衡率検出装置。
  2. 三相交流に基づく3つの信号を第1の信号および第2の信号に変換する三相二相変換手段と、
    前記第1の信号に含まれる正相分の信号である第1の正相分信号と、前記第2の信号に含まれる正相分の信号である第2の正相分信号とを、それぞれ抽出する正相分抽出手段と、
    前記第1の信号に含まれる逆相分の信号である第1の逆相分信号と、前記第2の信号に含まれる逆相分の信号である第2の逆相分信号とを、それぞれ抽出する逆相分抽出手段と、
    前記正相分抽出手段によって抽出された前記第1の正相分信号および前記第2の正相分信号と、前記逆相分抽出手段によって抽出された前記第1の逆相分信号および前記第2の逆相分信号とから、不平衡率を算出する不平衡率算出手段と、
    を備えており、
    前記正相分抽出手段は、
    前記第1の信号を第1の伝達関数によって信号処理し、前記第2の信号を第2の伝達関数によって信号処理し、これらを加算することで前記第1の正相分信号を抽出し、
    前記第1の信号を第3の伝達関数によって信号処理し、前記第2の信号を前記第1の伝達関数によって信号処理し、これらを加算することで前記第2の正相分信号を抽出し、
    前記逆相分抽出手段は、
    前記第1の信号を前記第1の伝達関数によって信号処理し、前記第2の信号を前記第3の伝達関数によって信号処理し、これらを加算することで前記第1の逆相分信号を抽出し、
    前記第1の信号を前記第2の伝達関数によって信号処理し、前記第2の信号を前記第1の伝達関数によって信号処理し、これらを加算することで前記第2の逆相分信号を抽出し、
    前記三相交流の基本波の角周波数をω0、時定数をTとした場合、
    前記第1の伝達関数は、
    1(s)=(T2・s2+T・s+T2・ω0 2)/{(T・s+1)2+(T・ω02
    であり、
    前記第2の伝達関数は、
    2(s)=−T・ω0/{(T・s+1)2+(T・ω02
    であり、
    前記第3の伝達関数は、
    3(s)=T・ω0/{(T・s+1)2+(T・ω02
    である、
    ことを特徴とする不平衡率検出装置。
  3. 前記不平衡率算出手段は、前記第1の正相分信号をXα、前記第2の正相分信号をXβ、前記第1の逆相分信号をYα、前記第2の逆相分信号をYβとすると、下記式を用いて不平衡率kを算出する、
    請求項1または2に記載の不平衡率検出装置。
  4. 前記不平衡率算出手段によって算出された不平衡率を表示するための表示手段をさらに備えている、請求項1ないし3のいずれかに記載の不平衡率検出装置。
  5. 前記3つの信号は、三相交流の各相電圧を検出した相電圧信号である、請求項1ないし4のいずれかに記載の不平衡率検出装置。
  6. 前記3つの信号は、三相交流の各線間電圧を検出した線間電圧信号である、請求項1ないし4のいずれかに記載の不平衡率検出装置。
  7. 三相交流に基づく3つの信号を第1の信号および第2の信号に変換する第1の工程と、
    前記第1の信号を第1の伝達関数によって信号処理し、前記第2の信号を第2の伝達関数によって信号処理し、これらを加算することで第1の正相分信号を抽出する第2の工程と、
    前記第1の信号を第3の伝達関数によって信号処理し、前記第2の信号を前記第1の伝達関数によって信号処理し、これらを加算することで第2の正相分信号を抽出する第3の工程と、
    前記第1の信号を前記第1の伝達関数によって信号処理し、前記第2の信号を前記第3の伝達関数によって信号処理し、これらを加算することで第1の逆相分信号を抽出する第4の工程と、
    前記第1の信号を前記第2の伝達関数によって信号処理し、前記第2の信号を前記第1の伝達関数によって信号処理し、これらを加算することで第2の逆相分信号を抽出する第5の工程と、
    前記第2の工程によって抽出された前記第1の正相分信号と、前記第3の工程によって抽出された前記第2の正相分信号と、前記第4の工程によって抽出された前記第1の逆相分信号と、前記第5の工程によって抽出された前記第2の逆相分信号とから、不平衡率を算出する第6の工程と、
    を備えており、
    前記三相交流の基本波の角周波数をω0、時定数をTとした場合、
    前記第1の伝達関数は、
    1(s)=(T・s+1)/{(T・s+1)2+(T・ω02
    であり、
    前記第2の伝達関数は、
    2(s)=−T・ω0/{(T・s+1)2+(T・ω02
    であり、
    前記第3の伝達関数は、
    3(s)=T・ω0/{(T・s+1)2+(T・ω02
    である、
    ことを特徴とする不平衡率検出方法。
JP2011244191A 2011-11-08 2011-11-08 不平衡率検出装置、および不平衡率検出方法 Active JP5989327B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011244191A JP5989327B2 (ja) 2011-11-08 2011-11-08 不平衡率検出装置、および不平衡率検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011244191A JP5989327B2 (ja) 2011-11-08 2011-11-08 不平衡率検出装置、および不平衡率検出方法

Publications (3)

Publication Number Publication Date
JP2013101016A true JP2013101016A (ja) 2013-05-23
JP2013101016A5 JP2013101016A5 (ja) 2014-10-30
JP5989327B2 JP5989327B2 (ja) 2016-09-07

Family

ID=48621766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011244191A Active JP5989327B2 (ja) 2011-11-08 2011-11-08 不平衡率検出装置、および不平衡率検出方法

Country Status (1)

Country Link
JP (1) JP5989327B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020102912A (ja) * 2018-12-20 2020-07-02 株式会社三社電機製作所 三相不平衡抑制装置
CN112952865A (zh) * 2021-02-05 2021-06-11 艾伏新能源科技(上海)股份有限公司 一种三相不平衡跌落及相位突变检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991481B (zh) * 2019-03-14 2021-06-08 南京工程学院 一种基于序分量和量测值的三相不平衡度量方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4453122A (en) * 1981-10-19 1984-06-05 Johnson Ewing A Electrical balancing control for three-phase loads
JPH04248368A (ja) * 1990-08-16 1992-09-03 Siemens Ag 三相系の対称化方法および装置
JPH07229943A (ja) * 1994-02-21 1995-08-29 Meidensha Corp 逆相電流検出回路
JPH0833319A (ja) * 1994-07-22 1996-02-02 Meidensha Corp 三相平衡装置
JPH10136569A (ja) * 1996-10-25 1998-05-22 Fuji Electric Co Ltd 直列形補償装置の制御回路
JPH10163811A (ja) * 1996-12-04 1998-06-19 Ebara Corp 直交2軸信号用フィルタ回路
JPH10232254A (ja) * 1997-02-21 1998-09-02 Kanto Denki Hoan Kyokai 三相交流電圧不平衡率測定装置
JPH1141812A (ja) * 1997-07-23 1999-02-12 Hitachi Ltd 電力系統用自励式変換器の制御装置
JP2000253567A (ja) * 1999-02-25 2000-09-14 Mitsubishi Electric Corp 欠相検出装置および電力系統過渡安定化制御装置
JP2000253566A (ja) * 1999-02-26 2000-09-14 Tokyo Electric Power Co Inc:The 変電所遮断器開放検出装置
JP2002354674A (ja) * 2001-05-23 2002-12-06 Mitsubishi Electric Corp 電力変換装置の制御装置及び電力変換装置
JP2002354815A (ja) * 2001-05-29 2002-12-06 Yaskawa Electric Corp Pwmサイクロコンバータの入力電流制御方法とpwmサイクロコンバータ装置
JP2006345154A (ja) * 2005-06-08 2006-12-21 Hitachi Global Storage Technologies Netherlands Bv フィルタ回路、及びそれを含むディスク装置
JP2009156106A (ja) * 2007-12-25 2009-07-16 Toyota Motor Corp 内燃機関の制御装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4453122A (en) * 1981-10-19 1984-06-05 Johnson Ewing A Electrical balancing control for three-phase loads
JPH04248368A (ja) * 1990-08-16 1992-09-03 Siemens Ag 三相系の対称化方法および装置
JPH07229943A (ja) * 1994-02-21 1995-08-29 Meidensha Corp 逆相電流検出回路
JPH0833319A (ja) * 1994-07-22 1996-02-02 Meidensha Corp 三相平衡装置
JPH10136569A (ja) * 1996-10-25 1998-05-22 Fuji Electric Co Ltd 直列形補償装置の制御回路
JPH10163811A (ja) * 1996-12-04 1998-06-19 Ebara Corp 直交2軸信号用フィルタ回路
JPH10232254A (ja) * 1997-02-21 1998-09-02 Kanto Denki Hoan Kyokai 三相交流電圧不平衡率測定装置
JPH1141812A (ja) * 1997-07-23 1999-02-12 Hitachi Ltd 電力系統用自励式変換器の制御装置
JP2000253567A (ja) * 1999-02-25 2000-09-14 Mitsubishi Electric Corp 欠相検出装置および電力系統過渡安定化制御装置
JP2000253566A (ja) * 1999-02-26 2000-09-14 Tokyo Electric Power Co Inc:The 変電所遮断器開放検出装置
JP2002354674A (ja) * 2001-05-23 2002-12-06 Mitsubishi Electric Corp 電力変換装置の制御装置及び電力変換装置
JP2002354815A (ja) * 2001-05-29 2002-12-06 Yaskawa Electric Corp Pwmサイクロコンバータの入力電流制御方法とpwmサイクロコンバータ装置
JP2006345154A (ja) * 2005-06-08 2006-12-21 Hitachi Global Storage Technologies Netherlands Bv フィルタ回路、及びそれを含むディスク装置
JP2009156106A (ja) * 2007-12-25 2009-07-16 Toyota Motor Corp 内燃機関の制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020102912A (ja) * 2018-12-20 2020-07-02 株式会社三社電機製作所 三相不平衡抑制装置
JP7051672B2 (ja) 2018-12-20 2022-04-11 株式会社三社電機製作所 三相不平衡抑制装置
CN112952865A (zh) * 2021-02-05 2021-06-11 艾伏新能源科技(上海)股份有限公司 一种三相不平衡跌落及相位突变检测方法
CN112952865B (zh) * 2021-02-05 2024-03-22 艾伏新能源科技(上海)股份有限公司 一种三相不平衡跌落及相位突变检测方法

Also Published As

Publication number Publication date
JP5989327B2 (ja) 2016-09-07

Similar Documents

Publication Publication Date Title
Abd-el-Malek et al. Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using Hilbert transform
Plumier et al. Co-simulation of electromagnetic transients and phasor models: A relaxation approach
EP2980984A2 (en) Motor control device, and method and device for estimating magnetic flux of electric motor
JP6116829B2 (ja) 単相電力変換装置の制御装置
JP5855886B2 (ja) 周波数検出装置
JP5989327B2 (ja) 不平衡率検出装置、および不平衡率検出方法
JP6460146B2 (ja) 漏洩電流算出装置および漏洩電流算出方法
JP2013172557A (ja) 周波数検出装置、および、当該周波数検出装置を備えた単独運転検出装置
JP2017161362A (ja) 漏洩電流算出装置および漏洩電流算出方法
JP5993159B2 (ja) 位相検出装置
JP2012186973A (ja) 交流電動機における固定子巻線の短絡故障診断方法
CN111122952A (zh) 一种快速检测三相电压暂降的方法
JP5926067B2 (ja) 位相変換装置、および、当該位相変換装置を用いた制御回路
JP5887110B2 (ja) 電力計測装置、インバータ制御回路、系統連系インバータシステム、および、電力計測方法
JP4649955B2 (ja) 電動機の制御装置
JP2018091745A (ja) 瞬時値対称成分の計算方法、計算装置、及び計算プログラム
JP5171925B2 (ja) Pwmインバータ装置
JP2013083566A (ja) 不平衡率検出装置、および不平衡率検出方法
Buła et al. Model of hybrid active power filter in the frequency domain
JP2004080975A (ja) 電動機の制御装置
JP2003270277A (ja) 交流回路における瞬時無効電力、無効電力実効値算出手段および瞬時無効電力、無効電力実効値、位相差測定方法
JP4359546B2 (ja) 交流モータの制御装置
Ferreira et al. Adaptive real-time power measurement based on IEEE standard 1459-2010
JP5890210B2 (ja) アクティブフィルタ、および、アクティブフィルタの制御回路
JP5989366B2 (ja) 交流信号測定装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140911

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160810

R150 Certificate of patent or registration of utility model

Ref document number: 5989327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250