JP2013072131A5 - - Google Patents

Download PDF

Info

Publication number
JP2013072131A5
JP2013072131A5 JP2011214301A JP2011214301A JP2013072131A5 JP 2013072131 A5 JP2013072131 A5 JP 2013072131A5 JP 2011214301 A JP2011214301 A JP 2011214301A JP 2011214301 A JP2011214301 A JP 2011214301A JP 2013072131 A5 JP2013072131 A5 JP 2013072131A5
Authority
JP
Japan
Prior art keywords
anode electrodes
divided anode
workpiece
workpieces
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011214301A
Other languages
Japanese (ja)
Other versions
JP2013072131A (en
JP5795514B2 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from JP2011214301A external-priority patent/JP5795514B2/en
Priority to JP2011214301A priority Critical patent/JP5795514B2/en
Priority to DE102012018393.3A priority patent/DE102012018393B4/en
Priority to TW101134938A priority patent/TWI564431B/en
Priority to KR1020120105600A priority patent/KR101475396B1/en
Priority to US13/626,791 priority patent/US20130081939A1/en
Priority to CN201210367382.2A priority patent/CN103031588B/en
Publication of JP2013072131A publication Critical patent/JP2013072131A/en
Publication of JP2013072131A5 publication Critical patent/JP2013072131A5/ja
Publication of JP5795514B2 publication Critical patent/JP5795514B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本願出願人による特許文献1に、共通陽極電極と、分割陰極レールを用いた電流制御方法が開示されている。この方法は、特許文献1の図1に示すように、例えば5つのユニットが、対応する5つの分割陰極レール(陰極中継部材)を介して、メッキ槽ユニット内を連続搬送される最大5個のワークに一定の電流密度(A/dm )となるように給電する。5つの電源ユニットは、ワーク全面が共通陽極電極と対向している全部浸漬状態では、設定電流値(A/dm)にて定電流制御する。さらに、最上流の電源ユニットは、メッキ槽内に搬入される部分浸漬状態のワークと共通陽極電極とが対向する電解面積に基づいて、電流を漸増制御する。最下流の電源ユニットは、メッキ槽ユニット内より搬出される部分浸漬状態のワークと共通陽極電極とが対向する電解面積に基づいて、電流を漸減制御する。 Patent Document 1 by the present applicant discloses a current control method using a common anode electrode and a divided cathode rail. In this method, as shown in FIG. 1 of Patent Document 1, for example, five units are continuously conveyed through the plating tank unit through five corresponding divided cathode rails (cathode relay members). Power is supplied to the workpiece so as to have a constant current density (A / dm 2 ) . The five power supply units perform constant current control at a set current value (A / dm 2 ) in a fully immersed state where the entire work surface faces the common anode electrode. Furthermore, the most upstream power supply unit gradually increases the current based on the electrolytic area where the partially immersed workpiece and the common anode electrode carried into the plating tank face each other. The most downstream power supply unit gradually reduces the current based on the electrolytic area where the partially immersed workpiece and the common anode electrode that are carried out of the plating tank unit face each other.

分割陽極電極40(40−1〜40−4)の各一つと共通陰極電極30とに接続され、分割陽極電極40(40−1〜40−4)に供給される電流をそれぞれ独立して制御する複数の電源50(50−1〜50−4)が設けられている。第1電極40A(40A−1〜40A−4)に接続される電源を第1電源50A(50A−1〜50A−4)と称し、第2電極40B(40B−1〜40B−4)に接続される電源を第2電源50B(50B−1〜50B−4)と称する。第1電源50A(50A−1〜50A−4)と第2電源50B(50B−1〜50B−4)の各々が、独立して電流値を設定することができる。 Each of the divided anode electrodes 40 (40-1 to 40-4) is connected to the common cathode electrode 30 and the current supplied to the divided anode electrodes 40 (40-1 to 40-4) is independently controlled. A plurality of power supplies 50 (50-1 to 50-4) are provided. A power source connected to the first electrode 40A (40A-1 to 40A-4) is referred to as a first power source 50A (50A-1 to 50A-4) and connected to the second electrode 40B (40B-1 to 40B-4). The power source to be used is referred to as a second power source 50B (50B-1 to 50B-4). Each of the first power supply 50A (50A-1 to 50A-4) and the second power supply 50B (50B-1 to 50B-4) can independently set a current value.

本実施形態では、メッキ槽10には、ロット単位で複数のワークW1〜WNが供給される。図5(A)に示すように、同一ロットの最先のワークW1が分割陽極電極40A−1〜40A−4の各一つと対向する時には、ワークW1の下流にはメッキ対象の他のワークが存在しない。あるいは、ワークW1の下流に上述した隙間Gを設けてワーク端部への電界集中を避けるためだけのダミーワークを設けても良い。この場合、分割陽極電極40Aと最先のワークW1とが対向する電解面積(図5(A)のL3×ワーク高さ)に基づいて、分割陽極電極40A−1〜40A−4の各一つを電源50A−1〜50A−4の対応する各一つが電流値を漸増制御する(図5(B)参照)。 In the present embodiment, a plurality of workpieces W1 to WN are supplied to the plating tank 10 in lot units. As shown in FIG. 5A, when the first workpiece W1 in the same lot faces each one of the divided anode electrodes 40A-1 to 40A-4, another workpiece to be plated is downstream of the workpiece W1. not exist. Alternatively, the above-described gap G may be provided downstream of the workpiece W1, and a dummy workpiece only for avoiding electric field concentration on the workpiece end may be provided. In this case, each one of the divided anode electrodes 40A-1 to 40A-4 based on the electrolytic area (L3 × work height in FIG. 5A) where the divided anode electrode 40A and the foremost work W1 face each other. Each of the corresponding ones of the power supplies 50A-1 to 50A-4 controls the current value gradually increasing (see FIG. 5B).

同様に、図6(A)に示すように、同一ロットの最後のワークWNが分割陽極電極40A−1〜40A−4の各一つと対向する時には、ワークWNの上流にはメッキ対象の他のワークが存在しない。あるいは、ワークWNの上流に上述した隙間Gを設けてワーク端部への電界集中を避けるためだけのダミーワークを設けても良い。この場合、分割陽極電極40Aと最後のワークWNとが対向する電解面積(図6(A)のL4×ワーク高さ)に基づいて、分割陽極電極40A−1〜40A−4の各一つを電源50A−1〜50A−4の対応する各一つが電流値を漸減制御する(図6(B)参照)。 Similarly, as shown in FIG. 6A, when the last workpiece WN of the same lot faces each one of the divided anode electrodes 40A-1 to 40A-4, other workpieces to be plated are placed upstream of the workpiece WN. There is no work. Alternatively, the above-described gap G may be provided upstream of the workpiece WN to provide a dummy workpiece only for avoiding electric field concentration at the workpiece end. In this case, based on the electrolytic area (L4 × work height in FIG. 6A) where the divided anode electrode 40A and the last workpiece WN face each other, each one of the divided anode electrodes 40A-1 to 40A-4 is used. Each corresponding one of the power supplies 50A-1 to 50A-4 gradually controls the current value (see FIG. 6B).

図7(A)〜図7(C)は、各々が長さL2の分割陽極電極40−1,40−2,40−3,40−4,…を有するメッキ槽10にて、異なる長さL1A,L1B,L1CのワークW,W,Wを搬送した状態を示している。図7(A)ではn=3でL2<L1A/3が成立し、図7(B)ではn=4でL2<L1B/4が成立し、図7(A)ではn=2でL2<L1C/2が成立する。 7 (A) to 7 (C) show different lengths in the plating tank 10 having divided anode electrodes 40-1, 40-2, 40-3, 40-4,... Each having a length L2. L1A, L1B, workpiece W a of L1C, W B, shows a state in which transported the W C. In FIG. 7A, L2 <L1A / 3 is established when n = 3, FIG. 7B is established where n = 4 and L2 < L1B / 4 , and in FIG. 7A, n = 2 and L2 < L1C / 2 is established.

メッキ液11の逃げ場が確保されることで、ワーク1を常にフレッシュなメッキ液と接触させることができる。また、ワークWと、ノズル100及び陽極電極40との間の領域にてメッキ液の流動が足りないと、高速ノズル流の周囲に生ずる負圧領域にメッキ液が行き渡らず、特に柔軟なワークWはノズル100側に吸着される現象が観察された。そのため、ノズル100から噴出されたメッキ液の逃げ場を確保することは、ワークWが負圧領域側に吸着される現象を防止する観点からも重要である。 Since the escape place of the plating solution 11 is ensured, the workpiece 1 can always be brought into contact with the fresh plating solution. Further, if the plating solution does not flow sufficiently in the region between the workpiece W and the nozzle 100 and the anode electrode 40, the plating solution does not reach the negative pressure region generated around the high-speed nozzle flow, and the flexible workpiece W is particularly flexible. Was observed to be adsorbed on the nozzle 100 side. Therefore, it is important from the viewpoint of preventing a phenomenon that the workpiece W is attracted to the negative pressure region side to secure a escape place for the plating solution ejected from the nozzle 100 .

Claims (9)

メッキ液を収容し、搬送経路に沿って連続搬送される複数のワークを同時にメッキするメッキ槽と、
前記複数のワークをそれぞれ保持する複数の搬送治具を介して前記複数のワークと電気的に接続される共通陰極電極と、
前記メッキ槽内にて前記搬送経路と対向配置される複数の分割陽極電極と、
前記複数の分割陽極電極の各一つと前記共通陰極電極とに接続され、前記複数の分割陽極電極に供給される電流をそれぞれ独立して制御する複数の電源と、
を有することを特徴とする連続メッキ装置。
A plating tank for containing a plating solution and simultaneously plating a plurality of workpieces continuously conveyed along a conveyance path ;
A common cathode electrode that is electrically connected to the plurality of workpieces via a plurality of conveyance jigs that respectively hold the plurality of workpieces;
A plurality of divided anode electrodes disposed opposite to the transport path in the plating tank;
A plurality of power supplies connected to each one of the plurality of divided anode electrodes and the common cathode electrode, each independently controlling a current supplied to the plurality of divided anode electrodes;
A continuous plating apparatus comprising:
請求項1において、
前記複数の分割陽極電極の各々は、前記複数のワークの各々の第1面と対向する第1電極と、前記複数のワークの各々の第2面と対向する第2電極とを含むことを特徴とする連続メッキ装置。
In claim 1,
Each of the plurality of divided anode electrodes includes a first electrode facing the first surface of each of the plurality of workpieces and a second electrode facing the second surface of each of the plurality of workpieces. Continuous plating equipment.
請求項2において、
前記複数の電源の各々は、前記第1電極に通電する第1電源と、前記第2電極に通電する第2電源と、を含み、前記第1電源及び前記第2電源がそれぞれ独立して電流値を設定することを特徴とする連続メッキ装置。
In claim 2,
Each of the plurality of power sources includes a first power source for energizing the first electrode and a second power source for energizing the second electrode, wherein the first power source and the second power source are each independently currents A continuous plating apparatus characterized by setting a value.
請求項1乃至3のいずれかにおいて、
前記ワークの前記搬送経路に沿った長さをL1と、前記複数の分割陽極電極の各々の前記搬送経路に沿った長さをL2としたとき、実質的にL1=L2を満たすことを特徴とする連続メッキ装置。
In any one of Claims 1 thru | or 3,
When the length of the workpiece along the transport path is L1 and the length of each of the plurality of divided anode electrodes along the transport path is L2, L1 = L2 is substantially satisfied. Continuous plating equipment.
請求項4において、
前記メッキ槽には、ロット単位で前記複数のワークが供給され、同一ロットの最先のワークが前記複数の分割陽極電極の各一つと対向する時に、前記複数の分割陽極電極の各一つと前記最先のワークとが対向する電解面積に基づいて、前記複数の分割陽極電極の各一つを前記複数の電源の対応する各一つが電流値を漸増制御し、同一ロットの最後のワークが前記複数の分割陽極電極の各一つと対向する時に、前記複数の分割陽極電極の各一つと前記最後のワークとが対向する電解面積に基づいて、前記複数の分割陽極電極の各一つを前記複数の電源の対応する各一つが電流値を漸減制御することを特徴とする連続メッキ装置。
In claim 4,
The plating tank is supplied with the plurality of workpieces in units of lots, and when the earliest workpiece of the same lot faces each one of the plurality of divided anode electrodes, Based on the electrolysis area facing the earliest workpiece, each one of the plurality of divided anode electrodes is controlled so that the corresponding one of the plurality of power sources gradually increases the current value, and the last workpiece of the same lot is Based on the electrolysis area where each one of the plurality of divided anode electrodes and the last workpiece are opposed to each one of the plurality of divided anode electrodes, each one of the plurality of divided anode electrodes is replaced with the plurality of divided anode electrodes. A continuous plating apparatus characterized in that each corresponding one of the power supplies of the power supply gradually controls the current value.
請求項1乃至3のいずれかにおいて、
前記ワークの前記搬送経路に沿った長さをL1と、前記複数の分割陽極電極の各々の前記搬送経路に沿った長さはL2とし、nを2以上の整数としたとき、L2<L1/nを満たすことを特徴とする連続メッキ装置。
In any one of Claims 1 thru | or 3,
When the length of the workpiece along the transfer path is L1, the length of each of the plurality of divided anode electrodes along the transfer path is L2, and n is an integer of 2 or more, L2 <L1 / A continuous plating apparatus satisfying n.
請求項6において、
前記メッキ槽には、ロット単位で前記複数のワークが供給され、
前記複数の電源の各々は、前記ロット単位の最初から最後まで、前記複数の分割陽極電極の各々を定電流制御することを特徴とする連続メッキ装置。
In claim 6,
The plating tank is supplied with the plurality of workpieces in lot units,
Each of the plurality of power supplies performs constant current control on each of the plurality of divided anode electrodes from the beginning to the end of the lot unit.
請求項6または7において、
前記メッキ槽は、前記複数のワークの各一つと対向する位置に、前記ワークに向けて前記メッキ液を噴射する複数のノズルが前記搬送経路に沿って設けられ、
前記複数の分割陽極電極の各々は、前記複数のノズル中の隣り合う各2つのノズルの間に配置されることを特徴とする連続メッキ装置。
In claim 6 or 7,
The plating tank is provided with a plurality of nozzles for injecting the plating solution toward the workpiece at positions facing each one of the plurality of workpieces along the conveyance path ,
Each of the plurality of divided anode electrodes is disposed between two adjacent nozzles in the plurality of nozzles .
請求項8において、
前記複数の分割陽極電極の各々は、横断面の輪郭が円であることを特徴とする連続メッキ装置。
In claim 8,
Each of the plurality of divided anode electrodes has a circular cross-sectional outline, and is a continuous plating apparatus.
JP2011214301A 2011-09-29 2011-09-29 Continuous plating equipment Active JP5795514B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011214301A JP5795514B2 (en) 2011-09-29 2011-09-29 Continuous plating equipment
DE102012018393.3A DE102012018393B4 (en) 2011-09-29 2012-09-18 Serial electroplating system
TW101134938A TWI564431B (en) 2011-09-29 2012-09-24 Serial plating system
KR1020120105600A KR101475396B1 (en) 2011-09-29 2012-09-24 Serial plating system
US13/626,791 US20130081939A1 (en) 2011-09-29 2012-09-25 Serial plating system
CN201210367382.2A CN103031588B (en) 2011-09-29 2012-09-28 Continuous electroplating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011214301A JP5795514B2 (en) 2011-09-29 2011-09-29 Continuous plating equipment

Publications (3)

Publication Number Publication Date
JP2013072131A JP2013072131A (en) 2013-04-22
JP2013072131A5 true JP2013072131A5 (en) 2014-11-13
JP5795514B2 JP5795514B2 (en) 2015-10-14

Family

ID=47878724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011214301A Active JP5795514B2 (en) 2011-09-29 2011-09-29 Continuous plating equipment

Country Status (6)

Country Link
US (1) US20130081939A1 (en)
JP (1) JP5795514B2 (en)
KR (1) KR101475396B1 (en)
CN (1) CN103031588B (en)
DE (1) DE102012018393B4 (en)
TW (1) TWI564431B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115309B2 (en) * 2013-05-22 2017-04-19 住友金属鉱山株式会社 Chemical processing equipment
EP2907900A1 (en) * 2014-02-18 2015-08-19 Italfimet S.R.L. Electroplating process and apparatus, particularly for plating or forming parts made of electrically conducting materials by electrodeposition
TWI530593B (en) * 2014-08-11 2016-04-21 亞智科技股份有限公司 Multi-anode control device and electroplating equipment having the same
CN104313657A (en) * 2014-11-10 2015-01-28 临安振有电子有限公司 Electro-deposition device of through hole of HDI printed circuit board
CN106149039B (en) * 2015-04-08 2017-11-24 亚硕企业股份有限公司 electroplating device
CN104862768B (en) * 2015-05-27 2017-09-22 广州杰赛科技股份有限公司 The electro-plating method and device of a kind of circuit board
TWI698554B (en) * 2015-10-20 2020-07-11 香港商亞洲電鍍器材有限公司 An electroplating machine and an electroplating method
CN105350062B (en) * 2015-12-07 2018-01-19 依力柏电能有限公司 A kind of electroplanting device
DE102016205417A1 (en) 2016-04-01 2017-10-05 Schaeffler Technologies AG & Co. KG Surface treatment plant for the electrochemical surface treatment of rolling elements
KR101880601B1 (en) * 2016-12-16 2018-08-17 (주)포인텍 Anode moving type electrolysis plating apparatus
KR20200075843A (en) * 2017-10-20 2020-06-26 아루멕쿠스 피이 가부시키가이샤 Surface treatment device
CN111247274A (en) * 2017-10-20 2020-06-05 Almex Pe 株式会社 Surface treatment device
JP6737527B2 (en) * 2017-10-20 2020-08-12 アルメックスPe株式会社 Surface treatment equipment
CN110699738A (en) * 2019-11-07 2020-01-17 俊杰机械(深圳)有限公司 Independent electroplating device and process for hardware workpiece
KR102343926B1 (en) * 2020-04-03 2021-12-24 (주)포인텍 Plating apparatus having nozzle
KR102164884B1 (en) * 2020-06-30 2020-10-14 (주)네오피엠씨 Plating apparatus for controlling current applied jig
KR102206395B1 (en) * 2020-06-30 2021-01-25 (주)네오피엠씨 Plating apparatus having individual partition
CN112760701B (en) * 2020-12-16 2022-04-12 景旺电子科技(珠海)有限公司 Vertical continuous electroplating equipment
CN114808057B (en) * 2021-01-29 2024-06-21 泰科电子(上海)有限公司 Electroplating device and electroplating system
KR102306782B1 (en) * 2021-03-04 2021-09-30 (주)네오피엠씨 Current control system of electric planting substrate

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3276983A (en) * 1962-07-25 1966-10-04 Gen Motors Corp Method and apparatus for movement of workpieces in a plating machine
JPS5243700Y2 (en) * 1971-06-30 1977-10-04
FR2396102A1 (en) * 1977-06-29 1979-01-26 Trefimetaux CONTINUOUS HIGH-SPEED ELECTROLYTIC DEPOSIT PROCESS ON A MOVING METAL SUBSTRATE
US4378281A (en) 1981-06-25 1983-03-29 Napco, Inc. High speed plating of flat planar workpieces
DE3205969A1 (en) 1982-02-19 1983-09-01 Frisch Kabel- Und Verseilmaschinenbau Gmbh, 4030 Ratingen Power supply for electrolysis plants
US4492621A (en) * 1982-09-29 1985-01-08 Stubb Paul R Method and apparatus for electrodeposition of materials
JPS60128295A (en) 1983-12-16 1985-07-09 Nippon Steel Corp Device for automatic compensation and control of plating current
JPS61133400A (en) 1984-12-03 1986-06-20 Kosaku:Kk Electroplating device
JPH01177400A (en) * 1988-01-06 1989-07-13 Kosaku:Kk Plating equipment for automatically controlling plating current
DD273653A1 (en) 1988-07-04 1989-11-22 Mikroelektronik Bruno Baum Zeh DEVICE FOR THE EQUIPPED GALVANIC COATING OF MULTIPLE PARALLEL IN A BATHROOM TO CUSTOMIZE BANDFOERMIGER SUBSTRATE
DE3939681A1 (en) * 1989-12-01 1991-06-06 Schering Ag METHOD FOR CONTROLLING THE OUTLET OF GALVANIC PLANTS AND FOR IMPLEMENTING THE METHOD OF THE SERVICE ARRANGEMENT
JP3178164B2 (en) * 1993-05-12 2001-06-18 ソニー株式会社 Electroplating equipment
DE19717512C3 (en) * 1997-04-25 2003-06-18 Atotech Deutschland Gmbh Device for electroplating circuit boards under constant conditions in continuous systems
JP3299725B2 (en) 1998-12-11 2002-07-08 株式会社ケミトロン Plating method and its equipment
JP3715846B2 (en) * 1999-09-06 2005-11-16 大日本スクリーン製造株式会社 Board plating equipment
JP3285572B2 (en) * 2000-06-09 2002-05-27 栄電子工業株式会社 Continuous plating method and apparatus using power supply roller having split electrode portion
DE10153171B4 (en) * 2001-10-27 2004-09-16 Atotech Deutschland Gmbh Method and device for the electrolytic treatment of parts in continuous systems
US7368043B2 (en) * 2003-04-10 2008-05-06 Applied Intellectual Capital Configurations and methods of electrochemical lead recovery from contaminated soil
KR100539239B1 (en) * 2003-06-25 2005-12-27 삼성전자주식회사 Plating method for preventing failure due to plating-stop and plating apparatus therefor
CN100523309C (en) * 2003-12-25 2009-08-05 亚洲电镀器材有限公司 Liquid conveying system for electroplating equipment, electroplating equipment with the system and its operation method
DE102005005095A1 (en) 2005-02-04 2006-08-10 Höllmüller Maschinenbau GmbH Process and device for the electrochemical treatment of components in continuous flow systems
US8177945B2 (en) * 2007-01-26 2012-05-15 International Business Machines Corporation Multi-anode system for uniform plating of alloys
JP5457010B2 (en) 2007-11-01 2014-04-02 アルメックスPe株式会社 Continuous plating equipment
JP2010020296A (en) * 2008-07-14 2010-01-28 Toshiba Corp Image forming apparatus and cleaner
KR20100115955A (en) * 2009-04-21 2010-10-29 주식회사 티케이씨 Serial plating system machine rectifeer an electrode plate system
JP5650899B2 (en) * 2009-09-08 2015-01-07 上村工業株式会社 Electroplating equipment
TWM400483U (en) * 2010-04-06 2011-03-21 Foxconn Advanced Tech Inc Plating apparatus and method

Similar Documents

Publication Publication Date Title
JP2013072131A5 (en)
TWI564431B (en) Serial plating system
JP2009132999A5 (en)
MX350858B (en) Dc electrode negative rotating arc welding method and system.
RU2014103144A (en) METHOD, DEVICE AND SYSTEM OF CLADING BY DOUBLE TAPE WELDING ELECTRODES
TWI489009B (en) Serial plating system
JP2013011004A (en) Surface treatment apparatus and plating tank
JP6820626B2 (en) Work holding jig
JP2015004124A (en) Electrolytic treatment method and electrolytic treatment apparatus
JP2020169393A (en) Surface treatment apparatus
MY166615A (en) Highly pure copper anode for electrolytic copper plating, method for manufacturing same, and electrolytic copper plating method
WO2010039491A3 (en) Electrolytic deburring apparatus and method
JP2015063717A (en) Workpiece holding frame body and plating treatment apparatus using the same
KR101282168B1 (en) Apparatus and method for electroplating
JP5950351B2 (en) Electrodeposition coating equipment
WO2015174204A1 (en) Plating apparatus and container bath
TWM575811U (en) An electroplating machine
JP5366787B2 (en) Continuous vertical transfer plating equipment
JP2018188721A (en) Carbon nanotube deposition device
TW201517363A (en) Method for manufacturing paste-like electrode plate for lead storage cell, and electrode-plate-cleaning device used in said method
JP6903459B2 (en) Electroplating equipment and electroplating method
KR20170054244A (en) An electroplating machine and an electroplating method
PE20140436A1 (en) A SYSTEM OF GAS DUCTS TO TRANSPORT GAS, EQUIPMENT AND METHOD FOR THE ELECTROLYTIC RECOVERY OF METALS
JP2004197145A5 (en)
TH96728A (en) Devices and methods for static elimination for part feeders