JP2013023707A - Mixed powder for powder metallurgy - Google Patents

Mixed powder for powder metallurgy Download PDF

Info

Publication number
JP2013023707A
JP2013023707A JP2011157312A JP2011157312A JP2013023707A JP 2013023707 A JP2013023707 A JP 2013023707A JP 2011157312 A JP2011157312 A JP 2011157312A JP 2011157312 A JP2011157312 A JP 2011157312A JP 2013023707 A JP2013023707 A JP 2013023707A
Authority
JP
Japan
Prior art keywords
powder
weight
alloy
strength
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011157312A
Other languages
Japanese (ja)
Inventor
Mayuko Tanaka
麻祐子 田中
Shinji Terai
臣治 寺居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2011157312A priority Critical patent/JP2013023707A/en
Publication of JP2013023707A publication Critical patent/JP2013023707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide Cu-Sn-Ni based raw material powder for powder metallurgy which uniformizes the structure of a sintered compact and can obtain a green compact having high compacting property and a sintered compact having high strength as raw material powder dealing with higher strength and downsizing and more complicated shaping in sintered parts used for a Cu based bearing, sliding parts or the like.SOLUTION: The powdery mixture for powder metallurgy includes, by weight, 3 to 12% Sn, 5 to 15% Ni and 0.05 to 1.0% P, and the balance Cu with inevitable impurities.

Description

本発明はスピノーダル分解を利用したCu−Sn−Ni系粉末の高強度材料に係り、摺動部材の焼結用粉末に関する。   The present invention relates to a Cu-Sn-Ni-based high-strength material utilizing spinodal decomposition, and relates to a powder for sintering a sliding member.

銅粉末または銅合金粉末を配合して製造される銅系焼結部品の多くは含油軸受や摺動材やブラシなどとして使用されている。しかしながら、近年、さらなる高強度、耐腐食性、耐摩耗性などの特性要求が高まり、新たな材料開発が必要とされている。銅系合金の強度をたかめる方策のひとつとして、スピノーダル分解を利用する方法があり、鋳造分野では実用化が進んでいる。スピノーダル分解では一般に核生成を必要とせず、連続的に濃度揺らぎが大きくなっていくために、分解生成相が互いに完全な整合性を保ち、特に分解の初期から中期過程においては、規則的な微細な濃度揺らぎを示す。   Many of the copper-based sintered parts produced by blending copper powder or copper alloy powder are used as oil-impregnated bearings, sliding materials, brushes, and the like. However, in recent years, demands for properties such as higher strength, corrosion resistance, and wear resistance have increased, and new material development has been required. One way to increase the strength of copper-based alloys is to use spinodal decomposition, which is in practical use in the casting field. Spinodal decomposition generally does not require nucleation, and the concentration fluctuations continuously increase, so the decomposition product phases maintain perfect consistency with each other. Shows a significant concentration fluctuation.

このため、このような組織を有する合金は極めて高い強度を示す。スピノーダル分解を起こす合金系としてCu−Si−Ni系やCu−Sn−Ni系などが知られているが、Siを含む合金系はSiが水素還元雰囲気では焼結を阻害する要因となるために粉末冶金の分野では実用化に至っていない。一方、Cu−Sn−Ni系は焼結およびその後の時効処理が容易であり実用化が期待される。   For this reason, an alloy having such a structure exhibits extremely high strength. Cu-Si-Ni and Cu-Sn-Ni systems are known as alloy systems that cause spinodal decomposition, but Si-containing alloy systems are a factor that inhibits sintering in a hydrogen reducing atmosphere. It has not been put to practical use in the field of powder metallurgy. On the other hand, Cu-Sn-Ni system is easy to sinter and subsequent aging treatment, and is expected to be put to practical use.

一般的に焼結用の合金粉末は不規則形状の粉末が得られる水アトマイズ法で製造される。しかしながら、Cu−Sn−Ni系合金粉末は水アトマイズ法で作製しても高融点のNiを含むために溶湯の表面張力が大きく、不規則形状化し難い。また、Niを含むため、一般に使用されるブロンズ系粉末に比べ粉末自体が硬いために成形性に劣るといった問題がある。   Generally, an alloy powder for sintering is manufactured by a water atomization method in which an irregularly shaped powder is obtained. However, even if the Cu—Sn—Ni-based alloy powder is produced by the water atomization method, since the high melting point Ni is contained, the surface tension of the molten metal is large and it is difficult to form an irregular shape. Moreover, since Ni is contained, there exists a problem that it is inferior to a moldability because the powder itself is hard compared with the bronze type powder generally used.

たとえば特許文献1には、水アトマイズの条件を工夫することにより製造された成形性に優れるCu−Sn−Ni系合金粉末が提案されている。しかしながら、焼結部品では製品の小型化および薄肉化への要求が高まっており、それでもなお十分な成形性を有しているとはいえない。   For example, Patent Document 1 proposes a Cu—Sn—Ni alloy powder having excellent formability manufactured by devising water atomization conditions. However, with sintered parts, there is an increasing demand for miniaturization and thinning of products, and it still cannot be said that it has sufficient formability.

これに対して、混合粉末の場合は構成粉末の一部として、例えば成形性に優れる電解Cu粉あるいは熱処理造粒粉を用いることにより高い成形性を付与することができる。しかしながら、本系合金ではSnおよびNiの合金成分の基質中への拡散速度が遅いために、均一な組織を得るには長時間の焼結または高温での焼結が必要となる。また焼結組織が不均一となる場合は、焼結体の強度不足あるいはバラツキの要因となる(特許文献2)。   On the other hand, in the case of mixed powder, high formability can be imparted by using, for example, electrolytic Cu powder or heat-treated granulated powder having excellent formability as part of the constituent powder. However, in this alloy, since the diffusion rate of the Sn and Ni alloy components into the substrate is slow, long time sintering or high temperature sintering is required to obtain a uniform structure. Further, when the sintered structure becomes non-uniform, it becomes a cause of insufficient strength or variation of the sintered body (Patent Document 2).

特願2010−245901Japanese Patent Application No. 2010-245901 特開平11−256206JP 11-256206 A

本発明は高い成形性の圧粉体が得られ、安定した高い強度が得られるCu−Sn−Ni系の粉末冶金用原料粉末を提供することを課題とする。   It is an object of the present invention to provide a Cu—Sn—Ni-based raw material powder for powder metallurgy that provides a green compact with high moldability and provides a stable high strength.

Cu−Sn−Ni系の混合粉末はSnおよびNiの合金成分の基質中への拡散速度が遅いために均一な焼結体組織を得ることが困難であった。しかしながら、本発明では上記合金系の混合粉末にCu−P合金粉末の形でPを混合することによって容易に均一な組織の焼結体が得られることを見出した。この理由については完全に明らかにされているわけではないが、概ね以下のように考えられる。   The Cu-Sn-Ni mixed powder has a low diffusion rate of Sn and Ni alloy components into the substrate, and it is difficult to obtain a uniform sintered body structure. However, in the present invention, it has been found that a sintered body having a uniform structure can be easily obtained by mixing P in the form of Cu-P alloy powder with the above alloy-based mixed powder. The reason for this is not fully clarified, but it is generally considered as follows.

即ち、本発明で用いる組成範囲のCu−P合金粉末は714℃以上に加熱することで液相を発生するが、この液相は本発明の混合粉末を構成するCu粉末およびCu−Ni合金粉末との濡れ性が非常に良好である。加えて、上記Cu−P液相中にはNiが拡散および溶解しやすい。従って、Cu−P合金粉末を添加することで、焼結時にCu−P合金の液相を介して、NiおよびSnの拡散が促進され、均一な組織の焼結体が得られるようになると推察される。因みに、Pを例えば赤リンなどのような単体の形で添加してもCu−P合金液相が得られるが、Pの化学ポテンシャルが高すぎるため、Pの消耗が激しくなり、好ましくない。   That is, the Cu-P alloy powder having the composition range used in the present invention generates a liquid phase by heating to 714 ° C. or higher. This liquid phase is a Cu powder and a Cu—Ni alloy powder constituting the mixed powder of the present invention. And wettability is very good. In addition, Ni is likely to diffuse and dissolve in the Cu-P liquid phase. Therefore, it is assumed that the addition of Cu-P alloy powder promotes the diffusion of Ni and Sn through the liquid phase of Cu-P alloy during sintering, and a sintered body with a uniform structure can be obtained. Is done. Incidentally, a Cu-P alloy liquid phase can be obtained even if P is added in the form of a simple substance such as red phosphorus. However, since the chemical potential of P is too high, the consumption of P becomes severe, which is not preferable.

本発明の混合粉末はSn:3〜12重量%、Ni:5〜15重量%、P:0.05〜1.0重量%で残部がCuおよび不可避不純物からなり、本発明の粉末から作製した焼結体は、時効処理することによってスピノーダル分解を起こし、容易に高強度な組織を得ることができる。スピノーダル分解とは均一固溶体領域から二相域へ急冷した過飽和固溶体の合金内での微細な濃度変動を伴う相分離で、連続的に濃度変動が起こるために母相との整合性を保ちながら二相に分離し、母相との整合性を保っている初期〜中期段階において高強度を得ることができる。   The mixed powder of the present invention is Sn: 3-12% by weight, Ni: 5-15% by weight, P: 0.05-1.0% by weight with the balance being Cu and inevitable impurities, and the sintered body made from the powder of the present invention is By performing an aging treatment, spinodal decomposition is caused, and a high-strength tissue can be easily obtained. Spinodal decomposition is a phase separation involving fine concentration fluctuations in an alloy of a supersaturated solid solution that has been rapidly cooled from a homogeneous solid solution region to a two-phase region. It is possible to obtain high strength in the initial to intermediate stage where the phases are separated and the consistency with the parent phase is maintained.

上記現象により高強度な焼結部品を得るためには、少なくともSnは3重量%以上、Niは5重量%以上を含有する必要がある。しかしながら、Snを12重量%より多く、Niを15重量%より多く含有させても硬く脆い化合物相(例えばNi3Sn)を形成するため、マトリックス強度があがっても焼結体の強度(例えば圧環強度)は十分に得られなくなることから、Snの最適な含有量は3〜12重量%、Niは5〜15重量%に限定した。特に混合粉末中のNiは基質中への拡散速度が遅く焼結体中に偏析し易い。Pは混合粉末の他の成分、CuおよびNiと低融点で合金相を形成し、焼結過程において粉末粒子に対して濡れ性の良い液相を発生せしめ、焼結の促進とともに、Niの基質中への拡散を促す。P添加による焼結促進の効果を得るには少なくともPは0.05重量%以上が必要である。しかしながら、1.0重量%より多くなると、粒界に形成されるNi、Snとの化合物相が多くなり焼結体の強度低下を起こすことからPの含有量は0.05〜1.0重量%に限定した。 In order to obtain a sintered part having high strength due to the above phenomenon, it is necessary to contain at least Sn of 3% by weight or more and Ni of 5% by weight or more. However, even if Sn is contained in an amount of more than 12% by weight and Ni is contained in an amount of more than 15% by weight, a hard and brittle compound phase (eg, Ni 3 Sn) is formed. (Strength) cannot be obtained sufficiently, so the optimum content of Sn was limited to 3 to 12% by weight, and Ni was limited to 5 to 15% by weight. In particular, Ni in the mixed powder has a slow diffusion rate into the substrate and is easily segregated in the sintered body. P forms an alloy phase with other components of the mixed powder, Cu and Ni, at a low melting point, generates a liquid phase with good wettability to the powder particles during the sintering process, and promotes sintering, as well as a Ni substrate Encourage diffusion into the inside. In order to obtain the effect of promoting sintering by adding P, at least 0.05% by weight or more is required. However, if it exceeds 1.0% by weight, the compound phase with Ni and Sn formed at the grain boundary increases, and the strength of the sintered body is reduced. Therefore, the P content is limited to 0.05 to 1.0% by weight.

本発明の混合粉末に使用されるCu粉末には特に制限はないが、一般には成形性に優れる電解Cu粉末あるいは熱処理造粒粉末を使用することが好ましい。これらの粉末は粉末自体が柔らかく不規則な形状であり、高い成形性を有する。混合粉末に高い成形性を維持させるためには、これらのCu粉末を少なくとも20重量%以上、好ましくは、50重量%以上を配合する必要がある。
本発明の混合粉末中のSnは、単体粉末およびCu−Sn合金粉末の形態で添加される。しかしながら、合金粉末中のSn含有量が少ないなど、成形性を維持する目的で配合されるCu粉末の配合量が少なくなる場合には単体添加が好ましい。
Although there is no restriction | limiting in particular in Cu powder used for the mixed powder of this invention, Generally it is preferable to use the electrolytic Cu powder or heat-processed granulated powder which is excellent in a moldability. These powders are soft and irregular in shape, and have high moldability. In order to maintain high formability in the mixed powder, it is necessary to blend these Cu powders in an amount of at least 20% by weight, preferably 50% by weight.
Sn in the mixed powder of the present invention is added in the form of a simple powder and a Cu-Sn alloy powder. However, when the amount of Cu powder blended for the purpose of maintaining formability is reduced, such as when the Sn content in the alloy powder is small, the addition of a simple substance is preferable.

本発明の混合粉末中のNiは、アトマイズ法により製造されるCu−Ni合金粉末の形態で添加される。Niは基質中への拡散速度が特に遅く、焼結体中で濃度偏析を起こし易い。またNi粉末、特に一般に使用されているカーボニルニッケル粉末は人体への有害性が懸念されるため、Niの化学ポテンシャルを低く抑えた合金粉末の形で添加することが好ましい。
Cu−Ni合金粉末のNi含有量は、好ましくは20〜50重量%、さらに好ましくは20〜35重量%である。Ni含有量が20重量%より少ないと、Cu−Ni合金粉末の配合量が多くなり、成形性の向上を目的として添加するCu粉末の配合量が少なくるため好ましくない。
また、Ni含有量が50重量%より多くなると、焼結体中のNiの濃度偏析が起こり易くなるため好ましくない。
Ni in the mixed powder of the present invention is added in the form of Cu-Ni alloy powder produced by an atomizing method. Ni has a particularly slow diffusion rate into the substrate and tends to cause concentration segregation in the sintered body. Further, Ni powders, particularly carbonyl nickel powders that are generally used, are feared to be harmful to the human body, so it is preferable to add them in the form of alloy powders that keep the chemical potential of Ni low.
The Ni content of the Cu—Ni alloy powder is preferably 20 to 50% by weight, more preferably 20 to 35% by weight. If the Ni content is less than 20% by weight, the amount of Cu—Ni alloy powder added is increased, and the amount of Cu powder added for the purpose of improving formability is reduced, which is not preferable.
Further, if the Ni content is more than 50% by weight, it is not preferable because concentration segregation of Ni in the sintered body tends to occur.

本発明の混合粉末中のPは、アトマイズ法により製造されるCu−P合金粉末の形態で添加される。Cu−P合金粉末中のP含有量は、好ましくは6〜14重量%、さらに好ましくは8〜10重量%である。P含有量は6重量%より少ないとCu−P合金粉末の配合量が多くなり、成形性の向上を目的として添加する銅粉末の配合量が少なくなるため好ましくない。
尚、本発明において「不可避不純物」とは、意図的に添加していないのに、各原料の製造工程等で不可避的に混入する不純物のことであり、これらの総和は通常0.1重量%以下である。
P in the mixed powder of the present invention is added in the form of Cu-P alloy powder produced by the atomizing method. The P content in the Cu-P alloy powder is preferably 6 to 14% by weight, more preferably 8 to 10% by weight. When the P content is less than 6% by weight, the amount of Cu-P alloy powder added is increased, and the amount of copper powder added for the purpose of improving formability is decreased, which is not preferable.
In the present invention, `` inevitable impurities '' means impurities that are inevitably mixed in the manufacturing process of each raw material, although not intentionally added, and the sum of these is usually 0.1% by weight or less. is there.

本発明は高い成形性が得られるCu−Sn−Ni系の混合粉末の課題であった焼結体組織の不均一性を原料粉末にPを添加することにより改善し、高い成形性の圧粉体および強度に優れた焼結部品が得られる原料粉末を開発した。   The present invention improves the non-uniformity of the sintered body structure, which has been a problem of Cu-Sn-Ni mixed powders that can obtain high formability, by adding P to the raw material powder, and compacted powder with high formability We have developed a raw material powder that can produce sintered parts with excellent body and strength.

実施例2の焼結体断面組織Cross-sectional structure of the sintered body of Example 2 比較例3の焼結体断面組織Cross-sectional structure of the sintered body of Comparative Example 3

以下に本発明の粉末について実施例に基づき更に詳細に説明する。圧粉体の抗折力は粉末にワックス系潤滑剤を0.5重量%混合し、圧粉体密度が6.6g/cm3となるように30×12×6mmの直方体にプレス成形し、ISO 3995規格の測定法に従い求めた。圧環強さはJIS Z 2507規格の測定法に従い求めた。 Hereinafter, the powder of the present invention will be described in more detail based on examples. The compressive strength of the green compact is 0.5% by weight of wax-based lubricant mixed in the powder, press-molded into a 30 × 12 × 6mm cuboid so that the green compact density is 6.6g / cm 3, and ISO 3995 standard It was determined according to the measurement method. The crushing strength was determined according to the measurement method of JIS Z 2507 standard.

実施例1〜3、比較例1〜3は原料粉末として電解Cu粉末、ガスアトマイズ法により製造したCu−Sn合金粉末、Cu−P合金粉末、水アトマイズ法により製造したSn粉末、Cu−Ni粉末を用意し、表1の組成になるように配合し、これらの粉末に金型潤滑剤としてワックス系潤滑剤を0.3重量%加えてロッキングミキサーで混合した後、密度6.60±0.05Mg/m3の軸受圧粉体に成形した。
比較例4は、表1の組成となるように水アトマイズ法により作製した。
焼結条件として、水素10体積%および窒素90体積%の雰囲気のもと、実施例1〜3および比較例1〜4の試料について、860℃で1.2ks保持の条件で焼結を行った。焼結後、260s以内に300℃まで冷却し焼結体を得た。その後、これらの焼結体をさらにN2雰囲気のもと350℃で3.6ks保持する時効処理を行った。
Examples 1-3, Comparative Examples 1-3 are electrolytic Cu powder as raw material powder, Cu-Sn alloy powder produced by gas atomization method, Cu-P alloy powder, Sn powder produced by water atomization method, Cu-Ni powder Prepared and blended so as to have the composition shown in Table 1. Add 0.3% by weight of a wax lubricant as a mold lubricant to these powders, mix with a rocking mixer, and then a bearing with a density of 6.60 ± 0.05Mg / m 3 Molded into a green compact.
Comparative Example 4 was produced by the water atomization method so as to have the composition shown in Table 1.
As sintering conditions, the samples of Examples 1 to 3 and Comparative Examples 1 to 4 were sintered at 860 ° C. under a condition of holding 1.2 ks in an atmosphere of 10 vol% hydrogen and 90 vol% nitrogen. After sintering, it was cooled to 300 ° C. within 260 s to obtain a sintered body. This was followed by an aging treatment for 3.6ks held under 350 ° C. These sintered body further N 2 atmosphere.

本発明である実施例1〜3は、Snを3〜12重量%、Niを5〜15重量%、Pを0.05〜1.0重量%含み、かつ、Cu粉末、Sn粉末、Cu−Sn合金粉末、Cu−Ni合金粉末、Cu−P合金粉末からなる混合粉末であり、それらの圧粉体の抗折力は、いずれも20MPa以上の非常に高い成形性が得られ、時効処理後の焼結体では400MPa以上の高い圧環強度が得られる。   Examples 1 to 3, which are the present invention, contain 3 to 12% by weight of Sn, 5 to 15% by weight of Ni, 0.05 to 1.0% by weight of P, and Cu powder, Sn powder, Cu-Sn alloy powder, It is a mixed powder consisting of Cu-Ni alloy powder and Cu-P alloy powder, and the die strength of those green compacts is very high formability of 20MPa or more, and sintered body after aging treatment Then, a high crushing strength of 400 MPa or more can be obtained.

一方、比較例1はPの添加量が0.01重量%と少なく焼結が進行せず、SnおよびNiの含有量もそれぞれ1重量%と少ないために、その焼結体は時効処理しても十分な圧環強度が得られない。比較例2はSnが15重量%およびNiが18重量%、Pが1.1重量%と多く、焼結体内部の結晶粒界に硬く脆いNi−Sn−P系化合物相が多く析出するため、圧環強度が低下した。比較例3は実施例2とSnおよびNiの含有量は同等であるが、Pを含まず、実施例2に比べ圧環強度が低い。図1に示す実施例2の焼結体断面組織に比べ図2に示す比較例3の焼結体断面組織は不均一であることがわかる。本発明の粉末はP添加によりSnおよびNiは母相中の拡散が促進され、焼結体組織が均一化されることがわかる。比較例4はアトマイズ粉であり高い圧環強度が得られるが、実施例1〜3に比べ抗折力は低くなる。   On the other hand, in Comparative Example 1, since the amount of P added is as small as 0.01% by weight and sintering does not proceed, and the contents of Sn and Ni are also as small as 1% by weight, respectively, the sintered body is sufficient even after aging treatment A strong crushing strength cannot be obtained. In Comparative Example 2, Sn is 15% by weight, Ni is 18% by weight, P is 1.1% by weight, and a large amount of hard and brittle Ni-Sn-P compound phase is precipitated at the grain boundaries inside the sintered body. The strength decreased. Comparative Example 3 has the same Sn and Ni contents as Example 2, but does not contain P and has a crushing strength lower than that of Example 2. It can be seen that the cross-sectional structure of the sintered body of Comparative Example 3 shown in FIG. 2 is not uniform compared to the cross-sectional structure of the sintered body of Example 2 shown in FIG. It can be seen that Sn and Ni in the powder of the present invention are promoted to diffuse in the matrix by adding P, and the sintered body structure is made uniform. Comparative Example 4 is an atomized powder, and a high crushing strength is obtained, but the bending strength is lower than in Examples 1 to 3.

本発明の焼結用混合粉末はCu、Sn、NiにPを添加することによって、均一な組織を有する焼結体が製造でき、また時効処理することで高強度とすることが可能である。さらに、成形性に優れる圧粉体を製造できることから、小型および薄肉部を有する焼結部品を製造することが可能であり、これまでに適応できなかった粉末冶金の分野にも適用される可能性がある。 The mixed powder for sintering of the present invention can produce a sintered body having a uniform structure by adding P to Cu, Sn, and Ni, and can have high strength by aging treatment. Furthermore, because it is possible to produce green compacts with excellent moldability, it is possible to produce sintered parts with small and thin-walled parts, which may also be applied to the field of powder metallurgy that could not be applied before. There is.

Claims (1)

粉末冶金に使用されるCu−Sn−Ni系の混合粉末であって、当該混合粉末が、重量比でSnを3〜12%含み、Niを5〜15%含み、Pを0.05〜1.0%含み、残部がCuおよび不可避不純物からなり、さらに、当該混合粉末が、Cu粉末とSn粉末とCu−Sn合金粉末とCu−Ni合金粉末とCu−P合金粉末で構成されることを特徴とする粉末冶金用の混合粉末。   Cu-Sn-Ni-based mixed powder used for powder metallurgy, the mixed powder contains 3 to 12% Sn, 5 to 15% Ni, 0.05 to 1.0% P in weight ratio The remaining powder is made of Cu and inevitable impurities, and the mixed powder is composed of Cu powder, Sn powder, Cu-Sn alloy powder, Cu-Ni alloy powder, and Cu-P alloy powder. Mixed powder for metallurgy.
JP2011157312A 2011-07-18 2011-07-18 Mixed powder for powder metallurgy Pending JP2013023707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011157312A JP2013023707A (en) 2011-07-18 2011-07-18 Mixed powder for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011157312A JP2013023707A (en) 2011-07-18 2011-07-18 Mixed powder for powder metallurgy

Publications (1)

Publication Number Publication Date
JP2013023707A true JP2013023707A (en) 2013-02-04

Family

ID=47782403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011157312A Pending JP2013023707A (en) 2011-07-18 2011-07-18 Mixed powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JP2013023707A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035880A1 (en) * 2014-09-04 2016-03-10 株式会社ダイヤメット Cu-BASED SINTERED BEARING AND PRODUCTION METHOD FOR Cu-BASED SINTERED BEARING
US10532406B2 (en) 2014-09-11 2020-01-14 Diamet Corporation Sintered sliding member having exceptional corrosion resistance, heat resistance, and wear resistance; and method for producing said member
JP2020045529A (en) * 2018-09-19 2020-03-26 大同メタル工業株式会社 Slide member
JP2020045528A (en) * 2018-09-19 2020-03-26 大同メタル工業株式会社 Slide member
US10941465B2 (en) 2016-03-04 2021-03-09 Diamet Corporation Cu-based sintered sliding material, and production method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145107A (en) * 1979-04-28 1980-11-12 Oiles Ind Co Ltd Double layer sliding member
JPH11256206A (en) * 1998-03-06 1999-09-21 Mabuchi Motor Co Ltd Small-sized motor and manufacture of sintered alloy-made oil impregnated bearing thereof
JP2008007796A (en) * 2006-06-27 2008-01-17 Mitsubishi Materials Pmg Corp Cu-Ni-Sn SERIES COPPER BASED SINTERED ALLOY HAVING EXCELLENT FRICTION/WEAR RESISTANCE AND BEARING MATERIAL COMPOSED OF THE ALLOY
JP2008019929A (en) * 2006-07-12 2008-01-31 Hitachi Powdered Metals Co Ltd Oil-impregnated sintered bearing
JP2011052252A (en) * 2009-08-31 2011-03-17 Diamet:Kk Cu-BASED SINTERED SLIDING MEMBER

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145107A (en) * 1979-04-28 1980-11-12 Oiles Ind Co Ltd Double layer sliding member
JPH11256206A (en) * 1998-03-06 1999-09-21 Mabuchi Motor Co Ltd Small-sized motor and manufacture of sintered alloy-made oil impregnated bearing thereof
JP2008007796A (en) * 2006-06-27 2008-01-17 Mitsubishi Materials Pmg Corp Cu-Ni-Sn SERIES COPPER BASED SINTERED ALLOY HAVING EXCELLENT FRICTION/WEAR RESISTANCE AND BEARING MATERIAL COMPOSED OF THE ALLOY
JP2008019929A (en) * 2006-07-12 2008-01-31 Hitachi Powdered Metals Co Ltd Oil-impregnated sintered bearing
JP2011052252A (en) * 2009-08-31 2011-03-17 Diamet:Kk Cu-BASED SINTERED SLIDING MEMBER

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035880A1 (en) * 2014-09-04 2016-03-10 株式会社ダイヤメット Cu-BASED SINTERED BEARING AND PRODUCTION METHOD FOR Cu-BASED SINTERED BEARING
US10745780B2 (en) 2014-09-04 2020-08-18 Diamet Corporation Cu-based sintered bearing and production method for Cu-based sintered bearing
US10532406B2 (en) 2014-09-11 2020-01-14 Diamet Corporation Sintered sliding member having exceptional corrosion resistance, heat resistance, and wear resistance; and method for producing said member
US10941465B2 (en) 2016-03-04 2021-03-09 Diamet Corporation Cu-based sintered sliding material, and production method therefor
JP2020045529A (en) * 2018-09-19 2020-03-26 大同メタル工業株式会社 Slide member
JP2020045528A (en) * 2018-09-19 2020-03-26 大同メタル工業株式会社 Slide member

Similar Documents

Publication Publication Date Title
JP5504278B2 (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
TWI293263B (en)
JP4769287B2 (en) Bronze powder for powder metallurgy and method for producing the same
TWI325896B (en) Iron-based powder combination
JP4476634B2 (en) Pb-free copper alloy sliding material
EP1975260B1 (en) Copper base sintered slide member
JP2013023707A (en) Mixed powder for powder metallurgy
US11273489B2 (en) Aluminum alloy powder formulations with silicon additions for mechanical property improvements
JP2009114486A (en) Sintering assistant, aluminum-containing copper-based alloy powder to be sintered, and sintered compact formed by sintering the aluminum-containing copper-based alloy powder
JP6760807B2 (en) Copper-based sintered alloy oil-impregnated bearing
JP2016194161A (en) Aluminum alloy powder metal with high thermal conductivity
JP4401326B2 (en) Method for producing high-strength wear-resistant aluminum sintered alloy
JP2016074950A (en) Copper alloy and manufacturing method therefor
JP2012097323A (en) Copper-based alloy powder for powder metallurgy
JP2010106331A (en) Composite metallic glass having both of strength and electroconductivity, and method for manufacturing the same
JP5367728B2 (en) Method for producing sintered bronze alloy powder
CN101658931A (en) Rare earth powder metallurgy iron aldurbra-containing oil bearing material and preparation technology thereof
JP5403707B2 (en) Cu-based infiltration powder
JP2014505789A (en) Improved aluminum alloy powder metal with transition elements
JP6363931B2 (en) Copper alloy for slide bearing
JP2009007433A (en) Copper-based oil-containing sintered sliding member and method for producing the same
JP3909037B2 (en) Manufacturing method of low thermal expansion and high thermal conductive member
Uzunsoy The characterisation of PM 304 stainless steel sintered in the presence of a copper based additive
JP2001131660A (en) Alloy powder for copper series high strength sintered parts
JPS6082646A (en) Sintered alloy and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150526