JP2020045529A - Slide member - Google Patents

Slide member Download PDF

Info

Publication number
JP2020045529A
JP2020045529A JP2018175256A JP2018175256A JP2020045529A JP 2020045529 A JP2020045529 A JP 2020045529A JP 2018175256 A JP2018175256 A JP 2018175256A JP 2018175256 A JP2018175256 A JP 2018175256A JP 2020045529 A JP2020045529 A JP 2020045529A
Authority
JP
Japan
Prior art keywords
mass
copper alloy
sliding
layer
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018175256A
Other languages
Japanese (ja)
Other versions
JP6794412B2 (en
Inventor
麻子 池上
Asako Ikegami
麻子 池上
高顕 北原
Takaaki Kitahara
高顕 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2018175256A priority Critical patent/JP6794412B2/en
Publication of JP2020045529A publication Critical patent/JP2020045529A/en
Application granted granted Critical
Publication of JP6794412B2 publication Critical patent/JP6794412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide a slide member excellent in corrosion resistance and hardly generating breakage by dropout of crystal particles of a copper alloy of a slide layer.SOLUTION: The slide member has a steel back gold layer, and slide layer arranged on the steel back gold layer and having a slide surface. The slide layer has a copper alloy part containing 1 to 12 mass% of Sn, 1 to 15 mass% of Ni, and 0.01 to 0.2 mass% of P, and the balance Cu with inevitable impurities, and iron phosphorus oxide existing in a crystal particle boundary of copper alloy crystals of the copper alloy part.SELECTED DRAWING: Figure 3

Description

本発明は、例えば内燃機関や自動変速機に用いられる軸受や各種機械に用いられる軸受などの摺動部材に関するものである。詳細には、本発明は、鋼裏金層上に形成された摺動層を備える摺動部材に係るものである。   The present invention relates to sliding members such as bearings used for internal combustion engines and automatic transmissions and bearings used for various machines. Specifically, the present invention relates to a sliding member including a sliding layer formed on a steel back metal layer.

従来から内燃機関や自動変速機等の軸受部には、銅合金の摺動層および鋼裏金層からなる摺動部材を円筒形状や半円筒形状に成形したすべり軸受などの摺動部材が用いられている。摺動部材の使用時、例えばすべり軸受の場合には摺動層の摺動面と軸部材との間の隙間に油が供給されるが、油中に含まれる硫黄成分により摺動層である銅合金の摺動面が硫化腐食を起こしやすい。そのため、摺動層の銅合金に、耐食性を高めるためNiを含有させる提案がなされている(特許文献1、2参照)。   Conventionally, sliding members such as sliding bearings in which a sliding member made of a copper alloy sliding layer and a steel backing metal layer are formed into a cylindrical or semi-cylindrical shape have been used for a bearing portion of an internal combustion engine or an automatic transmission. ing. When the sliding member is used, for example, in the case of a sliding bearing, oil is supplied to a gap between the sliding surface of the sliding layer and the shaft member, but the sliding layer is formed by a sulfur component contained in the oil. The sliding surface of copper alloy is susceptible to sulfidation corrosion. Therefore, it has been proposed to add Ni to the copper alloy of the sliding layer in order to enhance corrosion resistance (see Patent Documents 1 and 2).

特表2012−509993号公報JP-T-2012-509993 特開2003−269456号公報JP 2003-269456 A

特許文献1、2のNiを含有する銅合金からなる摺動層は、摺動部材の使用時、摺動層の摺動面での銅合金の硫化腐食は起き難くなるが、摺動面から内部に向かって銅合金の結晶粒界に沿って粒界腐食が起こる。これは、結晶粒界に沿って硫化腐食が進行するために生じるものである。この粒界腐食が銅合金の結晶粒界に沿って進行して摺動層の内部に達すると、摺動時に、結晶粒界が腐食した部分から、銅合金の結晶粒が個々に、あるいは、複数の結晶粒が一塊となって脱落し、摺動層の摺動面と相手軸表面との間に入り、摺動層の摺動面が傷つき損傷する。   The sliding layer made of a copper alloy containing Ni described in Patent Documents 1 and 2 is less likely to cause sulfidation corrosion of the copper alloy on the sliding surface of the sliding layer when the sliding member is used. Grain boundary corrosion occurs along the grain boundaries of the copper alloy toward the inside. This is caused by the progress of sulfide corrosion along the crystal grain boundaries. When this intergranular corrosion progresses along the crystal grain boundaries of the copper alloy and reaches the inside of the sliding layer, during sliding, the crystal grains of the copper alloy individually or from the portion where the crystal grain boundaries are corroded, or A plurality of crystal grains fall off as one lump, enter between the sliding surface of the sliding layer and the surface of the mating shaft, and the sliding surface of the sliding layer is damaged and damaged.

本発明は、このような従来技術の問題を解決して、耐食性(耐粒界腐食性)に優れ、銅合金の結晶粒の脱落による損傷が起き難い摺動部材の提供を目的とする。   An object of the present invention is to solve such a problem of the prior art and to provide a sliding member which is excellent in corrosion resistance (intergranular corrosion resistance) and is less likely to be damaged by falling off of copper alloy crystal grains.

本発明によれば、鋼裏金層と、鋼裏金層上に設けられ摺動面を有する摺動層とを備えた摺動部材が提供される。摺動層は、1〜12質量%のSn、1〜15質量%のNi、0.01〜0.2質量%のPを含み、残部がCu及び不可避純物からなる銅合金部と、銅合金部の銅合金結晶の結晶粒界に存在する鉄リン酸化物とを有する。   According to the present invention, there is provided a sliding member including a steel back metal layer and a sliding layer provided on the steel back metal layer and having a sliding surface. The sliding layer contains 1 to 12% by mass of Sn, 1 to 15% by mass of Ni, and 0.01 to 0.2% by mass of P, with the balance being Cu and an inevitable pure copper alloy portion; And iron phosphate present at the crystal grain boundaries of the copper alloy crystal in the alloy portion.

本発明の一具体例によれば、鉄リン酸化物における、FeとPとOの質量比は、Fe1−X−Yであり、ここでX=0.1〜0.3、Y=0.3〜0.65であることが好ましい。 According to one embodiment of the present invention, the mass ratio of Fe, P and O in the iron phosphate is Fe 1- XYP X O Y , where X = 0.1 to 0.3. , Y = 0.3 to 0.65.

本発明の一具体例によれば、銅合金部の結晶粒界における鉄リン酸化物の数割合は、結晶粒界の長さ50μmあたり1個以上であることが好ましい。   According to one embodiment of the present invention, it is preferable that the number ratio of iron phosphate in the crystal grain boundary of the copper alloy part is one or more per 50 μm of the length of the crystal grain boundary.

本発明の一具体例によれば、銅合金部は、0.01〜5質量%のAl、0.01〜5質量%のSi、0.5〜10質量%のFe、0.1〜5質量%のMn、0.1〜30質量%のZn、0.1〜5質量%のSb、0.1〜5質量%のIn、0.1〜5質量%のAg、0.5〜25質量%のPb、0.5〜20質量%のBiから選ばれる1種以上をさらに含むことが好ましい。   According to one embodiment of the present invention, the copper alloy part comprises 0.01 to 5% by mass of Al, 0.01 to 5% by mass of Si, 0.5 to 10% by mass of Fe, 0.1 to 5% by mass. Wt% Mn, 0.1-30 wt% Zn, 0.1-5 wt% Sb, 0.1-5 wt% In, 0.1-5 wt% Ag, 0.5-25 It is preferable that the composition further contains at least one member selected from the group consisting of Pb at 0.5% by mass and Bi at 0.5 to 20% by mass.

本発明の一具体例によれば、摺動層は、Al、SiO、AlN、MoC、WC、FeP、FePのうちから選ばれる1種以上の硬質粒子を0.1〜10体積%をさらに含むことが好ましい。 According to one embodiment of the present invention, the sliding layer includes one or more hard particles selected from Al 2 O 3 , SiO 2 , AlN, Mo 2 C, WC, Fe 2 P, and Fe 3 P. It is preferable to further contain 0.1 to 10% by volume.

発明の摺動部材の摺動層の摺動面に垂直方向の断面の模式図。FIG. 4 is a schematic diagram of a cross section in a direction perpendicular to a sliding surface of a sliding layer of the sliding member of the present invention. 図1の摺動層の組織を示す図。The figure which shows the structure of the sliding layer of FIG. 図2の摺動層の銅合金部の結晶粒界の拡大図。FIG. 3 is an enlarged view of a crystal grain boundary of a copper alloy part of the sliding layer of FIG. 2. 従来の摺動部材に起こる結晶粒脱落の説明図。FIG. 4 is an explanatory view of crystal grain falling occurring in a conventional sliding member.

図1に本発明による摺動部材1の一具体例の断面を模式的に示す。この摺動部材1は、鋼裏金層2上に摺動層3が設けられた構成となっている。鋼裏金層2とは反対側の摺動層3の表面が摺動面31を形成している。なお、摺動部材1は摺動層上に金属または合金からなる被覆層や、合成樹脂または合成樹脂を基とする被覆層を有してもよいが、被覆層の有無に関わらず本明細書では摺動層3の上記表面を摺動面31と称する。
図2に図1に示す摺動層3の組織を示す。摺動層3は、銅合金部4からなり、その組織は多数の銅合金の結晶粒41からなっており、結晶粒41どうしの界面には結晶粒界42が存在する。図3に、図2に示す銅合金部4の組織の拡大図を示す。結晶粒界42には、多数の鉄リン酸化物6が存在している。なお、図3では、鉄リン酸化物6は、理解を容易にするために、誇張して描かれている。
FIG. 1 schematically shows a cross section of a specific example of the sliding member 1 according to the present invention. The sliding member 1 has a configuration in which a sliding layer 3 is provided on a steel backing metal layer 2. The surface of the sliding layer 3 opposite to the steel back metal layer 2 forms a sliding surface 31. The sliding member 1 may have a coating layer made of a metal or an alloy or a coating layer based on a synthetic resin or a synthetic resin on the sliding layer. In the description, the surface of the sliding layer 3 is referred to as a sliding surface 31.
FIG. 2 shows the structure of the sliding layer 3 shown in FIG. The sliding layer 3 is composed of a copper alloy part 4, and its structure is composed of a large number of crystal grains 41 of a copper alloy, and a crystal grain boundary 42 exists at an interface between the crystal grains 41. FIG. 3 shows an enlarged view of the structure of the copper alloy part 4 shown in FIG. Many iron phosphorus oxides 6 exist in the crystal grain boundaries 42. In FIG. 3, the iron phosphorus oxide 6 is exaggerated for easy understanding.

鋼裏金層2は、例えば、炭素の含有量が0.07〜0.35質量%である亜共析鋼である。なお、鋼裏金層2は、0.07〜0.35質量%の炭素を含有し、さらに、0.4質量%以下のSi、1質量%以下のMn、0.04質量%以下のP、0.05質量%以下のSのいずれか一種以上を含有し、残部Feおよび不可避不純物からなる組成であってもよい。   The steel back metal layer 2 is, for example, a hypoeutectoid steel having a carbon content of 0.07 to 0.35% by mass. In addition, the steel back metal layer 2 contains 0.07 to 0.35% by mass of carbon, and further contains 0.4% by mass or less of Si, 1% by mass or less of Mn, and 0.04% by mass or less of P, The composition may contain at least one of S in an amount of 0.05% by mass or less and the balance may be composed of Fe and unavoidable impurities.

銅合金部4の組成は、1〜12質量%のSn、1〜15質量%のNi、0.01〜0.2質量%のPを含み残部Cu及び不可避純物からなるものでよい。
銅合金部4の組成中のSn成分は、銅合金部4自体の強度を高めるが、含有量が1質量%未満では、この効果が不十分であり、また、含有量が12質量%を超えると、銅合金部4が脆くなる。Ni成分は、銅合金部4の耐食性を高める成分として作用するが、含有量が1質量%未満では、この効果が不十分であり、また、含有量が15質量%を超えると、銅合金部4が脆くなる。銅合金部4のP成分は、銅合金部4自体の強度を高めるが、含有量が0.01質量%未満では、この効果が不十分であり、また、含有量が0.2質量%を超えると、銅合金が脆くなる。銅合金部4のP成分の含有量は、0.05質量%以上、0.15質量%以下であることが、より好ましい。このNi成分、P成分は、後述する銅合金部4の結晶粒界42の鉄リン酸化物6の分散に影響する。
The composition of the copper alloy part 4 may be composed of 1 to 12% by mass of Sn, 1 to 15% by mass of Ni, 0.01 to 0.2% by mass of P, the balance being Cu and unavoidable pure substances.
The Sn component in the composition of the copper alloy part 4 enhances the strength of the copper alloy part 4 itself, but if the content is less than 1% by mass, this effect is insufficient, and the content exceeds 12% by mass. Then, the copper alloy part 4 becomes brittle. The Ni component acts as a component that enhances the corrosion resistance of the copper alloy part 4. However, if the content is less than 1% by mass, this effect is insufficient, and if the content exceeds 15% by mass, the copper alloy part is not. 4 becomes brittle. The P component of the copper alloy part 4 enhances the strength of the copper alloy part 4 itself, but if the content is less than 0.01% by mass, this effect is insufficient, and the content is 0.2% by mass. If it exceeds, the copper alloy becomes brittle. More preferably, the content of the P component in the copper alloy portion 4 is 0.05% by mass or more and 0.15% by mass or less. The Ni component and the P component affect the dispersion of the iron phosphate 6 in the crystal grain boundaries 42 of the copper alloy part 4 described later.

なお、銅合金部4は、上記組成にさらに0.01〜5質量%のAl、0.01〜5質量%のSi、0.5〜10質量%のFe、0.1〜5質量%のMn、0.1〜30質量%のZn、0.1〜5質量%のSb、0.1〜5質量%のIn、0.1〜5質量%のAg、0.5〜25質量%のPb、0.5〜20質量%のBiから選ばれる1種以上を含むことができる。これら選択成分のうち、Bi成分、Pb成分を除く成分は、銅合金部4の強度を高め、Bi成分およびPb成分は、銅合金部4の潤滑性を高める成分である。これら選択成分を2種以上含有する場合でも、選択成分の合計の含有量は40質量%以下とすることが好ましい。また、銅合金部4は、原材料として用いる銅合金(粉末)の製造時より含まれる不可避不純物も含有してもよい。   In addition, the copper alloy part 4 further contains 0.01 to 5% by mass of Al, 0.01 to 5% by mass of Si, 0.5 to 10% by mass of Fe, and 0.1 to 5% by mass of the composition. Mn, 0.1 to 30 mass% Zn, 0.1 to 5 mass% Sb, 0.1 to 5 mass% In, 0.1 to 5 mass% Ag, 0.5 to 25 mass% Pb may contain one or more selected from Bi of 0.5 to 20% by mass. Among these selected components, components other than the Bi component and the Pb component increase the strength of the copper alloy portion 4, and the Bi component and the Pb component increase the lubricity of the copper alloy portion 4. Even when two or more of these optional components are contained, the total content of the optional components is preferably 40% by mass or less. In addition, the copper alloy part 4 may also contain unavoidable impurities that are included in the production of the copper alloy (powder) used as a raw material.

摺動層3は、さらに、Al、SiO、AlN、MoC、WC、FeP、FePから選ばれる1種以上の硬質粒子を0.1〜10体積%を含むことができる。これら硬質粒子は、摺動層3の銅合金部4の素地に分散して摺動層3の耐摩耗性を高めるが、含有量が0.1体積%未満の場合には、その効果が不十分であり、また、10体積%を超える場合には、摺動層3が脆くなる。 The sliding layer 3 further contains 0.1 to 10% by volume of one or more hard particles selected from Al 2 O 3 , SiO 2 , AlN, Mo 2 C, WC, Fe 2 P, and Fe 3 P. be able to. These hard particles are dispersed in the base material of the copper alloy portion 4 of the sliding layer 3 to increase the wear resistance of the sliding layer 3, but when the content is less than 0.1% by volume, the effect is not sufficient. If it is sufficient and exceeds 10% by volume, the sliding layer 3 becomes brittle.

空孔が摺動層3の銅合金部4中に形成されてもよいが、摺動層3は、緻密にすることが好ましく、その場合、摺動層3中の空孔(図示しない)の体積割合を0.1体積%未満とすることが好ましい。空孔は、摺動層3の銅合金部4中にも形成されることがあるが、空孔の体積割合が0.1体積%未満であると、空孔の体積割合が0.1体積%以上である場合よりも、銅合金部4の強度が高くなり摺動層3の耐摩耗性に優れる。   Although holes may be formed in the copper alloy portion 4 of the sliding layer 3, it is preferable that the sliding layer 3 be dense, in which case holes (not shown) in the sliding layer 3 are formed. Preferably, the volume ratio is less than 0.1% by volume. Voids may also be formed in the copper alloy part 4 of the sliding layer 3, but if the volume ratio of the pores is less than 0.1% by volume, the volume ratio of the pores is 0.1% by volume. %, The strength of the copper alloy part 4 is higher and the sliding layer 3 is superior in wear resistance.

ここで、摺動層3の体積に対する空孔の総体積の割合の測定方法を具体的に説明する。
上記の摺動層3の摺動面31に垂直方向の断面の複数箇所(例えば5箇所)を、電子顕微鏡を用いて電子像を例えば200倍で撮影し、得られた電子像を一般的な画像解析手法(解析ソフト:Image−Pro Plus(Version4.5);(株)プラネトロン製)を用いて、画像中の摺動層3(銅合金部4および空孔)の面積の合計(A1)に対する空孔の合計の面積(A2)の比(A2/A1)から求める。なお、この面積の比の値は、摺動層中に含まれる空孔の体積割合に相当する。
ただし、上記の電子像の撮影倍率は、200倍に限定されないで、他の倍率に変更することができる。
Here, a method for measuring the ratio of the total volume of the holes to the volume of the sliding layer 3 will be specifically described.
Electron images of a plurality of sections (for example, 5 places) of a cross section perpendicular to the sliding surface 31 of the sliding layer 3 are taken with an electron microscope at a magnification of, for example, 200 times, and the obtained electronic images are generally used. Using an image analysis method (analysis software: Image-Pro Plus (Version 4.5); manufactured by Planetron Co., Ltd.), the total area of the sliding layer 3 (copper alloy portion 4 and pores) in the image (A1) From the ratio (A2 / A1) of the total area of the holes (A2) to The value of the area ratio corresponds to the volume ratio of the holes contained in the sliding layer.
However, the photographing magnification of the electronic image is not limited to 200 times, but can be changed to another magnification.

銅合金部4の結晶粒41どうしの間の結晶粒界42には、鉄リン酸化物6が形成されている。
なお、結晶粒界42における鉄リン酸化物6の形成は、摺動部材1の摺動層3の摺動面31に垂直方向の断面を、EPMA(電子線マイクロアナライザー)を用い、複数の結晶粒界42部の面分析を行い結晶粒界42部におけるFe元素、P元素、O元素を検出することにより確認できる。
そして、鉄リン酸化物6におけるFe元素とP元素とO元素の質量比は、Fe1−X−Yで表現した場合にX=0.1〜0.3、Y=0.3〜0.65であることが好ましい(数値は質量比である)。
鉄リン酸化物6におけるFeとPとOの組成の質量比は、EPMAを用い、倍率5000倍で上記断面組織中の摺動層3の厚さ方向の中央部付近の複数の鉄リン酸化物6の定量分析を行うことで確認できる。定量分析における検出元素としてFe、PおよびOを選択し、これら元素の特性X線強度をZAF補正計算法により質量濃度に変換し、このFe、PおよびOの質量濃度から算出した組成の質量比の値を算術平均することで確認できる。なお、定量分析における倍率は5000倍に限定されないで、例えば5000倍を超える倍率で行なってもよい。
Iron phosphate 6 is formed in a crystal grain boundary 42 between crystal grains 41 of copper alloy part 4.
The formation of the iron phosphorus oxide 6 in the crystal grain boundary 42 is performed by using a cross section perpendicular to the sliding surface 31 of the sliding layer 3 of the sliding member 1 by using an EPMA (electron beam microanalyzer) to form a plurality of crystals. It can be confirmed by performing a surface analysis of the grain boundary 42 part and detecting the Fe element, the P element, and the O element in the crystal grain boundary 42 part.
The mass ratio of the Fe element, the P element, and the O element in the iron phosphorus oxide 6 is represented by X = 0.1 to 0.3 and Y = 0.0.3 when represented by Fe 1-XY P X O Y. It is preferably from 3 to 0.65 (the numerical value is a mass ratio).
The mass ratio of the composition of Fe, P and O in the iron phosphate 6 was determined by using EPMA at a magnification of 5,000 and a plurality of iron phosphates near the center in the thickness direction of the sliding layer 3 in the sectional structure. It can be confirmed by performing the quantitative analysis of No. 6. Fe, P, and O are selected as detection elements in the quantitative analysis, and the characteristic X-ray intensity of these elements is converted into a mass concentration by a ZAF correction calculation method, and the mass ratio of the composition calculated from the mass concentrations of the Fe, P, and O Can be confirmed by arithmetically averaging the values of In addition, the magnification in the quantitative analysis is not limited to 5000 times, but may be performed at a magnification exceeding 5000 times, for example.

銅合金部4の結晶粒界42における鉄リン酸化物6の数割合は、結晶粒界の長さ50μmあたり1個以上であることが好ましく、結晶粒界の長さ30μmあたり1個以上であることがより好ましい。   The number ratio of the iron phosphate 6 in the crystal grain boundaries 42 of the copper alloy part 4 is preferably one or more per 50 μm length of the crystal grain boundaries, and is one or more per 30 μm length of the crystal grain boundaries. Is more preferable.

銅合金4の結晶粒界42における鉄リン酸化物6の数割合の測定は、上記の手法で得られた電子像を、上記の画像解析手法を用いる。上記電子像中の複数の銅合金の結晶41の結晶粒界42上の鉄リン酸化物6の個数Xおよび結晶粒界42の長さLを測定する。そして、各結晶粒界42上の鉄リン酸化物6の個数Xと結晶粒界42の長さ(周囲長)Lの比(X/L)を求め、それらの平均を算出して、銅合金4の結晶粒界42における鉄リン酸化物6の数割合とする。   The measurement of the number ratio of the iron phosphorus oxides 6 in the crystal grain boundaries 42 of the copper alloy 4 uses the above-described image analysis method for the electron image obtained by the above-described method. The number X of the iron phosphorus oxides 6 on the crystal grain boundaries 42 of the plurality of copper alloy crystals 41 in the electronic image and the length L of the crystal grain boundaries 42 are measured. Then, the ratio (X / L) of the number X of the iron phosphorus oxides 6 on each of the crystal grain boundaries 42 and the length (perimeter) L of the crystal grain boundaries 42 is determined, and the average thereof is calculated. 4 is the number ratio of iron phosphorus oxide 6 in the crystal grain boundary 42.

図4を用いて従来のNiを含む銅合金からなる摺動層13を有する摺動部材に生じる粒界腐食を説明する。従来の摺動部材は、摺動時、油中に含まれる硫黄成分により、摺動層13の摺動面131に露出する銅合金の結晶粒界142を起点とし、摺動層131から内部に向かって銅合金の結晶粒界142に沿って腐食(硫化腐食)が進行する粒界腐食が起こる。摺動層の内部、特に摺動面付近では、銅合金結晶141の結晶粒界142に沿って腐食生成物(CuS)7がネットワークを形成する。
結晶粒界142の全部または大部分が腐食すると、銅合金結晶粒141どうしの間の結合が弱まり、銅合金結晶粒141が個々に、あるいは、複数の銅合金結晶粒141が一塊となり、摺動層13の摺動面131と相手軸8表面との間に脱落し、摺動層13の摺動面131が傷つき損傷する。
Niを含有する銅合金の粒界腐食の機構は、明らかになっていないが、この粒界腐食による生成物は、硫化銅(CuS)であり、油中に含まれるS成分と銅合金の結晶粒界142および結晶粒界142に近接する銅合金結晶粒141のCu成分とが反応したものと考えられる。
Referring to FIG. 4, intergranular corrosion occurring in a conventional sliding member having a sliding layer 13 made of a copper alloy containing Ni will be described. In the conventional sliding member, at the time of sliding, the sulfur component contained in the oil starts from the crystal grain boundary 142 of the copper alloy exposed on the sliding surface 131 of the sliding layer 13 and moves from the sliding layer 131 to the inside. Grain boundary corrosion in which corrosion (sulfurization corrosion) progresses along the crystal grain boundaries 142 of the copper alloy toward the surface. Inside the sliding layer, especially near the sliding surface, the corrosion product (Cu 2 S) 7 forms a network along the crystal grain boundaries 142 of the copper alloy crystal 141.
When all or most of the crystal grain boundaries 142 are corroded, the bond between the copper alloy crystal grains 141 is weakened, and the copper alloy crystal grains 141 individually or a plurality of the copper alloy crystal grains 141 are aggregated to form a slide. The sliding surface 131 of the sliding layer 13 falls off between the sliding surface 131 of the layer 13 and the surface of the mating shaft 8 and is damaged.
The mechanism of intergranular corrosion of the copper alloy containing Ni is not clear, but the product of this intergranular corrosion is copper sulfide (Cu 2 S), and the S component contained in the oil and the copper alloy It is considered that the crystal grain boundary 142 and the Cu component of the copper alloy crystal grain 141 adjacent to the crystal grain boundary 142 have reacted.

他方、本発明の摺動部材1の摺動層3の銅合金部4は、多数の結晶粒41を有しており、結晶粒41どうしの間の界面は結晶粒界42部を形成している。多数の鉄リン酸化物6は主に結晶粒界42部に存在している。この鉄リン酸化物6は、硫化腐食を生じにくい。このため、本発明の摺動部材1は、摺動時、摺動層3の摺動面に露出する銅合金の結晶粒界42を起点として油中に含まれるS成分による腐食が摺動層3の内部に向かって銅合金の結晶粒界42に沿って進行しても、銅合金の結晶粒界42に存在する鉄リン酸化物6に達すると、腐食の進行が停止し、銅合金の結晶粒界42へのさらなる拡散が抑制される。したがって、摺動層3の内部に粒界腐食部7のネットワークが形成され難く、摺動時に摺動層3の銅合金の結晶粒41の脱落が防がれる。   On the other hand, the copper alloy part 4 of the sliding layer 3 of the sliding member 1 of the present invention has a large number of crystal grains 41, and the interface between the crystal grains 41 forms a crystal grain boundary 42 part. I have. Many iron phosphorus oxides 6 are mainly present at the crystal grain boundary 42 part. The iron phosphorus oxide 6 is unlikely to cause sulfidation corrosion. For this reason, in the sliding member 1 of the present invention, when sliding, the corrosion by the S component contained in the oil starting from the crystal grain boundary 42 of the copper alloy exposed on the sliding surface of the sliding layer 3 causes 3, the corrosion of the copper alloy is stopped when the iron phosphate 6 present at the crystal grain boundary 42 of the copper alloy is reached even if the copper alloy proceeds along the crystal grain boundary 42 of the copper alloy. Further diffusion to the crystal grain boundaries 42 is suppressed. Therefore, a network of intergranular corrosion portions 7 is hardly formed inside the sliding layer 3, and the sliding of the copper alloy crystal grains 41 of the sliding layer 3 during sliding is prevented.

以下に、本実施形態に係る摺動部材の作製方法について説明する。   Hereinafter, a method for manufacturing the sliding member according to the present embodiment will be described.

まず、摺動層の上記組成の銅合金の粉末を準備する。また、摺動層に上記硬質粒子を含有させる場合は、銅合金粉末と硬質粒子との混合粉を作製する。   First, a powder of a copper alloy having the above composition for the sliding layer is prepared. When the hard particles are contained in the sliding layer, a mixed powder of the copper alloy powder and the hard particles is prepared.

準備した銅合金粉末または混合粉を鋼(例えば亜共析鋼)板上に散布した後、粉末散布層を加圧することなく、焼結炉を用いて850〜980℃の還元雰囲気で1次焼結を行い、鋼板上に空孔率が27〜38体積%の多孔質銅合金層を形成し、80〜350℃まで冷却した後、大気雰囲気中で室温まで冷却する。この工程により、多孔質銅合金層の銅合金の表面に厚さが10〜120nmの銅酸化膜(CuO)を形成する。1次焼結後の多孔質銅合金層は、各空孔がネットワークを形成した組織である。
代替の方法としては、1次焼結の冷却工程にて還元雰囲気で部材を室温まで冷却したのち、大気雰囲気中で部材を80〜350℃の温度に加熱し、多孔質銅合金層の銅合金の表面に銅酸化膜(CuO)を形成してもよい。
After the prepared copper alloy powder or mixed powder is sprayed on a steel (for example, hypoeutectoid steel) plate, primary firing is performed in a reducing atmosphere at 850 to 980 ° C. using a sintering furnace without applying pressure to the powder spray layer. After sintering, a porous copper alloy layer having a porosity of 27 to 38% by volume is formed on the steel sheet, cooled to 80 to 350 ° C., and then cooled to room temperature in an air atmosphere. By this step, a copper oxide film (Cu 2 O) having a thickness of 10 to 120 nm is formed on the surface of the copper alloy of the porous copper alloy layer. The porous copper alloy layer after the first sintering has a structure in which each pore forms a network.
As an alternative method, the member is cooled to room temperature in a reducing atmosphere in a cooling step of the primary sintering, and then the member is heated to a temperature of 80 to 350 ° C. in an air atmosphere to form a copper alloy of the porous copper alloy layer. A copper oxide film (Cu 2 O) may be formed on the surface of the substrate.

次に、多孔質銅合金層を緻密化させるための1次圧延を行う。この場合、空孔率が0.1体積%未満とすることが好ましい。   Next, primary rolling is performed to densify the porous copper alloy layer. In this case, the porosity is preferably less than 0.1% by volume.

次に、圧延された部材は、焼結炉を用いて850〜980℃の還元雰囲気で2次焼結を行い、銅合金層をさらに焼結した後、室温まで冷却する。2次焼結での炉内の還元雰囲気の温度は、銅合金の固相線温度を超え液相線温度よりも低くする。1次圧延にて銅合金層を緻密化しているため、銅合金層の内部の上記銅酸化膜(CuO)は、この2次焼結での還元雰囲気により還元されることはない。 Next, the rolled member is subjected to secondary sintering in a reducing atmosphere at 850 to 980 ° C. using a sintering furnace, further sintering the copper alloy layer, and then cooling to room temperature. The temperature of the reducing atmosphere in the furnace in the secondary sintering is higher than the solidus temperature of the copper alloy and lower than the liquidus temperature. Since the copper alloy layer is densified by the primary rolling, the copper oxide film (Cu 2 O) inside the copper alloy layer is not reduced by the reducing atmosphere in the secondary sintering.

この2次焼結にて、銅合金部4の結晶粒界42部に鉄リン酸化物が形成される。この生成過程は不明であるが、次のように考える。
2次焼結の昇温の過程で、部材の温度が、銅合金の固相線温度に超えてから最大温度に達するまでの間は、銅合金の一部が液相となる。この液相は、1次焼結後の多孔質銅合金層の表面であった部分で発生し、この液相に銅酸化膜の酸素成分が拡散する。次に、この銅合金の液相中のNi、P成分の一部が、鋼裏金層の表面に拡散し、鋼裏金層のFe成分が銅合金の液相中に拡散する。
この酸素成分およびFe成分が拡散した銅合金の液相は、1次圧延にて形成された銅合金の表面どうしの間の僅かな隙間を毛細間現象により流動し、摺動層の表面(摺動面)に近い付近にまで達するが、流動する際に、銅合金の液相中の酸素成分およびFe成分濃度が均一化すると考えられる。
By this secondary sintering, iron phosphorous oxide is formed at the crystal grain boundaries 42 of the copper alloy portion 4. Although the generation process is unknown, it is considered as follows.
In the process of raising the temperature of the secondary sintering, a part of the copper alloy is in a liquid phase until the temperature of the member reaches the maximum temperature after exceeding the solidus temperature of the copper alloy. This liquid phase is generated in the portion that was the surface of the porous copper alloy layer after the first sintering, and the oxygen component of the copper oxide film diffuses into this liquid phase. Next, a part of the Ni and P components in the liquid phase of the copper alloy diffuses to the surface of the steel back metal layer, and the Fe component of the steel back metal layer diffuses into the liquid phase of the copper alloy.
The liquid phase of the copper alloy in which the oxygen component and the Fe component are diffused flows through a slight gap between the surfaces of the copper alloy formed by the primary rolling by a capillary phenomenon, and the surface of the sliding layer (sliding layer). It is thought that the concentration of the oxygen component and the Fe component in the liquid phase of the copper alloy becomes uniform when the copper alloy flows.

部材が焼結温度(最大温度)に達する頃には、上記の1次圧延にて形成された銅合金どうしの間の僅かな隙間は、銅合金の液相により満たされるようになる。部材が焼結温度(最大温度)に達した後の冷却の過程で、Fe成分、酸素成分を含む銅合金の液相は、銅合金部4の結晶粒界42部で固化するが、その固化が完全に完了する前に液相中に鉄リン酸化物が晶出し、または、完全に固化した後に鉄リン酸化物が析出し、銅合金部4の結晶粒界42に鉄リン酸化物6が存在すると考えられる。
なお、摺動層の銅合金の結晶41中にも、僅かに鉄リン酸化物や鉄リン化合物が確認されることもある。
By the time the member reaches the sintering temperature (maximum temperature), the slight gap between the copper alloys formed by the primary rolling is filled with the liquid phase of the copper alloy. In the course of cooling after the member reaches the sintering temperature (maximum temperature), the liquid phase of the copper alloy containing the Fe component and the oxygen component solidifies at the crystal grain boundaries 42 of the copper alloy portion 4. Iron phosphate is crystallized in the liquid phase before the completion is complete, or iron phosphate is precipitated after complete solidification, and iron phosphate 6 is formed at the crystal grain boundaries 42 of the copper alloy part 4. It is thought to exist.
In addition, in the copper alloy crystal 41 of the sliding layer, iron phosphorus oxides and iron phosphorus compounds may be slightly observed.

本発明の摺動部材は、内燃機関や自動変速機に用いられる軸受に限定されないで、各種機械に用いられる軸受に適用できる。また、軸受の形状は、円筒形状や半円筒形状に限定されないで、例えば、軸部材の軸線方向負荷を支承する円環形状や半円環形状のスラスト軸受や、自動変速機のクラッチ部(ワンウェイクラッチ)に用いられる略コ字状断面を有する円環形状のエンドプレート等にも適用できる。   The sliding member of the present invention is not limited to a bearing used for an internal combustion engine or an automatic transmission, but can be applied to a bearing used for various machines. Further, the shape of the bearing is not limited to a cylindrical shape or a semi-cylindrical shape. The present invention can also be applied to an annular end plate having a substantially U-shaped cross section used for a clutch).

なお、本発明の摺動部材は、摺動層および/または裏金層の表面にSn、Bi、Pbまたは、これら金属を基とする合金からなる被覆層や、合成樹脂または合成樹脂を基とする被覆層を有してもよい。   The sliding member of the present invention is based on a coating layer made of Sn, Bi, Pb or an alloy based on these metals, a synthetic resin or a synthetic resin on the surface of the sliding layer and / or the back metal layer. It may have a coating layer.

Claims (5)

鋼裏金層と、
前記鋼裏金層上に設けられ、摺動面を有する摺動層と
を備えた摺動部材であって、
前記摺動層は、
1〜12質量%のSn、1〜15質量%のNi、0.01〜0.2質量%のPを含み、残部がCu及び不可避純物からなる銅合金部と
前記銅合金部の銅合金結晶の結晶粒界に存在する鉄リン酸化物と
を有する、摺動部材。
Steel back metal layer,
A sliding member provided on the steel backing metal layer and having a sliding layer having a sliding surface,
The sliding layer,
A copper alloy part containing 1 to 12% by mass of Sn, 1 to 15% by mass of Ni, and 0.01 to 0.2% by mass of P, with the balance being Cu and inevitable pure substances; A sliding member comprising: iron phosphate present at a crystal grain boundary of a crystal.
前記鉄リン酸化物におけるFeとPとOの質量比は、Fe1−X−Yであり、ここでX=0.1〜0.3、Y=0.3〜0.65である、請求項1に記載された摺動部材。 The mass ratio of Fe, P, and O in the iron phosphate is Fe 1- XYP X O Y , where X = 0.1 to 0.3 and Y = 0.3 to 0.65. The sliding member according to claim 1, wherein: 前記銅合金部の結晶粒界における鉄リン酸化物の数割合は、結晶粒界の長さ50μmあたり1個以上である、請求項1または請求項2に記載された摺動部材。   3. The sliding member according to claim 1, wherein a number ratio of iron phosphate in a crystal grain boundary of the copper alloy portion is one or more per 50 μm of the length of the crystal grain boundary. 4. 前記銅合金部は、0.01〜5質量%のAl、0.01〜5質量%のSi、0.5〜10質量%のFe、0.1〜5質量%のMn、0.1〜30質量%のZn、0.1〜5質量%のSb、0.1〜5質量%のIn、0.1〜5質量%のAg、0.5〜25質量%のPb、0.5〜20質量%のBiから選ばれる1種以上をさらに含む、請求項1から請求項3までのいずれか1項に記載された摺動部材。   The copper alloy part is composed of 0.01 to 5% by mass of Al, 0.01 to 5% by mass of Si, 0.5 to 10% by mass of Fe, 0.1 to 5% by mass of Mn, 0.1 to 5% by mass. 30% by mass of Zn, 0.1 to 5% by mass of Sb, 0.1 to 5% by mass of In, 0.1 to 5% by mass of Ag, 0.5 to 25% by mass of Pb, 0.5 to The sliding member according to any one of claims 1 to 3, further comprising at least one selected from Bi of 20% by mass. 前記摺動層は、Al、SiO、AlN、MoC、WC、FeP、FePのうちから選ばれる1種以上の硬質粒子を0.1〜10体積%をさらに含む、請求項1から請求項4までのいずれか1項に記載された摺動部材。 The sliding layer further includes 0.1 to 10% by volume of one or more hard particles selected from Al 2 O 3 , SiO 2 , AlN, Mo 2 C, WC, Fe 2 P, and Fe 3 P. The sliding member according to any one of claims 1 to 4, including:
JP2018175256A 2018-09-19 2018-09-19 Sliding member Active JP6794412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018175256A JP6794412B2 (en) 2018-09-19 2018-09-19 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018175256A JP6794412B2 (en) 2018-09-19 2018-09-19 Sliding member

Publications (2)

Publication Number Publication Date
JP2020045529A true JP2020045529A (en) 2020-03-26
JP6794412B2 JP6794412B2 (en) 2020-12-02

Family

ID=69900720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018175256A Active JP6794412B2 (en) 2018-09-19 2018-09-19 Sliding member

Country Status (1)

Country Link
JP (1) JP6794412B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2589723A (en) * 2019-09-26 2021-06-09 Daido Metal Co Sliding member
CN115261669A (en) * 2022-07-27 2022-11-01 宁波金田铜业(集团)股份有限公司 Tin-lead bronze bar and preparation method thereof
EP4289980A1 (en) * 2022-06-09 2023-12-13 Otto Fuchs - Kommanditgesellschaft - Brass alloy product and method for producing such a brass alloy product

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179963A (en) * 1993-12-22 1995-07-18 Daido Metal Co Ltd Copper-lead alloy bearing
JP2003269456A (en) * 2002-03-18 2003-09-25 Daido Metal Co Ltd Slide material
JP2005256868A (en) * 2004-03-09 2005-09-22 Toyota Motor Corp Slide member in pair
JP2006063398A (en) * 2004-08-27 2006-03-09 Mitsubishi Materials Corp BEARING MADE OF SINTERED Cu ALLOY FOR RECIRCULATION EXHAUST GAS FLOW RATE CONTROL VALVE OF EGR TYPE INTERNAL COMBUSTION ENGINE EXHIBITING HIGH STRENGTH AND EXHIBITING EXCELLENT WEAR RESISTANCE IN HIGH TEMPERATURE ENVIRONMENT
JP2013023707A (en) * 2011-07-18 2013-02-04 Fukuda Metal Foil & Powder Co Ltd Mixed powder for powder metallurgy
WO2015023002A1 (en) * 2013-08-12 2015-02-19 株式会社リケン Pressure ring
JP2016524652A (en) * 2013-05-08 2016-08-18 フェデラル−モーグル ヴィースバーデン ゲーエムベーハーFederal−Mogul Wiesbaden Gmbh Copper alloy, use of copper alloy, bearing having copper alloy, and method of manufacturing bearing made of copper alloy
WO2016147930A1 (en) * 2015-03-19 2016-09-22 Ntn株式会社 Composite sliding member and production process therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179963A (en) * 1993-12-22 1995-07-18 Daido Metal Co Ltd Copper-lead alloy bearing
JP2003269456A (en) * 2002-03-18 2003-09-25 Daido Metal Co Ltd Slide material
JP2005256868A (en) * 2004-03-09 2005-09-22 Toyota Motor Corp Slide member in pair
JP2006063398A (en) * 2004-08-27 2006-03-09 Mitsubishi Materials Corp BEARING MADE OF SINTERED Cu ALLOY FOR RECIRCULATION EXHAUST GAS FLOW RATE CONTROL VALVE OF EGR TYPE INTERNAL COMBUSTION ENGINE EXHIBITING HIGH STRENGTH AND EXHIBITING EXCELLENT WEAR RESISTANCE IN HIGH TEMPERATURE ENVIRONMENT
JP2013023707A (en) * 2011-07-18 2013-02-04 Fukuda Metal Foil & Powder Co Ltd Mixed powder for powder metallurgy
JP2016524652A (en) * 2013-05-08 2016-08-18 フェデラル−モーグル ヴィースバーデン ゲーエムベーハーFederal−Mogul Wiesbaden Gmbh Copper alloy, use of copper alloy, bearing having copper alloy, and method of manufacturing bearing made of copper alloy
WO2015023002A1 (en) * 2013-08-12 2015-02-19 株式会社リケン Pressure ring
WO2016147930A1 (en) * 2015-03-19 2016-09-22 Ntn株式会社 Composite sliding member and production process therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2589723A (en) * 2019-09-26 2021-06-09 Daido Metal Co Sliding member
GB2589723B (en) * 2019-09-26 2021-12-15 Daido Metal Co Sliding member
EP4289980A1 (en) * 2022-06-09 2023-12-13 Otto Fuchs - Kommanditgesellschaft - Brass alloy product and method for producing such a brass alloy product
CN115261669A (en) * 2022-07-27 2022-11-01 宁波金田铜业(集团)股份有限公司 Tin-lead bronze bar and preparation method thereof

Also Published As

Publication number Publication date
JP6794412B2 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
JP6794412B2 (en) Sliding member
JP5143827B2 (en) Method for producing Pb-free copper alloy sliding material
JP3373709B2 (en) Copper-based sliding bearing materials and sliding bearings for internal combustion engines
JP7111484B2 (en) sliding member
JP2008144253A (en) Copper-based slide material and its manufacturing method
JP2011179600A (en) Sliding bearing in turbocharger of internal combustion engine
JP2011174118A (en) Copper-based sliding material
JP5340355B2 (en) Copper-based sliding material
JP2733736B2 (en) Copper-lead alloy bearings
GB2383050A (en) Aluminium bearing alloy
GB2084186A (en) Alloy for antifriction bearing layers and process of forming an antifriction layer on a steel supporting strip
JP6794411B2 (en) Sliding member
KR102389755B1 (en) Sliding member
JP2733735B2 (en) Copper lead alloy bearing
US8906129B2 (en) Copper alloy for sliding materials
US3790352A (en) Sintered alloy having wear resistance at high temperature
WO2014157650A1 (en) Aluminum alloy, slide bearing, and slide bearing manufacturing method
WO2017130781A1 (en) Sliding contact point material and method for manufacturing same
JP7376998B2 (en) Alloys for sliding parts, sliding parts, internal combustion engines, and automobiles
JP6938086B2 (en) Sliding member
JP4349719B2 (en) Aluminum bronze sintered bearing material and manufacturing method thereof
JP2008144252A (en) Method for producing copper based sliding material, and copper based sliding material produced by using the method
JP2006307284A (en) Lead-free copper-based sliding material
JP2006037179A (en) Pb-FREE COPPER-ALLOY-BASED COMPOSITE SLIDING MATERIAL SUPERIOR IN SEIZURE RESISTANCE
EP3769957B1 (en) Sliding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201111

R150 Certificate of patent or registration of utility model

Ref document number: 6794412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250