WO2014157650A1 - Aluminum alloy, slide bearing, and slide bearing manufacturing method - Google Patents

Aluminum alloy, slide bearing, and slide bearing manufacturing method Download PDF

Info

Publication number
WO2014157650A1
WO2014157650A1 PCT/JP2014/059234 JP2014059234W WO2014157650A1 WO 2014157650 A1 WO2014157650 A1 WO 2014157650A1 JP 2014059234 W JP2014059234 W JP 2014059234W WO 2014157650 A1 WO2014157650 A1 WO 2014157650A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
aluminum alloy
phase
slide bearing
lining layer
Prior art date
Application number
PCT/JP2014/059234
Other languages
French (fr)
Japanese (ja)
Inventor
桂己 山本
Original Assignee
大豊工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013073324A external-priority patent/JP2014196813A/en
Priority claimed from JP2013073323A external-priority patent/JP2014196544A/en
Priority claimed from JP2013093604A external-priority patent/JP2014214827A/en
Application filed by 大豊工業株式会社 filed Critical 大豊工業株式会社
Publication of WO2014157650A1 publication Critical patent/WO2014157650A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium
    • F16C2204/22Alloys based on aluminium with tin as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/125Details of bearing layers, i.e. the lining

Definitions

  • the present invention relates to an aluminum alloy, a slide bearing, and a method of manufacturing the slide bearing.
  • Non-patent Document 1 Aluminum alloys are widely used as bearing alloys in sliding bearings of engines of automobiles and industrial machines. Although there are various properties required for bearings, improvements have been attempted in terms of both materials and structures in order to achieve the required properties.
  • the improvement of the material is, first, the improvement of the bearing alloy itself.
  • an aluminum alloy for a slide bearing for example, an A-Si-Sn-based alloy to which Si and Sn are added is known (Non-Patent Document 2).
  • Al alloys used in bearings Fe is generally treated as an impurity.
  • Patent Documents 1 to 4 disclose techniques of adding Fe to an aluminum alloy.
  • Patent Documents 5 to 7 and Non-patent Documents 3 to 4 there is known a technique of providing an overlay layer on a bearing alloy layer (lining layer) (Patent Documents 5 to 7 and Non-patent Documents 3 to 4).
  • Patent Document 8 As an improvement of the structure, there is known a technique of providing a groove on the sliding surface of the bearing (Patent Document 8 and Non-Patent Document 5).
  • the present invention provides a further improved aluminum alloy, slide bearing, and slide bearing.
  • One embodiment of the present invention contains 1 to 20% by mass of Sn, 0.5 to 12% by mass of Si, 0.05 to 1.5% by mass of Fe, and Al, and is dispersed in an Al matrix.
  • the present invention provides an aluminum alloy having Si particles and an Fe phase dispersed in an Al matrix.
  • the aluminum alloy may contain 0.3% by mass or more of Fe.
  • Al is taken in from the Al matrix, and the concentration of Al is highest at the interface between the Fe phase and the Al matrix, and may decrease toward the inside of the Fe phase.
  • the aluminum alloy may contain, as additive elements, at least one of 0.5% by mass or less of Cr and 3% by mass or less of Cu.
  • the additive element is taken in from the Al matrix, and the concentration of the additive element may be highest at the interface between the Fe phase and the Al matrix and may be lowered toward the inside of the Fe phase.
  • This aluminum alloy contains 8% by mass or less of at least one of Mg, Ag, and Zn, and 0.5% by mass or less of at least one of Zr, Mn, V, Sc, Li, and Ni. And, as an unavoidable impurity, Ti and B may be contained in a total amount of 0.5% by mass or less.
  • the aluminum alloy may contain 5% by mass or more of Sn.
  • the equivalent circular diameter of the Si particles may be 2 to 15 ⁇ m, and the number of Si particles having a equivalent circular diameter of 4 ⁇ m or more may be 20% or more.
  • the present invention provides a slide bearing having a lining layer formed of any of the above aluminum alloys and a back metal formed of an Fe-based material.
  • the surface of the lining layer in contact with the other axis may be cut.
  • the present invention has a lining layer formed of any of the above aluminum alloys or an Al—Sn-based alloy containing 1 to 20 mass% of Sn, and a back metal formed of an Fe-based material, An Al--Fe diffusion layer and a brazing surface of Sn are formed at the interface between the lining layer and the back metal, and the lining layer has a plurality of recesses formed in a dispersed manner in the bonding surface with the back metal.
  • the present invention provides a slide bearing in which a part of Sn present at the interface is buried in the recess.
  • the lining layer may contain 0.2 to 1.5% by mass or less of Fe, and may have a dispersed Fe phase, and the recess may be formed by mechanically scraping the surface of the lining layer. Good.
  • the recess may be formed by shot blasting.
  • the recess may be formed by laser processing.
  • the present invention provides an Al—Sn alloy containing 1 to 20% by mass of Sn and 0.2 to 1.5% by mass of Fe or 5 to 20% by mass of Sn, 0.5 to 12% by mass of Si, And roughening the surface of a rolled sheet of an Al—Sn—Si alloy containing 0.2 to 1.5% by mass of Fe to a roughness of 1 to 5 ⁇ m JIS (Ra) and roughening;
  • a method of manufacturing a slide bearing comprising the steps of pressing the rolled plate and the Fe-based metal backplate by rolling after the roughening, and annealing at 250 to 500 ° C. after the rolling. .
  • the present invention comprises a lining layer and an overlay layer formed on the lining layer, wherein the lining layer comprises 1 to 20% by mass of Sn and 0.5 to 12% by mass of Si.
  • the overlay layer contains 0.20% by mass or more and 2.0% by mass or less of Fe and Al, and the overlay layer contains at least one of MoS 2 , PTFE, graphite, WS 2 , h-BN, and Sb 2 O 3
  • a slide bearing comprising: a solid lubricant containing a seed; and a binder resin containing at least one of polyamideimide resin, polyimide resin, phenol resin, polyacetal resin, polyetheretherketone resin, polyphenylene sulfide resin, and epoxy resin Do.
  • the content of the solid lubricant in the overlay layer may be 30 to 70% by volume.
  • the overlay layer is made of SiC, Al 2 O 3 , TiN, AIN, CrO 2 , Si 3 N 4 , It may further include a hard substance containing at least one of ZrO 2 , Fe 3 P, Fe 2 O 3 , and FeO.
  • the content of the hard material in the overlay layer may be 0.1 to 5% by mass.
  • the lining layer may be formed by cold rolling a continuous cast plate.
  • the lining layer may further include at least one of (a) to (d).
  • the slide bearing may be formed of an Fe-based alloy and may further include a back metal press-contacted to the lining layer.
  • the surface of the lining layer in contact with the other axis may be cut.
  • the sketch figure of the pattern which shows Al concentration among the photographs of FIG. The sketch figure of the pattern which shows Fe concentration among the photographs of FIG.
  • the sketch figure of the pattern which shows Si concentration among the photographs of FIG. The schematic diagram of Al and Fe concentration profile of Fe phase.
  • the figure which shows the sweating phenomenon of aluminum alloy Typical sectional drawing of the brazing contact surface of aluminum alloy rolling board and a metal back. SEI of aluminum alloy rolled sheet with surface cut.
  • the aluminum alloy and slide bearing according to the following embodiments can be used for half bearings, bushings, thrust washers and the like. Of the embodiments described below, two or more may be used in combination.
  • FIG. 14 is a view illustrating the structure of the bearing 1 according to an embodiment.
  • the bearing 1 is a slide bearing and has a back metal 11 and a lining layer 12.
  • the back metal 11 is a layer for reinforcing the mechanical strength of the lining layer 12.
  • the back metal 11 is formed of, for example, steel.
  • the lining layer 12 is provided along the sliding surface (surface in contact with the shaft) of the bearing, and has characteristics as a bearing, for example, friction characteristics, seizure resistance, wear resistance, conformability, foreign matter burying ability It is a layer to give characteristics such as robustness) and corrosion resistance.
  • the lining layer 12 is formed of a bearing alloy.
  • the bearing alloy In order to prevent adhesion with the shaft, the bearing alloy is prevented from becoming so-called "twist" and a material system different from the shaft is used.
  • an Al-based alloy (aluminum alloy) is used as a bearing alloy in order to use as a bearing of a shaft formed of steel.
  • First Embodiment 1-1 Overview Grooves may be formed on the surface of the bearing to improve the characteristics of the sliding bearing. For example, when forming a groove by cutting, a cutting edge may be formed on the cutting tool. The constructed cutting edge may form an unintended shape on the bearing surface (i.e., the cutting shape may become unstable). The present embodiment provides a technology capable of obtaining desired characteristics while stabilizing the cutting shape.
  • the inventors of the present invention conducted intensive studies on an aluminum alloy containing Fe as an effective element, and obtained the following findings.
  • a boring machine equipped with a sintered diamond tool is used as a cutting tool, for example, for forming an arc-shaped groove (FIG. 1: reference to FIG. 9 of Patent Document 1).
  • the cutting edge is formed on the cutting tool, the targeted height can not be obtained, and a fine roughness occurs on the surface (FIG. 2).
  • Al-Sn-Si based slide bearings in which massive Si particles are dispersed are mounted, for example, on parts of commercial vehicles.
  • the inventors of the present application conducted research in order to suppress the harmful effect of Fe as an impurity and simultaneously obtain the effect of Si massive particles in an aluminum alloy for bearings, and obtained the following findings.
  • Embodiment 1A The aluminum alloy according to one embodiment includes 1 to 20% by mass of Sn, 0.5 to 12% by mass of Si, and 0.05 to 2.0% by mass of Fe, with the balance being Al and unavoidable impurities. is there.
  • Si particles and an Fe phase not containing Si are dispersed in the Al matrix.
  • the composition of Fe is preferably 1.5% by mass or less.
  • Sn imparts lubricity.
  • the content of Sn is less than 1% by mass, the lubricity is insufficient.
  • the content of Sn exceeds 20% by mass, mechanical properties deteriorate due to strength reduction and melting point depression due to the soft Sn phase, and as a result, the wear resistance and the like deteriorate.
  • the preferred Sn content is 2 to 18% by mass.
  • Si crystallizes as Al-Si eutectic during casting. Thereafter, by rolling the cast plate, the Si particles are finely dispersed in the aluminum matrix to impart wear resistance. That is, the Si particles do not need to be agglomerated by the method of Patent Document 1 and contribute to wear resistance if they are refined by rolling.
  • the size of the Si particles is not particularly limited, but is preferably 2 ⁇ m or more in average particle size and 12 ⁇ m or less in maximum particle size.
  • the preferred Si content is 2 to 7% by mass.
  • FIG. 3 is a diagram illustrating the structure of an aluminum alloy.
  • FIG. 3 shows the result of EPMA color mapping of the concentration of each element in a rolled sheet of Al-12% Sn-3% Si-2% Fe.
  • this rolling board was manufactured by the below-mentioned method of controlling cooling at the time of casting.
  • photographs in which color mapping is monochrome are shown.
  • the photograph of 3 rows 3 columns is shown by FIG. 3, but arrangement of each element is as Table 1.
  • FIGS. 4 are sketches of the density distribution in EPMA color mapping.
  • the Al matrix 20, the Fe phase 21 and the Si phase 22 are shown in FIGS. If these figures are described by adding the information of the original color mapping, in FIG. 4, the Al concentration of the Al matrix 20 is in the highest state (red).
  • the Fe concentration of the Fe phase 21 is distributed from the highest concentration (red) to the low concentration (blue), and extends along the grain boundaries of the Al matrix.
  • Al incorporated into the Fe phase 21 is distributed from medium concentration (yellow) to low concentration (blue).
  • the same pattern as that of the Si phase 22 shown in FIG. 6 is also recognized in FIG. 4, and it is understood from this pattern that the Si phase 22 is an Al—Si eutectic. Because the patterns in FIGS. 5 and 6 do not match, the crystallization of the Al—Si eutectic and the Fe phase 21 occurs at different positions.
  • FIG. 7 is a graph schematically showing changes in Fe concentration and Al concentration of the Fe phase 21a of FIG. 5 in the horizontal direction of the drawing. 4 to 7 and an assumed Al—Fe pseudo binary phase diagram of an Al—Sn—Si—Fe based aluminum alloy.
  • the composition of the aluminum alloy of the present invention is a hypoeutectic composition on the Al rich side with respect to the Al—Fe eutectic point. Therefore, the Fe phase extends along the grain boundaries after Al crystal solidification. Also, after aluminum is crystallized, a concentration profile as shown in FIG. 7 is formed because Fe takes in Sn, Al and the like.
  • the Fe phase is a region where Fe is detected outside the region (Al matrix 20 shown in FIGS. 4 to 6) at which the Al concentration is highest in EPMA analysis.
  • the Fe phase incorporating Al will be described based on the phase diagram of the Fe-Al binary system.
  • the Fe side 21P is irregular with the Fe rich side bordering on about 14 mass% of Al. It is a solid solution, and the Al rich side is an ordered solid solution. Furthermore, at 600 ° C. or less, an Fe 3 Al regular lattice is formed. That is, the basic form of the Fe phase is a solid solution.
  • precipitation of Fe occurs because there is no solid solubility of Fe in Al.
  • the center of the Fe phase has a composition close to that of pure iron with a low concentration of Al.
  • the detoxification of Fe is due to the Fe phase having the crystal structure as described above. Therefore, bearing performance does not deteriorate even if it contains 1.5% by mass of Fe exceeding the conventional Fe impurity level. Rather, better seizure resistance can be achieved than conventional aluminum alloys. However, if the Fe content exceeds 1.5%, rolling of the aluminum plate becomes difficult.
  • the aluminum alloy according to the present embodiment may contain 0.5 mass% or less of Cr and 3 mass% or less of at least one additive element of Cu.
  • Cr forms an Al-Cr based intermetallic compound to improve the strength of the aluminum matrix.
  • the additive element is taken into the Fe phase, and by enhancing the hardness of the Fe phase, the effect of removing the component cutting edge is enhanced. If the content of Cr exceeds 0.5%, it segregates in the aluminum matrix to cause a reduction in the rollability and the like, so the content of Cr is preferably less than 0.5% by mass.
  • Cu strengthens the matrix of the aluminum alloy and also improves the heat resistance. Cu is also incorporated into the Fe phase to increase its hardness. However, if the addition amount of Cu exceeds 3% by mass, the rolling property decreases to cause cracking or the like during rolling, so the content of Cu is preferably 3% by mass or less.
  • the Fe phase when the additive elements are Cu and Cr is a Fe—Cu—Cr solid solution phase in which Al, Cu, and Cr form a solid solution in Fe crystals.
  • This phase is lower in hardness than Fe 3 Al and Fe—Al—Si based intermetallic compounds, but the addition of Cu and Cr increases the toughness and hardness.
  • the Fe-Cu-Cr phase is particularly excellent in the effect of removing the component edge formed by cutting Al. Specifically, since the chips of Al can be finely discharged, it is possible to avoid the defective cutting surface due to the continuous chips.
  • the hard phase exists on the surface to be cut of the aluminum alloy, pores and defects occur when the cutting tool breaks the hard phase.
  • the Fe--Cu--Cr phase is excellent in toughness, it is possible to prevent pores and defects.
  • the aluminum alloy has a total content of at least one of Mg, Ag and Zn of at most 8% by mass, and a total content of at least one of Zr, Mn, V, Sc, Li and Ni of at most 0.5% by mass , May be included.
  • Mg, Ag and Zn provide solid solution strengthening. However, if the total content of these components exceeds 8% by mass, the performance is lowered due to the decrease in toughness due to the formation and precipitation of intermetallic compounds and the crystallization of additional elements. Therefore, the content of Mg, Ag, and Zn is preferably 8% by mass or less. Zr, Mn, V, Sc, Li and Ni provide precipitation strengthening.
  • the content thereof is preferably 0.5% by mass or less.
  • additional elements Mg, Ag, Zn, Zr, Mn, V, Sc, Li, and Ni are referred to as "additional elements".
  • Mn, Ni, Zr, and V are widely used as alloy elements of Fe, but due to their small contents, only trace amounts or less can be taken into the Fe phase.
  • the aluminum alloy may contain a small amount of impurities such as Pb, In, or Bi, which are inevitably produced from the metal or scrap raw material, in addition to the above-described basic components and additive elements.
  • impurities such as Pb, In, or Bi
  • Ti and B may be used as a refining agent for Al crystal grains, but in the aluminum alloy of this embodiment, fine crystal grains are not related to Fe phase formation, so the total amount is 0.5 mass% or less Ti and B are acceptable as impurities.
  • a molten aluminum alloy having the above composition is poured into a continuous casting mold to form a continuous cast plate having a thickness of 3 to 20 mm.
  • a Si-free Fe phase can be formed by cooling the casting plate solidified from the molten metal temperature in the mold at a temperature range of 850 to 300 ° C. at a speed of 2000 to 5000 ° C./min.
  • by slowing the cooling rate it is possible to increase the uptake amount of Al and the additive element.
  • a sliding bearing can be obtained by pressure-bonding this aluminum alloy with a low carbon steel (an example of an Fe-based alloy) such as SPCC or SPCH, and further forming it.
  • Fe is dispersed as an Fe phase in an Al matrix to stabilize cutting.
  • the aluminum alloy is cut with a cutting tool, the aluminum adheres to the surface of the cutting tool to form a component cutting edge, so that the cutting roughness of the slide bearing surface becomes rough.
  • hardness such as Fe phase
  • cutting tools such as high speed steel, diamond tools etc (hardness Hv 1500 or higher)> Si particles (hardness about Hv 1000)> Fe-Al based intermetallic compound (hardness Hv 700 or higher)> Fe phase
  • Si particles and the like may have a small difference from the hardness of the cutting tool material, so that the cutting tool may be brazed.
  • the sliding roughness of the sliding bearing becomes rough.
  • Embodiment 1B An aluminum alloy according to another embodiment contains 1 to 20% by mass of Sn, 0.5 to 12% by mass of Si, and 0.05 to 1.5% by mass of Fe, with the balance being Al and unavoidable impurities. It is.
  • the aluminum alloy may contain additional elements and / or additional elements.
  • Si particles and an Fe phase are dispersed in the Al matrix.
  • Si particles having a major axis dimension of 5 to 40 ⁇ m are present 5 or more per 3.56 ⁇ 10 ⁇ 2 mm 2 .
  • This aluminum alloy is obtained by annealing at 300 to 550 ° C. before pressure contact with the back metal.
  • By roughening the Si particles it is possible to smooth the unevenness of the mating shaft, in particular, the surface of the casting shaft.
  • the Si particles can also be coarsened by similarly annealing at 300 to 550 ° C. for solid bearings not in pressure contact with the backing metal.
  • the Fe phase and the additive and / or additional elements are as described above.
  • the coarsened Si particles have a circle equivalent diameter of 2 to 15 ⁇ m, and Si particles having a circle equivalent diameter of 4 ⁇ m or more be 20% or more in number ratio.
  • FIG. 8 is a view showing the Fe composition dependency of the surface roughness.
  • an aluminum alloy having a composition of Al-3 to 15% by mass Sn-2 to 7% by mass Si-0.1 to 5% by mass Fe was used.
  • An aluminum alloy of this composition was cast under the conditions described above.
  • the surface roughness (Rz JIS, Ra, and Rmax) was measured when the surface of the rolled plate (as roll) was cut with a (lathe) tool under a cutting condition of 1 m / s. From this figure, it can be seen that the surface roughness decreases as the amount of Fe increases, despite the fact that the tool and cutting conditions are constant.
  • Tables 2 and 3 show the compositions and bearing performances of Experimental Examples 1 to 12.
  • experimental examples 1 to 8 will be described as examples, and experimental examples 9 to 12 will be described as comparative examples.
  • An aluminum alloy having these compositions was continuously cast into a 15 mm thick plate with controlled cooling rate as described above.
  • casting was performed at a normal slow cooling rate without controlling the cooling rate in the temperature range of 850 to 300 ° C. as described above.
  • the obtained cast thin sheet was cold-rolled and then pressed against a back metal (SPCC steel plate) to obtain a bimetal.
  • SPCC steel plate back metal
  • Fatigue resistance test Tester Reciprocating load tester Rotational speed: 2000 to 3000 r. p. m Test temperature (bearing back surface temperature): 160 ° C
  • Counterpart material S55C Induction hardened Lubricant: CF-4 10W-30
  • Seizure resistance test Tester Static load tester Rotational speed: 1300 to 8000 r. p. m Test temperature (refueling temperature): 160 to 180 ° C Load: 5MPa gradually increase Counterpart material: S55C Induction hardening Lubricant: SN 0W-20
  • Abrasion resistance test Tester Load abrasion tester Rotational speed: 0 to 1000 r. p. m Test temperature (refueling temperature): 50 to 80 ° C
  • Counterpart material S55C Induction hardened Lubricant: SN 0W-20
  • “number” is the number of Si particles having a major axis dimension of 5 to 40 ⁇ m per 3.56 ⁇ 10 ⁇ 2 mm 2 .
  • the unit of average particle size is ⁇ m.
  • the unit of fatigue surface pressure and seizing surface pressure is MPa.
  • the unit of the amount of wear is ⁇ m.
  • Example 2 and Comparative Example 9 have almost the same Si and Sn compositions, the former is superior in the bearing performance to the latter despite the large amount of Fe. Similar relationships are observed for Example 1 and Comparative Example 10 and for Example 5 and Comparative Example 11. In addition, although the other examples contain high concentration of Fe, the bearing performance is good.
  • Table 4 shows the compositions and bearing performances of Experimental Examples 13-15.
  • Aluminum alloys having these compositions were cast and rolled as in Example 1. Annealed at 530 ° C. for 6 hours between casting and rolling. After annealing, the aluminum alloy was pressed against the back plate (SPCC steel plate) in the middle of rolling.
  • Table 4 shows the results of measuring the bearing performance in the same manner as Example 1.
  • Table 5 shows the surface roughness after the cutting test. The cutting test was conducted under the condition of 1 m / sec using a cutting tool.
  • "dimension” indicates a circle equivalent diameter [ ⁇ m].
  • “Percentage” is the number proportion of particles having a circle equivalent diameter of 4 ⁇ m or more in the whole.
  • Experimental Examples 13 to 15 in Table 4 five or more Si particles were present per 3.56 ⁇ 10 ⁇ 2 mm 2 .
  • Fe is present as an Fe phase at the grain boundaries of the aluminum crystal, and is rendered harmless. Therefore, the sliding characteristics are improved even if the composition is the same as that of the conventional alloy. Further, even an aluminum alloy containing 0.3% or more of Fe far exceeding the conventional impurity content level has good sliding characteristics. Al incorporated into the Fe phase strengthens the Fe phase and improves the sliding characteristics.
  • the bearing performance is excellent in spite of containing high concentration of Fe. Furthermore, the finish roughness with high accuracy can be obtained.
  • FIG. 9 is a diagram showing the perspiration phenomenon in an Al—Sn alloy.
  • the inventors of the present invention have found that when the Al—Sn alloy rolled sheet is heated to the annealing temperature, sweating of the Sn phase occurs.
  • “sweat” of the Sn phase refers to a phenomenon in which Sn having a low melting point melts from the alloy phase of the matrix and spouts (spills out) on the surface of the alloy plate.
  • Sn particles exist on the surface of the Al—Sn alloy rolled sheet. The diameter of the Sn particles is about 100 to 200 ⁇ m.
  • the portion (most part on the upper side of the figure) other than the Al—Sn alloy rolled sheet and Sn particles is in a state where there is no metal layer or the like.
  • the Sn particles formed on the surface are, for example, several to several hundreds per 10 mm in length of the Al—Sn alloy rolled sheet.
  • the inventors of the present application have conceived that the adhesion between the back metal and the alloy layer can be improved by suppressing the stretching of molten Sn at the interface between the back metal and the alloy layer. Specifically, it was conceived that, by forming a recess in an aluminum alloy rolled sheet and storing the molten Sn in the recess, it is possible to suppress the stretching of the molten Sn and reduce the contact area between Fe and Sn.
  • the object of the present embodiment is to increase the strength of the bimetal in a slide bearing produced by press-contacting and annealing an Al—Sn-based or Al—Sn—Si-based alloy rolled sheet and an Fe-based back metal.
  • the slide bearing according to the present embodiment includes an Fe-based back metal and an alloy layer pressed against the back metal.
  • the alloy layer is formed of an Al—Sn-based alloy containing 1 to 20% by mass of Sn, or an Al—Sn—Si-based alloy containing 5 to 20% by mass of Sn and 0.5 to 12% by mass of Si. ing.
  • the alloy layer contains 0.2 to 1.5% by mass of Fe.
  • the surface of the rolled sheet (pressure contact planned surface) is roughened to a roughness of 1 to 5 ⁇ m JIS (Ra). Roughening is performed by mechanically scraping the surface.
  • the rolled sheet and back plate of this alloy are cold rolled. After cold rolling, the alloy layer and the back metal are joined by annealing at 250 to 500.degree.
  • a pressure contact surface including an Al—Fe diffusion layer and a solder contact surface of Sn is formed between the alloy layer and the back metal.
  • a large number of recesses are dispersedly formed on the bonding surface of the rolled sheet, and a part of Sn present in the brazing surface is buried in the recesses.
  • Sn imparts lubricity. If the content of Sn is less than 1% by mass in the Al--Sn system and less than 5% by mass in the Al--Sn--Si system, the seizure resistance decreases. On the other hand, when the content of Sn exceeds 20% by mass, mechanical properties deteriorate due to strength reduction and melting point depression due to the soft Sn phase, and as a result, the wear resistance and the like are deteriorated.
  • the content of Sn is preferably 2 to 18% by mass.
  • the Si is as described in the first embodiment.
  • the aluminum alloy according to the present embodiment is an Al—Sn-based or Al—Sn—Si-based alloy used industrially.
  • the aluminum alloy may contain known additive elements in addition to Sn and Si. Although the added elements can improve the bearing performance, the occurrence of Sn sweating is a phenomenon unique to Al-Sn and Al-Sn-Si alloys.
  • the additive element may include at least one of Cr and Cu, and the additional element may include at least one of Mg, Ag, Zn, Zr, Mn, V, Sc, Li, and Ni.
  • the aluminum alloy may contain a small amount of impurities such as Pb, In, and Bi. These elements are as described in the first embodiment.
  • the thickness of the aluminum alloy rolled sheet is not particularly limited, and for example, one having a thickness of 50 ⁇ m to 2 mm can be used.
  • a low carbon steel plate such as SPCC can be used as the backing steel plate.
  • the thickness of the backing steel plate is not particularly limited, and for example, one having a thickness of 0.5 mm to 4 mm can be used.
  • a rolled plate of an aluminum alloy (Al-Sn alloy or Al-Sn-Si alloy) is broadly classified by pressure welding from the viewpoint of welding, and Al-Fe diffusion bonding and Sn brazing from the welding phenomenon. It is joined to the steel back metal by
  • FIG. 10 is a view for explaining the bonding of the back metal and the rolled alloy sheet according to the present embodiment.
  • Back metal 30 is formed of steel.
  • minute recesses (minute irregularities) 28a and recesses 28b are formed on the surface of the aluminum alloy rolling plate 28.
  • the minute recesses 28 a are formed by a wire brush or the like.
  • the recess 28 b is formed by shot blasting or laser processing.
  • a plurality of recesses 28 b are formed on the surface of the aluminum alloy rolled plate 28. They are formed apart from one another, ie distributed.
  • An Sn layer 40 is formed at the interface between the aluminum alloy rolled plate 28 and the back metal 30.
  • the Sn layer 40 is a layer in which Sn in the aluminum alloy rolled sheet melts and exudes to the interface.
  • the aluminum alloy rolled plate 28 and the back metal 30 are brazed by the Sn layer 40.
  • a part of the lower part (the aluminum alloy rolling plate 28 side) of the Sn layer 40 is buried in the recess 28 b. Therefore, the reaction with the back metal 30 hardly occurs, and the formation of the Fe--Sn intermetallic compound is suppressed. In addition, the mechanism of burying will be described later.
  • the recesses 28b When forming the recesses 28b by shot blasting, it is preferable to project, for example, particles of about 0.3 to 2.5 mm in diameter downward from above the aluminum alloy rolled sheet at a speed of 10 to 200 m / sec.
  • a material having a hardness higher than that of aluminum for example, a cut wire steel wire, SiC particles or the like is used.
  • the recess 28b is formed using a laser, for example, a pulse laser (output 5 to 100 W) such as a Yb fiber laser is used. It is preferable to form a recess having a depth of about 3 to 15 ⁇ m by scanning a laser beam on the aluminum alloy rolling plate.
  • a pulse laser output 5 to 100 W
  • Yb fiber laser Yb fiber laser
  • the recess according to the present embodiment is not continuous as the recess formed by the cutting tool. It is easy to find a place where Sn is not buried in continuous recesses. If there is a place where Sn is not buried, it causes the reduction of the pressure contact strength.
  • the recesses of the present invention are dispersed, but when observed microscopically, there are a large number of sweating positions. For example, when grid particles are made to collide with the entire surface of a rolling plate by shot blasting according to a usual method, A recess is formed.
  • a roughened surface of 1 to 5 ⁇ m JIS (Ra) is formed by machining the surface of the aluminum alloy rolled sheet (pressure contact surface with the steel back metal).
  • the roughness of the aluminum alloy rolled sheet is measured in the width direction of the rolled sheet.
  • the machining according to the present invention is performed, for example, by cutting with a cutting tool or grinding with abrasive grains.
  • the fine convex portion at the end of the roughened surface is crushed by the surface of the steel material during roll pressure welding, so Fe-Al diffusion is likely to occur in the next annealing step (hereinafter this effect is referred to as “diffusion promotion effect” Called).
  • the Fe phase is scraped off to realize the Sn burying effect (details will be described later). If the roughness formed by this machining is less than 0.5 ⁇ m, the diffusion promoting effect is insufficient, and furthermore, the Sn burying effect is also insufficient because the Fe phase is not sufficiently scraped off. On the other hand, when the roughness exceeds 5 ⁇ m, the groove on the roughened surface becomes too deep, so the diffusion promoting effect becomes insufficient.
  • the aluminum alloy rolled sheet is usually wound into a coil, it is preferable to carry out machining between a coiler for winding metal to a coil and a final rolling roll stand.
  • the abrasive grains adhere to the surfaces of the wheels and the sand belts, and are brought into contact with the surface of the metal band for polishing.
  • cutting is performed with a hob cutter.
  • the metal band coil may be once wound and then machined while being rewound.
  • FIG. 11 is a SEI (Secondary Electron Image) image of a surface obtained by cutting the surface of the Al—Sn—Si based slide bearing alloy rolled plate on which the Fe phase is formed in the vertical direction of the drawing.
  • linear cutting marks run vertically.
  • cutting marks are intermittently connected to the surrounding aluminum matrix, and the white and black patterns are mixed with spots. The following can be seen from these linear cutting marks and mottled Fe phase.
  • A The soft aluminum matrix is scraped off linearly by a tool.
  • the hard Fe phase is divided into small fragments and destroyed.
  • C The entire Fe phase is not scraped off by the tool, and there is a remaining portion.
  • the pressure welding of the aluminum alloy rolled sheet and the steel back metal is performed at a rolling reduction of 30 to 90%. Thereafter, annealing is performed at 250 to 500 ° C., preferably 300 to 480 ° C.
  • the distribution and control method of the Fe phase in the aluminum alloy are as described in the first embodiment.
  • the temperature of the cast sheet solidified from the molten metal temperature in the mold is 850 to 300 ° C
  • the Fe phase can be formed by cooling at a rate of 2000 to 5000.degree. C./min. In addition, by slowing the cooling rate, it is possible to increase the uptake amount of Al and the additive element.
  • An intermediate layer made of an aluminum alloy or pure aluminum may be provided between the aluminum alloy rolled sheet and the back metal.
  • the adhesion between the rolled plate and the intermediate layer is diffusion bonding and brazing of Sn, and the connection between the intermediate layer and the back metal is also diffusion bonding.
  • the recesses formed in the rolled plate can bury molten Sn.
  • a recess may be formed on at least the surface on the back metal side of the intermediate layer to bury the Sn of the intermediate layer in order to avoid the decrease in the adhesion between the intermediate layer and the back metal.
  • FIG. 12 is a schematic view showing the bonding surface of the aluminum alloy rolled plate 28 and the back metal 30. As shown in FIG. Here, a state of being annealed after pressure contact is shown. In addition to the phases shown in FIGS. 4 to 6, the Sn phase 25, the recess 21b and the Sn stream 16 are shown.
  • the concave portion 21 b black portion
  • the Sn stream 16 is obtained by drawing a Sn phase ejected from the matrix through a minute gap between the aluminum alloy rolled plate 28 and the back metal 30.
  • FIG. 13 is a schematic view for explaining the burying of molten Sn.
  • Sn particles 25P are spouted by perspiration.
  • the depth of the recess 21b is, for example, 5 to 30 ⁇ m, and the diameter (D) is 1 to 50 ⁇ m.
  • the Fe phase is present in large numbers on the surface of the alloy layer because the spacing is from sub- ⁇ m to several ⁇ m.
  • the shortest distance D Sn between the recess 21 b and the portion where the spout of Sn occurs is also from sub ⁇ m to several ⁇ m. Therefore, Sn flowing from the spouting point is buried in the recess 21 b with high probability.
  • the spread of Sn can be suppressed according to the filling rate.
  • the proportion of Al—Fe diffusion bonding in bimetal bonding increases.
  • the Sn particles 25P may be buried by the recess 28b (FIG. 10) without using the Fe phase. Since a large number of recesses 28 b are formed all over the aluminum alloy rolled plate, Sn particles 25 P can be buried.
  • shot blasting mainly a soft aluminum matrix is depressed to form a recess, and in the case of a laser, a recess is formed by evaporation of the substance regardless of the structure and composition of aluminum, but the effect of burying is Is almost the same.
  • the rolled sheet was cut into a length that can be rolled by a laboratory rolling mill, and the cut surface was superimposed on a steel back metal (SPCC, 3 mm thick) and pressed by rolling.
  • the obtained bimetallic specimen was cut into 100 mm and annealed at 360 ° C.
  • Embodiment 2B About the aluminum alloy rolling plate used by Experimental example 17, the shot blasting was performed on the conditions of 50 m / sec in projection speed of the SiC projection material with an average particle diameter of 50 micrometers. Using this, a bimetallic test material was produced, and this was taken as Experimental Example 18. When a bending test was conducted on Experimental Example 18, the same results as in Experimental Example 16 were obtained.
  • a bimetallic slide bearing having high strength can be obtained.
  • This bearing is used, for example, in a car.
  • the reliability is improved, and furthermore, quality control and inspection in a bearing manufacturing plant can be simplified.
  • Patent Document 5 Surface treatment of aluminum alloy
  • the surface of the aluminum alloy is subjected to treatments such as alkaline etching, acid pickling and zinc phosphate conversion treatment or baking of the overlay layer without surface treatment. There is.
  • it is better to apply a surface treatment but there is a problem that the surface treatment increases the cost.
  • a metal-based overlay layer having good conformability tends to have a large amount of wear, and such a tendency is the same in the overlay layer.
  • the characteristics of the conformability and wear of the overlay layer are that, originally, conformability is realized only by the cleavage wear of the solid lubricant, and it is ideal that only the solid lubricant wears, but the resin that retains the solid lubricant The point is that it also wears out. That is, although polyamide imide resin etc. are excellent in abrasion resistance, abrasion occurs nevertheless.
  • the overlay layer improves the fatigue resistance of the underlying aluminum alloy (Non-patent Document 3, Section 4.3 and Non-patent Document 2, Section 3.1 (2)). That is, the aluminum alloy with the overlay layer is less susceptible to cracking of the alloy itself (lining) than the aluminum alloy without the overlay layer.
  • the overlay layer is considered to be effective for an aluminum alloy of a wide range of compositions shown in Patent Document 5.
  • the properties of the aluminum alloy are affected by its composition, but the effects of the overlay layer such as seizure resistance and fatigue resistance improvement do not become better or worse with the specific aluminum alloy composition.
  • Binder resin Although polyamide imide resin is the most excellent in performance, other resins can be used according to application requirements including engine metal.
  • the present inventors investigated the bearing performance of a polyamideimide resin to which a coupling agent was added in order to enhance the adhesion between the resin and the aluminum alloy. As a result, a certain degree of adhesion improvement effect was recognized. On the other hand, without the addition of the coupling agent and the aluminum alloy surface treatment, the overlay layer is easily worn away during the bearing performance test.
  • the present embodiment provides a technique for improving the adhesion between an Al—Sn—Si alloy and a resin.
  • the slide bearing according to one embodiment has a back metal, a lining layer formed on the back metal, and an overlay layer formed on the lining layer.
  • the lining layer is formed of an aluminum alloy (specifically, an Al-Sn-Si based alloy).
  • the lining layer contains 1 to 20% by mass of Sn, 0.5 to 12% by mass of Si, and more than 0.20% by mass and 2.0% by mass or less of Fe, with the balance being Al and unavoidable impurities It is.
  • the additive elements, additional elements, and unavoidable impurities of the aluminum alloy are as described in the first embodiment.
  • Iron is less oxidizable than aluminum and has high surface activity with the resin. Therefore, the adhesion of the resin to the aluminum alloy can be enhanced by adding a large amount of Fe (for example, an amount exceeding 0.20% by mass) to the conventional impurity level to the Al-Sn-Si alloy.
  • Fe When Fe is dissolved in the Al matrix, its inherent properties do not appear. However, Fe hardly dissolves in Al. Fe is present as fine particles in the Al matrix to enhance the activity with the resin.
  • the overlay layer is partially worn away, the mating shaft and the lining layer will be in direct contact.
  • the countershaft is steel, if the amount of Fe in the lining layer is too large, the possibility of sliding of the same material as the countershaft is increased. Also, unlike Sn and Si, Fe does not improve bearing characteristics. From the above viewpoint, the content of Fe is preferably 2.0% by mass or less.
  • the overlay layer comprises a solid lubricant and a binder resin.
  • the solid lubricant contains at least one of MoS 2 , PTFE, graphite, WS 2 , h-BN, and Sb 2 O 3 .
  • the binder resin contains at least one of polyamideimide resin, polyimide resin, phenol resin, polyacetal resin, polyetheretherketone resin, polyphenylene sulfide resin, and epoxy resin.
  • the overlay layer is conventionally known, and as the resin, at least one of polyamideimide resin, polyimide resin, phenol resin, polyacetal resin, polyetheretherketone resin, polyphenylene sulfide resin and epoxy resin can be used. .
  • polyamide imide particularly aromatic polyamide imide, is preferable for the overlay layer.
  • the solid lubricant at least one of MoS 2 , PTFE, graphite, WS 2 , h-BN and Sb 2 O 3 can be used. Among these, MoS 2 is most preferable.
  • the content of solid lubricant in the overlay layer is 30 to 70% by volume.
  • the thickness of the overlay layer is, for example, 1 to 50 ⁇ m.
  • the overlay layer may include hard particles in addition to the solid lubricant.
  • the hard particles are at least one selected from SiC, Al 2 O 3 , TiN, AIN, CrO 2 , Si 3 N 4 , ZrO 2 , Fe 3 P, Fe 2 O 3 and FeO.
  • the content of hard substance in the overlay layer is preferably 0.1 to 5% by mass, and the average particle size of the solid lubricant is preferably 2 ⁇ m. It is preferable that the film thickness of the overlay layer which has the said composition is 10 micrometers.
  • bearing characteristics can be improved as follows.
  • Conformability and seizure resistance The binder resin of the overlay layer adheres to the lining and becomes difficult to peel off. Therefore, the conformability by the solid lubricant is exhibited sufficiently and quickly. Therefore, fluid lubrication is realized quickly and seizure resistance is improved.
  • Wear resistance Abrasion due to peeling of the overlay layer is less likely to occur. Also, even if peeling occurs, the overlay layer does not peel off as large pieces of several mm 2 in area. For this reason, a large peeling piece does not intrude into the sliding surface to cause seizing.
  • Fatigue resistance Although Fe does not directly improve the fatigue resistance of the Al-Sn-Si alloy, stress concentration on the aluminum alloy exposed by the peeling of the overlay layer is avoided to cause fatigue.
  • Test material (a) A plate obtained by degreasing the surface of a rolled aluminium alloy plate manufactured by a usual method.
  • B A plate obtained by degreasing the surface of a low carbon steel plate used for the backing metal of a conventional bimetal slide bearing.
  • Resin A polyamideimide resin was applied to each of the test materials 1 (a) and (b) and baked at 180 ° C. to form a resin coating film having a thickness of about 6 ⁇ m.
  • Test method The resin coating film was scratched with a cutter knife and a grid pattern was attached.
  • Evaluation and Results Minute peeling occurred on both sides of the linear wedge of the test material 1 (a), and it was found from this result that the adhesion of resin is lower than that of iron.
  • Bearing Performance Tables 6 and 7 show the compositions and bearing performances of Experimental Examples 19-30.
  • An aluminum alloy having these compositions was continuously cast into a 15 mm thick plate and cold rolled into a thin plate. After cold rolling, the aluminum alloy was crimped to a backing metal (SPCC steel plate) to form a bimetal. These bimetallic materials were processed into bearings.
  • SPCC steel plate backing metal
  • Polyamideimide resin manufactured by Hitachi Chemical Co., Ltd.
  • MoS 2 powder were prepared as raw materials for the overlay layer. These raw materials were blended so that MoS 2 was 40% by volume, and the remainder was a polyamideimide resin.
  • the raw material was applied to a lining layer (degreased but not subjected to any surface treatment such as pickling) and then baked at 180 ° C. Thus, an overlay layer of about 6 ⁇ m in thickness was deposited.
  • the sliding characteristics of the aluminum alloy rolled sheet with overlay layer were measured by the following method.
  • Fatigue resistance test Tester Reciprocating load tester Rotational speed: 2000 to 3000 r. p. m Test temperature (bearing back surface temperature): 160 ° C
  • Counterpart material S55C Induction hardened Lubricant: CF-4 10W-30
  • Seizure resistance test Tester Static load tester Rotational speed: 1300 to 8000 r. p. m Test temperature (refueling temperature): 160 to 180 ° C Load: 5MPa gradually increase Counterpart material: S55C Induction hardening Lubricant: SN 0W-20

Abstract

In the present invention, an aluminum alloy contains 1-20 % by mass of Sn, 0.5-12 % by mass of Si, 0.05-1.5 % by mass of Fe, and Al. The aluminum alloy has Si particles dispersed in an Al matrix, and an Fe phase dispersed in the Al matrix.

Description

アルミニウム合金、すべり軸受、およびすべり軸受の製造方法Aluminum alloy, slide bearing, and method of manufacturing slide bearing
 本発明は、アルミニウム合金、すべり軸受、およびすべり軸受の製造方法に関する。 The present invention relates to an aluminum alloy, a slide bearing, and a method of manufacturing the slide bearing.
 自動車および産業用機械のエンジンのすべり軸受においては、アルミニウム合金が軸受合金として広く用いられている(非特許文献1)。軸受として要求される特性には種々のものがあるが、要求される特性を達成するため、材料および構造の双方の観点で改良が試みられている。 Aluminum alloys are widely used as bearing alloys in sliding bearings of engines of automobiles and industrial machines (Non-patent Document 1). Although there are various properties required for bearings, improvements have been attempted in terms of both materials and structures in order to achieve the required properties.
 材料の改良としては、第1に、軸受合金そのものの改良が挙げられる。すべり軸受用のアルミニウム合金としては、例えば、SiおよびSnを添加したA-Si-Sn系合金が知られている(非特許文献2)。軸受で用いられるアルミニウム合金において、一般にFeは不純物として扱われている。しかし、特許文献1~4は、アルミニウム合金にFeを添加する技術を開示している。 The improvement of the material is, first, the improvement of the bearing alloy itself. As an aluminum alloy for a slide bearing, for example, an A-Si-Sn-based alloy to which Si and Sn are added is known (Non-Patent Document 2). In aluminum alloys used in bearings, Fe is generally treated as an impurity. However, Patent Documents 1 to 4 disclose techniques of adding Fe to an aluminum alloy.
 材料の改良としては、第2に、軸受合金層(ライニング層)の上にオーバーレイ層を設ける技術が知られている(特許文献5~7および非特許文献3~4)。 Secondly, as a material improvement, there is known a technique of providing an overlay layer on a bearing alloy layer (lining layer) (Patent Documents 5 to 7 and Non-patent Documents 3 to 4).
 構造の改良としては、軸受の摺動面に溝を設ける技術が知られている(特許文献8および非特許文献5)。 As an improvement of the structure, there is known a technique of providing a groove on the sliding surface of the bearing (Patent Document 8 and Non-Patent Document 5).
特開昭62-37337号公報Japanese Patent Application Laid-Open No. 62-37337 特許第3207863号明細書Patent No. 3207863 specification 特公昭62-42983号公報Japanese Patent Publication No. 62-42983 特許第3857503号明細書Patent No. 3857503 Specification 特開平4-83914号公報Japanese Patent Application Laid-Open No. 4-83914 特開2002-61652号公報JP 2002-61652 A 特開2004-263727号公報JP 2004-263727 A 特開平7-259860号公報JP-A-7-259860
 これに対し本発明は、より改良されたアルミニウム合金、すべり軸受、およびすべり軸受を提供する。 On the other hand, the present invention provides a further improved aluminum alloy, slide bearing, and slide bearing.
 本発明の一態様は、1~20質量%のSnと、0.5~12質量%のSiと、0.05~1.5質量%のFeと、Alとを含み、Alマトリクスに分散されたSi粒子と、Alマトリクスに分散されたFe相とを有するアルミニウム合金を提供する。 One embodiment of the present invention contains 1 to 20% by mass of Sn, 0.5 to 12% by mass of Si, 0.05 to 1.5% by mass of Fe, and Al, and is dispersed in an Al matrix. The present invention provides an aluminum alloy having Si particles and an Fe phase dispersed in an Al matrix.
 このアルミニウム合金は、0.3質量%以上のFeを含んでもよい。 The aluminum alloy may contain 0.3% by mass or more of Fe.
 Fe相にはAlマトリクスからAlが取り込まれ、Alの濃度はFe相とAlマトリクスの界面で最も高く、Fe相内部に向かって低下していてもよい。 In the Fe phase, Al is taken in from the Al matrix, and the concentration of Al is highest at the interface between the Fe phase and the Al matrix, and may decrease toward the inside of the Fe phase.
 このアルミニウム合金は、添加元素として、0.5質量%以下のCrおよび3質量%以下のCuの少なくとも1種を含んでもよい。 The aluminum alloy may contain, as additive elements, at least one of 0.5% by mass or less of Cr and 3% by mass or less of Cu.
 Fe相にはAlマトリクスから前記添加元素が取り込まれ、当該添加元素の濃度はFe相とAlマトリクスの界面で最も高く、Fe相内部に向かって低下していてもよい。 In the Fe phase, the additive element is taken in from the Al matrix, and the concentration of the additive element may be highest at the interface between the Fe phase and the Al matrix and may be lowered toward the inside of the Fe phase.
 このアルミニウム合金は、Mg、Ag、およびZnのうち少なくとも1種を総量で8質量%以下、Zr、Mn、V、Sc、Li、およびNiのうち少なくとも1種を総量で0.5質量%以下、および不可避的不純物としてTiおよびBを総量で0.5質量%以下、含んでもよい。 This aluminum alloy contains 8% by mass or less of at least one of Mg, Ag, and Zn, and 0.5% by mass or less of at least one of Zr, Mn, V, Sc, Li, and Ni. And, as an unavoidable impurity, Ti and B may be contained in a total amount of 0.5% by mass or less.
 このアルミニウム合金は、5質量%以上のSnを含んでもよい。 The aluminum alloy may contain 5% by mass or more of Sn.
 このアルミニウム合金において、断面3.56×10-2mmあたり、長径寸法が5~40μmのSi粒子が5個以上存在してもよい。 In this aluminum alloy, five or more Si particles having a major axis dimension of 5 to 40 μm may be present per section of 3.56 × 10 −2 mm 2 .
 前記Si粒子の円相当径が2~15μmであり、円相当径が4μm以上のSi粒子が個数割合で20%以上であってもよい。 The equivalent circular diameter of the Si particles may be 2 to 15 μm, and the number of Si particles having a equivalent circular diameter of 4 μm or more may be 20% or more.
 また、本発明は、上記いずれかのアルミニウム合金で形成されたライニング層と、Fe系材料で形成された裏金とを有するすべり軸受を提供する。 Further, the present invention provides a slide bearing having a lining layer formed of any of the above aluminum alloys and a back metal formed of an Fe-based material.
 前記ライニング層のうち相手軸と接する面が切削加工されていてもよい。 The surface of the lining layer in contact with the other axis may be cut.
 さらに、本発明は、上記いずれかのアルミニウム合金、または1~20質量%のSnを含むAl-Sn系合金で形成されたライニング層と、Fe系材料で形成された裏金とを有し、前記ライニング層と前記裏金との界面に、Al-Fe拡散層およびSnのろう接面が形成され、前記ライニング層は、前記裏金との接合面に、分散して形成された複数の凹部を有し、前記界面に存在するSnの一部が、前記凹部に埋収されているすべり軸受を提供する。 Furthermore, the present invention has a lining layer formed of any of the above aluminum alloys or an Al—Sn-based alloy containing 1 to 20 mass% of Sn, and a back metal formed of an Fe-based material, An Al--Fe diffusion layer and a brazing surface of Sn are formed at the interface between the lining layer and the back metal, and the lining layer has a plurality of recesses formed in a dispersed manner in the bonding surface with the back metal. The present invention provides a slide bearing in which a part of Sn present at the interface is buried in the recess.
 前記ライニング層が、0.2~1.5質量%以下のFeを含み、分散されたFe相を有し、前記凹部は、前記ライニング層の表面を機械的に削り取ることにより形成されていてもよい。 The lining layer may contain 0.2 to 1.5% by mass or less of Fe, and may have a dispersed Fe phase, and the recess may be formed by mechanically scraping the surface of the lining layer. Good.
 前記凹部は、ショットブラストにより形成されていてもよい。 The recess may be formed by shot blasting.
 前記凹部は、レーザー加工により形成されていてもよい。 The recess may be formed by laser processing.
 さらに、本発明は、1~20質量%のSnおよび0.2~1.5質量%のFeを含むAl-Sn系合金または5~20質量%Sn、0.5~12質量%のSi、および0.2~1.5質量%のFeを含むAl-Sn-Si系合金の圧延板の表面を、粗さ1~5μm JIS(Ra)に機械的に削り取り粗面化をする工程と、前記粗面化の後で、前記圧延板とFe系裏金とを圧延により圧接する工程と、前記圧延の後で、250~500℃にて焼鈍する工程とを含むすべり軸受の製造方法を提供する。 Furthermore, the present invention provides an Al—Sn alloy containing 1 to 20% by mass of Sn and 0.2 to 1.5% by mass of Fe or 5 to 20% by mass of Sn, 0.5 to 12% by mass of Si, And roughening the surface of a rolled sheet of an Al—Sn—Si alloy containing 0.2 to 1.5% by mass of Fe to a roughness of 1 to 5 μm JIS (Ra) and roughening; A method of manufacturing a slide bearing, comprising the steps of pressing the rolled plate and the Fe-based metal backplate by rolling after the roughening, and annealing at 250 to 500 ° C. after the rolling. .
 さらに、本発明は、ライニング層と、前記ライニング層上に形成されたオーバーレイ層とを有し、前記ライニング層は、1~20質量%のSnと、0.5~12質量%のSiと、0.20質量%を超え2.0質量%以下のFeと、Alとを含み、前記オーバーレイ層は、MoS、PTFE、グラファイト、WS、h-BN、およびSbのうち少なくとも1種を含む固体潤滑剤と、ポリアミドイミド樹脂、ポリイミド樹脂、フェノール樹脂、ポリアセタール樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、およびエポキシ樹脂のうち少なくとも1種を含むバインダー樹脂とを含むすべり軸受を提供する。 Furthermore, the present invention comprises a lining layer and an overlay layer formed on the lining layer, wherein the lining layer comprises 1 to 20% by mass of Sn and 0.5 to 12% by mass of Si. The overlay layer contains 0.20% by mass or more and 2.0% by mass or less of Fe and Al, and the overlay layer contains at least one of MoS 2 , PTFE, graphite, WS 2 , h-BN, and Sb 2 O 3 A slide bearing comprising: a solid lubricant containing a seed; and a binder resin containing at least one of polyamideimide resin, polyimide resin, phenol resin, polyacetal resin, polyetheretherketone resin, polyphenylene sulfide resin, and epoxy resin Do.
 前記オーバーレイ層における前記固体潤滑剤の含有量が30~70体積%であってもよい。 The content of the solid lubricant in the overlay layer may be 30 to 70% by volume.
 前記オーバーレイ層は、SiC、Al、TiN、AIN、CrO、Si
ZrO、FeP、Fe、およびFeOのうち少なくとも1種を含む硬質物をさらに含んでもよい。
The overlay layer is made of SiC, Al 2 O 3 , TiN, AIN, CrO 2 , Si 3 N 4 ,
It may further include a hard substance containing at least one of ZrO 2 , Fe 3 P, Fe 2 O 3 , and FeO.
 前記オーバーレイ層における前記硬質物の含有量が0.1~5質量%であってもよい。 The content of the hard material in the overlay layer may be 0.1 to 5% by mass.
 前記ライニング層は、連続鋳造板を冷間圧延して形成されてもよい。 The lining layer may be formed by cold rolling a continuous cast plate.
 前記ライニング層は、(a)~(d)のうち少なくとも1種をさらに含んでもよい。(a)0.5質量%以下のCrおよび3質量%以下のCuの少なくとも1種、(b)Mg、Ag、およびZnのうち少なくとも1種を総量で8質量%以下、(c)Zr、Mn、V、Sc、Li、およびNiのうち少なくとも1種以上を総量で0.5質量%以下、(d)不可避的不純物としてTiおよびBの少なくとも1種を総量で0.5質量%以下。 The lining layer may further include at least one of (a) to (d). (A) at least one of at least 0.5% by mass of Cr and at most 3% by mass of Cu, (b) at least one of Mg, Ag and Zn in a total amount of at most 8% by mass, (c) Zr, 0.5 mass% or less in total of at least one or more of Mn, V, Sc, Li and Ni, and (d) 0.5 mass% or less in total of at least one of Ti and B as unavoidable impurities.
 このすべり軸受は、Fe系合金で形成され、前記ライニング層と圧接された裏金をさらに有してもよい。 The slide bearing may be formed of an Fe-based alloy and may further include a back metal press-contacted to the lining layer.
 前記ライニング層のうち相手軸と接する面が切削加工されていてもよい。 The surface of the lining layer in contact with the other axis may be cut.
溝の理想的な表面プロフィールを示す図。The figure which shows the ideal surface profile of a ditch. 溝の実際の表面プロフィールを例示する図。The figure which illustrates the actual surface profile of a slot. アルミニウム合金のEPMAカラーマッピング写真。EPMA color mapping picture of aluminum alloy. 図4の写真のうちAl濃度を示すパターンのスケッチ図。The sketch figure of the pattern which shows Al concentration among the photographs of FIG. 図4の写真のうちFe濃度を示すパターンのスケッチ図。The sketch figure of the pattern which shows Fe concentration among the photographs of FIG. 図4の写真のうちSi濃度を示すパターンのスケッチ図。The sketch figure of the pattern which shows Si concentration among the photographs of FIG. Fe相のAlおよびFe濃度プロフィールの模式図。The schematic diagram of Al and Fe concentration profile of Fe phase. アルミニウム合金の表面粗さのFe含有量依存性を示す図。The figure which shows Fe content dependence of the surface roughness of aluminum alloy. アルミニウム合金の発汗現象を示す図。The figure which shows the sweating phenomenon of aluminum alloy. アルミニウム合金圧延板と裏金のろう接面の模式的断面図。Typical sectional drawing of the brazing contact surface of aluminum alloy rolling board and a metal back. 表面を切削したアルミニウム合金圧延板のSEI。SEI of aluminum alloy rolled sheet with surface cut. アルミニウム合金圧延板と鋼裏金の断面組織を示す模式図。The schematic diagram which shows the cross-section structure of an aluminum alloy rolled sheet and a steel back metal. 溶融Snの埋収を説明する模式図。The schematic diagram explaining burying of molten Sn. 軸受1の構造を例示する図。The figure which illustrates the structure of the bearing 1.
1…軸受、11…裏金、12…ライニング層、16…Sn流、20…Alマトリクス、21…Fe相、22…Si相、25…Sn相、28…アルミニウム合金圧延板、30…裏金、40…Sn層 DESCRIPTION OF SYMBOLS 1 ... Bearing, 11 ... Back metal, 12 ... Lining layer, 16 ... Sn flow, 20 ... Al matrix, 21 ... Fe phase, 22 ... Si phase, 25 ... Sn phase, 28 ... Aluminum alloy rolling board, 30 ... Back metal, 40 ... Sn layer
 以下、本発明の実施形態をいくつか説明する。以下の実施形態に係るアルミニウム合金およびすべり軸受は、半割り軸受、ブシュ、およびスラストワッシャなどに使用することができる。以下で説明する実施形態のうち、2つ以上のものが組み合わせて用いられてもよい。 Hereinafter, some embodiments of the present invention will be described. The aluminum alloy and slide bearing according to the following embodiments can be used for half bearings, bushings, thrust washers and the like. Of the embodiments described below, two or more may be used in combination.
 図14は、一実施形態に係る軸受1の構造を例示する図である。軸受1はすべり軸受であり、裏金11およびライニング層12を有する。裏金11は、ライニング層12の機械的強度を補強するための層である。裏金11は、例えば鋼で形成される。ライニング層12は、軸受の摺動面(軸と接触する面)に沿って設けられ、軸受としての特性、例えば、摩擦特性、耐焼付性、耐摩耗性、なじみ性、異物埋収性(異物ロバスト性)、および耐腐食性等の特性を与えるための層である。ライニング層12は、軸受合金で形成されている。軸との凝着を防ぐため、軸受合金は軸といわゆる「ともがね(ともざい)」となることを避け、軸とは別の材料系が用いられる。この例では、鋼で形成された軸の軸受として用いるため、軸受合金としてAlをベースとした合金(アルミニウム合金)が用いられる。 FIG. 14 is a view illustrating the structure of the bearing 1 according to an embodiment. The bearing 1 is a slide bearing and has a back metal 11 and a lining layer 12. The back metal 11 is a layer for reinforcing the mechanical strength of the lining layer 12. The back metal 11 is formed of, for example, steel. The lining layer 12 is provided along the sliding surface (surface in contact with the shaft) of the bearing, and has characteristics as a bearing, for example, friction characteristics, seizure resistance, wear resistance, conformability, foreign matter burying ability It is a layer to give characteristics such as robustness) and corrosion resistance. The lining layer 12 is formed of a bearing alloy. In order to prevent adhesion with the shaft, the bearing alloy is prevented from becoming so-called "twist" and a material system different from the shaft is used. In this example, an Al-based alloy (aluminum alloy) is used as a bearing alloy in order to use as a bearing of a shaft formed of steel.
1.第1実施形態
1-1.概要
 すべり軸受の特性改善のため、軸受の表面に溝が形成される場合がある。例えば切削により溝を形成する場合、切削工具に構成刃先が形成されることがある。構成刃先は、軸受表面に意図しない形状を形成してしまう(すなわち切削形状が不安定になる)ことがある。本実施形態は、切削形状を安定化しつつ、かつ、所望の特性が得られる技術を提供する。
1. First Embodiment 1-1. Overview Grooves may be formed on the surface of the bearing to improve the characteristics of the sliding bearing. For example, when forming a groove by cutting, a cutting edge may be formed on the cutting tool. The constructed cutting edge may form an unintended shape on the bearing surface (i.e., the cutting shape may become unstable). The present embodiment provides a technology capable of obtaining desired characteristics while stabilizing the cutting shape.
 本願発明者らはFeを有効元素として含むアルミニウム合金につき鋭意研究を行い、次のような知見を得た。 The inventors of the present invention conducted intensive studies on an aluminum alloy containing Fe as an effective element, and obtained the following findings.
(1)円弧形状の溝(図1:特許文献1の図9の引用)の成形には、例えば切削工具として焼結ダイアモンド工具を備えたボーリングマシーンが用いられる。しかし、切削工具に構成刃先が形成されるために、狙った高さが得られず、表面に細かな粗さが発生してしまう(図2)。 (1) A boring machine equipped with a sintered diamond tool is used as a cutting tool, for example, for forming an arc-shaped groove (FIG. 1: reference to FIG. 9 of Patent Document 1). However, because the cutting edge is formed on the cutting tool, the targeted height can not be obtained, and a fine roughness occurs on the surface (FIG. 2).
(2)Al-Sn-Si系合金においてFe量が多いと、構成刃先の形成が抑えられ、溝の切削形状が安定化する。 (2) When the amount of Fe is large in the Al-Sn-Si alloy, the formation of the component cutting edge is suppressed, and the cutting shape of the groove is stabilized.
(3)溝を有さない軸受においても添加Feが切削粗さを小さくする。 (3) The added Fe reduces the cutting roughness even in a bearing without grooves.
 塊状Si粒子を分散させたAl-Sn-Si系すべり軸受は、例えば市販車の部品に搭載されている。本願発明者らは、軸受用アルミニウム合金において、不純物としてのFeの有害作用を抑え、かつ同時にSi塊状粒子による効果を得ることを目的として研究を行い次の知見を得た。 Al-Sn-Si based slide bearings in which massive Si particles are dispersed are mounted, for example, on parts of commercial vehicles. The inventors of the present application conducted research in order to suppress the harmful effect of Fe as an impurity and simultaneously obtain the effect of Si massive particles in an aluminum alloy for bearings, and obtained the following findings.
(4)延性がすぐれたアルミニウム材料にSi塊状粒子を分散させることが望ましい。 (4) It is desirable to disperse Si massive particles in an aluminum material having excellent ductility.
(5)Si塊状粒子は切削工具を疵付け、形成された疵にアルミニウム合金が付着する。こうして構成刃先が形成される。この傾向は、Si粒子の粒径が大きく、および/または角が尖っているほど顕著になる。また、Al自体が刃具材と親和性が高く、凝着が発生し構成刃先を形成し易いことが問題となる。しかし、構成刃先の形成は、上記の(1)~(3)の知見を適用すると、抑えられる。 (5) The Si massive particles braze the cutting tool, and the aluminum alloy adheres to the formed crucible. Thus, the component cutting edge is formed. This tendency is more pronounced as the particle size of the Si particles is larger and / or the corners are sharper. In addition, it is a problem that Al itself has high affinity with the cutting tool material, and adhesion occurs and it is easy to form a component cutting edge. However, the formation of the component cutting edge can be suppressed by applying the above findings (1) to (3).
1-2.実施形態1A
 一実施形態に係るアルミニウム合金は、1~20質量%のSn、0.5~12質量%のSi、および0.05~2.0質量%のFeを含み、残部がAl及び不可避的不純物である。ここで、Alマトリクスには、Si粒子、およびSiを含有しないFe相が分散している。なお、Feの組成は1.5質量%以下であることが好ましい。
1-2. Embodiment 1A
The aluminum alloy according to one embodiment includes 1 to 20% by mass of Sn, 0.5 to 12% by mass of Si, and 0.05 to 2.0% by mass of Fe, with the balance being Al and unavoidable impurities. is there. Here, Si particles and an Fe phase not containing Si are dispersed in the Al matrix. The composition of Fe is preferably 1.5% by mass or less.
 このアルミニウム合金において、Snは潤滑性を付与する。Snの含有量が1質量%未満であると、潤滑性が不足する。一方、Snの含有量が20質量%を超えると、軟質なSn相による強度低下および融点降下により機械的特性が不良となり、結果として耐摩耗性などが劣化する。好ましいSn含有量は2~18質量%である。 In this aluminum alloy, Sn imparts lubricity. When the content of Sn is less than 1% by mass, the lubricity is insufficient. On the other hand, when the content of Sn exceeds 20% by mass, mechanical properties deteriorate due to strength reduction and melting point depression due to the soft Sn phase, and as a result, the wear resistance and the like deteriorate. The preferred Sn content is 2 to 18% by mass.
 Siは、鋳造時にAl-Si共晶として結晶化する。その後、鋳造板の圧延により、Si粒子が微細にアルミニウムマトリクス中に分散して、耐摩耗性を付与する。すなわち、Si粒子は特許文献1の方法により塊状化する必要はなく、圧延により微細化されていれば耐摩耗性に寄与する。Si粒子の寸法は、特に限定されないが、平均粒径で2μm以上であり、かつ最大粒径は12μm以下が好ましい。好ましいSi含有量は2~7質量%である。 Si crystallizes as Al-Si eutectic during casting. Thereafter, by rolling the cast plate, the Si particles are finely dispersed in the aluminum matrix to impart wear resistance. That is, the Si particles do not need to be agglomerated by the method of Patent Document 1 and contribute to wear resistance if they are refined by rolling. The size of the Si particles is not particularly limited, but is preferably 2 μm or more in average particle size and 12 μm or less in maximum particle size. The preferred Si content is 2 to 7% by mass.
 図3は、アルミニウム合金の組織を例示する図である。図3は、Al-12%Sn-3%Si-2%Feの圧延板について各元素の濃度をEPMAカラーマッピングした結果を示している。なお、この圧延板は、鋳造時の冷却を制御する後述の方法で製造した。また、ここではカラー図面を掲載できないため、カラーマッピングをモノクロ化した写真を示す。図3には3行3列の写真が示されているが、各元素の配置は表1のとおりである。 FIG. 3 is a diagram illustrating the structure of an aluminum alloy. FIG. 3 shows the result of EPMA color mapping of the concentration of each element in a rolled sheet of Al-12% Sn-3% Si-2% Fe. In addition, this rolling board was manufactured by the below-mentioned method of controlling cooling at the time of casting. Also, since color drawings can not be shown here, photographs in which color mapping is monochrome are shown. The photograph of 3 rows 3 columns is shown by FIG. 3, but arrangement of each element is as Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図4、5、および6はEPMAカラーマッピングにおける濃度分布のスケッチ図である。図4~6には、Alマトリクス20、Fe相21、およびSi相22が示されている。これらの図を元のカラーマッピングの情報を加えて説明すると、図4では、Alマトリクス20のAl濃度は最高の状態(赤)である。図5では、Fe相21のFe濃度は最高濃度(赤)から低濃度(青)まで分布しており、Alマトリクスの粒界に沿って伸びている。図5において、Fe相21に取り込まれたAlは中濃度(黄色)から低濃度(青)まで分布している。図6に示されるSi相22と同じ模様が図4にも認められ、この模様からSi相22はAl-Si共晶であることが分かる。図5と図6はパターンが一致していないので、Al-Si共晶とFe相21の結晶化は別の位置で起こっている。 Figures 4, 5 and 6 are sketches of the density distribution in EPMA color mapping. The Al matrix 20, the Fe phase 21 and the Si phase 22 are shown in FIGS. If these figures are described by adding the information of the original color mapping, in FIG. 4, the Al concentration of the Al matrix 20 is in the highest state (red). In FIG. 5, the Fe concentration of the Fe phase 21 is distributed from the highest concentration (red) to the low concentration (blue), and extends along the grain boundaries of the Al matrix. In FIG. 5, Al incorporated into the Fe phase 21 is distributed from medium concentration (yellow) to low concentration (blue). The same pattern as that of the Si phase 22 shown in FIG. 6 is also recognized in FIG. 4, and it is understood from this pattern that the Si phase 22 is an Al—Si eutectic. Because the patterns in FIGS. 5 and 6 do not match, the crystallization of the Al—Si eutectic and the Fe phase 21 occurs at different positions.
 図7は、図5のFe相21aのFe濃度及びAl濃度変化を紙面の水平方向で模式的に表したグラフである。図4~7及びAl-Sn-Si-Fe系アルミニウム合金のAl-Fe擬二元系想定状態図で考察する。本発明のアルミニウム合金の組成は、Al-Fe共晶点よりAlリッチ側の亜共晶組成である。そのため、Al結晶凝固後その粒界に沿ってFe相が伸びる。また、アルミニウムが結晶化した後に、FeがSnおよびAlなどを取り込むために、図7に示すような濃度プロフィールが形成される。 FIG. 7 is a graph schematically showing changes in Fe concentration and Al concentration of the Fe phase 21a of FIG. 5 in the horizontal direction of the drawing. 4 to 7 and an assumed Al—Fe pseudo binary phase diagram of an Al—Sn—Si—Fe based aluminum alloy. The composition of the aluminum alloy of the present invention is a hypoeutectic composition on the Al rich side with respect to the Al—Fe eutectic point. Therefore, the Fe phase extends along the grain boundaries after Al crystal solidification. Also, after aluminum is crystallized, a concentration profile as shown in FIG. 7 is formed because Fe takes in Sn, Al and the like.
 本実施形態において、Fe相とは、EPMA分析において、Al濃度が最高を示す領域(図4~6に示すAlマトリクス20)の外側にあって、Feが検出される領域である。図7に示すように、Alを取り込んだFe相を、Fe-Al二元系状態図を基に説明すると、Fe側21Pは、約14質量%のAlを境にしてFeリッチ側は不規則固溶体であり、Alリッチ側は規則固溶体である。さらに、600℃以下ではFeAl規則格子が形成される。即ち、Fe相の基本的形態は固溶体である。Al側のFe相21Qにおいては、Al中へのFeの固溶度がないために、Feの析出が起こる。Fe相の中心はAlの濃度が低い純鉄に近い組成となっている。本発明においてFeが無害化されるのは上述のような結晶構造をもつFe相によると考えられる。したがって、従来のFe不純物レベルを超える1.5質量%のFeを含有しても、軸受性能は悪化しない。むしろ、従来のアルミニウム合金よりは良好な耐焼付性を達成することができる。ただし、Fe含有量が1.5%を超えると、アルミニウム板の圧延が困難になる。 In the present embodiment, the Fe phase is a region where Fe is detected outside the region (Al matrix 20 shown in FIGS. 4 to 6) at which the Al concentration is highest in EPMA analysis. As shown in FIG. 7, the Fe phase incorporating Al will be described based on the phase diagram of the Fe-Al binary system. The Fe side 21P is irregular with the Fe rich side bordering on about 14 mass% of Al. It is a solid solution, and the Al rich side is an ordered solid solution. Furthermore, at 600 ° C. or less, an Fe 3 Al regular lattice is formed. That is, the basic form of the Fe phase is a solid solution. In the Fe phase 21Q on the Al side, precipitation of Fe occurs because there is no solid solubility of Fe in Al. The center of the Fe phase has a composition close to that of pure iron with a low concentration of Al. In the present invention, it is considered that the detoxification of Fe is due to the Fe phase having the crystal structure as described above. Therefore, bearing performance does not deteriorate even if it contains 1.5% by mass of Fe exceeding the conventional Fe impurity level. Rather, better seizure resistance can be achieved than conventional aluminum alloys. However, if the Fe content exceeds 1.5%, rolling of the aluminum plate becomes difficult.
 本実施形態に係るアルミニウム合金は、0.5質量%以下のCr、および3質量%以下のCuの少なくとも1種の添加元素を含有してもよい。Crは、Al-Cr系金属間化合物を形成し、アルミニウムマトリクスの強度を向上させる。また、添加元素はFe相に取り込まれ、Fe相の硬度を高めることにより、構成刃先除去の効果を高める。Crの含有量が0.5%を超えるとアルミニウムマトリクス中に偏析し、圧延性低下などが起こるので、Crの含有量が0.5質量%未満であることが好ましい。 The aluminum alloy according to the present embodiment may contain 0.5 mass% or less of Cr and 3 mass% or less of at least one additive element of Cu. Cr forms an Al-Cr based intermetallic compound to improve the strength of the aluminum matrix. In addition, the additive element is taken into the Fe phase, and by enhancing the hardness of the Fe phase, the effect of removing the component cutting edge is enhanced. If the content of Cr exceeds 0.5%, it segregates in the aluminum matrix to cause a reduction in the rollability and the like, so the content of Cr is preferably less than 0.5% by mass.
 Cuは、アルミニウム合金のマトリクスを強化し、また耐熱性を高める。CuはFe相にも取り込まれ、その硬度を高める。ただし、Cuの添加量が3質量%を超えると、圧延性低下により、圧延時に割れなどが起こるので、Cuの含有量は3質量%以下であることが好ましい。 Cu strengthens the matrix of the aluminum alloy and also improves the heat resistance. Cu is also incorporated into the Fe phase to increase its hardness. However, if the addition amount of Cu exceeds 3% by mass, the rolling property decreases to cause cracking or the like during rolling, so the content of Cu is preferably 3% by mass or less.
 なお、添加元素がCuおよびCrである場合のFe相はFe結晶中にAl、Cu、およびCrが固溶したFe-Cu-Cr固溶相となる。この相は、FeAl、Fe-Al-Si系金属間化合物に比べて硬さが低いが、Cu,Crの添加により靭性と硬度が高くなっている。これらの物性からFe-Cu-Cr相はAlの切削による構成刃先を除去する効果が特に優れている。具体的には、Alの切粉を細かくして排出できるので、連続した切粉による切削仕上面不良を回避できる。アルミニウム合金の被切削面に硬質相が存在すると、切削工具が硬質相を破壊する際に空孔や欠陥が発生する。しかしながら、Fe-Cu-Cr相は強靭性が優れているために、空孔や欠陥を防ぐことができる。 The Fe phase when the additive elements are Cu and Cr is a Fe—Cu—Cr solid solution phase in which Al, Cu, and Cr form a solid solution in Fe crystals. This phase is lower in hardness than Fe 3 Al and Fe—Al—Si based intermetallic compounds, but the addition of Cu and Cr increases the toughness and hardness. From these physical properties, the Fe-Cu-Cr phase is particularly excellent in the effect of removing the component edge formed by cutting Al. Specifically, since the chips of Al can be finely discharged, it is possible to avoid the defective cutting surface due to the continuous chips. When the hard phase exists on the surface to be cut of the aluminum alloy, pores and defects occur when the cutting tool breaks the hard phase. However, since the Fe--Cu--Cr phase is excellent in toughness, it is possible to prevent pores and defects.
 アルミニウム合金は、Mg、Ag、およびZnのうち少なくとも1種を総量で8質量%以下、並びにZr、Mn、V、Sc、Li、およびNiのうち少なくとも1種を総量で0.5質量%以下、含んでもよい。Mg、Ag、およびZnは固溶強化をもたらす。しかし、これらの含有量が総量で8質量%を超えると、金属間化合物の生成、析出や添加元素の晶出による靭性低下により性能が低下する。そのため、Mg、Ag、およびZnの含有量は8質量%以下であることが好ましい。Zr、Mn、V、Sc、Li、およびNiは析出強化をもたらす。しかし、その総量が0.5質量%を超えると析出粒子の粗大化、偏析により強度向上の作用が得られないため、これらの含有量は0.5質量%以下であることが好ましい。Mg、Ag、Zn、Zr、Mn、V、Sc、Li、およびNiを以下「追加元素」という。追加元素のうち、Mn、Ni、Zr、およびVはFeの合金元素として広く用いられるが、含有量が少ないために、Fe相中には痕跡量以下しか取り込まれない。 The aluminum alloy has a total content of at least one of Mg, Ag and Zn of at most 8% by mass, and a total content of at least one of Zr, Mn, V, Sc, Li and Ni of at most 0.5% by mass , May be included. Mg, Ag and Zn provide solid solution strengthening. However, if the total content of these components exceeds 8% by mass, the performance is lowered due to the decrease in toughness due to the formation and precipitation of intermetallic compounds and the crystallization of additional elements. Therefore, the content of Mg, Ag, and Zn is preferably 8% by mass or less. Zr, Mn, V, Sc, Li and Ni provide precipitation strengthening. However, if the total amount exceeds 0.5% by mass, the effect of improving the strength can not be obtained due to coarsening and segregation of precipitated particles, and therefore the content thereof is preferably 0.5% by mass or less. Hereinafter, Mg, Ag, Zn, Zr, Mn, V, Sc, Li, and Ni are referred to as "additional elements". Among the additional elements, Mn, Ni, Zr, and V are widely used as alloy elements of Fe, but due to their small contents, only trace amounts or less can be taken into the Fe phase.
 アルミニウム合金には、上記した基本成分及び添加元素以外に、地金やスクラップ原料から不可避的にもたらされるPb、In、またはBiなどの不純物が少量含まれてもよい。また、TiおよびBはAl結晶粒の微細化剤として用いられることがあるが、本実施形態のアルミニウム合金では微細結晶粒はFe相形成とは関連しないため、総量で0.5質量%以下のTiおよびBは不純物として許容される。 The aluminum alloy may contain a small amount of impurities such as Pb, In, or Bi, which are inevitably produced from the metal or scrap raw material, in addition to the above-described basic components and additive elements. In addition, Ti and B may be used as a refining agent for Al crystal grains, but in the aluminum alloy of this embodiment, fine crystal grains are not related to Fe phase formation, so the total amount is 0.5 mass% or less Ti and B are acceptable as impurities.
 本実施形態において、上記の組成を有するアルミニウム合金溶湯を連続鋳造鋳型に注湯して、厚さが3~20mmの連続鋳造板が成型される。その際、鋳型内溶湯温度から凝固した鋳造板を、850~300℃の温度範囲を2000~5000℃/分の速度で冷却することにより、Siを含有しないFe相を形成することができる。また、冷却速度を遅くすることにより、Alや添加元素の取り込み量を多くすることができる。 In this embodiment, a molten aluminum alloy having the above composition is poured into a continuous casting mold to form a continuous cast plate having a thickness of 3 to 20 mm. At that time, a Si-free Fe phase can be formed by cooling the casting plate solidified from the molten metal temperature in the mold at a temperature range of 850 to 300 ° C. at a speed of 2000 to 5000 ° C./min. In addition, by slowing the cooling rate, it is possible to increase the uptake amount of Al and the additive element.
 このアルミニウム合金を、SPCCまたはSPCHなどの低炭素鋼(Fe系合金の一例)と圧接し、さらに成形することによりすべり軸受が得られる。このすべり軸受において、FeはFe相としてAlマトリクスに分散して、切削を安定化する。アルミニウム合金を切削工具で切削すると、切削工具の表面にアルミニウムが付着して構成刃先が形成されるので、すべり軸受表面の切削粗さが粗くなる。Fe相などの硬さに関しては、高速度鋼、ダイヤモンド工具、などの切削工具(硬度Hv1500以上)>Si粒子(硬度約Hv1000)>Fe-Al系金属間化合物(硬度Hv700以上)>Fe相(純鉄(Hv200))~Al、添加元素を取り込んだFe相(Hv400)>Al合金相(Hv=30~90)の関係があるので、Fe相は構成刃先のアルミニウム合金を削り取ることができる。これに対して、Si粒子などは切削工具材料の硬さとの差が少ないために、切削工具を疵付ける可能性がある。この結果、粗くなった工具がアルミニウム合金を削り取るために、すべり軸受の切削粗さが粗くなる。 A sliding bearing can be obtained by pressure-bonding this aluminum alloy with a low carbon steel (an example of an Fe-based alloy) such as SPCC or SPCH, and further forming it. In this slide bearing, Fe is dispersed as an Fe phase in an Al matrix to stabilize cutting. When the aluminum alloy is cut with a cutting tool, the aluminum adheres to the surface of the cutting tool to form a component cutting edge, so that the cutting roughness of the slide bearing surface becomes rough. Regarding hardness such as Fe phase, cutting tools such as high speed steel, diamond tools etc (hardness Hv 1500 or higher)> Si particles (hardness about Hv 1000)> Fe-Al based intermetallic compound (hardness Hv 700 or higher)> Fe phase ( Since there is a relationship of pure iron (Hv 200)) to Al, and an Fe phase incorporating an additive element (Hv 400)> Al alloy phase (Hv = 30 to 90), the Fe phase can scrape off the aluminum alloy of the component cutting edge. On the other hand, Si particles and the like may have a small difference from the hardness of the cutting tool material, so that the cutting tool may be brazed. As a result, since the roughened tool scrapes off the aluminum alloy, the sliding roughness of the sliding bearing becomes rough.
1-3.実施形態1B
 別の実施形態に係るアルミニウム合金は、1~20質量%のSn、0.5~12質量%のSi、および0.05~1.5質量%のFeを含み、残部がAl及び不可避的不純物である。このアルミニウム合金は、添加元素および/または追加元素を含んでもよい。ここで、AlマトリクスにはSi粒子およびFe相が分散している。さらに、このアルミニウム合金において、長径寸法が5~40μmのSi粒子が3.56×10-2mmあたり5個以上存在する。
1-3. Embodiment 1B
An aluminum alloy according to another embodiment contains 1 to 20% by mass of Sn, 0.5 to 12% by mass of Si, and 0.05 to 1.5% by mass of Fe, with the balance being Al and unavoidable impurities. It is. The aluminum alloy may contain additional elements and / or additional elements. Here, Si particles and an Fe phase are dispersed in the Al matrix. Furthermore, in this aluminum alloy, Si particles having a major axis dimension of 5 to 40 μm are present 5 or more per 3.56 × 10 −2 mm 2 .
 このアルミニウム合金は、裏金との圧接前に、300~550℃で焼鈍することにより得られる。Si粒子を粗大化することにより、相手軸、特に鋳造軸表面の凹凸を平滑化することができる。また、裏金と圧接しないソリッド軸受についても、同様に300~550℃で焼鈍することにより、Si粒子を粗大化することができる。Fe相、並びに添加元素および/または追加元素については、既に説明したとおりである。 This aluminum alloy is obtained by annealing at 300 to 550 ° C. before pressure contact with the back metal. By roughening the Si particles, it is possible to smooth the unevenness of the mating shaft, in particular, the surface of the casting shaft. The Si particles can also be coarsened by similarly annealing at 300 to 550 ° C. for solid bearings not in pressure contact with the backing metal. The Fe phase and the additive and / or additional elements are as described above.
 このアルミニウム合金において、粗大化Si粒子は、円相当径が2~15μmであり、かつ、円相当径が4μm以上のSi粒子が個数割合で20%以上であることが好ましい。 In this aluminum alloy, it is preferable that the coarsened Si particles have a circle equivalent diameter of 2 to 15 μm, and Si particles having a circle equivalent diameter of 4 μm or more be 20% or more in number ratio.
1-4.実験例
1-4-1.実施形態1A
 図8は、表面粗さのFe組成依存性を示す図である。表面粗さの測定には、Al-3~15質量%Sn-2~7質量%Si-0.1~5質量%Feの組成を有するアルミニウム合金を用いた。この組成のアルミニウム合金を上述の条件で鋳造した。得られた鋳造板を圧延した状態の板(as roll)の表面を(旋盤)工具で1m/sの切削条件で切削した際の表面粗さ(RzJIS、Ra、およびRmax)を測定した。この図から、工具及び切削条件が一定であるにも拘わらず、Fe量が多いほど表面粗さが小さくなることが分かる。切削後の工具刃先表面を目視で観察したところ、Fe量が多いほど構成刃先が少ないことも分かった。これらの実験結果からFe量が多いほど、好ましくは0.3質量%以上で、被切削材料が構成刃先を削り取り、被切削材料の粗さが小さくなる。従来狙ったとおりの粗さが得られない原因に構成刃先形成があったが、本実施形態によればこれを解決して切削を安定化することができる。
1-4. Experimental Example 1-4-1. Embodiment 1A
FIG. 8 is a view showing the Fe composition dependency of the surface roughness. For measurement of the surface roughness, an aluminum alloy having a composition of Al-3 to 15% by mass Sn-2 to 7% by mass Si-0.1 to 5% by mass Fe was used. An aluminum alloy of this composition was cast under the conditions described above. The surface roughness (Rz JIS, Ra, and Rmax) was measured when the surface of the rolled plate (as roll) was cut with a (lathe) tool under a cutting condition of 1 m / s. From this figure, it can be seen that the surface roughness decreases as the amount of Fe increases, despite the fact that the tool and cutting conditions are constant. From visual observation of the cutting edge surface after cutting, it was also found that the larger the amount of Fe, the smaller the cutting edge. From these experimental results, as the amount of Fe is larger, preferably 0.3% by mass or more, the material to be cut scrapes away the component cutting edge, and the roughness of the material to be cut becomes smaller. In the past, there was a component cutting edge formation as the cause of not being able to obtain the intended roughness, but according to this embodiment, this can be solved to stabilize cutting.
 本実施形態に係るアルミニウム合金を用いたすべり軸受は、相手軸と接する面が、好ましくは、RzJIS=0.5~5μm、Ra=0.1~1.8μm、およびRmax=0.5~6μmの範囲で切削加工されている。 In the slide bearing using the aluminum alloy according to the present embodiment, the surface in contact with the mating shaft preferably has Rz JIS = 0.5 to 5 μm, Ra = 0.1 to 1.8 μm, and Rmax = 0.5 to 6 μm. It is cut in the range of.
 表2および表3は、実験例1~12の組成および軸受性能を示す。これらの実験例のうち、ここでは実験例1~8を実施例として、実験例9~12を比較例として説明する。これらの組成を有するアルミニウム合金を、上述のとおり冷却速度を制御して厚さ15mmの板に連続鋳造した。ただし、比較例9~12については、850~300℃の温度範囲における冷却速度を上記のとおり制御せず、通常の遅い冷却速度で鋳造した。得られた鋳造薄板を冷間圧延した後、裏金(SPCC鋼板)に圧接し、バイメタルを得た。 Tables 2 and 3 show the compositions and bearing performances of Experimental Examples 1 to 12. Among these experimental examples, experimental examples 1 to 8 will be described as examples, and experimental examples 9 to 12 will be described as comparative examples. An aluminum alloy having these compositions was continuously cast into a 15 mm thick plate with controlled cooling rate as described above. However, for Comparative Examples 9 to 12, casting was performed at a normal slow cooling rate without controlling the cooling rate in the temperature range of 850 to 300 ° C. as described above. The obtained cast thin sheet was cold-rolled and then pressed against a back metal (SPCC steel plate) to obtain a bimetal.
 これらのバイメタル材料を軸受に加工し、下記条件で性能試験を行った。試験結果を表3に示す。 These bimetallic materials were processed into bearings and performance tests were conducted under the following conditions. The test results are shown in Table 3.
耐疲労性試験
 試験機:往復動荷重試験機
 回転速度:2000~3000r.p.m
 試験温度(軸受背面温度):160℃
 相手材:S55C高周波焼入れ
 潤滑油:CF-4 10W-30
Fatigue resistance test Tester: Reciprocating load tester Rotational speed: 2000 to 3000 r. p. m
Test temperature (bearing back surface temperature): 160 ° C
Counterpart material: S55C Induction hardened Lubricant: CF-4 10W-30
耐焼付性試験
 試験機:静荷重試験機
 回転速度:1300~8000r.p.m
 試験温度(給油温度):160~180℃
 荷重:5MPa漸増
 相手材:S55C高周波焼入れ
 潤滑油:SN 0W-20
Seizure resistance test Tester: Static load tester Rotational speed: 1300 to 8000 r. p. m
Test temperature (refueling temperature): 160 to 180 ° C
Load: 5MPa gradually increase Counterpart material: S55C Induction hardening Lubricant: SN 0W-20
耐摩耗性試験
 試験機:荷重摩耗試験機
 回転速度:0~1000r.p.m
 試験温度(給油温度):50~80℃
 相手材:S55C高周波焼入れ
 潤滑油:SN 0W-20
Abrasion resistance test Tester: Load abrasion tester Rotational speed: 0 to 1000 r. p. m
Test temperature (refueling temperature): 50 to 80 ° C
Counterpart material: S55C Induction hardened Lubricant: SN 0W-20
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002


Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3において、「個数」は、長径寸法が5~40μmのSi粒子が3.56×10-2mmあたりに存在する個数である。平均粒径の単位はμmである。疲労面圧および焼付面圧の単位はMPaである。摩耗量の単位はμmである。 In Table 3, “number” is the number of Si particles having a major axis dimension of 5 to 40 μm per 3.56 × 10 −2 mm 2 . The unit of average particle size is μm. The unit of fatigue surface pressure and seizing surface pressure is MPa. The unit of the amount of wear is μm.
 実施例2と比較例9とは、SiおよびSn組成がほとんど同じであるが、軸受性能は前者の方が、Fe量が多いにも拘らず、後者より優れている。同様の関係は、実施例1と比較例10とについて、および実施例5と比較例11とについても認められる。また、その他の実施例は高濃度のFeを含有するにも拘らず、軸受性能が良好である。 Although Example 2 and Comparative Example 9 have almost the same Si and Sn compositions, the former is superior in the bearing performance to the latter despite the large amount of Fe. Similar relationships are observed for Example 1 and Comparative Example 10 and for Example 5 and Comparative Example 11. In addition, although the other examples contain high concentration of Fe, the bearing performance is good.
1-4-2.実施形態1B
 表4は、実験例13~15の組成および軸受性能を示す。これらの組成を有するアルミニウム合金を、実施例1と同様に鋳造および圧延した。鋳造と圧延の間に、530℃で6時間焼鈍した。焼鈍後さらに圧延の途中でアルミニウム合金を裏金(SPCC鋼板)に圧接した。表4は、実施例1と同様に軸受性能を測定した結果を示している。また、表5は、切削試験後の表面粗さを示している。切削試験は、切削工具を用いて1m/secの条件で行った。表4において、「寸法」は、円相当径[μm]を示す。「割合」は円相当径が4μm以上の粒子が全体に占める個数割合である。なお、表4の実験例13~15について、3.56×10-2mmあたり5個以上のSi粒子が存在していた。
1-4-2. Embodiment 1B
Table 4 shows the compositions and bearing performances of Experimental Examples 13-15. Aluminum alloys having these compositions were cast and rolled as in Example 1. Annealed at 530 ° C. for 6 hours between casting and rolling. After annealing, the aluminum alloy was pressed against the back plate (SPCC steel plate) in the middle of rolling. Table 4 shows the results of measuring the bearing performance in the same manner as Example 1. Table 5 shows the surface roughness after the cutting test. The cutting test was conducted under the condition of 1 m / sec using a cutting tool. In Table 4, "dimension" indicates a circle equivalent diameter [μm]. "Percentage" is the number proportion of particles having a circle equivalent diameter of 4 μm or more in the whole. In Experimental Examples 13 to 15 in Table 4, five or more Si particles were present per 3.56 × 10 −2 mm 2 .
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

1-5.実施形態の効果
 本実施形態に係るアルミニウム合金においては、Feはアルミニウム結晶の粒界にFe相として存在し、無害化されている。したがって、従来の合金と同一組成であっても、摺動特性が改善される。また、従来の不純物量レベルを遥かに超える0.3%以上のFeを含有するアルミニウム合金であっても、良好な摺動特性を備えている。Fe相に取り込まれたAlはFe相を強化し、摺動特性を改善する。
1-5. Effects of the Embodiment In the aluminum alloy according to the present embodiment, Fe is present as an Fe phase at the grain boundaries of the aluminum crystal, and is rendered harmless. Therefore, the sliding characteristics are improved even if the composition is the same as that of the conventional alloy. Further, even an aluminum alloy containing 0.3% or more of Fe far exceeding the conventional impurity content level has good sliding characteristics. Al incorporated into the Fe phase strengthens the Fe phase and improves the sliding characteristics.
 本実施形態によれば、高濃度のFeを含有するにも拘らず、軸受性能が優れている。さらに、精度が高い仕上げ粗さを得ることができる。 According to the present embodiment, the bearing performance is excellent in spite of containing high concentration of Fe. Furthermore, the finish roughness with high accuracy can be obtained.
2.第2実施形態
2-1.概要
 図9は、Al-Sn系合金における発汗現象を示す図である。本願発明者らは、Al-Sn系合金圧延板を焼鈍温度に加熱すると、Sn相の発汗が起こることを発見した。ここで、Sn相の「発汗」とは、マトリクスの合金相から、融点の低いSnが溶融して合金版の表面に噴出(染み出し)する現象をいう。図9において、Al-Sn系合金圧延板の表面にSn粒子が存在してる。Sn粒子の直径は100~200μm程度である。Al-Sn合金圧延板およびSn粒子以外の部分(図の上側の大部分)は金属層などは何も無い状態である。表面に形成されたSn粒子は、例えば、Al-Sn合金圧延板の長さ10mmにつき数個~数百個、存在する。
2. Second Embodiment 2-1. Overview FIG. 9 is a diagram showing the perspiration phenomenon in an Al—Sn alloy. The inventors of the present invention have found that when the Al—Sn alloy rolled sheet is heated to the annealing temperature, sweating of the Sn phase occurs. Here, “sweat” of the Sn phase refers to a phenomenon in which Sn having a low melting point melts from the alloy phase of the matrix and spouts (spills out) on the surface of the alloy plate. In FIG. 9, Sn particles exist on the surface of the Al—Sn alloy rolled sheet. The diameter of the Sn particles is about 100 to 200 μm. The portion (most part on the upper side of the figure) other than the Al—Sn alloy rolled sheet and Sn particles is in a state where there is no metal layer or the like. The Sn particles formed on the surface are, for example, several to several hundreds per 10 mm in length of the Al—Sn alloy rolled sheet.
 この知見に基づくと、バイメタルの圧接過程では、Al-Sn系アルミニウム合金圧延板から一旦溶融Snが局部的に噴出し、次に溶融Sn相がバイメタルの接着面で引伸ばされ、局部的にはいわゆる「ろう接」が行われると考えられる。この過程で、Sn相による接合界面が形成されるか、または、溶融Snと裏金のFeが反応し、Fe-Sn系金属間化合物が生成すると考えられる。本来バイメタルではAl-Fe拡散接合を優先的に起こすべきである。Al-Sn系合金圧延板の表面の酸化膜は接合を妨害するので、ワイヤブラシなどで酸化膜を除去している。 Based on this finding, in the bimetal pressure welding process, molten Sn temporarily spouts locally from the Al—Sn-based aluminum alloy rolled sheet, and then the molten Sn phase is stretched on the bonding surface of the bimetal, and locally It is considered that so-called "brazing" is performed. In this process, it is considered that a bonding interface is formed by the Sn phase, or the molten Sn and the Fe of the back metal react to form an Fe-Sn based intermetallic compound. In the case of bimetals, Al-Fe diffusion bonding should be caused preferentially. Since the oxide film on the surface of the rolled Al-Sn alloy interferes with the bonding, the oxide film is removed by a wire brush or the like.
 本願発明者らは、上記の知見に基づいて、裏金と合金層との界面における溶融Snの引き伸ばしを抑制すれば、裏金と合金層との接着性を向上できることに想到した。具体的には、アルミニウム合金圧延板に凹部を形成し、溶融Snをこの凹部に収容すれば、溶融Snの引き伸ばしを抑制し、FeとSnの接触面積を小さくできることに想到した。 Based on the above findings, the inventors of the present application have conceived that the adhesion between the back metal and the alloy layer can be improved by suppressing the stretching of molten Sn at the interface between the back metal and the alloy layer. Specifically, it was conceived that, by forming a recess in an aluminum alloy rolled sheet and storing the molten Sn in the recess, it is possible to suppress the stretching of the molten Sn and reduce the contact area between Fe and Sn.
 アルミニウム合金圧延板の接合面を粗くするには、ワイヤーブラシなどの機械加工を強化する方法がある。しかし、粗さを著しく粗くすると、両方の金属板の真実接触面積が少なくなり、結果としてバイメタルの接着強度が低下する可能性がある。 In order to roughen the joining surface of the aluminum alloy rolled sheet, there is a method of strengthening machining such as a wire brush. However, if the roughness is made too rough, the true contact area of both metal plates may be reduced, resulting in a decrease in the adhesion strength of the bimetal.
 本実施形態は、Al-Sn系またはAl-Sn-Si系合金圧延板とFe系裏金とを圧接および焼鈍して作製するすべり軸受において、バイメタルの強度を高めることを目的とする。 The object of the present embodiment is to increase the strength of the bimetal in a slide bearing produced by press-contacting and annealing an Al—Sn-based or Al—Sn—Si-based alloy rolled sheet and an Fe-based back metal.
 本実施形態に係るすべり軸受は、Fe系の裏金と、この裏金に圧接された合金層とを含む。合金層は、1~20質量%のSnを含有するAl-Sn系、または5~20質量%のSnおよび0.5~12質量%のSiを含有するAl-Sn-Si系合金で形成されている。合金層は、0.2~1.5質量%のFeを含む。圧延板の表面(圧接予定面)は、粗さ1~5μm JIS(Ra)に粗面化される。粗面化は、表面を機械的に削り取ることによって行われる。この合金の圧延板と鋼裏金とを、冷間圧延する。冷間圧延後、250~500℃で焼鈍することにより合金層と裏金とを接合する。合金層と裏金との間には、Al-Fe拡散層およびSnのろう接面を含む圧接面が形成される。圧延板の接合面には、多数の凹部が分散して形成されており、ろう接面に存在するSnの一部がこの凹部に埋収されている。 The slide bearing according to the present embodiment includes an Fe-based back metal and an alloy layer pressed against the back metal. The alloy layer is formed of an Al—Sn-based alloy containing 1 to 20% by mass of Sn, or an Al—Sn—Si-based alloy containing 5 to 20% by mass of Sn and 0.5 to 12% by mass of Si. ing. The alloy layer contains 0.2 to 1.5% by mass of Fe. The surface of the rolled sheet (pressure contact planned surface) is roughened to a roughness of 1 to 5 μm JIS (Ra). Roughening is performed by mechanically scraping the surface. The rolled sheet and back plate of this alloy are cold rolled. After cold rolling, the alloy layer and the back metal are joined by annealing at 250 to 500.degree. A pressure contact surface including an Al—Fe diffusion layer and a solder contact surface of Sn is formed between the alloy layer and the back metal. A large number of recesses are dispersedly formed on the bonding surface of the rolled sheet, and a part of Sn present in the brazing surface is buried in the recesses.
 アルミニウム合金において、Snは潤滑性を付与する。Snの含有量がAl-Sn系にあっては1質量%未満、Al-Sn-Si系にあっては5質量%未満であると、耐焼き付き性が低下する。一方、Snの含有量が20質量%を超えると、軟質なSn相による強度低下および融点降下により、機械的特性が不良となり、結果として耐摩耗性などが劣化する。Snの含有量は2~18質量%であることが好ましい。 In an aluminum alloy, Sn imparts lubricity. If the content of Sn is less than 1% by mass in the Al--Sn system and less than 5% by mass in the Al--Sn--Si system, the seizure resistance decreases. On the other hand, when the content of Sn exceeds 20% by mass, mechanical properties deteriorate due to strength reduction and melting point depression due to the soft Sn phase, and as a result, the wear resistance and the like are deteriorated. The content of Sn is preferably 2 to 18% by mass.
 Siについては第1実施形態で説明したとおりである。 The Si is as described in the first embodiment.
 本実施形態に係るアルミニウム合金は、工業的に使用されているAl-Sn系またはAl-Sn-Si系合金である。アルミニウム合金は、SnおよびSi以外に公知の添加元素を含んでもよい。添加元素により軸受性能を改善することができるが、Snの発汗が起こることはAl-Sn系及びAl-Sn-Si系合金に特有の現象である。 The aluminum alloy according to the present embodiment is an Al—Sn-based or Al—Sn—Si-based alloy used industrially. The aluminum alloy may contain known additive elements in addition to Sn and Si. Although the added elements can improve the bearing performance, the occurrence of Sn sweating is a phenomenon unique to Al-Sn and Al-Sn-Si alloys.
 添加元素としてはCrおよびCuの少なくとも1種を、追加元素としてはMg、Ag、Zn、Zr、Mn、V、Sc、Li、およびNiの少なくとも1種を含んでもよい。さらに、アルミニウム合金は、Pb、In、Biなどの不純物を少量含んでもよい。これらの元素については第1実施形態で説明したとおりである。 The additive element may include at least one of Cr and Cu, and the additional element may include at least one of Mg, Ag, Zn, Zr, Mn, V, Sc, Li, and Ni. Furthermore, the aluminum alloy may contain a small amount of impurities such as Pb, In, and Bi. These elements are as described in the first embodiment.
 アルミニウム合金圧延板の厚さは、特に制限がないが、例えば、50μm~2mmのものを用いることができる。裏金鋼板は、例えば、SPCCなどの低炭素鋼板を用いることができる。裏金鋼板の厚さは、特に制限がないが、例えば、0.5mm~4mmのものを用いることができる。 The thickness of the aluminum alloy rolled sheet is not particularly limited, and for example, one having a thickness of 50 μm to 2 mm can be used. For example, a low carbon steel plate such as SPCC can be used as the backing steel plate. The thickness of the backing steel plate is not particularly limited, and for example, one having a thickness of 0.5 mm to 4 mm can be used.
 本実施形態に係るすべり軸受は、アルミニウム合金(Al-Sn系合金またはAl-Sn-Si系合金)の圧延板が、広義では圧接により、溶接現象からはAl-Fe拡散接合とSnのろう接により鋼裏金と接合されている。 In the slide bearing according to the present embodiment, a rolled plate of an aluminum alloy (Al-Sn alloy or Al-Sn-Si alloy) is broadly classified by pressure welding from the viewpoint of welding, and Al-Fe diffusion bonding and Sn brazing from the welding phenomenon. It is joined to the steel back metal by
 図10は、本実施形態に係る裏金と合金圧延板の接合を説明する図である。ここでは、アルミニウム合金圧延板28と裏金30とを接合する例が示されている。裏金30は鋼で形成されている。アルミニウム合金圧延板28の表面には、微小凹部(微小凹凸)28aおよび凹部28bが形成されている。微小凹部28aは、ワイヤブラシなどで形成される。凹部28bは、ショットブラストまたはレーザー加工などで形成される。図10では凹部28bは1つしか図示していないが、アルミニウム合金圧延板28の表面には、複数の凹部28bが形成されている。これらは、互いに離れて、すなわち分散して、形成されている。アルミニウム合金圧延板28と裏金30との界面には、Sn層40が形成されている。Sn層40は、アルミニウム合金圧延板中のSnが溶融して界面に染み出た層である。Sn層40により、アルミニウム合金圧延板28と裏金30とがろう接される。Sn層40の下部(アルミニウム合金圧延板28側)の一部は、凹部28bに埋収されている。したがって、裏金30との反応が起こりにくくなり、Fe-Snの金属間化合物の生成が抑制される。なお、埋収の機構については後述する。 FIG. 10 is a view for explaining the bonding of the back metal and the rolled alloy sheet according to the present embodiment. Here, an example is shown in which the aluminum alloy rolled plate 28 and the back metal 30 are joined. Back metal 30 is formed of steel. On the surface of the aluminum alloy rolling plate 28, minute recesses (minute irregularities) 28a and recesses 28b are formed. The minute recesses 28 a are formed by a wire brush or the like. The recess 28 b is formed by shot blasting or laser processing. Although only one recess 28 b is shown in FIG. 10, a plurality of recesses 28 b are formed on the surface of the aluminum alloy rolled plate 28. They are formed apart from one another, ie distributed. An Sn layer 40 is formed at the interface between the aluminum alloy rolled plate 28 and the back metal 30. The Sn layer 40 is a layer in which Sn in the aluminum alloy rolled sheet melts and exudes to the interface. The aluminum alloy rolled plate 28 and the back metal 30 are brazed by the Sn layer 40. A part of the lower part (the aluminum alloy rolling plate 28 side) of the Sn layer 40 is buried in the recess 28 b. Therefore, the reaction with the back metal 30 hardly occurs, and the formation of the Fe--Sn intermetallic compound is suppressed. In addition, the mechanism of burying will be described later.
 ショットブラストで凹部28bを形成する場合、例えば直径が0.3~2.5mm程度の粒子を10~200m/秒の速度でアルミニウム合金圧延板の上方から下向きに投射することが好ましい。この粒子には、アルミニウムより硬度が高い材料、例えば、カットワイヤ鋼線、SiC粒子などが用いられる。 When forming the recesses 28b by shot blasting, it is preferable to project, for example, particles of about 0.3 to 2.5 mm in diameter downward from above the aluminum alloy rolled sheet at a speed of 10 to 200 m / sec. For the particles, a material having a hardness higher than that of aluminum, for example, a cut wire steel wire, SiC particles or the like is used.
 レーザーを用いて凹部28bを形成する場合、例えばYbファイバーレーザーなどのパルスレーザー(出力5~100W)を用いる。レーザー光をアルミニウム合金圧延板に走査することにより、深さが3~15μm程度の凹部を形成することが好ましい。 When the recess 28b is formed using a laser, for example, a pulse laser (output 5 to 100 W) such as a Yb fiber laser is used. It is preferable to form a recess having a depth of about 3 to 15 μm by scanning a laser beam on the aluminum alloy rolling plate.
 本実施形態に係る凹部は、切削工具で形成した凹部のように連続していないことが一つの特長である。連続した凹部ではSnが埋収されない場所が存在しやすい。Snが埋収されない場所があると、そこが圧接強度を低下させる原因となる。本発明の凹部は分散しているが、顕微鏡的に観察すると発汗位置は多数存在するから、例えば通常の方法でショットブラスト処理でグリッド粒子を圧延板全面と衝突させると、発汗位置と近い位置に凹部が形成される。 It is an advantage that the recess according to the present embodiment is not continuous as the recess formed by the cutting tool. It is easy to find a place where Sn is not buried in continuous recesses. If there is a place where Sn is not buried, it causes the reduction of the pressure contact strength. The recesses of the present invention are dispersed, but when observed microscopically, there are a large number of sweating positions. For example, when grid particles are made to collide with the entire surface of a rolling plate by shot blasting according to a usual method, A recess is formed.
 以下詳しく説明する。アルミニウム合金圧延板の表面(鋼裏金との圧接面)を機械加工することにより、1~5μmJIS(Ra)の粗面化面を形成する。アルミニウム合金圧延板の粗さは圧延板の幅方向に測定する。本発明による機械加工は、例えば、切削工具による切削、または砥粒による研摩などにより行う。粗面化面の先端の微細凸部はロール圧接の際に鋼材の面で押つぶされるために、次の焼鈍工程でFe-Alの拡散が起こり易くなる(以下この効果を「拡散促進効果」という)。さらに、粗面化面が形成される際にFe相が削り取られ、Sn埋収効果(詳細は後述)が実現される。この機械加工により形成される粗さが0.5μm未満であると、拡散促進効果が不足し、さらに、Fe相が十分に削り取られないためにSn埋収効果も不十分になる。一方、粗さが5μmを超えると、粗面化面の溝が深くなり過ぎるために、拡散促進効果が不十分になる。 Details will be described below. A roughened surface of 1 to 5 μm JIS (Ra) is formed by machining the surface of the aluminum alloy rolled sheet (pressure contact surface with the steel back metal). The roughness of the aluminum alloy rolled sheet is measured in the width direction of the rolled sheet. The machining according to the present invention is performed, for example, by cutting with a cutting tool or grinding with abrasive grains. The fine convex portion at the end of the roughened surface is crushed by the surface of the steel material during roll pressure welding, so Fe-Al diffusion is likely to occur in the next annealing step (hereinafter this effect is referred to as “diffusion promotion effect” Called). Furthermore, when the roughened surface is formed, the Fe phase is scraped off to realize the Sn burying effect (details will be described later). If the roughness formed by this machining is less than 0.5 μm, the diffusion promoting effect is insufficient, and furthermore, the Sn burying effect is also insufficient because the Fe phase is not sufficiently scraped off. On the other hand, when the roughness exceeds 5 μm, the groove on the roughened surface becomes too deep, so the diffusion promoting effect becomes insufficient.
 アルミニウム合金圧延板は通常コイル状に巻き取られるので、金属をコイルに巻取るコイラーと最終圧延ロールスタンドの間で機械加工を行うことが好ましい。この場合、研摩砥粒はホイール、サンドベルトの表面に接着し、これらを金属帯の面に接触させて研摩を行う。一方、切削加工はホブカッター状の工具により行う。なお、金属帯コイルを一旦巻取った後に巻戻しながら機械加工を行ってもよい。 Since the aluminum alloy rolled sheet is usually wound into a coil, it is preferable to carry out machining between a coiler for winding metal to a coil and a final rolling roll stand. In this case, the abrasive grains adhere to the surfaces of the wheels and the sand belts, and are brought into contact with the surface of the metal band for polishing. On the other hand, cutting is performed with a hob cutter. The metal band coil may be once wound and then machined while being rewound.
 図11は、Fe相が形成されたAl-Sn-Si系すべり軸受合金圧延板の表面を、図の上下方向に切削した面のSEI(Secondary Electron Image)像である。アルミニウムマトリクスの面には、上下方向に直線状切削痕が走っている。一方、不規則形状のFe相では切削痕が、周辺のアルミニウムマトリクスとは断続し、白色と黒色模様が斑に入り混じった状態になっている。これらの直線状切削痕及び斑状Fe相から次のことが分かる。
 (a)軟質なアルミニウムマトリクスは工具により直線状に削り取られる。
 (b)硬いFe相は微小な破片に分断され、破壊される。
 (c)Fe相は全体が工具により削り取られず、残っている部分がある。
 (d)Al-Sn系又はAl-Sn-Si系アルミニウム合金では、Fe量が多いほど、切削後の表面粗さ(JIS(Rz))が小さくなる。この現象は、上記(b)の破壊と同時に切削工具の構成刃先であるアルミニウムが、アルミニウム合金中のFeにより削り取られるので、切削が安定化することに関連すると考えられる。
FIG. 11 is a SEI (Secondary Electron Image) image of a surface obtained by cutting the surface of the Al—Sn—Si based slide bearing alloy rolled plate on which the Fe phase is formed in the vertical direction of the drawing. On the surface of the aluminum matrix, linear cutting marks run vertically. On the other hand, in the irregularly shaped Fe phase, cutting marks are intermittently connected to the surrounding aluminum matrix, and the white and black patterns are mixed with spots. The following can be seen from these linear cutting marks and mottled Fe phase.
(A) The soft aluminum matrix is scraped off linearly by a tool.
(B) The hard Fe phase is divided into small fragments and destroyed.
(C) The entire Fe phase is not scraped off by the tool, and there is a remaining portion.
(D) In the Al-Sn-based or Al-Sn-Si-based aluminum alloy, the surface roughness (JIS (Rz)) after cutting decreases as the amount of Fe increases. This phenomenon is considered to be related to the stabilization of the cutting because aluminum which is a component cutting edge of the cutting tool is scraped off by Fe in the aluminum alloy simultaneously with the breakage of the above (b).
 アルミニウム合金圧延板と鋼裏金の圧接は一般に圧下率30~90%で行う。その後、250~500℃、好ましくは300~480℃にて焼鈍を行う。 Generally, the pressure welding of the aluminum alloy rolled sheet and the steel back metal is performed at a rolling reduction of 30 to 90%. Thereafter, annealing is performed at 250 to 500 ° C., preferably 300 to 480 ° C.
 アルミニウム合金中のFe相の分布および制御方法については、第1実施形態で説明したとおりである。 The distribution and control method of the Fe phase in the aluminum alloy are as described in the first embodiment.
 本発明の方法が適用されるAl-Sn系もしくはAn-Sn-Si系合金において、Feの含有量が0.2質量%未満であると、Fe相の面積割合が少ないために、十分なSn埋収効果が得られない。一方、Feの含有量が1.5質量%を超えると圧延板の冷間圧延が困難になる。 In the Al-Sn-based or An-Sn-Si-based alloy to which the method of the present invention is applied, when the content of Fe is less than 0.2% by mass, sufficient area of the Fe phase is small. No landfill effect can be obtained. On the other hand, when the content of Fe exceeds 1.5% by mass, cold rolling of the rolled sheet becomes difficult.
 上記の組成を有するアルミニウム合金溶湯を連続鋳造鋳型に注湯して、厚さが3~20mmの連続鋳造板を成型する際に、鋳型内溶湯温度から凝固した鋳造板の温度について850~300℃の温度範囲を2000~5000℃/分の速度で冷却することにより、Fe相を形成することができる。また、冷却速度を遅くすることにより、Alや添加元素の取り込み量を多くすることができる。 When molten aluminum alloy having the above composition is poured into a continuous casting mold to form a continuous cast sheet with a thickness of 3 to 20 mm, the temperature of the cast sheet solidified from the molten metal temperature in the mold is 850 to 300 ° C The Fe phase can be formed by cooling at a rate of 2000 to 5000.degree. C./min. In addition, by slowing the cooling rate, it is possible to increase the uptake amount of Al and the additive element.
 なお、アルミニウム合金圧延板と裏金との間に、アルミニウム合金または純アルミニウムからなる中間層を設けてもよい。例えば純アルミニウムを中間層として用いた場合、圧延板と中間層の接着は拡散接合およびSnのろう接であり、中間層と裏金の接合も拡散接合となる。Al-Snのろう接においては、圧延板に形成された凹部は溶融Snを埋収することができる。Snを含む場合には中間層と裏金との密着力低下を回避するために、少なくとも中間層の裏金側の面に凹部を形成し、中間層のSnを埋収するようにしてもよい。 An intermediate layer made of an aluminum alloy or pure aluminum may be provided between the aluminum alloy rolled sheet and the back metal. For example, when pure aluminum is used as the intermediate layer, the adhesion between the rolled plate and the intermediate layer is diffusion bonding and brazing of Sn, and the connection between the intermediate layer and the back metal is also diffusion bonding. In the brazing of Al-Sn, the recesses formed in the rolled plate can bury molten Sn. When Sn is contained, a recess may be formed on at least the surface on the back metal side of the intermediate layer to bury the Sn of the intermediate layer in order to avoid the decrease in the adhesion between the intermediate layer and the back metal.
 図12は、アルミニウム合金圧延板28と裏金30との接合面を示す模式図である。ここでは、圧接後に焼鈍されている状態を示している。図4~6で示した相に加え、Sn相25、凹部21b、およびSn流16が示されている。凹部21b(黒塗りの部分)は、Fe相21のうち機械加工で削り取られた部分である。なお、前述のように、Fe相は微小破片に破壊されているので、一部は残っているが、作図の都合上、全体が除去されたように黒塗りで図示した。Sn流16は、マトリクスから噴出したSn相がアルミニウム合金圧延板28と裏金30の間の微小間隙を通過して延伸したものである。 FIG. 12 is a schematic view showing the bonding surface of the aluminum alloy rolled plate 28 and the back metal 30. As shown in FIG. Here, a state of being annealed after pressure contact is shown. In addition to the phases shown in FIGS. 4 to 6, the Sn phase 25, the recess 21b and the Sn stream 16 are shown. The concave portion 21 b (black portion) is a portion of the Fe phase 21 scraped off by machining. As described above, since the Fe phase is broken into small fragments, some of them are left, but for convenience of drawing, they are illustrated in black as if the whole was removed. The Sn stream 16 is obtained by drawing a Sn phase ejected from the matrix through a minute gap between the aluminum alloy rolled plate 28 and the back metal 30.
 図13は溶融Snの埋収を説明する模式図である。Sn粒子25Pが、発汗により噴出している。凹部21bの深さは、例えば5~30μmであり、径(D)は1~50μmである。Fe相は図4に示されるように間隔がサブμmから数μmであるから、合金層の表面に多数存在している。凹部21bとSnの噴出が起こる箇所の最短間隔DSnも、やはりサブμmから数μmである。したがって、噴出箇所から流動するSnは高い確率で凹部21bに埋収される。Snの広がりは、埋収量に応じて抑えられる。また、埋収量が増えるにつれ、バイメタルの接合において占めるAl-Fe拡散接合の割合が多くなる。 FIG. 13 is a schematic view for explaining the burying of molten Sn. Sn particles 25P are spouted by perspiration. The depth of the recess 21b is, for example, 5 to 30 μm, and the diameter (D) is 1 to 50 μm. As shown in FIG. 4, the Fe phase is present in large numbers on the surface of the alloy layer because the spacing is from sub-μm to several μm. The shortest distance D Sn between the recess 21 b and the portion where the spout of Sn occurs is also from sub μm to several μm. Therefore, Sn flowing from the spouting point is buried in the recess 21 b with high probability. The spread of Sn can be suppressed according to the filling rate. In addition, as the filling rate increases, the proportion of Al—Fe diffusion bonding in bimetal bonding increases.
 Fe相を用いず凹部28b(図10)により、Sn粒子25Pを埋収してもよい。凹部28bはアルミニウム合金圧延板の至るところに多数形成されるために、Sn粒子25Pを埋収することができる。ショットブラストの場合は、主として軟らかいアルミウムマトリクスが陥没して凹部を形成し、レーザーの場合は、アルミニウムの組織・組成と関係なく、物質が蒸発することにより凹部が形成されるが、埋収の効果はほとんど同じである。 The Sn particles 25P may be buried by the recess 28b (FIG. 10) without using the Fe phase. Since a large number of recesses 28 b are formed all over the aluminum alloy rolled plate, Sn particles 25 P can be buried. In the case of shot blasting, mainly a soft aluminum matrix is depressed to form a recess, and in the case of a laser, a recess is formed by evaporation of the substance regardless of the structure and composition of aluminum, but the effect of burying is Is almost the same.
2-2.実験例
2-2-1.実施形態2A
 Al-6質量%Sn-3質量%Si-1質量%Feの組成をもつアルミニウム合金溶湯を連続鋳造し、厚さが15mmの連続鋳造板を得た。なお、実験例16(実施例)においては鋳造後の冷却速度制御を行い、実験例17(比較例)では上記の温度範囲における冷却の制御を行わなず、放冷・徐冷した。これら実験例の連続鋳造板を1.5mmに冷間圧延し、圧延板の片面を工具により粗さ2.5μmJIS(Ra)に切削加工した。その後、圧延板を実験室の圧延機で圧延可能な長さに切断し、切削面を鋼裏金(SPCC、厚さ3mm)と重ね合わせ、ロール圧接した。得られたバイメタル状供試材を100mmに切断し、360℃で焼鈍した。
2-2. Experimental Example 2-2-1. Embodiment 2A
An aluminum alloy melt having a composition of Al-6% by mass Sn-3% by mass Si-1% by mass Fe was continuously cast to obtain a continuously cast sheet having a thickness of 15 mm. In addition, in Experimental example 16 (Example), the cooling rate control after casting was performed, and in Experimental example 17 (comparative example), control of cooling in the above-mentioned temperature range was not performed, but cooling and slow cooling were performed. The continuous cast sheet of these experimental examples was cold-rolled to 1.5 mm, and one side of the rolled sheet was cut with a tool to a roughness of 2.5 μm JIS (Ra). Thereafter, the rolled sheet was cut into a length that can be rolled by a laboratory rolling mill, and the cut surface was superimposed on a steel back metal (SPCC, 3 mm thick) and pressed by rolling. The obtained bimetallic specimen was cut into 100 mm and annealed at 360 ° C.
 その後、バイメタル状供試材の鋼裏金側を内側として、直径5mmの丸棒の周りに曲げる曲げ試験を行った。実験例16(実施例)のバイメタル状供試材は180°まで曲げが可能であったが、実験例17(比較例)のバイメタル状供試材は120°で破断した。 After that, a bending test was performed in which a bimetal-like test material was bent around a round bar with a diameter of 5 mm with the steel back side as the inner side. The bimetallic test material of Experimental Example 16 (Example) was capable of bending up to 180 °, but the bimetallic test material of Experimental Example 17 (Comparative Example) broke at 120 °.
2-2-2.実施形態2B
 実験例17で用いたアルミニウム合金圧延板につき、平均粒子径50μmのSiC投射材を、投射速度50m/秒の条件でショットブラストを施した。これを用いてバイメタル状供試材を作製し、実験例18とした。実験例18について、曲げ試験を行ったところ、実験例16と同様の結果が得られた。
2-2-2. Embodiment 2B
About the aluminum alloy rolling plate used by Experimental example 17, the shot blasting was performed on the conditions of 50 m / sec in projection speed of the SiC projection material with an average particle diameter of 50 micrometers. Using this, a bimetallic test material was produced, and this was taken as Experimental Example 18. When a bending test was conducted on Experimental Example 18, the same results as in Experimental Example 16 were obtained.
 本実施形態によれば、強度が高いバイメタル状すべり軸受が得られる。この軸受は、例えば、自動車に用いられる。この軸受を用いれば、信頼性が向上し、さらに、軸受製造工場における品質管理や検査の簡略化をすることができる。 According to this embodiment, a bimetallic slide bearing having high strength can be obtained. This bearing is used, for example, in a car. By using this bearing, the reliability is improved, and furthermore, quality control and inspection in a bearing manufacturing plant can be simplified.
3.第3実施形態
3-1.概要
 オーバーレイ層付きアルミニウム合金すべり軸受に関する従来の知見を整理して要約すると次のとおりである。
3. Third Embodiment 3-1. Overview The following is a summary of the conventional findings on aluminum alloy slide bearings with overlay layers.
(1)アルミニウム合金の表面処理
 特許文献5においては、アルミニウム合金の表面に、アルカリエッチング、酸洗及びリン酸亜鉛化成処理などの処理を施すかあるいは表面処理を施さずに、オーバーレイ層を焼き付けている。耐焼付性および耐疲労性を向上させるには表面処理を施した方が良いが、表面処理を行うとコストが増大するという問題がある。
(1) Surface treatment of aluminum alloy In Patent Document 5, the surface of the aluminum alloy is subjected to treatments such as alkaline etching, acid pickling and zinc phosphate conversion treatment or baking of the overlay layer without surface treatment. There is. In order to improve the seizure resistance and the fatigue resistance, it is better to apply a surface treatment, but there is a problem that the surface treatment increases the cost.
(2)オーバーレイ層のなじみ及び摩耗
 オーバーレイ層のなじみ性は固体潤滑剤、特にMoSで確保される。即ち、MoSがへき開することにより摺動面の低摩擦性となじみが実現される。特許文献5の摩耗試験実施例では、下地のアルミニウム合金を表面処理しているために、オーバーレイ層の密着性が高められており、摩耗はオーバーレイ層の厚さが少なくなる現象として起こっている。一方、非特許文献4では、MoS配合量が多いほどオーバーレイ層が摩滅し、下地のアルミニウム合金が露出する面積割合が多くなっている。なお、オーバーレイ層が一部摩滅して下地のアルミニウム合金が露出する現象は、鉛電気めっきなどの金属系オーバーレイ層でも知られている。またなじみ性が良好な金属系オーバーレイ層は摩耗量が多くなるような傾向があり、このような傾向は、オーバーレイ層でも同じである。オーバーレイ層のなじみ・摩耗の特長的点は、本来は固体潤滑剤のへき開摩耗だけでなじみが実現され、かつ固体潤滑剤のみが摩耗することが理想的であるが、固体潤滑剤を保持する樹脂も摩滅するという点である。即ち、ポリアミドイミド樹脂などは耐摩耗性が優れているが、それにも拘らず摩耗が起こる。
(2) conformability of familiar and abrasion overlay layer of the overlay layer solid lubricant is ensured particularly in MoS 2. That is, the low friction of the sliding surface and the familiarity are realized by cleavage of the MoS 2 . In the wear test example of Patent Document 5, the adhesion of the overlay layer is enhanced due to the surface treatment of the underlying aluminum alloy, and wear occurs as a phenomenon in which the thickness of the overlay layer decreases. On the other hand, in Non-Patent Document 4, as the content of MoS 2 increases, the overlay layer wears away, and the area ratio to which the underlying aluminum alloy is exposed increases. The phenomenon in which the overlay layer is partially worn away to expose the underlying aluminum alloy is also known in metal-based overlay layers such as lead electroplating. In addition, a metal-based overlay layer having good conformability tends to have a large amount of wear, and such a tendency is the same in the overlay layer. The characteristics of the conformability and wear of the overlay layer are that, originally, conformability is realized only by the cleavage wear of the solid lubricant, and it is ideal that only the solid lubricant wears, but the resin that retains the solid lubricant The point is that it also wears out. That is, although polyamide imide resin etc. are excellent in abrasion resistance, abrasion occurs nevertheless.
(3)耐疲労性
 オーバーレイ層は下地のアルミニウム合金の耐疲労性を高める(非特許文献3、4.3項及び非特許文献2、3.1(2)項)。即ち、オーバーレイ層がないアルミニウム合金よりも、オーバーレイ層付きアルミニウム合金は、合金自体(ライニング)の割れが起こり難くなっている。
(3) Fatigue resistance The overlay layer improves the fatigue resistance of the underlying aluminum alloy (Non-patent Document 3, Section 4.3 and Non-patent Document 2, Section 3.1 (2)). That is, the aluminum alloy with the overlay layer is less susceptible to cracking of the alloy itself (lining) than the aluminum alloy without the overlay layer.
(4)すべり軸受用アルミニウム合金
 オーバーレイ層は、特許文献5に示された広範囲の組成のアルミニウム合金について有効であると考えられている。勿論、アルミニウム合金の特性はその組成により影響を受けるが、オーバーレイ層による耐焼付性や耐疲労性向上などの効果は、特定のアルミニウム合金組成により良くなったりあるいは悪くなったりしない。
(4) Aluminum Alloy for Slide Bearing The overlay layer is considered to be effective for an aluminum alloy of a wide range of compositions shown in Patent Document 5. Of course, the properties of the aluminum alloy are affected by its composition, but the effects of the overlay layer such as seizure resistance and fatigue resistance improvement do not become better or worse with the specific aluminum alloy composition.
(5)バインダー樹脂
 ポリアミドイミド樹脂が最も性能が優れているが、エンジンメタルも含めて用途要求に応じてその他の樹脂を使用することができる。
(5) Binder resin Although polyamide imide resin is the most excellent in performance, other resins can be used according to application requirements including engine metal.
 本願発明者らは、樹脂とアルミニウム合金の密着性を高めるために、カップリング剤を添加したポリアミドイミド樹脂について軸受性能を調査した。その結果、ある程度の密着性向上効果が認められた。一方、カップリング剤の添加やアルミニウム合金下地処理を行わないと、軸受性能試験中にオーバーレイ層の摩滅が起こり易い。 The present inventors investigated the bearing performance of a polyamideimide resin to which a coupling agent was added in order to enhance the adhesion between the resin and the aluminum alloy. As a result, a certain degree of adhesion improvement effect was recognized. On the other hand, without the addition of the coupling agent and the aluminum alloy surface treatment, the overlay layer is easily worn away during the bearing performance test.
 本実施形態は、Al-Sn-Si系合金と樹脂との密着性を向上させる技術を提供する。 The present embodiment provides a technique for improving the adhesion between an Al—Sn—Si alloy and a resin.
 一実施形態に係るすべり軸受は、裏金と、裏金上に形成されたライニング層と、ライニング層上に形成されたオーバーレイ層とを有する。 The slide bearing according to one embodiment has a back metal, a lining layer formed on the back metal, and an overlay layer formed on the lining layer.
 ライニング層は、アルミニウム合金(詳細にはAl-Sn-Si系合金)により形成される。ライニング層は、1~20質量%のSnと、0.5~12質量%のSiと、0.20質量%を超え2.0質量%以下のFeとを含み、残部がAlおよび不可避的不純物である。 The lining layer is formed of an aluminum alloy (specifically, an Al-Sn-Si based alloy). The lining layer contains 1 to 20% by mass of Sn, 0.5 to 12% by mass of Si, and more than 0.20% by mass and 2.0% by mass or less of Fe, with the balance being Al and unavoidable impurities It is.
 アルミニウム合金の添加元素、追加元素、および不可避的不純物については、第1実施形態で説明したとおりである。 The additive elements, additional elements, and unavoidable impurities of the aluminum alloy are as described in the first embodiment.
 鉄は、アルミニウムよりも酸化され難く、また樹脂との界面活性度が高い。そのため、Al-Sn-Si系合金に従来の不純物レベルより多量のFe(例えば0.20質量%を超える量)を添加すると、アルミニウム合金に対する樹脂の密着性を高めることができる。FeがAlマトリクスに固溶してしまうとその本来の性質は表われない。しかし、FeはAlにほとんど固溶しない。Feは、Alマトリクス中に微粒子として存在して、樹脂との活性を高める。 Iron is less oxidizable than aluminum and has high surface activity with the resin. Therefore, the adhesion of the resin to the aluminum alloy can be enhanced by adding a large amount of Fe (for example, an amount exceeding 0.20% by mass) to the conventional impurity level to the Al-Sn-Si alloy. When Fe is dissolved in the Al matrix, its inherent properties do not appear. However, Fe hardly dissolves in Al. Fe is present as fine particles in the Al matrix to enhance the activity with the resin.
 また、オーバーレイ層が一部摩滅した場合、相手軸とライニング層が直接接触することになる。相手軸が鋼である場合、ライニング層中のFeが多すぎると相手軸と同種材料の摺動となってしまう可能性が高まる。また、FeはSnおよびSiとは異なり、軸受特性を改善するものではない。以上の観点から、Feの含有量は2.0質量%以下とすることが好ましい。 Also, if the overlay layer is partially worn away, the mating shaft and the lining layer will be in direct contact. In the case where the countershaft is steel, if the amount of Fe in the lining layer is too large, the possibility of sliding of the same material as the countershaft is increased. Also, unlike Sn and Si, Fe does not improve bearing characteristics. From the above viewpoint, the content of Fe is preferably 2.0% by mass or less.
 オーバーレイ層は、固体潤滑剤およびバインダー樹脂を含む。固体潤滑剤は、MoS、PTFE、グラファイト、WS、h-BN、およびSbのうち少なくとも1種を含む。バインダー樹脂は、ポリアミドイミド樹脂、ポリイミド樹脂、フェノール樹脂、ポリアセタール樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、およびエポキシ樹脂のうち少なくとも1種を含む。 The overlay layer comprises a solid lubricant and a binder resin. The solid lubricant contains at least one of MoS 2 , PTFE, graphite, WS 2 , h-BN, and Sb 2 O 3 . The binder resin contains at least one of polyamideimide resin, polyimide resin, phenol resin, polyacetal resin, polyetheretherketone resin, polyphenylene sulfide resin, and epoxy resin.
 オーバーレイ層は従来公知のものであり、樹脂としては、ポリアミドイミド樹脂、ポリイミド樹脂、フェノール樹脂,ポリアセタール樹脂,ポリエーテルエーテルケトン樹脂,ポリフェニレンサルファイド樹脂及びエポキシ樹脂のうち少なくとも1種を使用することができる。この中でも、オーバレイ層にはポリアミドイミド、特に芳香族ポリアミドイミドが好ましい。 The overlay layer is conventionally known, and as the resin, at least one of polyamideimide resin, polyimide resin, phenol resin, polyacetal resin, polyetheretherketone resin, polyphenylene sulfide resin and epoxy resin can be used. . Among these, polyamide imide, particularly aromatic polyamide imide, is preferable for the overlay layer.
 固体潤滑剤としては、MoS,PTFE,グラファイト,WS,h-BNおよびSbのうち少なくとも1種を使用することができる。この中でも、MoSが最も好ましい。オーバーレイ層中の固体潤滑剤の含有量は、30~70体積%である。オーバーレイ層の厚さは、例えば1~50μmである。 As the solid lubricant, at least one of MoS 2 , PTFE, graphite, WS 2 , h-BN and Sb 2 O 3 can be used. Among these, MoS 2 is most preferable. The content of solid lubricant in the overlay layer is 30 to 70% by volume. The thickness of the overlay layer is, for example, 1 to 50 μm.
 オーバーレイ層は、固体潤滑剤に加え硬質粒子を含んでもよい。硬質粒子は、SiC、Al、TiN、AIN、CrO、Si、ZrO、FeP、FeおよびFeOから選択された少なくとも1種以上である。オーバーレイ層中の硬質物の含有量は0.1~5質量%、固体潤滑剤の平均粒径は2μmであることが好ましい。上記組成を有するオーバーレイ層の膜厚は10μmであることが好ましい。 The overlay layer may include hard particles in addition to the solid lubricant. The hard particles are at least one selected from SiC, Al 2 O 3 , TiN, AIN, CrO 2 , Si 3 N 4 , ZrO 2 , Fe 3 P, Fe 2 O 3 and FeO. The content of hard substance in the overlay layer is preferably 0.1 to 5% by mass, and the average particle size of the solid lubricant is preferably 2 μm. It is preferable that the film thickness of the overlay layer which has the said composition is 10 micrometers.
 本実施形態によれば、以下のとおり軸受特性を改善することができる。
(1)なじみ性および耐焼付性
 オーバーレイ層のバインダー樹脂がライニングと密着し、剥離し難いくなる。そのため、固体潤滑剤によるなじみ性が十分にかつ迅速に発揮される。したがって流体潤滑が迅速に実現され、耐焼付性が改善される。
(2)耐摩耗性
 オーバーレイ層の剥離による摩耗は起こり難くなる。また、剥離が起こってもオーバーレイ層が面積で数mm2程度の大きな片して剥離しない。このため、大きな剥離片が摺動面に侵入して焼付を起こすことがなくなる。
(3)耐疲労性
 FeはAl-Sn-Si系合金の耐疲労性を直接改善しないが、オーバーレイ層の剥離により露出したアルミニウム合金に応力が集中して疲労を起こすことが避けられる。
According to this embodiment, bearing characteristics can be improved as follows.
(1) Conformability and seizure resistance The binder resin of the overlay layer adheres to the lining and becomes difficult to peel off. Therefore, the conformability by the solid lubricant is exhibited sufficiently and quickly. Therefore, fluid lubrication is realized quickly and seizure resistance is improved.
(2) Wear resistance Abrasion due to peeling of the overlay layer is less likely to occur. Also, even if peeling occurs, the overlay layer does not peel off as large pieces of several mm 2 in area. For this reason, a large peeling piece does not intrude into the sliding surface to cause seizing.
(3) Fatigue resistance Although Fe does not directly improve the fatigue resistance of the Al-Sn-Si alloy, stress concentration on the aluminum alloy exposed by the peeling of the overlay layer is avoided to cause fatigue.
3-2.実験例
3-2-1.密着性
 本願発明者らは樹脂と金属板の密着性(接着性)に関して次の試験を行った。
(1)供試材
(a)通常の方法により製造されたアルニウム合金圧延板の表面を脱脂処理した板。
(b)通常のバイメタルすべり軸受の裏金に使用される低炭素鋼板の表面を脱脂処理した板。
(2)樹脂
 ポリアミドイミド樹脂を供試材1(a),(b)のそれぞれに塗布し、180℃で焼き付けし、厚さが約6μmの樹脂コーティング膜を成膜した。
(3)試験法
 カッターナイフで樹脂コーティング膜にけがきして碁盤目状疵をつけた。
(4)評価及び結果
 供試材1(a)の直線疵の両側に微小な剥離が生じており、この結果からアルミニウムは鉄よりも樹脂の密着性が低いことが分かった。
3-2. Experimental Example 3-2-1. Adhesion The present inventors conducted the following test on the adhesion (adhesiveness) of the resin and the metal plate.
(1) Test material (a) A plate obtained by degreasing the surface of a rolled aluminium alloy plate manufactured by a usual method.
(B) A plate obtained by degreasing the surface of a low carbon steel plate used for the backing metal of a conventional bimetal slide bearing.
(2) Resin A polyamideimide resin was applied to each of the test materials 1 (a) and (b) and baked at 180 ° C. to form a resin coating film having a thickness of about 6 μm.
(3) Test method The resin coating film was scratched with a cutter knife and a grid pattern was attached.
(4) Evaluation and Results Minute peeling occurred on both sides of the linear wedge of the test material 1 (a), and it was found from this result that the adhesion of resin is lower than that of iron.
3-2-2.軸受性能
 表6および表7は、実験例19~30の組成および軸受性能を示す。これらの組成を有するアルミニウム合金を厚さ15mmの板に連続鋳造し、薄板に冷間圧延した。冷間圧延後、アルミニウム合金を裏金(SPCC鋼板)に圧着しバイメタルとした。これらのバイメタル材料を軸受に加工した。
3-2-2. Bearing Performance Tables 6 and 7 show the compositions and bearing performances of Experimental Examples 19-30. An aluminum alloy having these compositions was continuously cast into a 15 mm thick plate and cold rolled into a thin plate. After cold rolling, the aluminum alloy was crimped to a backing metal (SPCC steel plate) to form a bimetal. These bimetallic materials were processed into bearings.
 オーバーレイ層の原料として、ポリアミドイミド樹脂(日立化成株式会社製)およびMoS粉末を用意した。これらの原料を、MoSが40体積%、残部がポリアミドイミド樹脂となるように配合した。この原料を、ライニング層(脱脂処理はしたが、酸洗などの表面処理は一切しない)に塗布した後、180℃で焼き付けした。こうして厚さが約6μmのオーバーレイ層を成膜した。 Polyamideimide resin (manufactured by Hitachi Chemical Co., Ltd.) and MoS 2 powder were prepared as raw materials for the overlay layer. These raw materials were blended so that MoS 2 was 40% by volume, and the remainder was a polyamideimide resin. The raw material was applied to a lining layer (degreased but not subjected to any surface treatment such as pickling) and then baked at 180 ° C. Thus, an overlay layer of about 6 μm in thickness was deposited.
 オーバーレイ層付アルミニウム合金圧延板を摺動特性を次の方法で測定した。 The sliding characteristics of the aluminum alloy rolled sheet with overlay layer were measured by the following method.
耐疲労性試験
 試験機:往復動荷重試験機
 回転速度:2000~3000r.p.m
 試験温度(軸受背面温度):160℃
 相手材:S55C高周波焼入れ
 潤滑油:CF-4 10W-30
Fatigue resistance test Tester: Reciprocating load tester Rotational speed: 2000 to 3000 r. p. m
Test temperature (bearing back surface temperature): 160 ° C
Counterpart material: S55C Induction hardened Lubricant: CF-4 10W-30
耐焼付性試験
 試験機:静荷重試験機
 回転速度:1300~8000r.p.m
 試験温度(給油温度):160~180℃
 荷重:5MPa漸増
 相手材:S55C高周波焼入れ
 潤滑油:SN 0W-20
Seizure resistance test Tester: Static load tester Rotational speed: 1300 to 8000 r. p. m
Test temperature (refueling temperature): 160 to 180 ° C
Load: 5MPa gradually increase Counterpart material: S55C Induction hardening Lubricant: SN 0W-20
 試験の結果を表7に示す。 The results of the test are shown in Table 7.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006


Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

 表7から、Feを0.3質量%以上添加した実験例19~26(実施例)では、Feの添加量が少ない実験例27~29(比較例)と比較して、耐疲労性及び耐焼付性が良好である。ただし、Feの含有量が2.5質量%である実験例30(比較例)は、実験例19~26よりも耐疲労性、耐焼付性が劣っている。 From Table 7, in the experimental examples 19 to 26 (examples) in which Fe is added by 0.3 mass% or more, the fatigue resistance and the fatigue resistance are compared with the experimental examples 27 to 29 (comparative examples) in which the addition amount of Fe is small. The burnability is good. However, experimental example 30 (comparative example) in which the content of Fe is 2.5% by mass is inferior in fatigue resistance and seizure resistance to experimental examples 19 to 26.

Claims (24)

  1.  1~20質量%のSnと、
     0.5~12質量%のSiと、
     0.05~1.5質量%のFeと、
     Alと
     を含み、
     Alマトリクスに分散されたSi粒子と、
     Alマトリクスに分散されたFe相と
     を有するアルミニウム合金。
    1 to 20 mass% of Sn,
    0.5 to 12% by mass of Si,
    0.05 to 1.5% by mass of Fe,
    Including Al and
    Si particles dispersed in an Al matrix,
    An aluminum alloy having an Fe phase dispersed in an Al matrix.
  2.  0.3質量%以上のFeを含む
     請求項1に記載のアルミニウム合金。
    The aluminum alloy according to claim 1, containing 0.3% by mass or more of Fe.
  3.  Fe相にはAlマトリクスからAlが取り込まれ、Alの濃度はFe相とAlマトリクスの界面で最も高く、Fe相内部に向かって低下している
     請求項1または2に記載のアルミニウム合金。
    The aluminum alloy according to claim 1 or 2, wherein Al is taken from the Al matrix in the Fe phase, and the concentration of Al is highest at the interface between the Fe phase and the Al matrix and decreases toward the inside of the Fe phase.
  4.  添加元素として、0.5質量%以下のCrおよび3質量%以下のCuの少なくとも1種を含む
     請求項1ないし3のいずれか一項に記載のアルミニウム合金。
    The aluminum alloy according to any one of claims 1 to 3, containing at least one of 0.5 mass% or less of Cr and 3 mass% or less of Cu as additive elements.
  5.  Fe相にはAlマトリクスから前記添加元素が取り込まれ、当該添加元素の濃度はFe相とAlマトリクスの界面で最も高く、Fe相内部に向かって低下している
     請求項4に記載のアルミニウム合金。
    The aluminum alloy according to claim 4, wherein the additive element is taken from the Al matrix in the Fe phase, and the concentration of the additive element is highest at the interface between the Fe phase and the Al matrix and decreases toward the inside of the Fe phase.
  6.  Mg、Ag、およびZnのうち少なくとも1種を総量で8質量%以下、
     Zr、Mn、V、Sc、Li、およびNiのうち少なくとも1種を総量で0.5質量%以下、および
     不可避的不純物としてTiおよびBを総量で0.5質量%以下
     含む請求項1ないし5のいずれか一項に記載のアルミニウム合金。
    8 mass% or less in total of at least one of Mg, Ag, and Zn,
    The total content of at least one of Zr, Mn, V, Sc, Li, and Ni is 0.5% by mass or less in total, and 0.5% by mass or less in total of Ti and B as unavoidable impurities The aluminum alloy according to any one of the above.
  7.  5質量%以上のSnを含む
     請求項1ないし6のいずれか一項に記載のアルミニウム合金。
    The aluminum alloy according to any one of claims 1 to 6, containing 5% by mass or more of Sn.
  8.  断面3.56×10-2mmあたり、長径寸法が5~40μmのSi粒子が5個以上存在する
     請求項1ないし7のいずれか一項に記載のアルミニウム合金。
    The aluminum alloy according to any one of claims 1 to 7, wherein five or more Si particles having a major axis dimension of 5 to 40 μm are present per 3.56 × 10 -2 mm 2 cross section.
  9.  前記Si粒子の円相当径が2~15μmであり、
     円相当径が4μm以上のSi粒子が個数割合で20%以上である
     請求項8記載のアルミニウム合金。
    The equivalent circle diameter of the Si particles is 2 to 15 μm,
    The aluminum alloy according to claim 8, wherein the number ratio of Si particles having a circle equivalent diameter of 4 μm or more is 20% or more.
  10.  請求項1ないし9のいずれか一項に記載のアルミニウム合金で形成されたライニング層と、
     Fe系材料で形成された裏金と
     を有するすべり軸受。
    A lining layer formed of the aluminum alloy according to any one of claims 1 to 9,
    A slide bearing having a back metal formed of an Fe-based material.
  11.  前記ライニング層のうち相手軸と接する面が切削加工されている
     請求項10記載のすべり軸受。
    The slide bearing according to claim 10, wherein a surface of the lining layer in contact with the other shaft is cut.
  12.  請求項1ないし9のいずれか一項に記載のアルミニウム合金、または1~20質量%のSnを含むAl-Sn系合金で形成されたライニング層と、
     Fe系材料で形成された裏金と
     を有し、
     前記ライニング層と前記裏金との界面に、Al-Fe拡散層およびSnのろう接面が形成され、
     前記ライニング層は、前記裏金との接合面に、分散して形成された複数の凹部を有し、
     前記界面に存在するSnの一部が、前記凹部に埋収されている
     すべり軸受。
    A lining layer formed of the aluminum alloy according to any one of claims 1 to 9, or an Al-Sn based alloy containing 1 to 20% by mass of Sn.
    And a back metal formed of Fe-based material,
    An Al—Fe diffusion layer and a soldered surface of Sn are formed at the interface between the lining layer and the back metal,
    The lining layer has a plurality of recesses formed in a dispersed manner in the joint surface with the back metal,
    A slide bearing in which a part of Sn present at the interface is buried in the recess.
  13.  前記ライニング層が、
      0.2~1.5質量%のFeを含み、
      分散されたFe相を有し、
     前記凹部は、前記ライニング層の表面を機械的に削り取ることにより形成されている
     請求項12に記載のすべり軸受。
    The lining layer is
    0.2 to 1.5% by mass of Fe,
    With dispersed Fe phase,
    The plain bearing according to claim 12, wherein the recess is formed by mechanically scraping the surface of the lining layer.
  14.  前記凹部は、ショットブラストにより形成されている
     請求項12に記載のすべり軸受。
    The slide bearing according to claim 12, wherein the recess is formed by shot blasting.
  15.  前記凹部は、レーザー加工により形成されている
     請求項12に記載のすべり軸受。
    The slide bearing according to claim 12, wherein the recess is formed by laser processing.
  16.  1~20質量%のSnおよび0.2~1.5質量%のFeを含むAl-Sn系合金または5~20質量%Sn、0.5~12質量%のSi、および0.2~1.5質量%のFeを含むAl-Sn-Si系合金の圧延板の表面を、粗さ1~5μm JIS(Ra)に機械的に削り取り粗面化をする工程と、
     前記粗面化の後で、前記圧延板とFe系裏金とを圧延により圧接する工程と、
     前記圧延の後で、250~500℃にて焼鈍する工程と
     を含むすべり軸受の製造方法。
    Al-Sn alloy containing 1 to 20% by mass of Sn and 0.2 to 1.5% by mass of Fe or 5 to 20% by mass of Sn, 0.5 to 12% by mass of Si, and 0.2 to 1 .5 mechanically roughening the surface of a rolled sheet of an Al-Sn-Si alloy containing 5% by mass of Fe to a roughness of 1 to 5 μm JIS (Ra) and roughening the surface;
    After the roughening, pressing the rolled plate and the Fe-based backing metal by rolling;
    After the rolling, annealing at 250 to 500 ° C.
  17.  ライニング層と、
     前記ライニング層上に形成されたオーバーレイ層と
     を有し、
     前記ライニング層は、
      1~20質量%のSnと、
      0.5~12質量%のSiと、
      0.20質量%を超え2.0質量%以下のFeと、
      Alと
     を含み、
     前記オーバーレイ層は、
      MoS、PTFE、グラファイト、WS、h-BN、およびSbのうち少なくとも1種を含む固体潤滑剤と、
      ポリアミドイミド樹脂、ポリイミド樹脂、フェノール樹脂、ポリアセタール樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、およびエポキシ樹脂のうち少なくとも1種を含むバインダー樹脂と
     を含むすべり軸受。
    Lining layer,
    An overlay layer formed on the lining layer;
    The lining layer is
    1 to 20 mass% of Sn,
    0.5 to 12% by mass of Si,
    More than 0.20% by mass and 2.0% by mass or less of Fe,
    Including Al and
    The overlay layer is
    A solid lubricant comprising at least one of MoS 2 , PTFE, graphite, WS 2 , h-BN, and Sb 2 O 3 ;
    A slide bearing comprising a polyamide imide resin, a polyimide resin, a phenol resin, a polyacetal resin, a polyether ether ketone resin, a polyphenylene sulfide resin, and a binder resin containing at least one of epoxy resins.
  18.  前記オーバーレイ層における前記固体潤滑剤の含有量が30~70体積%である
     請求項17に記載のすべり軸受。
    The slide bearing according to claim 17, wherein a content of the solid lubricant in the overlay layer is 30 to 70% by volume.
  19.  前記オーバーレイ層は、SiC、Al、TiN、AIN、CrO、Si
    ZrO、FeP、Fe、およびFeOのうち少なくとも1種を含む硬質物をさらに含む
     請求項17または18に記載のすべり軸受。
    The overlay layer is made of SiC, Al 2 O 3 , TiN, AIN, CrO 2 , Si 3 N 4 ,
    Sliding bearing according to ZrO 2, Fe 3 P, Fe 2 O 3, and claim 17 or 18 further comprising a hard material including at least one of FeO.
  20.  前記オーバーレイ層における前記硬質物の含有量が0.1~5質量%である
     請求項19に記載のすべり軸受。
    The slide bearing according to claim 19, wherein a content of the hard material in the overlay layer is 0.1 to 5% by mass.
  21.  前記ライニング層は、連続鋳造板を冷間圧延して形成される
     請求項17ないし20のいずれか一項に記載のすべり軸受。
    The plain bearing according to any one of claims 17 to 20, wherein the lining layer is formed by cold rolling a continuous cast plate.
  22.  前記ライニング層は、(a)~(d)のうち少なくとも1種をさらに含む
      (a)0.5質量%以下のCrおよび3質量%以下のCuの少なくとも1種、
      (b)Mg、Ag、およびZnのうち少なくとも1種を総量で8質量%以下、
      (c)Zr、Mn、V、Sc、Li、およびNiのうち少なくとも1種以上を総量で0.5質量%以下、
      (d)不可避的不純物としてTiおよびBの少なくとも1種を総量で0.5質量%以下、
     請求項17ないし21のいずれか一項に記載のすべり軸受。
    The lining layer further contains at least one of (a) to (d) (a) at least one of 0.5% by mass or less of Cr and 3% by mass or less of Cu,
    (B) 8 mass% or less in total of at least one of Mg, Ag, and Zn,
    (C) at least one or more of Zr, Mn, V, Sc, Li, and Ni in a total amount of at most 0.5 mass%,
    (D) 0.5 mass% or less in total of at least one of Ti and B as unavoidable impurities
    A plain bearing according to any one of claims 17 to 21.
  23.  Fe系合金で形成され、前記ライニング層と圧接された裏金をさらに有する
     請求項17ないし22に記載のすべり軸受。
    The slide bearing according to any one of claims 17 to 22, further comprising a back metal formed of an Fe-based alloy and pressed against the lining layer.
  24.  前記ライニング層のうち相手軸と接する面が切削加工されている
     請求項17ないし23に記載のすべり軸受。
    The slide bearing according to any one of claims 17 to 23, wherein a surface of the lining layer in contact with the opposite shaft is cut.
PCT/JP2014/059234 2013-03-29 2014-03-28 Aluminum alloy, slide bearing, and slide bearing manufacturing method WO2014157650A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-073324 2013-03-29
JP2013-073323 2013-03-29
JP2013073324A JP2014196813A (en) 2013-03-29 2013-03-29 Sliding bearing
JP2013073323A JP2014196544A (en) 2013-03-29 2013-03-29 Aluminum alloy for slide bearing and slide bearing
JP2013-093604 2013-04-26
JP2013093604A JP2014214827A (en) 2013-04-26 2013-04-26 Aluminum alloy slide bearing and manufacturing method

Publications (1)

Publication Number Publication Date
WO2014157650A1 true WO2014157650A1 (en) 2014-10-02

Family

ID=51624606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059234 WO2014157650A1 (en) 2013-03-29 2014-03-28 Aluminum alloy, slide bearing, and slide bearing manufacturing method

Country Status (1)

Country Link
WO (1) WO2014157650A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161011A (en) * 2015-02-27 2016-09-05 大豊工業株式会社 Slide bearing
GB2552998A (en) * 2016-08-19 2018-02-21 Mahle Int Gmbh Aluminium alloy composition for a sliding element
WO2020166118A1 (en) * 2019-02-15 2020-08-20 大豊工業株式会社 Aluminum alloy for slide bearing, and slide bearing
CN112048646A (en) * 2020-09-02 2020-12-08 中国航发北京航空材料研究院 Al-Si-Mg-Sc-Zr wire for electric arc fuse additive manufacturing and preparation method thereof

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864333A (en) * 1981-10-15 1983-04-16 Taiho Kogyo Co Ltd Aluminum alloy bearing
JPS5864336A (en) * 1981-10-15 1983-04-16 Taiho Kogyo Co Ltd Aluminum alloy bearing
JPS5867841A (en) * 1981-10-15 1983-04-22 Taiho Kogyo Co Ltd Aluminum alloy bearing
JPS6041626U (en) * 1983-08-30 1985-03-23 川崎重工業株式会社 plain bearing
JPS6263635A (en) * 1985-09-13 1987-03-20 N D C Kk Al-sn-pb bearing alloy
JPS62224722A (en) * 1986-03-25 1987-10-02 Taiho Kogyo Co Ltd Bearing material
JPH04297539A (en) * 1991-03-26 1992-10-21 Ndc Co Ltd Alambda-sn-si-pb bearing material
JPH0748083B2 (en) * 1988-10-17 1995-05-24 カール ツァイス スティフツンク Optical fiber bundle for high intensity electromagnetic radiation transmission
JPH0979264A (en) * 1995-09-14 1997-03-25 Ndc Co Ltd Aluminum bearing
JPH11209836A (en) * 1998-01-21 1999-08-03 Ndc Co Ltd Multilayered plain bearing
JP2001124084A (en) * 1999-10-28 2001-05-08 Mitsubishi Heavy Ind Ltd Bearing and its manufacturing method
JP2002038230A (en) * 2000-07-26 2002-02-06 Daido Metal Co Ltd Aluminum alloy for bearing
JP2003056566A (en) * 2001-08-10 2003-02-26 Daido Metal Co Ltd Slide bearing
JP2009228870A (en) * 2008-03-25 2009-10-08 Daido Metal Co Ltd Sliding bearing
JP2009228100A (en) * 2008-03-25 2009-10-08 Daido Metal Co Ltd Aluminum-based bearing alloy
JP2010242854A (en) * 2009-04-06 2010-10-28 Daido Metal Co Ltd Slide bearing
JP2011027241A (en) * 2009-07-29 2011-02-10 Daido Metal Co Ltd Sliding bearing
JP2013007395A (en) * 2011-06-22 2013-01-10 Daido Metal Co Ltd Al alloy bearing

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864333A (en) * 1981-10-15 1983-04-16 Taiho Kogyo Co Ltd Aluminum alloy bearing
JPS5864336A (en) * 1981-10-15 1983-04-16 Taiho Kogyo Co Ltd Aluminum alloy bearing
JPS5867841A (en) * 1981-10-15 1983-04-22 Taiho Kogyo Co Ltd Aluminum alloy bearing
JPS6041626U (en) * 1983-08-30 1985-03-23 川崎重工業株式会社 plain bearing
JPS6263635A (en) * 1985-09-13 1987-03-20 N D C Kk Al-sn-pb bearing alloy
JPS62224722A (en) * 1986-03-25 1987-10-02 Taiho Kogyo Co Ltd Bearing material
JPH0748083B2 (en) * 1988-10-17 1995-05-24 カール ツァイス スティフツンク Optical fiber bundle for high intensity electromagnetic radiation transmission
JPH04297539A (en) * 1991-03-26 1992-10-21 Ndc Co Ltd Alambda-sn-si-pb bearing material
JPH0979264A (en) * 1995-09-14 1997-03-25 Ndc Co Ltd Aluminum bearing
JPH11209836A (en) * 1998-01-21 1999-08-03 Ndc Co Ltd Multilayered plain bearing
JP2001124084A (en) * 1999-10-28 2001-05-08 Mitsubishi Heavy Ind Ltd Bearing and its manufacturing method
JP2002038230A (en) * 2000-07-26 2002-02-06 Daido Metal Co Ltd Aluminum alloy for bearing
JP2003056566A (en) * 2001-08-10 2003-02-26 Daido Metal Co Ltd Slide bearing
JP2009228870A (en) * 2008-03-25 2009-10-08 Daido Metal Co Ltd Sliding bearing
JP2009228100A (en) * 2008-03-25 2009-10-08 Daido Metal Co Ltd Aluminum-based bearing alloy
JP2010242854A (en) * 2009-04-06 2010-10-28 Daido Metal Co Ltd Slide bearing
JP2011027241A (en) * 2009-07-29 2011-02-10 Daido Metal Co Ltd Sliding bearing
JP2013007395A (en) * 2011-06-22 2013-01-10 Daido Metal Co Ltd Al alloy bearing

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161011A (en) * 2015-02-27 2016-09-05 大豊工業株式会社 Slide bearing
GB2552998A (en) * 2016-08-19 2018-02-21 Mahle Int Gmbh Aluminium alloy composition for a sliding element
US20180051748A1 (en) * 2016-08-19 2018-02-22 Mahle International Gmbh Aluminium alloy composition for a sliding element
GB2552998B (en) * 2016-08-19 2019-12-11 Mahle Int Gmbh Aluminium alloy composition for a sliding element
US10962055B2 (en) 2016-08-19 2021-03-30 Mahle International Gmbh Aluminium alloy composition for a sliding element
WO2020166118A1 (en) * 2019-02-15 2020-08-20 大豊工業株式会社 Aluminum alloy for slide bearing, and slide bearing
JP2020132923A (en) * 2019-02-15 2020-08-31 大豊工業株式会社 Aluminum alloy for slide bearing, and slide bearing
CN113396234A (en) * 2019-02-15 2021-09-14 大丰工业株式会社 Aluminum alloy for sliding bearing and sliding bearing
CN113396234B (en) * 2019-02-15 2022-04-05 大丰工业株式会社 Aluminum alloy for sliding bearing and sliding bearing
US11480216B2 (en) 2019-02-15 2022-10-25 Taiho Kogyo Co., Ltd. Aluminum alloy for slide bearing, and slide bearing
CN112048646A (en) * 2020-09-02 2020-12-08 中国航发北京航空材料研究院 Al-Si-Mg-Sc-Zr wire for electric arc fuse additive manufacturing and preparation method thereof

Similar Documents

Publication Publication Date Title
CN101680482B (en) Slide bearing
JP4424810B2 (en) Sintered material
JP3373709B2 (en) Copper-based sliding bearing materials and sliding bearings for internal combustion engines
GB2367070A (en) An aluminium bearing alloy
JP3472284B2 (en) Aluminum bearing alloy
WO2014157650A1 (en) Aluminum alloy, slide bearing, and slide bearing manufacturing method
EP2669400A1 (en) Zinc-free spray powder, copper thermal spray coating, method for creating a copper thermal spray coating
JP2004277883A (en) Hot-worked aluminum alloy and base layer and bearing element made from the alloy
JP4072132B2 (en) Sliding bearing manufacturing method
JP2007197834A (en) Composite sintered slide member
JP2733736B2 (en) Copper-lead alloy bearings
JPH07190064A (en) Multilayer sliding bearing material and its manufacture
JP2007064426A (en) Sliding material and method of manufacturing the same
JP2769421B2 (en) Copper-lead bearing alloy material excellent in corrosion resistance and method for producing the same
JP4293295B2 (en) Swash plate compressor swash plate
KR20050002596A (en) Sliding member
KR20130021332A (en) Copper-based sliding material
US8845199B2 (en) Solid bronze bearing with hardness gradient
JP2014214827A (en) Aluminum alloy slide bearing and manufacturing method
EP2041327B1 (en) Aluminium bearing alloy aluminiumlagerlegierung
JP2733735B2 (en) Copper lead alloy bearing
KR20120137492A (en) Al-based bearing alloy
KR101398616B1 (en) Sliding member
US8715385B2 (en) Bearing material
JP3754353B2 (en) Sliding member with composite plating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774347

Country of ref document: EP

Kind code of ref document: A1