JP6794411B2 - Sliding member - Google Patents

Sliding member Download PDF

Info

Publication number
JP6794411B2
JP6794411B2 JP2018175255A JP2018175255A JP6794411B2 JP 6794411 B2 JP6794411 B2 JP 6794411B2 JP 2018175255 A JP2018175255 A JP 2018175255A JP 2018175255 A JP2018175255 A JP 2018175255A JP 6794411 B2 JP6794411 B2 JP 6794411B2
Authority
JP
Japan
Prior art keywords
mass
copper alloy
sliding
layer
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018175255A
Other languages
Japanese (ja)
Other versions
JP2020045528A (en
Inventor
麻子 池上
麻子 池上
高顕 北原
高顕 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2018175255A priority Critical patent/JP6794411B2/en
Publication of JP2020045528A publication Critical patent/JP2020045528A/en
Application granted granted Critical
Publication of JP6794411B2 publication Critical patent/JP6794411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、例えば内燃機関や自動変速機に用いられる軸受や各種機械に用いられる軸受などの摺動部材に関するものである。詳細には、本発明は、鋼裏金層上に形成された摺動層を備える摺動部材に係るものである。 The present invention relates to sliding members such as bearings used in internal combustion engines and automatic transmissions and bearings used in various machines. More specifically, the present invention relates to a sliding member including a sliding layer formed on a steel back metal layer.

従来から内燃機関や自動変速機等の軸受部には、銅合金の摺動層および鋼裏金層からなる摺動部材を円筒形状や半円筒形状に成形したすべり軸受などの摺動部材が用いられている。摺動部材の使用時、例えばすべり軸受の場合には摺動層の摺動面と軸部材との間の隙間に油が供給されるが、油中に含まれる硫黄成分により摺動層である銅合金の摺動面が硫化腐食を起こしやすい。そのため、摺動層の銅合金に、耐食性を高めるためNiを含有させる提案がなされている(特許文献1、2参照)。 Conventionally, sliding members such as slide bearings in which a sliding member composed of a copper alloy sliding layer and a steel back metal layer are formed into a cylindrical shape or a semi-cylindrical shape have been used for bearings of internal combustion engines and automatic transmissions. ing. When using a sliding member, for example, in the case of a slide bearing, oil is supplied to the gap between the sliding surface of the sliding layer and the shaft member, but it is a sliding layer due to the sulfur component contained in the oil. The sliding surface of the copper alloy is prone to sulfur corrosion. Therefore, it has been proposed that the copper alloy of the sliding layer contains Ni in order to improve the corrosion resistance (see Patent Documents 1 and 2).

特表2012−509993号公報Special Table 2012-509993 特開2003−269456号公報Japanese Unexamined Patent Publication No. 2003-269456

特許文献1、2のNiを含有する銅合金からなる摺動層は、摺動部材の使用時、摺動層の摺動面での銅合金の硫化腐食は起き難くなるが、摺動面から内部に向かって銅合金の結晶粒界に沿って粒界腐食が起こる。これは、結晶粒界に沿って硫化腐食が進行するために生じるものである。この粒界腐食が銅合金の結晶粒界に沿って進行して摺動層の内部に達すると、摺動時に、結晶粒界が腐食した部分から、銅合金の結晶粒が個々に、あるいは、複数の結晶粒が一塊となって脱落し、摺動層の摺動面と相手軸表面との間に入り、摺動層の摺動面が傷つき損傷する。 In the sliding layer made of a copper alloy containing Ni in Patent Documents 1 and 2, when a sliding member is used, sulfide corrosion of the copper alloy on the sliding surface of the sliding layer is less likely to occur, but from the sliding surface. Intergranular corrosion occurs along the grain boundaries of the copper alloy toward the inside. This is due to the progress of sulfidal corrosion along the grain boundaries. When this intergranular corrosion progresses along the grain boundaries of the copper alloy and reaches the inside of the sliding layer, the crystal grains of the copper alloy are individually or from the portion where the grain boundaries are corroded during sliding. A plurality of crystal grains fall off as a lump and enter between the sliding surface of the sliding layer and the surface of the mating shaft, and the sliding surface of the sliding layer is damaged and damaged.

本発明は、このような従来技術の問題を解決して、耐食性(耐粒界腐食性)に優れ、銅合金の結晶粒の脱落による損傷が起き難い摺動部材の提供を目的とする。 An object of the present invention is to solve such a problem of the prior art and to provide a sliding member having excellent corrosion resistance (intergranular corrosion resistance) and less likely to be damaged by falling off of crystal grains of a copper alloy.

本発明によれば、鋼裏金層と、鋼裏金層上に設けられ、摺動面を有し、複数の閉空孔を含む摺動層とを備えた摺動部材が提供される。摺動層は、1〜12質量%のSn、1〜15質量%のNi、0.01〜0.2質量%のPを含み、残部がCu及び不可避純物からなる銅合金部と、閉空孔を囲む銅合金部の内部表面を被覆する鉄リン酸化物膜とからなる。このように閉空孔は鉄リン酸化物膜により画定される。閉空孔は、銅合金部中に分散しており、摺動層中の閉空孔の体積割合は、摺動面に垂直方向の断面視にて0.1〜2体積%であり、閉空孔の平均径は1〜20μmである。 According to the present invention, there is provided a sliding member provided with a steel back metal layer and a sliding layer provided on the steel back metal layer, having a sliding surface, and including a plurality of closed holes. The sliding layer contains 1 to 12% by mass of Sn, 1 to 15% by mass of Ni, and 0.01 to 0.2% by mass of P, and the balance is a copper alloy portion made of Cu and unavoidable pure material, and the air is closed. It consists of an iron phosphorus oxide film that covers the inner surface of the copper alloy portion that surrounds the pores. In this way, the closed pores are defined by the iron phosphate film. The closed holes are dispersed in the copper alloy portion, and the volume ratio of the closed holes in the sliding layer is 0.1 to 2% by volume in a cross-sectional view in the direction perpendicular to the sliding surface. The average diameter is 1 to 20 μm.

本発明の一具体例によれば、閉空孔は、4以下の平均アスペクト比を有することが好ましい。 According to a specific example of the present invention, the closed holes preferably have an average aspect ratio of 4 or less.

本発明の一具体例によれば、鉄リン酸化物膜における、FeとPとOの組成の質量比は、Fe1−X−Yであり、ここでX=0.1〜0.3、Y=0.3〜0.5であることが好ましい。 According to an embodiment of the present invention, in the iron phosphorus oxide film, the weight ratio of the composition of Fe and P and O are Fe 1-X-Y P X O Y, where X = 0.1 to It is preferably 0.3 and Y = 0.3 to 0.5.

本発明の一具体例によれば、銅合金部は、0.01〜5質量%のAl、0.01〜5質量%のSi、0.5〜10質量%のFe、0.1〜5質量%のMn、0.1〜30質量%のZn、0.1〜5質量%のSb、0.1〜5質量%のIn、0.1〜5質量%のAg、0.5〜25質量%のPb、0.5〜20質量%のBiから選ばれる1種以上をさらに含むことが好ましい。 According to one specific example of the present invention, the copper alloy portion contains 0.01 to 5% by mass of Al, 0.01 to 5% by mass of Si, 0.5 to 10% by mass of Fe, and 0.1 to 5%. Mn of mass%, Zn of 0.1 to 30 mass%, Sb of 0.1 to 5 mass%, In of 0.1 to 5 mass%, Ag of 0.1 to 5 mass%, 0.5 to 25 It is preferable to further contain one or more selected from Pb of mass% and Bi of 0.5 to 20 mass%.

本発明の一具体例によれば、摺動層は、Al、SiO、AlN、MoC、WC、FeP、FePのうちから選ばれる1種以上の硬質粒子を0.1〜10体積%をさらに含むことが好ましい。 According to a specific example of the present invention, the sliding layer contains one or more hard particles selected from Al 2 O 3 , SiO 2 , Al N, Mo 2 C, WC, Fe 2 P, and Fe 3 P. It preferably further contains 0.1 to 10% by volume.

発明の摺動部材の摺動層の摺動面に垂直方向の断面の模式図。The schematic view of the cross section in the direction perpendicular to the sliding surface of the sliding layer of the sliding member of the invention. 図1の摺動層の組織を示す図。The figure which shows the structure of the sliding layer of FIG. 図2の摺動層の閉空孔の拡大図。An enlarged view of a closed hole of the sliding layer of FIG. 閉空孔のアスペクト比(X1)を説明する図。The figure explaining the aspect ratio (X1) of a closed hole. 従来の摺動部材に起こる結晶粒脱落の説明図。Explanatory drawing of crystal grain dropout which occurs in the conventional sliding member.

図1に本発明による摺動部材1の一具体例の断面を模式的に示す。この摺動部材1は、鋼裏金層2上に摺動層3が設けられた構成となっている。鋼裏金層2とは反対側の摺動層3の表面が摺動面31を形成している。なお、摺動部材1は摺動層上に金属または合金からなる被覆層や、合成樹脂または合成樹脂を基とする被覆層を有してもよいが、被覆層の有無に関わらず本明細書では摺動層3の上記表面を摺動面31と称する。
図2に図1に示す摺動層3の組織を示す。摺動層3は、銅合金部4と、銅合金部4中に多数の閉空孔5が分散した組織になっている。この閉空孔5は、主に、銅合金の結晶粒41どうしの間の結晶粒界42に分散した銅合金部4の空隙として存在している。この空隙は、その周囲を取り囲む銅合金部4の表面43(以下、「内部表面」という)により画定され、銅合金部4の内部表面43は鉄リン酸化物膜6により被覆されている(図3参照)。閉空孔5は鉄リン酸化物膜6の表面61により画定される。すなわち、鉄リン酸化物膜6は、銅合金部4(の内部表面43)と閉空孔5との間に存在する。各閉空孔5は、周囲を銅合金部4により囲まれており、摺動層3の表面に通じてはいない。各閉空孔5は、互いに分離して、銅合金部4に分散している。
FIG. 1 schematically shows a cross section of a specific example of the sliding member 1 according to the present invention. The sliding member 1 has a structure in which a sliding layer 3 is provided on a steel back metal layer 2. The surface of the sliding layer 3 on the opposite side of the steel back metal layer 2 forms the sliding surface 31. The sliding member 1 may have a coating layer made of a metal or an alloy or a coating layer based on a synthetic resin or a synthetic resin on the sliding layer, but this specification regardless of the presence or absence of the coating layer. Then, the surface of the sliding layer 3 is referred to as a sliding surface 31.
FIG. 2 shows the structure of the sliding layer 3 shown in FIG. The sliding layer 3 has a structure in which a copper alloy portion 4 and a large number of closed holes 5 are dispersed in the copper alloy portion 4. The closed holes 5 mainly exist as voids in the copper alloy portion 4 dispersed in the crystal grain boundaries 42 between the crystal grains 41 of the copper alloy. This void is defined by the surface 43 of the copper alloy portion 4 (hereinafter referred to as “inner surface”) surrounding the periphery thereof, and the inner surface 43 of the copper alloy portion 4 is covered with the iron phosphorylation film 6 (FIG. 3). The closed holes 5 are defined by the surface 61 of the iron phosphate film 6. That is, the iron phosphor oxide film 6 exists between the copper alloy portion 4 (inner surface 43) and the closed holes 5. Each closed hole 5 is surrounded by a copper alloy portion 4 and does not communicate with the surface of the sliding layer 3. The closed holes 5 are separated from each other and dispersed in the copper alloy portion 4.

鋼裏金層2は、例えば、炭素の含有量が0.07〜0.35質量%である亜共析鋼である。なお、鋼裏金層2は、0.07〜0.35質量%の炭素を含有し、さらに、0.4質量%以下のSi、1質量%以下のMn、0.04質量%以下のP、0.05質量%以下のSのいずれか一種以上を含有し、残部Feおよび不可避不純物からなる組成であってもよい。 The steel back metal layer 2 is, for example, a subeutectoid steel having a carbon content of 0.07 to 0.35% by mass. The steel back metal layer 2 contains 0.07 to 0.35% by mass of carbon, and further contains 0.4% by mass or less of Si, 1% by mass or less of Mn, and 0.04% by mass or less of P. The composition may contain any one or more of S of 0.05% by mass or less, and may be composed of the balance Fe and unavoidable impurities.

銅合金部4の組成は、1〜12質量%のSn、1〜15質量%のNi、0.01〜0.2質量%のPを含み残部Cu及び不可避純物からなるものでよい。
銅合金部4の組成中のSn成分は、銅合金部4自体の強度を高めるが、含有量が1質量%未満では、この効果が不十分であり、また、含有量が12質量%を超えると、銅合金部4が脆くなる。Ni成分は、銅合金部4の耐食性を高める成分として作用するが、含有量が1質量%未満では、この効果が不十分であり、また、含有量が15質量%を超えると、銅合金部4が脆くなる。銅合金部4のP成分は、銅合金部4自体の強度を高めるが、含有量が0.01質量%未満では、この効果が不十分であり、また、含有量が0.2質量%を超えると、銅合金が脆くなる。銅合金部4のP成分の含有量は、0.05質量%以上、0.15質量%以下であることが、より好ましい。このNi成分、P成分は、後述する閉空孔5と接する銅合金部4の表面の鉄リン酸化物膜6の形成に影響する。
The composition of the copper alloy portion 4 may be 1 to 12% by mass of Sn, 1 to 15% by mass of Ni, 0.01 to 0.2% by mass of P, and the balance Cu and an unavoidable pure substance.
The Sn component in the composition of the copper alloy portion 4 enhances the strength of the copper alloy portion 4 itself, but if the content is less than 1% by mass, this effect is insufficient, and the content exceeds 12% by mass. Then, the copper alloy portion 4 becomes brittle. The Ni component acts as a component for enhancing the corrosion resistance of the copper alloy portion 4, but if the content is less than 1% by mass, this effect is insufficient, and if the content exceeds 15% by mass, the copper alloy portion 4 becomes brittle. The P component of the copper alloy portion 4 enhances the strength of the copper alloy portion 4 itself, but if the content is less than 0.01% by mass, this effect is insufficient, and the content is 0.2% by mass. If it exceeds, the copper alloy becomes brittle. The content of the P component of the copper alloy portion 4 is more preferably 0.05% by mass or more and 0.15% by mass or less. The Ni component and the P component affect the formation of the iron phosphorus oxide film 6 on the surface of the copper alloy portion 4 in contact with the closed pores 5, which will be described later.

なお、銅合金部4は、上記組成にさらに0.01〜5質量%のAl、0.01〜5質量%のSi、0.5〜10質量%のFe、0.1〜5質量%のMn、0.1〜30質量%のZn、0.1〜5質量%のSb、0.1〜5質量%のIn、0.1〜5質量%のAg、0.5〜25質量%のPb、0.5〜20質量%のBiから選ばれる1種以上を含むことができる。これら選択成分のうち、Bi成分、Pb成分を除く成分は、銅合金部4の強度を高め、Bi成分およびPb成分は、銅合金部4の潤滑性を高める成分である。これら選択成分を2種以上含有する場合でも、選択成分の合計の含有量は40質量%以下とすることが好ましい。また、銅合金部4は、原材料として用いる銅合金(粉末)の製造時より含まれる不可避不純物も含有してもよい。 The copper alloy portion 4 further contains 0.01 to 5% by mass of Al, 0.01 to 5% by mass of Si, 0.5 to 10% by mass of Fe, and 0.1 to 5% by mass of the above composition. Mn, 0.1 to 30% by mass Zn, 0.1 to 5% by mass Sb, 0.1 to 5% by mass In, 0.1 to 5% by mass Ag, 0.5 to 25% by mass It can contain one or more selected from Pb, 0.5 to 20% by mass Bi. Of these selected components, the components excluding the Bi component and the Pb component increase the strength of the copper alloy portion 4, and the Bi component and the Pb component are components that enhance the lubricity of the copper alloy portion 4. Even when two or more of these selective components are contained, the total content of the selected components is preferably 40% by mass or less. Further, the copper alloy portion 4 may also contain unavoidable impurities contained from the time of manufacturing the copper alloy (powder) used as a raw material.

摺動層3は、さらに、Al、SiO、AlN、MoC、WC、FeP、FePから選ばれる1種以上の硬質粒子を0.1〜10体積%を含むことができる。これら硬質粒子は、摺動層3の銅合金部4の素地に分散して摺動層3の耐摩耗性を高めるが、含有量が0.1体積%未満の場合には、その効果が不十分であり、また、10体積%を超える場合には、摺動層3が脆くなる。 The sliding layer 3 further contains 0.1 to 10% by volume of one or more hard particles selected from Al 2 O 3 , SiO 2 , Al N, Mo 2 C, WC, Fe 2 P, and Fe 3 P. be able to. These hard particles are dispersed in the base material of the copper alloy portion 4 of the sliding layer 3 to enhance the wear resistance of the sliding layer 3, but the effect is ineffective when the content is less than 0.1% by volume. If it is sufficient and exceeds 10% by volume, the sliding layer 3 becomes brittle.

閉空孔5の総体積は、摺動層3の体積に対して0.1〜2%とすることが好ましい。閉空孔5の体積割合が0.1%未満であると耐食性を高める効果が不十分となり、2%を超えると摺動層3の強度が低くなる。また、上記作用を奏するには、閉空孔5の平均粒径は、1〜20μmとすることが好ましく、さらに2〜15μmとすることがより好ましい。 The total volume of the closed holes 5 is preferably 0.1 to 2% with respect to the volume of the sliding layer 3. If the volume ratio of the closed hole 5 is less than 0.1%, the effect of increasing the corrosion resistance becomes insufficient, and if it exceeds 2%, the strength of the sliding layer 3 becomes low. Further, in order to exert the above action, the average particle size of the closed pores 5 is preferably 1 to 20 μm, and more preferably 2 to 15 μm.

摺動層3の体積に対する閉空孔5の総体積の割合の測定方法を具体的に説明する。
上記の摺動層3の摺動面31に垂直方向の断面の複数箇所(例えば5箇所)を、電子顕微鏡を用いて電子像を例えば200倍で撮影し、得られた電子像を一般的な画像解析手法(解析ソフト:Image−Pro Plus(Version4.5);(株)プラネトロン製)を用いて、画像中の摺動層3(銅合金部4および閉空孔5)の面積の合計(A1)に対する閉空孔5の合計の面積(A2)の比(A2/A1)から求める。なお、この面積の比の値は、摺動層中に含まれる閉空孔5の体積割合に相当する。
閉空孔5の平均粒径は、上記の手法で得られた電子像を上記の像解析手法を用い画像中の複数個(例えば30個)の閉空孔5の面積を測定し、それを円と想定した場合の平均直径(円相当径)に換算して求める。
ただし、上記の電子像の撮影倍率は、200倍に限定されないで、他の倍率に変更することができる。
A method for measuring the ratio of the total volume of the closed holes 5 to the volume of the sliding layer 3 will be specifically described.
A plurality of locations (for example, 5 locations) in a cross section perpendicular to the sliding surface 31 of the sliding layer 3 are photographed with an electron microscope at an electron image of, for example, 200 times, and the obtained electron image is generally taken. Using an image analysis method (analysis software: Image-Pro Plus (Version 4.5); manufactured by Planetron Co., Ltd.), the total area of the sliding layers 3 (copper alloy portion 4 and closed holes 5) in the image (A1). ) To the ratio (A2 / A1) of the total area (A2) of the closed holes 5. The value of the ratio of this area corresponds to the volume ratio of the closed holes 5 contained in the sliding layer.
For the average particle size of the closed holes 5, the area of a plurality of (for example, 30) closed holes 5 in the image is measured by using the above image analysis method for the electron image obtained by the above method, and the area is defined as a circle. Calculate by converting to the assumed average diameter (diameter equivalent to a circle).
However, the photographing magnification of the above-mentioned electronic image is not limited to 200 times, and can be changed to another magnification.

閉空孔5と銅合金部4との間には、鉄リン酸化物膜6が形成されている。閉空孔5の周囲の銅合金部4の表面を覆うように鉄リン酸化物膜6が形成され、閉空孔5は、鉄リン酸化物膜6により閉ざされている。
なお、閉空孔5部の鉄リン酸化物膜6の形成は、摺動部材1の摺動層3の摺動面31に垂直方向の断面を、EPMA(電子線マイクロアナライザー)を用い、複数の閉空孔5部の面分析を行い閉空孔5の表面の全体に、Fe元素、P元素、O元素が検出されることで確認できる。
なお、摺動層3の断面組織中に含まれる閉空孔5のうち、体積割合で10%以下の閉空孔5は、銅合金部4との間に鉄リン酸化物膜6が形成されないことは許容される。
また、鉄リン酸化物膜における、Fe元素とP元素とO元素の質量比は、Fe1−X−Yで表現した場合にX=0.1〜0.3、Y=0.3〜0.5であることが好ましい(数値は質量比である)。
鉄リン酸化物膜6におけるFeとPとOの組成の質量比は、EPMAを用い、倍率5000倍で上記断面組織中の摺動層3の厚さ方向の中央部付近の複数の閉空孔5部の鉄リン酸化膜6の定量分析を行うことで確認できる。定量分析における検出元素としてFe、PおよびOを選択し、これら元素の特性X線強度をZAF補正計算法により質量濃度に変換し、このFe、PおよびOの質量濃度から算出した組成の質量比の値を算術平均することで確認できる。なお、定量分析のおける倍率は5000倍に限定されないで、例えば5000倍を超える倍率でおこなってもよい。
なお、鉄リン酸化物膜6は、上記組成に銅合金に含まれる成分(P元素は除く)を20質量%以下、含む組成であることは許容される。
An iron phosphorus oxide film 6 is formed between the closed hole 5 and the copper alloy portion 4. An iron phosphate film 6 is formed so as to cover the surface of the copper alloy portion 4 around the closed hole 5, and the closed hole 5 is closed by the iron phosphor oxide film 6.
To form the iron phosphor oxide film 6 in the closed holes 5, a plurality of cross sections in the direction perpendicular to the sliding surface 31 of the sliding layer 3 of the sliding member 1 are formed by using EPMA (electron probe microanalyzer). It can be confirmed by performing surface analysis of the 5 closed holes and detecting Fe element, P element, and O element on the entire surface of the closed hole 5.
Of the closed holes 5 contained in the cross-sectional structure of the sliding layer 3, the closed holes 5 having a volume ratio of 10% or less do not form an iron phosphorylation film 6 with the copper alloy portion 4. Permissible.
Further, in the iron phosphorus oxide film, the mass ratio of Fe element and P element and O elements, Fe 1-X-Y P X O Y when expressed in X = 0.1~0.3, Y = 0 It is preferably 3 to 0.5 (numerical values are mass ratios).
The mass ratio of the composition of Fe, P, and O in the iron phosphorylated film 6 is a plurality of closed holes 5 near the central portion in the thickness direction of the sliding layer 3 in the cross-sectional structure at a magnification of 5000 times using EPMA. It can be confirmed by performing a quantitative analysis of the iron phosphorylated film 6 of the part. Fe, P and O are selected as the detection elements in the quantitative analysis, the characteristic X-ray intensity of these elements is converted into the mass concentration by the ZAF correction calculation method, and the mass ratio of the composition calculated from the mass concentration of the Fe, P and O. It can be confirmed by arithmetically averaging the values of. The magnification in the quantitative analysis is not limited to 5000 times, and may be performed at a magnification exceeding 5000 times, for example.
It is permissible that the iron phosphorylation film 6 has a composition containing 20% by mass or less of the components (excluding P element) contained in the copper alloy in the above composition.

閉空孔5の平均アスペクト比は、5以下であることが好ましい。閉空孔5の平均アスペクト比は、5を超えると、摺動層3の強度が低くなることがある。さらに、閉空孔5の平均アスペクト比は、4以下であることが好ましい。閉空孔5の平均アスペクト比4以下であると、平均アスペクト比が4を超える場合よりも、摺動層の強度が高くなる。 The average aspect ratio of the closed holes 5 is preferably 5 or less. If the average aspect ratio of the closed holes 5 exceeds 5, the strength of the sliding layer 3 may decrease. Further, the average aspect ratio of the closed holes 5 is preferably 4 or less. When the average aspect ratio of the closed holes 5 is 4 or less, the strength of the sliding layer is higher than when the average aspect ratio exceeds 4.

閉空孔5の平均アスペクト比の測定は、上記の手法で得られた電子像を、上記の像解析手法を用いる。上記電子像中の各閉空孔5において、その閉空孔内に存在する最大長さの線分を長軸として、長軸と直交する方向での最大長さの線分を短軸とする。そして、各閉空孔5の長軸の長さL1と短軸の長さS1の比(長軸の長さL1/短軸の長さS1)を求め、それらの平均を算出して、平均アスペクト比とする(図4参照)。 For the measurement of the average aspect ratio of the closed holes 5, the electron image obtained by the above method is used in the above image analysis method. In each closed hole 5 in the electronic image, the long axis is the line segment having the maximum length existing in the closed hole, and the short axis is the line segment having the maximum length in the direction orthogonal to the long axis. Then, the ratio of the major axis length L1 and the minor axis length S1 of each closed hole 5 (major axis length L1 / minor axis length S1) is obtained, the average thereof is calculated, and the average aspect ratio is calculated. The ratio (see FIG. 4).

図5を用いて従来のNiを含む銅合金からなる摺動層13を有する摺動部材に生じる粒界腐食を説明する。従来の摺動部材は、摺動時、油中に含まれる硫黄成分により、摺動層13の摺動面131に露出する銅合金の結晶粒界142を起点とし、摺動層131から内部に向かって銅合金の結晶粒界142に沿って腐食(硫化腐食)が進行する粒界腐食が起こる。摺動層の内部、特に摺動面付近では、銅合金結晶141の結晶粒界142に沿って腐食生成物(CuS)7がネットワークを形成する。
結晶粒界142の全部または大部分が腐食すると、銅合金結晶粒141どうしの間の結合が弱まり、銅合金結晶粒141が個々に、あるいは、複数の銅合金結晶粒141が一塊となり、摺動層13の摺動面131と相手軸8表面との間に脱落し、摺動層13の摺動面131が傷つき損傷する。
Niを含有する銅合金の粒界腐食の機構は、明らかになっていないが、この粒界腐食による生成物は、硫化銅(CuS)であり、油中に含まれるS成分と銅合金の結晶粒界142および結晶粒界142に近接する銅合金結晶粒141のCu成分とが反応したものと考えられる。
FIG. 5 will be used to describe intergranular corrosion occurring in a conventional sliding member having a sliding layer 13 made of a copper alloy containing Ni. The conventional sliding member starts from the grain boundary 142 of the copper alloy exposed on the sliding surface 131 of the sliding layer 13 due to the sulfur component contained in the oil during sliding, and enters from the sliding layer 131 to the inside. Intergranular corrosion occurs in which corrosion (sulfurized corrosion) progresses along the grain boundaries 142 of the copper alloy. Inside the sliding layer, particularly near the sliding surface, corrosion products (Cu 2 S) 7 form a network along the grain boundaries 142 of the copper alloy crystal 141.
When all or most of the grain boundaries 142 are corroded, the bond between the copper alloy crystal grains 141 is weakened, and the copper alloy crystal grains 141 are individually or a plurality of copper alloy crystal grains 141 are agglomerated and slide. It falls off between the sliding surface 131 of the layer 13 and the surface of the mating shaft 8, and the sliding surface 131 of the sliding layer 13 is damaged and damaged.
Mechanism of intergranular corrosion of the copper alloy containing Ni is not clear, the product of this intergranular corrosion, a copper sulfide (Cu 2 S), S component and copper alloy contained in the oil It is probable that the Cu components of the crystal grain boundaries 142 and the copper alloy crystal grains 141 close to the crystal grain boundaries 142 reacted.

他方、本発明の摺動部材1の摺動層3は、銅合金部4中に、主に銅合金の結晶粒41どうしの間の結晶粒界42部に多数の閉空孔5が分散した組織になっている。各閉空孔5は、銅合金部4との間に形成された鉄リン酸化物膜6により囲まれて互いに分離独立した、閉ざされた空間を有する空孔(隙間)である。この閉空孔5の空孔部の鉄リン酸化物膜6は、硫化腐食を生じにくい。
このため、発明の摺動部材1は、摺動時、摺動層3の摺動面に露出する銅合金の結晶粒界42を起点として油中に含まれるS成分による腐食が摺動層3の内部に向かって銅合金の結晶粒界42に沿って進行しても、銅合金の結晶粒界42に存在する閉空孔5に達すると、閉空孔5の空孔部51の表面の鉄リン酸化物膜6により、腐食の進行が停止し、銅合金の結晶粒界42へのさらなる拡散が抑制される。このため、摺動層3の内部に粒界腐食部7のネットワークが形成され難く、摺動時に摺動層3の銅合金の結晶粒41の脱落が防がれる。
On the other hand, the sliding layer 3 of the sliding member 1 of the present invention has a structure in which a large number of closed holes 5 are dispersed mainly in the crystal grain boundaries 42 between the crystal grains 41 of the copper alloy in the copper alloy portion 4. It has become. Each closed hole 5 is a hole (gap) having a closed space surrounded by an iron phosphorus oxide film 6 formed between the copper alloy portion 4 and the copper alloy portion 4 and separated from each other. The iron phosphorus oxide film 6 in the pores of the closed pores 5 is less likely to cause sulfur corrosion.
Therefore, in the sliding member 1 of the present invention, the sliding layer 3 is corroded by the S component contained in the oil starting from the grain boundary 42 of the copper alloy exposed on the sliding surface of the sliding layer 3 during sliding. Even if it proceeds along the grain boundaries 42 of the copper alloy toward the inside of the ring, when it reaches the closed holes 5 existing at the grain boundaries 42 of the copper alloy, the iron phosphorus on the surface of the pores 51 of the closed holes 5 is reached. The oxide film 6 stops the progress of corrosion and suppresses further diffusion of the copper alloy into the grain boundaries 42. Therefore, it is difficult to form a network of intergranular corrosion portions 7 inside the sliding layer 3, and the crystal grains 41 of the copper alloy of the sliding layer 3 can be prevented from falling off during sliding.

以下に、本実施形態に係る摺動部材の作製方法について説明する。 The method of manufacturing the sliding member according to the present embodiment will be described below.

まず、摺動層の上記組成の銅合金の粉末を準備する。また、摺動層に上記硬質粒子を含有させる場合は、銅合金粉末と硬質粒子との混合粉を作製する。 First, a copper alloy powder having the above composition of the sliding layer is prepared. When the sliding layer contains the hard particles, a mixed powder of a copper alloy powder and the hard particles is prepared.

準備した銅合金粉末または混合粉を、鋼(例えば亜共析鋼)板上に散布した後、粉末散布層を加圧することなく、焼結炉を用いて850〜980℃の還元雰囲気で1次焼結を行い、鋼板上に空孔率が27〜38体積%の多孔質銅合金層を形成し、80〜350℃まで冷却した後、大気雰囲気中で室温まで冷却する。この工程により、多孔質銅合金層の銅合金の表面に厚さが10〜120nmの銅酸化膜(CuO)を形成する。1次焼結後の多孔質銅合金層は、各空孔がネットワークを形成した組織である。
代替の方法としては、1次焼結の冷却工程にて還元雰囲気で部材を室温まで冷却したのち、大気雰囲気中で部材を80〜350℃の温度に加熱し、多孔質銅合金層の銅合金の表面に銅酸化膜(CuO)を形成してもよい。
After spraying the prepared copper alloy powder or mixed powder on a steel (for example, subeutectoid steel) plate, the primary is performed in a reducing atmosphere at 850 to 980 ° C. using a sintering furnace without pressurizing the powder spraying layer. Sintering is performed to form a porous copper alloy layer having a porosity of 27 to 38% by volume on the steel sheet, cooled to 80 to 350 ° C., and then cooled to room temperature in an air atmosphere. By this step, a copper oxide film (Cu 2 O) having a thickness of 10 to 120 nm is formed on the surface of the copper alloy of the porous copper alloy layer. The porous copper alloy layer after the primary sintering has a structure in which each pore forms a network.
As an alternative method, the member is cooled to room temperature in a reducing atmosphere in the cooling step of the primary sintering, and then the member is heated to a temperature of 80 to 350 ° C. in the air atmosphere to form a copper alloy in a porous copper alloy layer. A copper oxide film (Cu 2 O) may be formed on the surface of the above.

次に、多孔質銅合金層を空孔率が0.1〜2.5体積%となるように空孔を減少させるための1次圧延を行う。1次圧延後の銅合金層は、銅合金中に平均径が1〜20μmの閉空孔が分散した組織となる。 Next, the porous copper alloy layer is first-rolled to reduce the pores so that the pore ratio is 0.1 to 2.5% by volume. The copper alloy layer after the primary rolling has a structure in which closed holes having an average diameter of 1 to 20 μm are dispersed in the copper alloy.

次に、圧延された部材は、焼結炉を用いて850〜980℃の還元雰囲気で2次焼結を行い、銅合金層をさらに焼結した後、室温まで冷却する。2次焼結での炉内の還元雰囲気の温度は、銅合金の固相線温度を超え液相線温度よりも低くする。1次圧延にて銅合金層を適度に緻密化しているため、銅合金層の内部の上記銅酸化膜(CuO)は、この2次焼結での還元雰囲気により還元されることはない。 Next, the rolled member is secondarily sintered using a sintering furnace in a reducing atmosphere at 850 to 980 ° C., the copper alloy layer is further sintered, and then cooled to room temperature. The temperature of the reducing atmosphere in the furnace in the secondary sintering exceeds the solidus temperature of the copper alloy and is lower than the liquidus temperature. Since the copper alloy layer is appropriately densified by the primary rolling, the copper oxide film (Cu 2 O) inside the copper alloy layer is not reduced by the reducing atmosphere in this secondary sintering. ..

この2次焼結にて、閉空孔と接する銅合金部の表面に鉄リン酸化物膜が形成される。この生成過程は不明であるが、次のように考える。
2次焼結の昇温の過程で、部材の温度が、銅合金の固相線温度に超えてから最大温度に達するまでの間は、銅合金の一部が液相となる。この液相は、1次焼結後の多孔質銅合金層の表面であった部分で発生し、この液相に銅酸化膜の酸素成分が拡散する。次に、この銅合金の液相中のNi、P成分の一部が、鋼裏金層の表面に拡散し、鋼裏金層のFe成分が銅合金の液相中に拡散する。
この酸素成分およびFe成分が拡散した銅合金の液相は、1次圧延にて形成された銅合金の表面どうしの間の僅かな隙間を毛細間現象により流動し、摺動層の表面(摺動面)に近い付近にまで達するが、流動する際に、銅合金の液相中の酸素成分およびFe成分濃度が均一化すると考えられる。
In this secondary sintering, an iron phosphorus oxide film is formed on the surface of the copper alloy portion in contact with the closed pores. This generation process is unknown, but it is considered as follows.
In the process of raising the temperature of the secondary sintering, a part of the copper alloy becomes a liquid phase from the time when the temperature of the member exceeds the solidus temperature of the copper alloy until it reaches the maximum temperature. This liquid phase is generated on the surface of the porous copper alloy layer after the primary sintering, and the oxygen component of the copper oxide film diffuses into this liquid phase. Next, a part of the Ni and P components in the liquid phase of the copper alloy diffuses to the surface of the steel back metal layer, and the Fe component of the steel back metal layer diffuses into the liquid phase of the copper alloy.
The liquid phase of the copper alloy in which the oxygen component and the Fe component are diffused flows through a slight gap between the surfaces of the copper alloy formed by the primary rolling due to the capillary phenomenon, and the surface of the sliding layer (sliding). It is considered that the oxygen component and Fe component concentrations in the liquid phase of the copper alloy become uniform when the copper alloy reaches the vicinity of the moving surface).

部材が焼結温度(最大温度)に達する頃には、上記の1次圧延にて形成された銅酸化膜が形成された銅合金どうしの間の僅かな隙間は、焼結により無くなる。このため、銅合金の液相は、主に閉空孔部に移動すると考えられる。
部材が焼結温度(最大温度)に達した後の冷却の過程で、Fe成分、酸素成分を含む銅合金の液相は、主に閉空孔5と接する銅合金部4の表面で固化するが、その固化が完全に完了する前に液相中に鉄リン酸化物が晶出し、または、完全に固化した後に鉄リン酸化物が析出し、閉空孔5と接する銅合金部4の表面に鉄リン酸化物膜6が形成されると考えられる。
なお、摺動層の銅合金の結晶41中や結晶粒界42にも、僅かに鉄リン酸化物や鉄リン化合物が確認されることもある。
By the time the member reaches the sintering temperature (maximum temperature), the slight gap between the copper alloys on which the copper oxide film formed by the above-mentioned primary rolling is formed disappears by sintering. Therefore, it is considered that the liquid phase of the copper alloy mainly moves to the closed pores.
In the process of cooling after the member reaches the sintering temperature (maximum temperature), the liquid phase of the copper alloy containing the Fe component and the oxygen component solidifies mainly on the surface of the copper alloy portion 4 in contact with the closed pores 5. , Iron phosphorus oxide crystallizes in the liquid phase before the solidification is completely completed, or iron phosphorus oxide is precipitated after the solidification is completed, and iron is formed on the surface of the copper alloy portion 4 in contact with the closed pores 5. It is considered that the phosphor oxide film 6 is formed.
In addition, iron phosphorus oxides and iron phosphorus compounds may be slightly confirmed in the crystals 41 of the copper alloy of the sliding layer and at the grain boundaries 42.

本発明の摺動部材は、内燃機関や自動変速機に用いられる軸受に限定されないで、各種機械に用いられる軸受に適用できる。また、軸受の形状は、円筒形状や半円筒形状に限定されないで、例えば、軸部材の軸線方向負荷を支承する円環形状や半円環形状のスラスト軸受や、自動変速機のクラッチ部(ワンウェイクラッチ)に用いられる略コ字状断面を有する円環形状のエンドプレート等にも適用できる。 The sliding member of the present invention is not limited to bearings used in internal combustion engines and automatic transmissions, and can be applied to bearings used in various machines. The shape of the bearing is not limited to a cylindrical shape or a semi-cylindrical shape. For example, an annular or semi-annular thrust bearing that supports the axial load of the shaft member, or a clutch portion (one-way) of an automatic transmission. It can also be applied to a ring-shaped end plate having a substantially U-shaped cross section used for a clutch).

なお、本発明の摺動部材は、摺動層および/または裏金層の表面にSn、Bi、Pbまたは、これら金属を基とする合金からなる被覆層や、合成樹脂または合成樹脂を基とする被覆層を有してもよい。 The sliding member of the present invention is based on a coating layer made of Sn, Bi, Pb or an alloy based on these metals, or a synthetic resin or synthetic resin on the surface of the sliding layer and / or the back metal layer. It may have a coating layer.

Claims (5)

鋼裏金層と、
前記鋼裏金層上に設けられ、摺動面を有し、複数の閉空孔を含む摺動層と
を備えた摺動部材であって、
前記摺動層は、
1〜12質量%のSn、1〜15質量%のNi、0.01〜0.2質量%のPを含み、残部がCu及び不可避純物からなる銅合金部と
前記閉空孔を囲む前記銅合金部の内部表面を被覆して前記閉空孔を画定する鉄リン酸化物膜とからなり、
前記閉空孔は、前記銅合金部中に分散し、前記摺動層中の前記閉空孔の体積割合は、前記摺動面に垂直方向の断面視にて0.1〜2体積%であり、前記閉空孔の平均径は1〜20μmである、摺動部材。
Steel back metal layer and
A sliding member provided on the steel back metal layer, having a sliding surface, and having a sliding layer including a plurality of closed holes.
The sliding layer is
A copper alloy portion containing 1 to 12% by mass of Sn, 1 to 15% by mass of Ni, and 0.01 to 0.2% by mass of P, the balance of which is Cu and unavoidable pure material, and the copper surrounding the closed hole. It consists of an iron phosphorus oxide film that covers the inner surface of the alloy portion and defines the closed pores.
The closed holes are dispersed in the copper alloy portion, and the volume ratio of the closed holes in the sliding layer is 0.1 to 2% by volume in a cross-sectional view in the direction perpendicular to the sliding surface. A sliding member having an average diameter of 1 to 20 μm of the closed holes.
前記閉空孔は、4以下の平均アスペクト比を有する、請求項1に記載された摺動部材。 The sliding member according to claim 1, wherein the closed hole has an average aspect ratio of 4 or less. 前記鉄リン酸化物膜におけるFeとPとOの質量比は、Fe1−X−Yであり、
ここでX=0.1〜0.3、Y=0.3〜0.5である、請求項1または請求項2に記載された摺動部材。
The weight ratio of Fe to P and O in the iron phosphorus oxide film is Fe 1-X-Y P X O Y,
The sliding member according to claim 1 or 2, wherein X = 0.1 to 0.3 and Y = 0.3 to 0.5.
前記銅合金部は、0.01〜5質量%のAl、0.01〜5質量%のSi、0.5〜10質量%のFe、0.1〜5質量%のMn、0.1〜30質量%のZn、0.1〜5質量%のSb、0.1〜5質量%のIn、0.1〜5質量%のAg、0.5〜25質量%のPb、0.5〜20質量%のBiから選ばれる1種以上をさらに含む、請求項1から請求項3までのいずれか1項に記載された摺動部材。 The copper alloy portion contains 0.01 to 5% by mass of Al, 0.01 to 5% by mass of Si, 0.5 to 10% by mass of Fe, 0.1 to 5% by mass of Mn, and 0.1 to 1. 30% by mass Zn, 0.1 to 5% by mass Sb, 0.1 to 5% by mass In, 0.1 to 5% by mass Ag, 0.5 to 25% by mass Pb, 0.5 to The sliding member according to any one of claims 1 to 3, further comprising one or more selected from 20% by mass Bi. 前記摺動層は、Al、SiO、AlN、MoC、WC、FeP、FePのうちから選ばれる1種以上の硬質粒子を0.1〜10体積%をさらに含む、請求項1から請求項4までのいずれか1項に記載された摺動部材。 The sliding layer further contains 0.1 to 10% by volume of one or more hard particles selected from Al 2 O 3 , SiO 2 , Al N, Mo 2 C, WC, Fe 2 P, and Fe 3 P. The sliding member according to any one of claims 1 to 4, including the sliding member.
JP2018175255A 2018-09-19 2018-09-19 Sliding member Active JP6794411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018175255A JP6794411B2 (en) 2018-09-19 2018-09-19 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018175255A JP6794411B2 (en) 2018-09-19 2018-09-19 Sliding member

Publications (2)

Publication Number Publication Date
JP2020045528A JP2020045528A (en) 2020-03-26
JP6794411B2 true JP6794411B2 (en) 2020-12-02

Family

ID=69900728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018175255A Active JP6794411B2 (en) 2018-09-19 2018-09-19 Sliding member

Country Status (1)

Country Link
JP (1) JP6794411B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210036832A (en) * 2019-09-26 2021-04-05 다이도 메탈 고교 가부시키가이샤 Sliding member

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2733735B2 (en) * 1993-12-22 1998-03-30 大同メタル工業株式会社 Copper lead alloy bearing
JP3839740B2 (en) * 2002-03-18 2006-11-01 大同メタル工業株式会社 Sliding material
JP4320605B2 (en) * 2004-03-09 2009-08-26 トヨタ自動車株式会社 A pair of sliding members
JP4507766B2 (en) * 2004-08-27 2010-07-21 株式会社ダイヤメット Sintered Cu alloy bearing for recirculation exhaust gas flow control valve of EGR type internal combustion engine showing high strength and excellent wear resistance in high temperature environment
JP2013023707A (en) * 2011-07-18 2013-02-04 Fukuda Metal Foil & Powder Co Ltd Mixed powder for powder metallurgy
DE102013208497A1 (en) * 2013-05-08 2014-11-13 Federal-Mogul Wiesbaden Gmbh Copper alloy, use of a copper alloy, bearings with a copper alloy and method of manufacturing a bearing of a copper alloy
EP3168506A4 (en) * 2014-08-11 2017-10-04 Kabushiki Kaisha Riken Pressure ring
JP6609852B2 (en) * 2016-03-04 2019-11-27 株式会社ダイヤメット Sintered sliding material with excellent corrosion resistance, heat resistance and wear resistance, and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210036832A (en) * 2019-09-26 2021-04-05 다이도 메탈 고교 가부시키가이샤 Sliding member

Also Published As

Publication number Publication date
JP2020045528A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
JP6794412B2 (en) Sliding member
KR100814656B1 (en) Free copper alloy sliding material
JP5058276B2 (en) Copper-based sliding material
JPWO2008140100A1 (en) Pb-free copper alloy sliding material and plain bearing
JP2008144253A (en) Copper-based slide material and its manufacturing method
JP7111484B2 (en) sliding member
JP2012215251A (en) Thrust bearing of turbocharger for internal combustion engine
GB2216545A (en) Sintered alloy for oil-retaining bearing and method for manufacturing the sintered alloy
JPH09125176A (en) Copper plain bearing material and plain bearing for internal combustion engine
JP5340355B2 (en) Copper-based sliding material
JP4658269B2 (en) Copper alloy for sliding members
JP2733736B2 (en) Copper-lead alloy bearings
JP6794411B2 (en) Sliding member
US20140331819A1 (en) Copper alloy for sliding materials
KR102389755B1 (en) Sliding member
US5665480A (en) Copper-lead alloy bearing
JP7389600B2 (en) sliding member
JP7376998B2 (en) Alloys for sliding parts, sliding parts, internal combustion engines, and automobiles
JP6363931B2 (en) Copper alloy for slide bearing
JP4349719B2 (en) Aluminum bronze sintered bearing material and manufacturing method thereof
JP2006037179A (en) Pb-FREE COPPER-ALLOY-BASED COMPOSITE SLIDING MATERIAL SUPERIOR IN SEIZURE RESISTANCE
JP2006307284A (en) Lead-free copper-based sliding material
KR20230165134A (en) Copper-based sliding member
JP2017082328A (en) Copper alloy for slide member
JP2023174518A (en) Copper-based sliding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201111

R150 Certificate of patent or registration of utility model

Ref document number: 6794411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250