JP2017082328A - Copper alloy for slide member - Google Patents

Copper alloy for slide member Download PDF

Info

Publication number
JP2017082328A
JP2017082328A JP2016206874A JP2016206874A JP2017082328A JP 2017082328 A JP2017082328 A JP 2017082328A JP 2016206874 A JP2016206874 A JP 2016206874A JP 2016206874 A JP2016206874 A JP 2016206874A JP 2017082328 A JP2017082328 A JP 2017082328A
Authority
JP
Japan
Prior art keywords
mass
copper alloy
less
copper
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016206874A
Other languages
Japanese (ja)
Inventor
良政 平井
Yoshimasa Hirai
良政 平井
耕平 小川
Kohei Ogawa
耕平 小川
知広 佐藤
Tomohiro Sato
知広 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Publication of JP2017082328A publication Critical patent/JP2017082328A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy for a slide member having better slidability than conventional ones.SOLUTION: The copper alloy for a slide member contains Sn of 3.0 mass% to 16.0 mass%, S of 3.0 mass% to 15.0 mass% and the balance copper with inevitable impurities.SELECTED DRAWING: None

Description

この発明は、摺動部材の摺動面に用いる銅合金に関する。特に、鉛を主な成分として含まない摺動部材用銅合金に関する。   The present invention relates to a copper alloy used for a sliding surface of a sliding member. In particular, the present invention relates to a copper alloy for sliding members that does not contain lead as a main component.

従来、軸受などの摺動部を有する摺動部材には、CAC603(Cu−Sn−Pb系銅合金)に代表される、鉛を含む銅合金が使用されていた。それらの合金では鉛が摺動性に大きく寄与し、良好な摺動特性が得られる。しかし、鉛の使用を抑制する社会的要請に応えるため、鉛の使用量を抑制した摺動材用銅合金が様々に検討されている。   Conventionally, a copper alloy containing lead represented by CAC603 (Cu—Sn—Pb-based copper alloy) has been used for a sliding member having a sliding portion such as a bearing. In these alloys, lead greatly contributes to slidability and good sliding characteristics can be obtained. However, in order to meet social demands to suppress the use of lead, various copper alloys for sliding materials that suppress the use of lead have been studied.

例えば、摺動部材用銅合金についての特許文献1には、実施例としてFeを0.31〜3.43質量%、Sを0.42〜1.04質量%、Snを5.14〜15.54質量%、Pを0.012〜0.02質量%以下含有し、残分が銅と不可避不純物である摺動部材の例が挙げられている。また同文献には比較例6として、Feを12.15質量%、Snを10.27質量%、Sを2.21質量%、Pを0.028質量%含有し、残分が銅と不可避的不純物である銅合金が記載されている。ただしこの比較例6は、Feが多すぎるために摩耗性に問題がある試験結果となっている。   For example, in Patent Document 1 concerning a copper alloy for sliding members, as an example, Fe is 0.31 to 3.43 mass%, S is 0.42 to 1.04 mass%, and Sn is 5.14 to 15%. An example of a sliding member containing 0.54% by mass, 0.012 to 0.02% by mass or less of P, and the balance being copper and inevitable impurities is given. Further, as Comparative Example 6, the same document contains 12.15% by mass of Fe, 10.27% by mass of Sn, 2.21% by mass of S, 0.028% by mass of P, and the balance is inevitable with copper. Copper alloys, which are potential impurities, are described. However, this Comparative Example 6 is a test result having a problem in wear because of too much Fe.

また、鉛フリー銅合金摺動材についての特許文献2には、比較例3として、Snを5質量%、MoSを5質量%、CuSを0.75質量%、MoOを1.5質量%含有し、Pbを含有しない銅合金が示されている。この比較例3における各元素の含有量は、単純計算でSが約2.25質量%、Moが約4質量%、Oが約0.5質量%である。ただしこの比較例3は、Pbを含有しないために焼き付きやすい試験結果となっている。 Moreover, in patent document 2 about a lead-free copper alloy sliding material, as comparative example 3, Sn is 5 mass%, MoS 2 is 5 mass%, CuS is 0.75 mass%, and MoO 3 is 1.5 mass. A copper alloy containing% and containing no Pb is shown. The content of each element in Comparative Example 3 is approximately 2.25% by mass for S, approximately 4% by mass for Mo, and approximately 0.5% by mass for O by simple calculation. However, since Comparative Example 3 does not contain Pb, the test result is easy to be burned.

さらに、Pbフリー銅合金複合摺動材についての特許文献3には、実施例1として、Snを5質量%、Agを1質量%、CuSを1質量%含有する銅合金が示されている。これに含まれるSの含有量は単純計算で約0.33質量%となる。   Further, in Patent Document 3 regarding the Pb-free copper alloy composite sliding material, as Example 1, a copper alloy containing 5% by mass of Sn, 1% by mass of Ag, and 1% by mass of CuS is shown. The content of S contained in this is about 0.33 mass% by simple calculation.

なお、銅合金管についての特許文献4には、Snに加えてSを5〜25ppm含む銅合金が開示されている。この文献の実施例には、それぞれの元素を質量%で示す表1−1で成分が記載されている中に、Sを5〜85単位含む旨の記載がある。しかしこれは明細書[0019]にSは0.0005質量%以下との記載があることと、表中の上限値から、%ではなくppm単位であることが自明である。   In addition, in patent document 4 regarding a copper alloy tube, a copper alloy containing 5 to 25 ppm of S in addition to Sn is disclosed. In the examples of this document, there is a description that 5 to 85 units of S are contained in the components described in Table 1-1 in which each element is represented by mass%. However, it is obvious from the specification [0019] that S is 0.0005% by mass or less, and from the upper limit in the table, it is in ppm rather than%.

特許第4658269号Japanese Patent No. 4658269 特許第4427410号Japanese Patent No. 4427410 特許第4757460号Japanese Patent No. 4757460 特開2013−189664号公報JP 2013-189664 A

しかしながら、特許文献1及び3の実施例に示された各種銅合金は、いずれも一定の摺動性を発揮するものの、実用上はさらに優れた摺動性を発揮する銅合金が求められるようになった。   However, although the various copper alloys shown in the examples of Patent Documents 1 and 3 all exhibit a certain level of slidability, there is a need for a copper alloy that exhibits even greater slidability in practice. became.

また、特許文献2に示された銅合金では、MoSを含有することで摺動性を発揮するものであり、Moの存在を前提とする。しかし、MoはFeやCu、Snに比べて比較的高価であり、これを含まない低コストでの銅合金が求められている。 Further, in the copper alloy described in Patent Document 2, which exhibits a sliding property by containing MoS 2, it presupposes the existence of Mo. However, Mo is relatively expensive compared to Fe, Cu, and Sn, and a low-cost copper alloy that does not include Mo is demanded.

さらに、特許文献4に記載の銅合金は、Sの含有量が特許文献1〜3に記載の銅合金と較べて極端に少なく、事実上摺動性能を発揮できるものではなかった。   Furthermore, the copper alloy described in Patent Document 4 has an extremely small S content as compared with the copper alloys described in Patent Documents 1 to 3, and thus cannot practically exhibit sliding performance.

そこでこの発明は、余分な元素を含まずに従来よりも摺動性が良好な摺動部材用銅合金を提供することを目的とする。   Therefore, an object of the present invention is to provide a copper alloy for a sliding member that does not contain an extra element and has better slidability than conventional ones.

Snを3.0質量%以上、16.0質量%以下、Sを3.0質量%以上15.0質量%以下含有し、残分が銅と不可避的不純物である摺動部材用銅合金により、上記の課題を解決したのである。   According to a copper alloy for a sliding member containing 3.0 mass% or more and 16.0 mass% or less of Sn, 3.0 mass% or more and 15.0 mass% or less of S, and the balance being copper and inevitable impurities The above problem has been solved.

すなわち、この発明にかかる摺動部材用銅合金の特徴は、Snを適量に調整するとともにSの含有量を従来の常識よりも極端に高くすることにある。   That is, the feature of the copper alloy for sliding members according to the present invention is that Sn is adjusted to an appropriate amount and the S content is made extremely higher than conventional common sense.

この発明により、合金の製造に必要なコストを低廉にしたままで従来の摺動部材用銅合金よりもさらに高い摺動性能を発揮させることができる。   According to the present invention, it is possible to exhibit higher sliding performance than conventional copper alloys for sliding members while keeping the cost required for manufacturing the alloy low.

実施例で用いるボールオンディスク試験の構成図Configuration diagram of the ball-on-disk test used in the examples 保持具の概略図Schematic diagram of holder

以下、この発明について詳細に説明する。この発明は、摺動部材の摺動面に用いられる摺動部材用銅合金である。   The present invention will be described in detail below. The present invention is a copper alloy for a sliding member used for a sliding surface of a sliding member.

この発明にかかる摺動部材用銅合金は、Snを3.0質量%以上含有することが必要である。Snは銅合金のマトリックス強度を向上させ、耐摩耗性と耐食性とを向上させ、かつ、摺動特性を良好に保つ効果があるが、3.0質量%未満ではこれらの効果が不十分となってしまう。一方で、Snの含有量は16.0質量%以下である必要がある。16.0質量%を超えると、相手材を著しく摩耗させてしまい、良好な摺動特性が得られなくなる可能性がある。   The copper alloy for sliding members according to the present invention needs to contain Sn of 3.0% by mass or more. Sn has an effect of improving the matrix strength of the copper alloy, improving wear resistance and corrosion resistance, and maintaining good sliding characteristics. However, these effects are insufficient when the content is less than 3.0% by mass. End up. On the other hand, the Sn content needs to be 16.0% by mass or less. If it exceeds 16.0% by mass, the mating material may be remarkably worn and good sliding characteristics may not be obtained.

上記摺動部材用銅合金は、Sを3.0質量%以上含有することが必要であり、4質量%以上であると好ましく、5質量%以上であるとより好ましい。銅合金中ではSはCuやFe(含有する場合)と結合した硫化物として存在しており、これら硫化物が摺動性に寄与する。本発明にかかる上記摺動部材用銅合金では、Sを従来の常識で製造可能とされた範囲よりも多く含有させることで、合金中に占める硫化物の割合を従来は不適と判断された範囲に増加させて、よりよい摺動性を発揮できるようにした。一方、Sの含有量は15.0質量%以下である必要があり、14.0質量%以下であると好ましい。15.0質量%を超えると、摺動部材として摺動性以外に求められる機械的性質に問題を生じやすくなるからである。   The copper alloy for sliding members needs to contain S in an amount of 3.0% by mass or more, preferably 4% by mass or more, and more preferably 5% by mass or more. In the copper alloy, S exists as a sulfide combined with Cu or Fe (when contained), and these sulfides contribute to the slidability. In the above-mentioned copper alloy for sliding members according to the present invention, the amount of sulfide in the alloy is conventionally determined to be unsuitable by containing S more than the range that can be produced by conventional common sense. To improve the slidability. On the other hand, the S content needs to be 15.0% by mass or less, and is preferably 14.0% by mass or less. This is because if it exceeds 15.0% by mass, a problem tends to arise in the mechanical properties required for the sliding member in addition to the slidability.

上記摺動部材用銅合金を製造する場合、単純に単体のSを混合させて溶融させても製造することは難しいが、予めSと他の元素とでSの含有量が高い化合物を生成した後、この化合物を用いて銅合金を製造することで、従来よりも高い比率でSを有する銅合金を得ることができる。具体的には例えば、Sを多く含む銅合金の溶湯を噴霧急速冷却させて、Sを多く含有するアトマイズ粉末を得て、このアトマイズ粉末を焼結して製造する方法や、銅合金の粉末(Sを含んでいてもよいし、含んでいなくてもよい)と、硫化銅や硫化鉄、硫化錫などの硫化物の粉末若しくは単体硫黄の粉末、又はそれらを二種以上混合した粉末とを混合した後、この混合粉末を焼結して製造する方法などが挙げられる。ただし、製造方法はこれらに限定されるものではなく、全体に占めるSの含有量が3.0質量%を超えても銅合金として製造できればよい。   When manufacturing the above-mentioned copper alloy for sliding members, it is difficult to manufacture by simply mixing a single S and melting it, but a compound having a high S content was previously generated with S and other elements. Thereafter, a copper alloy having S at a higher ratio than conventional can be obtained by producing a copper alloy using this compound. Specifically, for example, a molten alloy of a copper alloy containing a large amount of S is sprayed and rapidly cooled to obtain an atomized powder containing a large amount of S, and the atomized powder is sintered and manufactured. S may or may not contain S), and sulfide powder such as copper sulfide, iron sulfide, tin sulfide, or simple sulfur powder, or a powder obtained by mixing two or more of them. A method of sintering the mixed powder after mixing and the like can be mentioned. However, a manufacturing method is not limited to these, What is necessary is just to be able to manufacture as a copper alloy, even if content of S which occupies for the whole exceeds 3.0 mass%.

上記摺動部材用銅合金は、Feを含有してもよい。FeはCuと共に硫化物を形成し、摺動性に寄与する。検出限界以上であれば僅かずつでも効果を発揮すると考えられるが、この摺動性への寄与効果を十分に発揮させるためには、Feを0.3質量%以上含有すると好ましく、0.5質量%以上含有するとより好ましい。一方、Feを15.0質量%を超えて含有すると、摺動部材としての性能が大きく低下するおそれがあるため、15.0質量%以下であると好ましく、14.0質量%以下であるとより好ましい。   The said copper alloy for sliding members may contain Fe. Fe forms a sulfide together with Cu and contributes to slidability. Although it is considered that even if it is above the detection limit, it is considered that the effect is exerted little by little. However, in order to sufficiently exhibit the effect of contributing to the slidability, it is preferable that Fe is contained in an amount of 0.3% by mass or more, and 0.5% by mass. It is more preferable to contain at least%. On the other hand, if Fe is contained in excess of 15.0% by mass, the performance as a sliding member may be greatly deteriorated. Therefore, it is preferably 15.0% by mass or less, and 14.0% by mass or less. More preferred.

上記摺動部材用銅合金は、Pを含有してもよい。Pを検出限界以上に含有すると、その量に応じて銅合金溶湯を脱酸させる効果を発揮する。さらに、アトマイズ法で生成させた粉末を焼結する場合、互いに焼結する粉末の粒子同士の境界に存在する不純物が脱酸によって減少すると、焼結の際に障害が少なくなるので、焼結密度を向上させる効果が発揮される。これらの効果を十分に発揮させるには、0.01質量%以上含有するとよい。一方、0.3質量%を超えて含有すると、摺動部材としての性能を阻害するおそれがあるため、0.3質量%以下であると好ましい。   The copper alloy for sliding members may contain P. When P is contained in excess of the detection limit, the effect of deoxidizing the molten copper alloy is exhibited according to the amount. Furthermore, when sintering the powder produced by the atomization method, if the impurities present at the boundaries of the powder particles to be sintered together are reduced by deoxidation, there will be less obstacles during sintering, so the sintering density The effect which improves is demonstrated. In order to fully exhibit these effects, it is good to contain 0.01 mass% or more. On the other hand, when it contains exceeding 0.3 mass%, since there exists a possibility of inhibiting the performance as a sliding member, it is preferable in it being 0.3 mass% or less.

上記摺動部材用銅合金は、上記の元素以外は銅と不可避不純物であるとよい。上記不可避不純物として含有される元素の含有量は少ないほど好ましい。このような元素としては、例えば、Moなどが挙げられる。   The said copper alloy for sliding members is good in it being copper and an unavoidable impurity other than said element. The smaller the content of elements contained as the inevitable impurities, the better. Examples of such elements include Mo.

(実施例1)
Snが10質量%、Sが4.2質量%、Feが3.2質量%、Pが0.02質量%、残部が銅と不可避不純物となるように調整し、アトマイズ法により生成した粉末を、鋼板上に散布した。この鋼板を粉末ごと、850℃にて20分間かけて一次焼結を行った。一次焼結後の鋼板を圧延機で圧延した後、850℃で10分間かけて二次焼結を行った。なお、二次焼結後における銅合金層の厚さは、アトマイズ法により生成した粉末の散布厚さに対して、65%であった。この二次焼結後の銅合金表面を研磨して、鏡面状態に仕上げたものを試験材とする。
Example 1
The powder produced by the atomization method was adjusted so that Sn was 10% by mass, S was 4.2% by mass, Fe was 3.2% by mass, P was 0.02% by mass, and the balance was copper and inevitable impurities. It was sprayed on the steel plate. The steel sheet was sintered together with the powder at 850 ° C. for 20 minutes. The steel sheet after the primary sintering was rolled with a rolling mill and then subjected to secondary sintering at 850 ° C. for 10 minutes. In addition, the thickness of the copper alloy layer after the secondary sintering was 65% with respect to the dispersion thickness of the powder produced by the atomization method. The copper alloy surface after the secondary sintering is polished and finished in a mirror state is used as a test material.

この試験材からなるディスク11に対して、3ball on disc試験を行った。具体的な試験の概略図を図1及び図2に示す。相手材となる高炭素クロム軸受鋼鋼材(SUJ2)製のボール12を3つ、直径33.5mmの円上に、120度の角度に均等配置するように保持具13のボール穴13aにセットする。このボール12がディスク11に対する接触面がφ1.5mmとなるように調整し、面圧1.9MPaとなる荷重を掛け、ボールの摺動速度が1m/sとなるように回転させた。特に潤滑油は使用しない。ディスク面が焼き付くまでの速度を測定し、焼き付かない場合は1000mで完走としたところ、二度の試験でいずれも完走した。   A 3ball on disc test was performed on the disk 11 made of this test material. A schematic diagram of a specific test is shown in FIGS. Three balls 12 made of high carbon chrome bearing steel (SUJ2) as the counterpart material are set in the ball holes 13a of the holder 13 so as to be evenly arranged at an angle of 120 degrees on a circle having a diameter of 33.5 mm. . The ball 12 was adjusted so that the contact surface with respect to the disk 11 was φ1.5 mm, a load with a surface pressure of 1.9 MPa was applied, and the ball was rotated so that the sliding speed of the ball was 1 m / s. In particular, no lubricating oil is used. The speed until the disc surface was burned was measured, and when it was not burned, the race was completed at 1000 m, and both races were completed in two tests.

Figure 2017082328
Figure 2017082328

(比較例1)
Snが10質量%、Sが0.6質量%、Feが0.1質量%、Pが0.02質量%、残部が銅と不可避不純物となるように調整した銅合金の板を鋳造した。この銅合金板の表面を鏡面状態に仕上げたものを試験材とし、実施例1と同様に3ball on disc試験を二度行ったところ、平均焼き付き距離は44.5mとなり、早々に焼き付いてしまった。
(Comparative Example 1)
A copper alloy plate adjusted so that Sn was 10% by mass, S was 0.6% by mass, Fe was 0.1% by mass, P was 0.02% by mass, and the balance was copper and inevitable impurities was cast. When the surface of this copper alloy plate was finished in a mirror state was used as a test material, and the 3ball on disc test was performed twice in the same manner as in Example 1, the average burn-in distance was 44.5 m, and burned out quickly. .

(比較例2)
Snが10質量%、Pが0.2質量%、残部が銅と不可避不純物となるように調整した銅合金の板を鋳造した。この銅合金板の表面を鏡面状態に仕上げたものを試験材とし、実施例1と同様に3ball on disc試験を二度行ったところ、平均焼き付き距離は18mとなり、早々に焼き付いてしまった。
(Comparative Example 2)
A copper alloy plate adjusted so that Sn was 10 mass%, P was 0.2 mass%, and the balance was copper and inevitable impurities was cast. When the surface of this copper alloy plate was finished in a mirror state as a test material, the 3ball on disc test was performed twice in the same manner as in Example 1. As a result, the average burn-in distance was 18 m, and the image burned out quickly.

(実施例2)
Snが10.1質量%、Sが3.5質量%、Feが3.5質量%、残部が銅と不可避不純物となるように調整した以外は、実施例1と同様の手順により試験材を得た。3ball on disc試験にあたっては、概略図は図1及び図2の通りであり、実施例1と同様である。ただし、潤滑油が存在する環境での性能を確認するため、ボール12がディスク11に対する接触面がφ1.0mmとなるように調整し、摩擦速度2.0m/s、摩擦距離100mの条件で、潤滑油は基油を使用して事前にディスク11のボール12と接触する箇所に1.0g塗布して、摩擦試験を行った。
(Example 2)
The test material was prepared in the same procedure as in Example 1 except that Sn was adjusted to 10.1% by mass, S to 3.5% by mass, Fe to 3.5% by mass, and the balance to be copper and inevitable impurities. Obtained. In the 3ball on disc test, schematic diagrams are as shown in FIGS. However, in order to confirm the performance in the environment where the lubricating oil is present, the ball 12 is adjusted so that the contact surface of the ball 11 with respect to the disk 11 is 1.0 mm, and the friction speed is 2.0 m / s and the friction distance is 100 m The lubricating oil was applied in an amount of 1.0 g in advance to the portion of the disk 11 in contact with the ball 12 using a base oil, and a friction test was performed.

Figure 2017082328
Figure 2017082328

まず、面圧8.4MPa、及び、面圧12.6MPaでそれぞれ500m予備摺動させた後に、20.9MPaで250m試験し、完走した場合は継続して29.2MPaで250m試験し、完走した場合はさらに継続して37.5MPaで250mというように、250m毎に約8.3MPaずつ荷重を増加させて焼付きが発生するまで試験を実施し、焼付きが生じた面圧(MPa)と摺動距離(m)で摺動性を評価した。結果を表2に示す。   First, after sliding preliminarily for 500 m at a surface pressure of 8.4 MPa and a surface pressure of 12.6 MPa, a 250 m test was performed at 20.9 MPa. In this case, the test was continued until seizure occurred by increasing the load by about 8.3 MPa every 250 m, such as 250 m at 37.5 MPa, and the surface pressure (MPa) at which seizure occurred. The slidability was evaluated by the sliding distance (m). The results are shown in Table 2.

(比較例3)
Snが10.2質量%、Sが1.0質量%、Feが0.8質量%、Pが0.033質量%、残部が銅と不可避不純物となるように調整した以外は、実施例1、及び、2と同様の手順により試験材を得た。この試験材について、実施例2と同様に3ball on disc試験を行った結果を表2に示す。実施例2と比較例3を比較したところ、実施例2の方が大きく優れた摺動性能を発揮することが確認された。
(Comparative Example 3)
Example 1 except that Sn was adjusted to 10.2% by mass, S 1.0% by mass, Fe 0.8% by mass, P 0.03% by mass, and the balance being copper and inevitable impurities. And the test material was obtained by the same procedure as 2. Table 2 shows the results of a 3ball on disc test performed on this test material in the same manner as in Example 2. When Example 2 and Comparative Example 3 were compared, it was confirmed that Example 2 exhibited significantly superior sliding performance.

11 ディスク
12 ボール
13 保持具
13a ボール穴
14 ディスク押さえ
15 治具
11 Disc 12 Ball 13 Holder 13a Ball hole 14 Disc retainer 15 Jig

Claims (5)

Snを3.0質量%以上16.0質量%以下、Sを3.0質量%以上15.0質量%以下含有し、残分が銅と不可避的不純物である摺動部材用銅合金。   A copper alloy for a sliding member containing Sn in an amount of 3.0 to 16.0% by mass, S in an amount of 3.0 to 15.0% by mass, and the balance being copper and inevitable impurities. Snを3.0質量%以上16.0質量%以下、Sを3.0質量%以上15.0質量%以下、Feを検出限界以上15.0質量%以下含有し、残分が銅と不可避的不純物である摺動部材用銅合金。   Sn is contained in an amount of 3.0% by mass or more and 16.0% by mass or less, S is contained in an amount of 3.0% by mass or more and 15.0% by mass or less, Fe is contained in a detection limit or more and 15.0% by mass or less, and the remainder is inevitable with copper. Copper alloy for sliding members, which is a typical impurity. Snを3.0質量%以上16.0質量%以下、Sを3.0質量%以上15.0質量%以下、Pを検出限界以上0.3質量%以下含有し、残分が銅と不可避的不純物である摺動部材用銅合金。   Sn is contained in an amount of 3.0% by mass or more and 16.0% by mass or less, S is contained in an amount of 3.0% by mass or more and 15.0% by mass or less. Copper alloy for sliding members, which is a typical impurity. Snを3.0質量%以上16.0質量%以下、Sを3.0質量%以上15.0質量%以下、Feを検出限界以上15.0質量%以下、Pを検出限界以上0.3質量%以下含有し、残分が銅と不可避的不純物である摺動部材用銅合金。   Sn is not less than 3.0% by mass and not more than 16.0% by mass, S is not less than 3.0% by mass and not more than 15.0% by mass, Fe is not less than the detection limit and not more than 15.0% by mass, P is not less than the detection limit and is 0.3 A copper alloy for sliding members which is contained by mass% or less and the balance is copper and inevitable impurities. Snを3.0質量%以上16.0質量%以下、Sを3.0質量%以上15.0質量%以下含有する摺動部材用銅合金の製造方法であって、
Snを含有する銅合金粉末と、硫化銅及び硫化鉄、硫化錫の硫化物の粉末並びに単体硫黄の粉末の内1種又は2種以上とを混合して、焼結して一体となった摺動部材用銅合金を得ることを特徴とする摺動部材用銅合金の製造方法。
A method for producing a copper alloy for a sliding member containing Sn of 3.0% by mass or more and 16.0% by mass or less and S of 3.0% by mass or more and 15.0% by mass or less,
A copper alloy powder containing Sn, and one or more of copper sulfide, iron sulfide, tin sulfide sulfide powder and single sulfur powder are mixed and sintered to form an integrated slide. A method for producing a copper alloy for sliding members, comprising obtaining a copper alloy for moving members.
JP2016206874A 2015-10-23 2016-10-21 Copper alloy for slide member Pending JP2017082328A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015208805 2015-10-23
JP2015208805 2015-10-23

Publications (1)

Publication Number Publication Date
JP2017082328A true JP2017082328A (en) 2017-05-18

Family

ID=58710825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016206874A Pending JP2017082328A (en) 2015-10-23 2016-10-21 Copper alloy for slide member

Country Status (1)

Country Link
JP (1) JP2017082328A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6940801B1 (en) * 2020-12-25 2021-09-29 千住金属工業株式会社 Sliding member, bearing, manufacturing method of sliding member, manufacturing method of bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6940801B1 (en) * 2020-12-25 2021-09-29 千住金属工業株式会社 Sliding member, bearing, manufacturing method of sliding member, manufacturing method of bearing
JP2022102784A (en) * 2020-12-25 2022-07-07 千住金属工業株式会社 Sliding member, bearing, sliding member manufacturing method, and bearing manufacturing method
EP4265356A4 (en) * 2020-12-25 2024-06-26 Senju Metal Industry Co Sliding member, bearing, sliding member manufacturing method, and bearing manufacturing method

Similar Documents

Publication Publication Date Title
JP5143827B2 (en) Method for producing Pb-free copper alloy sliding material
KR100814656B1 (en) Free copper alloy sliding material
JP3939931B2 (en) Copper-based multi-layer sliding material
CN106574659B (en) Antifriction composite
JP5371182B2 (en) Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance and bearing material made of the alloy
CN105209646A (en) Copper alloy, use of a copper alloy, bearing having a copper alloy, and method for producing a bearing composed of a copper alloy
WO2012147780A1 (en) Sliding material, alloy for bearing, and multilayer metal material for bearing
JP2007527953A (en) Sintered sliding bearing material, sliding bearing composite material and its use
JP6440297B2 (en) Cu-based sintered bearing
KR101140191B1 (en) Lead-free copper-based sinter sliding material
JP5496380B2 (en) Cu-Ni-Sn-based copper-based sintered alloy having excellent friction and wear resistance, method for producing the same, and bearing material comprising the alloy
JP2010533756A (en) Lead-free sintered lubricating material and sintered powder for its production
JP4658269B2 (en) Copper alloy for sliding members
JP2012207277A (en) Copper-based sliding material
WO2022137810A1 (en) Sliding member, bearing, sliding member manufacturing method, and bearing manufacturing method
JP2016094661A (en) Manufacturing method of copper alloy powder
JP2017082328A (en) Copper alloy for slide member
JP6363931B2 (en) Copper alloy for slide bearing
JP7376998B2 (en) Alloys for sliding parts, sliding parts, internal combustion engines, and automobiles
JP5073925B2 (en) Lead-free copper-based sliding material
JP4794814B2 (en) Copper alloy sintered sliding material
KR102672968B1 (en) Sliding member, bearing, manufacturing method of sliding member, manufacturing method of bearing
JP7125647B1 (en) Sliding member and bearing
JP6224992B2 (en) Copper alloy for sliding member and sliding member using the same
JP2556113B2 (en) High strength and high toughness Cu-based sintered alloy with excellent wear resistance