JP2008144253A - Copper-based slide material and its manufacturing method - Google Patents

Copper-based slide material and its manufacturing method Download PDF

Info

Publication number
JP2008144253A
JP2008144253A JP2006336191A JP2006336191A JP2008144253A JP 2008144253 A JP2008144253 A JP 2008144253A JP 2006336191 A JP2006336191 A JP 2006336191A JP 2006336191 A JP2006336191 A JP 2006336191A JP 2008144253 A JP2008144253 A JP 2008144253A
Authority
JP
Japan
Prior art keywords
copper
copper alloy
sintering
powder
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006336191A
Other languages
Japanese (ja)
Inventor
Kentaro Tsujimoto
健太郎 辻本
Koji Zushi
耕治 図師
Hideo Ishikawa
日出夫 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2006336191A priority Critical patent/JP2008144253A/en
Publication of JP2008144253A publication Critical patent/JP2008144253A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/125Details of bearing layers, i.e. the lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • F16C33/145Special methods of manufacture; Running-in of sintered porous bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Sliding-Contact Bearings (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper-based slide material which has a high strength as a copper alloy even when a passive oxide film forming element is contained and is suitable for use in a bearing for supporting dynamic load, and its manufacturing method. <P>SOLUTION: In the copper-based slide material, a slide layer is formed by splaying the powder of the copper alloy on a steel base metal and then sintering it. The copper alloy has a composition containing 0.1-10% by mass of at least one of Al, Si, Cr, Ti, V, Ta, Zr, and Nb and the powder thereof is obtained by nitriding atomized powder of the copper alloy at 100-200°C. The slide layer is formed by sintering the copper alloy powders, so that only the passive oxide film forming element existing on the powder surface is stabilized as a nitride without nitriding the copper composition itself. As a result, the powder surface is prevented from being covered with the passive oxide film of an additive element during temperature rising for sintering, so that a firm sintering of copper alloy can be achieved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、銅合金の粉末を鋼裏金上に散布後焼結して摺動層を形成した銅系摺動材料及びその製造方法に関するものである。   The present invention relates to a copper-based sliding material in which a sliding layer is formed by spraying a copper alloy powder onto a steel back metal and then sintering, and a manufacturing method thereof.

従来の内燃機関用軸受には、鉛青銅やりん青銅などの銅合金層と鋼裏金との複層摺動材料からなる摺動材料が使用されてきた。さらに、特開2003−269456号公報(以下、「特許文献1」という。)に開示されるように、内燃機関用潤滑油に対する銅合金の耐食性を高めるために、青銅のSn含有量を多くしたり、Niを添加する方法等が用いられている。また、鋼裏金付の銅系摺動材料の製造方法として、大量生産に好適で軸受材料を安価に製造できる連帯焼結方法が用いられてきた。
特開2003−269456号公報(段落0007、0018、請求項3)
Conventional bearings for internal combustion engines have been made of a sliding material composed of a multilayer sliding material of a copper alloy layer such as lead bronze or phosphor bronze and a steel back metal. Furthermore, as disclosed in Japanese Patent Application Laid-Open No. 2003-269456 (hereinafter referred to as “Patent Document 1”), the Sn content of bronze is increased in order to increase the corrosion resistance of the copper alloy against the lubricating oil for internal combustion engines. Or a method of adding Ni or the like. Further, as a method for producing a copper-based sliding material with a steel backing, a continuous sintering method that is suitable for mass production and can produce a bearing material at a low cost has been used.
JP 2003-269456 A (paragraphs 0007 and 0018, claim 3)

ところで、Ni,Sn含有銅合金では、Cuに比べれば硫化や酸化が起こりにくいNiやSn成分を単にCuに固溶させ耐食性を高めるものであるので、これら銅合金では内燃機関用軸受使用にて銅硫化膜や酸化膜が形成される。この銅硫化膜、酸化膜は疎で脆く肥厚するために軸との摺動で容易に破壊され取り去られ、肥厚した銅硫化膜、酸化膜形成が繰り返しおきるので、耐食性は不十分である。   By the way, in Ni and Sn containing copper alloys, Ni and Sn components, which are less susceptible to sulfidation and oxidation than Cu, are simply dissolved in Cu to improve corrosion resistance. With these copper alloys, bearings for internal combustion engines are used. A copper sulfide film or an oxide film is formed. Since the copper sulfide film and oxide film are sparse and brittle and thick, they are easily broken and removed by sliding with the shaft, and the thick copper sulfide film and oxide film are repeatedly formed, so that the corrosion resistance is insufficient.

そこで、Al,Si,Cr,Ti,V,Ta,Zr,Nb等の元素を銅に添加して耐食性を向上させることが考えられるが、連帯焼結法にてAl,Si,Cr,Ti,V,Ta,Zr,Nb等の不働態酸化膜形成元素添加したプレアロイ銅合金粉末を用いたり銅合金と不働態酸化膜形成元素粉との混合粉末を原材料として鋼裏金上に散布し焼結すると、十分な強度を有する銅系摺動材料が得られないという問題がある。これは、連帯焼結法にて鋼上に散布された青銅等の粉末は水素等の還元性を有する雰囲気を有する焼結炉にて焼結した場合、銅合金表面の酸化膜が還元性ガスで還元され、粉末同士が接触している部分で金属原子の拡散がおこり焼結が進行するものであるところ、不働態酸化膜形成元素を含有する銅合金粉末は還元性ガスによる還元よりも不働態酸化膜形成のほうが促進されるために、逆に粉末表面が緻密で強固な不働態酸化膜に覆われてしまうので、鋼上に銅合金粉末を散布し、粉末同士の接触面積が狭い状態で焼結加熱する連帯焼結法では焼結現象が十分に進行しないため、強度の強い焼結材料が得られないからである。   Therefore, it is conceivable to improve the corrosion resistance by adding elements such as Al, Si, Cr, Ti, V, Ta, Zr, Nb, etc. to the copper, but Al, Si, Cr, Ti, When prealloy copper alloy powder added with passive oxide film forming elements such as V, Ta, Zr, Nb, etc. or mixed powder of copper alloy and passive oxide film forming element powder as a raw material is sprayed on a steel back metal and sintered. There is a problem that a copper-based sliding material having sufficient strength cannot be obtained. This is because, when the powder such as bronze dispersed on the steel by the continuous sintering method is sintered in a sintering furnace having a reducing atmosphere such as hydrogen, the oxide film on the copper alloy surface is a reducing gas. The copper alloy powder containing a passive oxide film-forming element is less effective than reduction with a reducing gas, where the metal atoms diffuse and the sintering proceeds at the part where the powders are in contact with each other. Since the formation of the active oxide film is promoted, the powder surface is covered with a dense and strong passive oxide film, so the copper alloy powder is dispersed on the steel and the contact area between the powders is narrow. This is because, in the continuous sintering method in which sintering is performed at a temperature, the sintering phenomenon does not proceed sufficiently, so that a strong sintered material cannot be obtained.

本願発明は、上記した事情に鑑みなされたもので、不働態酸化膜形成元素を含有しても銅合金の強度が高く、動荷重負荷を支持する軸受に好適な銅系摺動材料およびその製造方法を提供することを目的とするものである。   The present invention has been made in view of the above-described circumstances, and a copper-based sliding material suitable for a bearing that supports a dynamic load and a copper alloy having high strength even when containing a passive oxide film-forming element and its manufacture It is intended to provide a method.

上記した目的を達成するために採用された解決手段として、請求項1に係る発明は、銅合金の粉末を鋼裏金上に散布後焼結して摺動層を形成した銅系摺動材料において、前記銅合金は、Al、Si、Cr、Ti、V、Ta、Zr、Nbのいずれか1種以上を0.1〜10質量%含有した組成を有し、その組成のアトマイズした粉末に100〜200℃で窒化処理して得られる銅合金粉末を摺動層として焼結したことを特徴とする。   In order to achieve the above-described object, the invention according to claim 1 is directed to a copper-based sliding material in which a sliding layer is formed by spraying a copper alloy powder onto a steel backing and then sintering the powder. The copper alloy has a composition containing 0.1 to 10% by mass of any one or more of Al, Si, Cr, Ti, V, Ta, Zr, and Nb. A copper alloy powder obtained by nitriding at ˜200 ° C. is sintered as a sliding layer.

また、請求項2に係る発明は、請求項1記載の銅系摺動材料であって、前記銅合金は、さらにSn、Ni、Ag、Zn、Mn、Fe、Coのいずれか1種以上を0.1〜20質量%含有した組成を有していることを特徴とする。   The invention according to claim 2 is the copper-based sliding material according to claim 1, wherein the copper alloy further includes at least one of Sn, Ni, Ag, Zn, Mn, Fe, and Co. It has the composition which contained 0.1-20 mass%, It is characterized by the above-mentioned.

また、請求項3に係る発明は、請求項1又は請求項2記載の銅系摺動材料であって、前記銅合金は、さらにPを0.1〜0.2質量%含有した組成を有していることを特徴とする。   The invention according to claim 3 is the copper-based sliding material according to claim 1 or 2, wherein the copper alloy further has a composition containing 0.1 to 0.2% by mass of P. It is characterized by that.

また、請求項4に係る発明は、請求項1乃至請求項3のいずれかの銅系摺動材料であって、前記銅合金は、さらにBi、Pbの1種以上を1〜25質量%含有した組成を有していることを特徴とする。   The invention according to claim 4 is the copper-based sliding material according to any one of claims 1 to 3, wherein the copper alloy further contains 1 to 25% by mass of one or more of Bi and Pb. It has the composition which was made.

更に、請求項5に係る発明は、Al、Si、Cr、Ti、V、Ta、Zr、Nbのいずれか1種以上を0.1〜10質量%含有した組成の銅合金をアトマイズした粉末を100〜200℃で窒化処理する窒化工程と、該窒化工程を経た銅合金粉末を鋼裏金上に散布して摺動層を焼結する第1の焼結工程と、該第1の焼結工程で焼結した摺動層をロール圧延で圧延する圧延工程と、該圧延工程で圧延された摺動層を再度焼結する第2の焼結工程と、から製造される銅系摺動材料の製造方法を特徴とする。   Furthermore, the invention according to claim 5 is a powder obtained by atomizing a copper alloy having a composition containing 0.1 to 10% by mass of any one of Al, Si, Cr, Ti, V, Ta, Zr, and Nb. A nitriding step for nitriding at 100 to 200 ° C., a first sintering step for dispersing the copper alloy powder that has undergone the nitriding step on a steel backing metal, and sintering the sliding layer, and the first sintering step Of a copper-based sliding material produced from a rolling process of rolling the sliding layer sintered in roll rolling by a roll rolling, and a second sintering process of re-sintering the sliding layer rolled in the rolling process Features a manufacturing method.

請求項1に係る発明においては、アトマイズ法で製造した後に窒化処理を行うので、銅成分そのものは窒化されることはなく、粉末表面に存在する不働体酸化膜形成元素のみを窒化物とすることにより安定化する。このため、焼結での昇温中に粉末表面が不働態酸化膜に覆われることを防ぐことができ銅合金同士を強固に焼結させることが可能となる。この銅系合金摺動材料を軸受として使用すると軸受表面にAl、Si、Cr、Ti、V、Ta、Zr、Nbからなる不働態酸化膜で覆われるため極めて耐食性が高い。そして、これら不働態酸化膜は厚く成長しないため、耐久性も高い。更に、軸との接触により、不働態酸化膜が除去されたとしても、これら不働体酸化膜形成元素は極活性であり、急速に不働態酸化膜が形成される。なお、Al、Si、Cr、Ti、V、Ta、Zr、Nbは、0.1質量%添加しても銅合金の耐食性向上に効果があり、10質量%を超えて添加すると、窒化処理による銅合金粉末表面の窒化物が多くなりすぎて、銅合金の焼結強度が弱くなりはじめる。また、粉末の極表面に存在する不働体酸化膜形成元素のみを窒化させるために窒化処理温度は100℃〜200℃が好ましい。   In the invention according to claim 1, since the nitriding process is performed after the manufacture by the atomizing method, the copper component itself is not nitrided, and only the passive oxide film forming element existing on the powder surface is nitrided. To stabilize. For this reason, it is possible to prevent the powder surface from being covered with the passive oxide film during the temperature rise in the sintering, and to firmly sinter the copper alloys. When this copper-based alloy sliding material is used as a bearing, the bearing surface is covered with a passive oxide film made of Al, Si, Cr, Ti, V, Ta, Zr, and Nb, so that the corrosion resistance is extremely high. Since these passive oxide films do not grow thick, they have high durability. Furthermore, even if the passive oxide film is removed by contact with the shaft, these passive oxide film forming elements are extremely active, and a passive oxide film is rapidly formed. Note that Al, Si, Cr, Ti, V, Ta, Zr, and Nb are effective in improving the corrosion resistance of the copper alloy even if added by 0.1% by mass. The nitride on the surface of the copper alloy powder becomes too much, and the sintered strength of the copper alloy begins to weaken. The nitriding temperature is preferably 100 ° C. to 200 ° C. in order to nitride only the passive oxide film forming element present on the extreme surface of the powder.

請求項2に係る発明又は請求項3に係る発明のように、アトマイズ粉末用の銅合金として、Sn、Ni、Ag、Zn、Mn、Fe、Coのいずれか1種以上を0.1〜20質量%含有した組成、および/またはPを0.1〜0.2質量%含有した組成とすることにより、本願発明の効果を損なうことなく材料強度を高めることができる。   As in the invention according to claim 2 or claim 3, as a copper alloy for atomized powder, at least one of Sn, Ni, Ag, Zn, Mn, Fe, and Co is 0.1 to 20 By setting it as the composition containing 0.1 mass% and / or the composition containing 0.1-0.2 mass% of P, material strength can be raised, without impairing the effect of this invention.

請求項4に係る発明のように、アトマイズ粉末用の銅合金として、さらにBi、Pbの1種以上を1〜25質量%含有した組成とすることにより、本願発明の効果を損なうことなく潤滑性を高めることができる。   As in the invention according to claim 4, as a copper alloy for atomized powder, the composition further contains 1 to 25% by mass of one or more of Bi and Pb, so that the effect of the present invention is not impaired. Can be increased.

請求項5に係る発明の製造方法によって、請求項1に記載される銅系摺動部材を連帯焼結方法で製造することができる。これは、一般的に散布した状態の銅合金粉末の焼結では昇温初期は粉末の表面でのみ元素の拡散が起こり、粉末の接触部で焼結結合部が形成される。その後、温度が高くなると焼結結合部を介して体積拡散が起こるようになると焼結結合部が太く成長し強固な焼結状態となる。しかし、不働態酸化膜を形成するような極活性な元素を含む銅合金粉では、水素等の還元性雰囲気で焼結しても、焼結炉内雰囲気中に残る酸素と反応し粉末表面には不働態酸化物被膜が形成してしまう。昇温初期で銅元素の粉末表面での拡散速度が遅く焼結結合部が形成される前に粉末表面の広範囲に緻密な不働態酸化膜が形成され、焼結結合部の形成、成長が妨げられるので強固な焼結状態が得られない。これに対し、本発明の製造方法に使用される銅合金組成の粉末は、アトマイズ法で製造した後に窒化処理を行うので、銅成分そのものは窒化されることはなく、粉末表面に存在する不働体酸化膜形成元素のみを窒化物とすることにより安定化する。このため、焼結での昇温中に粉末表面が不働態酸化膜に覆われることを防ぐことができ銅合金同士を強固に焼結させることが可能となる。   By the manufacturing method of the invention according to claim 5, the copper-based sliding member described in claim 1 can be manufactured by the continuous sintering method. This is because, generally, in the sintering of the dispersed copper alloy powder, element diffusion occurs only on the surface of the powder at the beginning of the temperature rise, and a sintered joint is formed at the contact portion of the powder. Thereafter, when the temperature rises, volume diffusion occurs through the sintered joint, and the sintered joint grows thick and becomes a strong sintered state. However, copper alloy powder containing extremely active elements that form a passive oxide film reacts with oxygen remaining in the sintering furnace atmosphere even when sintered in a reducing atmosphere such as hydrogen, and on the powder surface. Will form a passive oxide film. The diffusion rate of the copper element on the powder surface is slow at the beginning of the temperature rise, and before the sintered joint is formed, a dense passive oxide film is formed over a wide area of the powder surface, preventing the formation and growth of the sintered joint. Therefore, a strong sintered state cannot be obtained. On the other hand, the copper alloy composition powder used in the manufacturing method of the present invention is nitrided after being manufactured by the atomizing method, so that the copper component itself is not nitrided and is a passive body present on the powder surface. Stabilization is achieved by using only an oxide film forming element as a nitride. For this reason, it is possible to prevent the powder surface from being covered with the passive oxide film during the temperature rise in the sintering, and to firmly sinter the copper alloys.

以下、本発明の好ましい実施形態について説明する。図1は、本発明に係る銅系摺動材料を製造するための製造方法を説明するための工程図であり、図2は、図1に示す製造方法で製造した銅系摺動材料の断面の模式図である。   Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 is a process diagram for explaining a manufacturing method for manufacturing a copper-based sliding material according to the present invention, and FIG. 2 is a cross-sectional view of the copper-based sliding material manufactured by the manufacturing method shown in FIG. FIG.

図1において、本実施形態に係る銅系摺動材料を製造するための製造方法は、Al,Si,Cr,Ti,V,Ta,Zr,Nbのいずれか1種以上を0.1〜10質量%含有した組成の銅合金をアトマイズした銅合金粉末を100〜200℃で所定時間窒化処理し、その窒化処理した銅合金粉末を鋼裏金上(例えば、帯鋼)に散布し、所定条件で一次焼結炉にて焼結後、冷却してロール圧延にて銅合金焼結層を緻密化した後、再び二次焼結炉で焼結(例えば、一次焼結炉における焼結条件と同じ条件の焼結)後、冷却して銅系摺動材料を製造する。   In FIG. 1, the manufacturing method for manufacturing the copper-based sliding material according to the present embodiment includes 0.1 to 10 of at least one of Al, Si, Cr, Ti, V, Ta, Zr, and Nb. A copper alloy powder obtained by atomizing a copper alloy having a composition containing mass% is nitrided at 100 to 200 ° C. for a predetermined time, and the nitrided copper alloy powder is sprayed on a steel back metal (for example, a steel strip), under predetermined conditions. After sintering in the primary sintering furnace, cooling and densifying the copper alloy sintered layer by roll rolling, then sintering again in the secondary sintering furnace (for example, the same sintering conditions as in the primary sintering furnace) After sintering under the condition), the copper-based sliding material is manufactured by cooling.

ここで、Al,Si,Cr,Ti,V,Ta,Zr,Nbは、0.1質量%添加しても銅合金の耐食性向上に効果があり、10質量%を超えて添加すると、窒化処理による銅合金粉末表面の窒化物が多くなりすぎて、銅合金の焼結強度が弱くなりはじめる。また、粉末の極表面に存在する不働体酸化膜形成元素のみを窒化させるために窒化処理温度は100℃〜200℃が好ましい。   Here, Al, Si, Cr, Ti, V, Ta, Zr, and Nb are effective in improving the corrosion resistance of the copper alloy even when added in an amount of 0.1% by mass. Due to the excessive amount of nitride on the surface of the copper alloy powder, the sintered strength of the copper alloy begins to weaken. The nitriding temperature is preferably 100 ° C. to 200 ° C. in order to nitride only the passive oxide film forming element present on the extreme surface of the powder.

また、アトマイズするための銅合金は、Sn、Ni、Ag、Zn、Mn、Fe、Coのいずれか1種以上を0.1〜20質量%含有した組成、および/またはPを0.1〜0.2質量%含有した組成とすることにより、材料強度を高めることができ、また、Bi,Pbの1種以上を1〜25質量%含有した組成とすることにより、潤滑性を高めることができる。さらに、耐摩耗性を高めるため、炭化物、窒化物、酸化物、硼化物、珪化物等の硬質粒子を添加することができる。これら化合物は窒化処理にて変化が起こるような物質ではないため本実施形態の耐食性の向上や焼結強度の向上という効果には影響しない。   Moreover, the copper alloy for atomizing contains 0.1-20 mass% of any one or more of Sn, Ni, Ag, Zn, Mn, Fe, Co, and / or P in 0.1 The material strength can be increased by the composition containing 0.2% by mass, and the lubricity can be improved by the composition containing 1 to 25% by mass of one or more of Bi and Pb. it can. Furthermore, hard particles such as carbides, nitrides, oxides, borides, and silicides can be added in order to improve wear resistance. Since these compounds are not substances that change during nitriding, they do not affect the effects of improving the corrosion resistance and improving the sintering strength of this embodiment.

上記した製造方法で製造した銅系摺動材料は、図2に示すように、鋼裏金2の上に摺動層として銅合金層3が積層された二層構造の銅系摺動材料1として製作される。   As shown in FIG. 2, the copper-based sliding material manufactured by the above-described manufacturing method is a two-layered copper-based sliding material 1 in which a copper alloy layer 3 is laminated as a sliding layer on a steel back metal 2. Produced.

次に、本発明に係る製造方法により製造した銅系摺動材料について表1を参照して説明する。表1の実施例No.1〜13に示す組成の銅合金粉末(−60メッシュ)をアトマイズ法で作製し、次に窒素雰囲気中で表1に示す窒化処理温度に加熱し3分間保持する窒化処理を施した(窒化処理工程)。この粉末を厚さ1.5mmの帯鋼上に0.8mmの厚さに散布し、水素ガス雰囲気、800℃〜950℃の焼結炉に連続的に通し焼結(第1次焼結工程)後、冷却しロール圧延(圧延工程)を行って焼結層の緻密化を行った後に再度、同条件で焼結(第2次焼結工程)し、実施例No.1〜13の銅系摺動材料を作製した。   Next, the copper-based sliding material manufactured by the manufacturing method according to the present invention will be described with reference to Table 1. Example No. in Table 1 A copper alloy powder (−60 mesh) having the composition shown in 1 to 13 was prepared by an atomizing method, and then subjected to nitriding treatment in a nitrogen atmosphere and heated to the nitriding treatment temperature shown in Table 1 and held for 3 minutes (nitriding treatment) Process). This powder is spread on a steel strip having a thickness of 1.5 mm to a thickness of 0.8 mm, and is continuously passed through a sintering furnace at 800 ° C. to 950 ° C. in a hydrogen gas atmosphere (the first sintering step). Then, after cooling and roll rolling (rolling step) to densify the sintered layer, it was sintered again under the same conditions (secondary sintering step). 1 to 13 copper-based sliding materials were produced.

Figure 2008144253
Figure 2008144253

一方、実施例No.1〜13の組成にそれぞれ対応する比較例No.14〜26の銅合金粉末をアトマイズ法で作製し、窒化処理を施さずに実施例No.1〜13と同条件で焼結し比較例No.14〜26の銅系摺動材料を作製した。   On the other hand, Example No. Comparative Example Nos. 1 to 13 corresponding to the compositions 1 to 13, respectively. No. 14 to 26 copper alloy powders were prepared by the atomizing method, and were not subjected to nitriding treatment. Sintered under the same conditions as in Nos. 1-13, Comparative Example No. 14 to 26 copper-based sliding materials were produced.

実施例No.1〜13、比較例No.14〜26の銅系焼結材料をJIS6号引張試験片(ただし、引張試験片の両端は、試験機でチャックするために帯鋼が摺動層に接着されている。)に加工し、銅合金の引張試験を行い、それぞれの引張強さおよび伸び値を求めた。その結果も表1に示す。   Example No. 1-13, Comparative Example No. 14 to 26 copper-based sintered materials are processed into JIS No. 6 tensile test pieces (however, both ends of the tensile test pieces are bonded to a sliding layer with a steel strip for chucking with a testing machine). The alloy was subjected to a tensile test to determine the tensile strength and elongation value of each. The results are also shown in Table 1.

比較例No.14〜26に対し、それぞれ同一組成の実施例No.1〜13は何れも、引張強度、伸び共に2倍以上高い値となる。引張試験を行った試験片の破断面を電子プローブマイクロアナライザーで分析すると、比較例品の破断面には広範囲にAl,Si,Cr,Ti,V,Ta,Zr,Nbの酸化物が分析された。これは焼結時に粉末表面にAl,Si,Cr,Ti,V,Ta,Zr,Nbの不働体酸化膜が形成され、そのために焼結が阻害されたことが考えられる。この不働体酸化膜が破壊の基点となるために、引張強さも伸び値も低い値になる。   Comparative Example No. For Examples 14 to 26, Example Nos. Having the same composition were used. 1 to 13 are both higher in tensile strength and elongation by 2 times or more. When the fracture surface of the specimen subjected to the tensile test is analyzed with an electronic probe microanalyzer, oxides of Al, Si, Cr, Ti, V, Ta, Zr, and Nb are extensively analyzed on the fracture surface of the comparative product. It was. This is presumably because a passive oxide film of Al, Si, Cr, Ti, V, Ta, Zr, and Nb was formed on the powder surface during sintering, which inhibited the sintering. Since this passive oxide film serves as a starting point for destruction, both the tensile strength and the elongation value are low.

これに対し、実施例品の破断面にも、わずかにAl,Si,Cr,Ti,V,Ta,Zr,Nbの酸化物は分析されたが、破断の基点となるような広範囲の酸化物膜の形成はおきていない。これは原材料銅合金粉末の表面のAl,Si,Cr,Ti,V,Ta,Zr,Nbを窒化処理により窒化物とし安定化した後に焼結する事により、焼結時にこれら元素の不働態酸化膜が粉末表面に形成されることが抑制されたことによるものと考えられる。   On the other hand, the oxides of Al, Si, Cr, Ti, V, Ta, Zr, and Nb were also analyzed slightly in the fracture surface of the example product, but a wide range of oxides serving as the starting point of the fracture. There is no film formation. This is because the Al, Si, Cr, Ti, V, Ta, Zr, and Nb on the surface of the raw material copper alloy powder are stabilized as nitrides by nitriding and then sintered, so that these elements are passively oxidized during sintering. This is probably because the formation of a film on the powder surface was suppressed.

本発明の銅系摺動材料は不働態酸化膜形成元素を含有しても引張強度と伸びが共に高いため、動荷重負荷を支持する軸受に好適である。なお、鋼との接合強度を高める等のための銅合金焼結材料と鋼の間に中間層としてAl,Si,Cr,Ti,V,Ta,Zr,Nbを含まない銅または銅合金(例えば、Cu−Sn−Ni合金等)のメッキや焼結による中間層を設けてもよい。   The copper-based sliding material of the present invention is suitable for a bearing that supports a dynamic load because both the tensile strength and elongation are high even if it contains a passive oxide film forming element. In addition, copper or a copper alloy containing no Al, Si, Cr, Ti, V, Ta, Zr, or Nb as an intermediate layer between the copper alloy sintered material and the steel for increasing the bonding strength with the steel (for example, An intermediate layer by plating or sintering of Cu-Sn-Ni alloy or the like may be provided.

本発明に係る銅系摺動材料を製造するための製造方法を説明するための工程図である。It is process drawing for demonstrating the manufacturing method for manufacturing the copper-type sliding material which concerns on this invention. 図1の製造方法で製造した銅系摺動材料の断面の模式図である。It is a schematic diagram of the cross section of the copper-type sliding material manufactured with the manufacturing method of FIG.

符号の説明Explanation of symbols

1 銅系摺動材料
2 鋼裏金
3 摺動層
1 Copper sliding material 2 Steel backing metal 3 Sliding layer

Claims (5)

銅合金の粉末を鋼裏金上に散布後焼結して摺動層を形成した銅系摺動材料において、
前記銅合金は、Al、Si、Cr、Ti、V、Ta、Zr、Nbのいずれか1種以上を0.1〜10質量%含有した組成を有し、
その組成のアトマイズした粉末に100〜200℃で窒化処理して得られる銅合金粉末を摺動層として焼結したことを特徴とする銅系摺動材料。
In copper-based sliding material in which a sliding layer is formed by spraying a copper alloy powder on a steel backing and then sintering it,
The copper alloy has a composition containing 0.1 to 10% by mass of any one or more of Al, Si, Cr, Ti, V, Ta, Zr, and Nb,
A copper-based sliding material obtained by sintering, as a sliding layer, a copper alloy powder obtained by nitriding the atomized powder of the composition at 100 to 200 ° C.
前記銅合金は、さらにSn、Ni、Ag、Zn、Mn、Fe、Coのいずれか1種以上を0.1〜20質量%含有した組成を有していることを特徴とする請求項1記載の銅系摺動材料。   The copper alloy further has a composition containing 0.1 to 20% by mass of any one or more of Sn, Ni, Ag, Zn, Mn, Fe, and Co. Copper-based sliding material. 前記銅合金は、さらにPを0.1〜0.2質量%含有した組成を有していることを特徴とする請求項1又は請求項2記載の銅系摺動材料。   The copper-based sliding material according to claim 1 or 2, wherein the copper alloy further has a composition containing 0.1 to 0.2 mass% of P. 前記銅合金は、さらにBi、Pbの1種以上を1〜25質量%含有した組成を有していることを特徴とする請求項1乃至請求項3のいずれかに記載の銅系摺動材料。   The copper-based sliding material according to any one of claims 1 to 3, wherein the copper alloy further has a composition containing 1 to 25 mass% of one or more of Bi and Pb. . Al、Si、Cr、Ti、V、Ta、Zr、Nbのいずれか1種以上を0.1〜10質量%含有した組成の銅合金をアトマイズした粉末を100〜200℃で窒化処理する窒化工程と、
該窒化工程を経た銅合金粉末を鋼裏金上に散布して摺動層を焼結する第1の焼結工程と、
該第1の焼結工程で焼結した摺動層をロール圧延で圧延する圧延工程と、
該圧延工程で圧延された摺動層を再度焼結する第2の焼結工程と、
から製造される銅系摺動材料の製造方法。
A nitriding step of nitriding a powder obtained by atomizing a copper alloy having a composition containing at least one of Al, Si, Cr, Ti, V, Ta, Zr, and Nb in an amount of 0.1 to 10% by mass at 100 to 200 ° C. When,
A first sintering step of dispersing the copper alloy powder that has undergone the nitriding step on a steel back metal and sintering the sliding layer;
A rolling step of rolling the sliding layer sintered in the first sintering step by roll rolling;
A second sintering step for re-sintering the sliding layer rolled in the rolling step;
The manufacturing method of the copper-type sliding material manufactured from this.
JP2006336191A 2006-12-13 2006-12-13 Copper-based slide material and its manufacturing method Pending JP2008144253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006336191A JP2008144253A (en) 2006-12-13 2006-12-13 Copper-based slide material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006336191A JP2008144253A (en) 2006-12-13 2006-12-13 Copper-based slide material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008144253A true JP2008144253A (en) 2008-06-26

Family

ID=39604739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006336191A Pending JP2008144253A (en) 2006-12-13 2006-12-13 Copper-based slide material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008144253A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102537067A (en) * 2011-12-15 2012-07-04 湖北安达汽车零部件有限公司 Bearing substrate layer
CN102528048A (en) * 2012-02-29 2012-07-04 上海工程技术大学 Method for preparing aluminum bronze and steel bimetallic material
CN102773253A (en) * 2012-07-06 2012-11-14 常州大学 Steel-aluminum bronze bimetal material compounding method
CN102886521A (en) * 2011-07-21 2013-01-23 福田金属箔粉工业株式会社 Albronze sintering alloy sliding material and manufacture method thereof
WO2014102529A1 (en) * 2012-12-24 2014-07-03 Mahle International Gmbh Sliding bearing with lining layer comprising carbon nanostructures
DE102014217570A1 (en) * 2014-09-03 2016-03-03 Federal-Mogul Wiesbaden Gmbh Sliding bearing or part thereof, method for producing the same and use of a CuCrZr alloy as a sliding bearing material
CN105750554A (en) * 2016-02-29 2016-07-13 苏州莱特复合材料有限公司 Tough powder metallurgy shaft sleeve and preparation method thereof
CN107042312A (en) * 2017-02-28 2017-08-15 东莞市佳乾新材料科技有限公司 A kind of preparation method of high abrasion laminar titanium aluminum/Al-Si composites
JP2018062686A (en) * 2016-10-12 2018-04-19 日華化学株式会社 Core-shell particle and manufacturing method therefor, and joint material and jointing method using same
CN109112347A (en) * 2018-09-30 2019-01-01 上海富驰高科技股份有限公司 A kind of high-strength high-conductivity copper-chromium-zirconium and preparation method thereof
CN109967756A (en) * 2019-03-25 2019-07-05 安徽鑫佳铜业有限公司 A kind of low bulk tin bronze powder and its manufacturing method
WO2020026628A1 (en) * 2018-08-02 2020-02-06 日産自動車株式会社 Sliding member and member for internal combustion engine
CN111421135A (en) * 2020-04-23 2020-07-17 西安理工大学 Preparation method of copper-tin prealloying powder with ultrahigh tin content and controllable particle size
CN114632934A (en) * 2022-02-17 2022-06-17 贵州新安航空机械有限责任公司 Double-layer copper alloy powder metallurgy pantograph slide plate and manufacturing process thereof

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102886521A (en) * 2011-07-21 2013-01-23 福田金属箔粉工业株式会社 Albronze sintering alloy sliding material and manufacture method thereof
JP2013023732A (en) * 2011-07-21 2013-02-04 Fukuda Metal Foil & Powder Co Ltd Al BRONZE SINTERED ALLOY-SLIDING MATERIAL AND METHOD FOR PRODUCING THE SAME
CN102537067A (en) * 2011-12-15 2012-07-04 湖北安达汽车零部件有限公司 Bearing substrate layer
CN102528048A (en) * 2012-02-29 2012-07-04 上海工程技术大学 Method for preparing aluminum bronze and steel bimetallic material
CN102773253A (en) * 2012-07-06 2012-11-14 常州大学 Steel-aluminum bronze bimetal material compounding method
CN102773253B (en) * 2012-07-06 2014-05-21 常州大学 Steel-aluminum bronze bimetal material compounding method
US10473160B2 (en) 2012-12-24 2019-11-12 Mahle International Gmbh Sliding bearing with lining layer comprising carbon nanostructures
CN104884828A (en) * 2012-12-24 2015-09-02 马勒国际有限公司 Sliding bearing with lining layer comprising carbon nanostructures
WO2014102529A1 (en) * 2012-12-24 2014-07-03 Mahle International Gmbh Sliding bearing with lining layer comprising carbon nanostructures
JP2018505955A (en) * 2014-09-03 2018-03-01 フェデラル−モーグル ヴィースバーデン ゲーエムベーハーFederal−Mogul Wiesbaden Gmbh Sliding bearings or parts thereof, methods for their production and use of CuCrZr alloys as sliding bearing materials
DE102014217570A1 (en) * 2014-09-03 2016-03-03 Federal-Mogul Wiesbaden Gmbh Sliding bearing or part thereof, method for producing the same and use of a CuCrZr alloy as a sliding bearing material
WO2016034484A1 (en) * 2014-09-03 2016-03-10 Federal-Mogul Wiesbaden Gmbh Plain bearing or part thereof, method for producing same and use of a cucrzr alloy as a plain bearing material
CN107076205A (en) * 2014-09-03 2017-08-18 菲特尔莫古威斯巴登有限公司 Sliding bearing or one part, its manufacture method and CuCrZr alloys as material for sliding bearing application
US20170284466A1 (en) * 2014-09-03 2017-10-05 Federal-Mogul Wiesbaden Gmbh Plain bearing or part thereof, method for producing same and use of a cucrzr alloy as a plain bearing material
CN105750554A (en) * 2016-02-29 2016-07-13 苏州莱特复合材料有限公司 Tough powder metallurgy shaft sleeve and preparation method thereof
JP2018062686A (en) * 2016-10-12 2018-04-19 日華化学株式会社 Core-shell particle and manufacturing method therefor, and joint material and jointing method using same
CN107042312A (en) * 2017-02-28 2017-08-15 东莞市佳乾新材料科技有限公司 A kind of preparation method of high abrasion laminar titanium aluminum/Al-Si composites
JP7030199B2 (en) 2018-08-02 2022-03-04 日産自動車株式会社 Sliding members and internal combustion engine members
JPWO2020026628A1 (en) * 2018-08-02 2021-09-09 日産自動車株式会社 Sliding members and internal combustion engine members
WO2020026628A1 (en) * 2018-08-02 2020-02-06 日産自動車株式会社 Sliding member and member for internal combustion engine
CN112533710A (en) * 2018-08-02 2021-03-19 日产自动车株式会社 Sliding member and member for internal combustion engine
CN109112347B (en) * 2018-09-30 2021-06-29 上海富驰高科技股份有限公司 High-strength high-conductivity copper-chromium-zirconium alloy and preparation method thereof
CN109112347A (en) * 2018-09-30 2019-01-01 上海富驰高科技股份有限公司 A kind of high-strength high-conductivity copper-chromium-zirconium and preparation method thereof
CN109967756A (en) * 2019-03-25 2019-07-05 安徽鑫佳铜业有限公司 A kind of low bulk tin bronze powder and its manufacturing method
CN111421135A (en) * 2020-04-23 2020-07-17 西安理工大学 Preparation method of copper-tin prealloying powder with ultrahigh tin content and controllable particle size
CN114632934A (en) * 2022-02-17 2022-06-17 贵州新安航空机械有限责任公司 Double-layer copper alloy powder metallurgy pantograph slide plate and manufacturing process thereof
CN114632934B (en) * 2022-02-17 2024-03-15 贵州新安航空机械有限责任公司 Double-layer copper alloy powder metallurgy pantograph slide plate and manufacturing process thereof

Similar Documents

Publication Publication Date Title
JP2008144253A (en) Copper-based slide material and its manufacturing method
JP4675563B2 (en) Bearing and manufacturing method thereof
JP5504278B2 (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
JP3859344B2 (en) Sliding material, sliding member and method of manufacturing the sliding member
KR100816978B1 (en) Sintered material and parts using the same material
JP7111484B2 (en) sliding member
JP4545162B2 (en) Composite sintered sliding member and manufacturing method thereof
JP2009035757A (en) Multi-layered sintered slide member
JP2006063398A (en) BEARING MADE OF SINTERED Cu ALLOY FOR RECIRCULATION EXHAUST GAS FLOW RATE CONTROL VALVE OF EGR TYPE INTERNAL COMBUSTION ENGINE EXHIBITING HIGH STRENGTH AND EXHIBITING EXCELLENT WEAR RESISTANCE IN HIGH TEMPERATURE ENVIRONMENT
GB2386610A (en) A sliding bearing material
JP5377557B2 (en) Copper-based sliding material
JP2733736B2 (en) Copper-lead alloy bearings
JP6392796B2 (en) Method for producing wear-resistant iron-based sintered alloy, compact for sintered alloy, and wear-resistant iron-based sintered alloy
KR102389755B1 (en) Sliding member
JP2006022896A (en) Double-layered bearing material and its manufacturing method
JP6352959B2 (en) Method for producing wear-resistant iron-based sintered alloy, compact for sintered alloy, and wear-resistant iron-based sintered alloy
JP2021050398A (en) Slide member
JP6077499B2 (en) Sintered alloy molded body, wear-resistant iron-based sintered alloy, and method for producing the same
US7666519B2 (en) High temperature sliding alloy
JP2020097766A (en) Slide member
JP4349719B2 (en) Aluminum bronze sintered bearing material and manufacturing method thereof
JP6842345B2 (en) Abrasion-resistant iron-based sintered alloy manufacturing method
JP2004018940A (en) Method for manufacturing ferrous sintered sliding member, and ferrous sintered sliding member
JP2022063501A (en) Hard particle, sliding member, and production method for sintered alloy
JP2023174518A (en) Copper-based sliding member