JP2006022896A - Double-layered bearing material and its manufacturing method - Google Patents

Double-layered bearing material and its manufacturing method Download PDF

Info

Publication number
JP2006022896A
JP2006022896A JP2004201957A JP2004201957A JP2006022896A JP 2006022896 A JP2006022896 A JP 2006022896A JP 2004201957 A JP2004201957 A JP 2004201957A JP 2004201957 A JP2004201957 A JP 2004201957A JP 2006022896 A JP2006022896 A JP 2006022896A
Authority
JP
Japan
Prior art keywords
alloy layer
bearing alloy
layer
bearing
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004201957A
Other languages
Japanese (ja)
Inventor
Koji Saito
康志 斉藤
Shigeru Inami
茂 稲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2004201957A priority Critical patent/JP2006022896A/en
Publication of JP2006022896A publication Critical patent/JP2006022896A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • F16C2204/12Alloys based on copper with tin as the next major constituent

Abstract

<P>PROBLEM TO BE SOLVED: To finely grain crystals of a bearing alloy layer while keeping high bonding strength of the bearing alloy layer and a steel back metal layer in a double-layered bearing material formed by bonding the bearing alloy layer on the steel back metal layer. <P>SOLUTION: In this double-layered bearing material, a composition of the bearing alloy layer is composed of Sn of 0.5-12 mass%, Fe of 0.5-5 mass%, and Cu as remaining part, a Sn-Fe compound is separated out in the bearing alloy layer, and an average size of crystalline particles of the bearing alloy layer is 50 μm or less. The double-layered bearing material is manufactured by spraying and sintering the metallic powder for sintering on the steel back metal layer, then densifying the sintered layer to obtain an intermediate complex material, rolling the intermediate composite material with rolling reduction of 5% or more, and heating the same to 700-890°C. The crystals are distorted by the rolling, then the Sn-Fe compound is separated out while applying crystal distortion as nucleus in the heat treatment, and the Sn-Fe compound has a function for controlling the growth of crystals, and finely graining matrix. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は鋼裏金層上に銅合金からなる軸受合金層を接合してなる複層軸受材料に係り、特に軸受合金層の結晶の細粒化を図ったものに関する。   The present invention relates to a multilayer bearing material obtained by joining a bearing alloy layer made of a copper alloy on a steel back metal layer, and more particularly to a material in which crystals of the bearing alloy layer are refined.

自動車、産業機械、農業機械などの内燃機関に用いられている複層軸受材料では、軸受合金層を青銅やリン青銅などの銅合金から構成したものがある。
この軸受合金層は、通常、焼結によって形成される。特許文献1によると、鋼裏金上に散布した焼結用の銅合金粉末を、700〜900℃の還元雰囲気の電気炉内で10〜30分間加熱して焼結(一次焼結)し、その後、一次圧延、二次焼結、二次圧延を行って複層軸受材料が製造されるとしている。
Some multi-layer bearing materials used in internal combustion engines such as automobiles, industrial machines, and agricultural machines have a bearing alloy layer made of a copper alloy such as bronze or phosphor bronze.
This bearing alloy layer is usually formed by sintering. According to Patent Document 1, the copper alloy powder for sintering dispersed on the steel back metal is heated and sintered (primary sintering) for 10 to 30 minutes in an electric furnace in a reducing atmosphere at 700 to 900 ° C., and thereafter The multi-layer bearing material is manufactured by performing primary rolling, secondary sintering, and secondary rolling.

特許文献2では、焼結銅合金からなる軸受合金層の結晶粒を小さくするために、焼結時に高周波誘導加熱によって急速加熱を行うとしている。このときの加熱温度は、例えば750〜1000℃で2分以下とされ、軸受合金層の結晶粒の平均円相等径が5〜50μmになるとしている。
また本発明とは直接の関係はないが、特許文献3には、軸受合金層の耐焼付性を良好にするために、Ag、Sn、Sb、In、Mn、Fe、Bi、Zn、NiおよびCrからなる群より選択される少なくとも1種の元素をCuマトリクス中に固溶させることが開示されている。
特許第2769421号公報 特開2002−220631号公報 特開平9−249924号公報
In Patent Document 2, rapid heating is performed by high-frequency induction heating during sintering in order to reduce the crystal grains of a bearing alloy layer made of a sintered copper alloy. The heating temperature at this time is, for example, 750 to 1000 ° C. and 2 minutes or less, and the average equivalent phase of crystal grains of the bearing alloy layer is 5 to 50 μm.
Further, although not directly related to the present invention, Patent Document 3 discloses that Ag, Sn, Sb, In, Mn, Fe, Bi, Zn, Ni, and Ni in order to improve the seizure resistance of the bearing alloy layer. It is disclosed that at least one element selected from the group consisting of Cr is dissolved in a Cu matrix.
Japanese Patent No. 2769421 JP 2002-220631 A Japanese Patent Laid-Open No. 9-249924

近年、内燃機関などにあっては、軸受装置の小型化・軽量化が要求されてきており、内燃機関の高出力化と相俟って、軸受面圧が益々高くなってきている。高い軸受面圧に耐えるためには、複層軸受材料の強度を高くする必要がある。そのためには、軸受合金層の結晶粒を細かくして軸受合金層の強度を高くすること、および鋼裏金層と軸受合金層との接合強度を高めることが必要である。   In recent years, an internal combustion engine or the like has been demanded to reduce the size and weight of a bearing device, and along with the increase in output of the internal combustion engine, the bearing surface pressure has been increased. In order to withstand high bearing surface pressure, it is necessary to increase the strength of the multilayer bearing material. For this purpose, it is necessary to increase the strength of the bearing alloy layer by making the crystal grains of the bearing alloy layer fine, and to increase the bonding strength between the steel back metal layer and the bearing alloy layer.

従来の複層軸受材料では、一般に、電気炉にて銅合金粉末を加熱焼結するようにしており、このときの焼結温度が高い場合には、軸受合金層の鋼裏金層への接合強度が高くなるが、軸受合金層の結晶粒は粗くなる。逆に、焼結温度が低いと、軸受合金層の結晶粒は細かくなるけれども、軸受合金層の鋼裏金層への接合強度は高くならない。このように従来の電気炉で焼結を行うものでは、結晶粒を細かくすることと鋼裏金層への接合強度を高くすることとの両方を満足させることが困難である。ちなみに、電気炉で加熱焼結するものでは、特許文献1に見られるように、焼結温度を700〜900℃と高くして鋼裏金との接合強度の向上を優先させることが一般に行われている。   Conventional multi-layer bearing materials generally heat-sinter copper alloy powder in an electric furnace. If the sintering temperature at this time is high, the bonding strength of the bearing alloy layer to the steel back metal layer However, the crystal grains of the bearing alloy layer become coarse. Conversely, when the sintering temperature is low, the crystal grains of the bearing alloy layer become fine, but the bonding strength of the bearing alloy layer to the steel back metal layer does not increase. As described above, in the case of sintering in a conventional electric furnace, it is difficult to satisfy both of making the crystal grains fine and increasing the bonding strength to the steel back metal layer. By the way, in what is heat-sintered with an electric furnace, as seen in Patent Document 1, it is generally performed that the sintering temperature is increased to 700 to 900 ° C. to give priority to the improvement of the joining strength with the steel backing metal. Yes.

特許文献2では、軸受合金層と鋼裏金層との接合強度については触れられていないが、焼結温度が高いため、接合強度も高いと思われる。しかしながら、このものでは、一般に使用される電気炉による加熱方式ではなく、高周波誘導加熱による急速加熱方式を採用せねばならないので、新規製造設備が必要になる。また、電気炉による加熱方式とは異なり、鋼裏金層自身が発熱源となるので、焼結温度の制御は雰囲気温度ではなく、発熱源である鋼裏金層そのものの温度を検出して行わねばならない。   In Patent Document 2, the bonding strength between the bearing alloy layer and the steel back metal layer is not mentioned, but since the sintering temperature is high, it is considered that the bonding strength is also high. However, in this case, a rapid heating method using high-frequency induction heating has to be employed instead of a generally used heating method using an electric furnace, so that a new manufacturing facility is required. In addition, unlike the heating method using an electric furnace, the steel back metal layer itself is a heat source, so the sintering temperature must be controlled by detecting the temperature of the steel back metal layer itself, which is the heat source, not the ambient temperature. .

本発明は上記の事情に鑑みてなされたもので、その目的は、高周波誘導加熱などによる急速加熱を行わずとも、軸受合金層と鋼裏金層との良好なる接合強度を維持しながら、軸受合金層の結晶を細粒化できる複層軸受材料およびその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to maintain a good bonding strength between the bearing alloy layer and the steel back metal layer without performing rapid heating by high-frequency induction heating or the like, while bearing alloy An object of the present invention is to provide a multi-layer bearing material capable of refining the crystal of the layer and a method for producing the same.

本発明者は、鋭意実験を重ねた結果、Cu−Sn系の軸受合金にFeを添加し、熱処理によってSn−Fe化合物を析出させると、Sn−Fe化合物が結晶粒の成長を抑え、結晶の細粒化に効果があることを見出した。同時に、このSn−Fe化合物の析出は、熱処理の前に、結晶に歪を与えておくことによって起き、結晶に適度な歪が与えられていないときには、Sn−Fe化合物の析出が見られないか、析出はあっても不十分で細粒化が十分に行われなくなることを併せて究明した。   As a result of repeated experiments, the inventor added Fe to a Cu—Sn bearing alloy and precipitated the Sn—Fe compound by heat treatment, so that the Sn—Fe compound suppressed the growth of crystal grains, It was found that fine graining is effective. At the same time, the precipitation of the Sn—Fe compound occurs by applying strain to the crystal before the heat treatment, and when the crystal is not subjected to appropriate strain, is the precipitation of the Sn—Fe compound observed? In addition, it was investigated together that precipitation was insufficient even though precipitation was insufficient.

本発明は上記のような実験結果に基づいてなされたものであり、その複層軸受材料は、軸受合金層の組成がCuを主成分として0.5〜12質量%のSn、0.5〜5質量%のFeを含み、前記軸受合金層中にはSn−Feの化合物が析出し、且つ当該軸受合金層の結晶粒の大きさが平均で50μm以下であることを特徴とする(請求項1)。
この発明の複層軸受材料では、軸受合金層中にSn−Fe化合物が析出しており、この化合物の結晶粒の成長抑制作用によって軸受合金層の結晶が細粒化して平均で50μm以下となっている。そして、この結晶の細粒化によって軸受合金層の強度が高まるので、高強度の複層軸受材料とすることができる。
The present invention has been made on the basis of the experimental results as described above, and the multilayer bearing material has a composition of a bearing alloy layer of 0.5 to 12% by mass of Sn, 0.5 to 5% by mass of Fe, Sn—Fe compound is precipitated in the bearing alloy layer, and the average grain size of the bearing alloy layer is 50 μm or less. 1).
In the multilayer bearing material of the present invention, the Sn—Fe compound is precipitated in the bearing alloy layer, and the crystal of the bearing alloy layer is refined by the crystal grain growth inhibiting action of this compound, and the average is 50 μm or less. ing. And since the intensity | strength of a bearing alloy layer increases by refinement | miniaturization of this crystal | crystallization, it can be set as a high intensity | strength multilayer bearing material.

本発明の複層銅系軸受材料においては、軸受合金層に、更に、Pを0.2質量%以下、NiおよびAgのうち少なくとも一方を総量で5質量%以下、PbおよびBiのうち少なくとも一方を総量で25質量%以下含ませることができる(請求項2)。
これによれば、更に、軸受合金層の強度を高めることができると共に、耐食性および潤滑性を高めることができる。
In the multilayer copper-based bearing material of the present invention, the bearing alloy layer further includes P in an amount of 0.2% by mass or less, at least one of Ni and Ag in a total amount of 5% by mass or less, and at least one of Pb and Bi. Can be contained in a total amount of 25% by mass or less (claim 2).
According to this, the strength of the bearing alloy layer can be further increased, and the corrosion resistance and lubricity can be increased.

ここで、上記各成分についての限定理由を説明する。
(1)Sn:0.5〜12質量%
Snは、軸受合金層を強化すると共に、Sn−Fe化合物の生成の核となる。0.5質量%未満では、軸受合金層の強度が不足し、また、Sn−Fe化合物の析出が少なく、結晶細粒化効果が得られない。また、12質量%を超えると、軸受合金層を脆くする。従って、軸受合金層の強度および結晶細粒化を良好に行わせるには、Snの含有量は、0.5〜12質量%とする。
(2)Fe:0.5〜5質量%
Feは、Sn−Fe化合物の生成の核となる。0.5質量%未満では、Sn−Fe化合物の析出が少なく、5質量%を超えると、軸受合金層の耐食性を低下させる。従って、耐食性を損なうことなく、軸受合金層の結晶の細粒化を良好に行わせるには、Feの含有量は、0.5〜5質量%とする。
(3)Sn−Fe化合物の析出
軸受合金層にSn−Fe化合物が析出することにより、Cuマトリクスの結晶粒の成長が抑制され、細粒化される。Sn−Fe化合物の生成がない場合、結晶細粒化が起きない。
ちなみに、前記特許文献3では、Feを選択元素として添加しても良いことが記載されているが、FeはCuマトリクスに固溶させることとしているので、Sn−Fe化合物の析出はなく、Sn−Fe化合物の析出によるCuマトリクスの結晶の細粒化は果たされていない。
Here, the reason for limitation for each of the above components will be described.
(1) Sn: 0.5 to 12% by mass
Sn strengthens the bearing alloy layer and serves as a nucleus for the formation of the Sn—Fe compound. If it is less than 0.5% by mass, the strength of the bearing alloy layer is insufficient, the precipitation of Sn—Fe compound is small, and the effect of crystal grain refinement cannot be obtained. Moreover, when it exceeds 12 mass%, a bearing alloy layer will become weak. Therefore, the Sn content is set to 0.5 to 12% by mass in order to improve the strength and crystal grain refinement of the bearing alloy layer.
(2) Fe: 0.5-5 mass%
Fe serves as a nucleus of formation of the Sn—Fe compound. If the amount is less than 0.5% by mass, precipitation of the Sn—Fe compound is small, and if it exceeds 5% by mass, the corrosion resistance of the bearing alloy layer is lowered. Therefore, the Fe content is set to 0.5 to 5% by mass in order to finely refine the crystals of the bearing alloy layer without impairing the corrosion resistance.
(3) Precipitation of Sn—Fe compound When the Sn—Fe compound is precipitated in the bearing alloy layer, the growth of crystal grains of the Cu matrix is suppressed and refined. When there is no generation of Sn—Fe compound, crystal grain refinement does not occur.
Incidentally, in Patent Document 3, it is described that Fe may be added as a selective element. However, since Fe is dissolved in a Cu matrix, there is no precipitation of Sn—Fe compound, and Sn— Refinement of Cu matrix crystals due to precipitation of Fe compounds has not been achieved.

(4)P:0.2質量%以下
Pは軸受合金層を強化するものであるが、0.2質量%を超えると、軸受合金層が脆くなる傾向がある。従って、軸受合金層の強化のために、Pは0.2質量%以下が好ましい。
(5)NiおよびAg:総量で5質量%以下
NiおよびAgは、軸受合金層の耐食性を向上させる。これらの元素は、総量で5質量%を超えると、軸受合金層としては脆くなる傾向がある。また、高価な元素であるため、コスト高となる。従って、NiおよびAgは、総量で5質量%以下が好ましい。
(6)PbおよびBi:総量で25質量%以下
PbおよびBiは、軸受合金層の潤滑性を高める。これらの元素は、総量で25質量%を超えると、軸受合金層としては脆くなる傾向がある。従って、PbおよびBiは、総量で25質量%以下が好ましい。
(4) P: 0.2% by mass or less P strengthens the bearing alloy layer, but if it exceeds 0.2% by mass, the bearing alloy layer tends to become brittle. Therefore, P is preferably 0.2% by mass or less for strengthening the bearing alloy layer.
(5) Ni and Ag: 5% by mass or less in total amount Ni and Ag improve the corrosion resistance of the bearing alloy layer. When these elements exceed 5% by mass in total, the bearing alloy layer tends to become brittle. Moreover, since it is an expensive element, the cost is increased. Accordingly, the total amount of Ni and Ag is preferably 5% by mass or less.
(6) Pb and Bi: 25% by mass or less in total amount Pb and Bi increase the lubricity of the bearing alloy layer. When the total amount of these elements exceeds 25% by mass, the bearing alloy layer tends to become brittle. Accordingly, the total amount of Pb and Bi is preferably 25% by mass or less.

次に、上述の複層軸受材料の製造方法として、本発明は、軸受合金層を形成するための焼結用金属粉末を鋼裏金層上に散布して焼結して焼結層を設け、且つその焼結層の緻密化を行って、中間複合材とし、この中間複合材を5%以上の圧下率で圧延した後、700〜890℃に加熱する処理を行うという手段を採用した(請求項3)。
つまり、この発明の複層軸受材料では、中間複合材の作製にあたり鋼裏金層上に軸受合金層を焼結によって形成する際、鋼裏金層への軸受合金層の接合強度を高くすることを目的に、高い温度で焼結することができる。また、軸受合金層中にSn−Fe化合物を均一に析出させることができ、この化合物の結晶粒の成長抑制作用によって軸受合金層の結晶が細粒化して平均で50μm以下とすることができる。そして、この結晶の細粒化によって軸受合金層の強度が高まるので、焼結を高温度で行うことによって接合強度が高まることと相俟って、高強度の複層軸受材料とすることができる。
前記鋼裏金層上に散布する焼結用金属粉末は、予め前記軸受合金層と同じ組成の合金から形成したプレアロイ粉末とすることができる(請求項4)。
なお本発明では、軸受合金層は、複層軸受材料の製造途中においては、焼結層と主に表記する。
Next, as a manufacturing method of the above-mentioned multi-layer bearing material, the present invention provides a sintered layer by dispersing and sintering a metal powder for sintering for forming a bearing alloy layer on a steel back metal layer, The sintered layer was densified to obtain an intermediate composite material, and the intermediate composite material was rolled at a rolling reduction of 5% or more, and then heated to 700 to 890 ° C. Item 3).
In other words, the multilayer bearing material of the present invention is intended to increase the bonding strength of the bearing alloy layer to the steel back metal layer when the bearing alloy layer is formed on the steel back metal layer by sintering in the production of the intermediate composite material. Furthermore, it can be sintered at a high temperature. In addition, the Sn—Fe compound can be uniformly precipitated in the bearing alloy layer, and the crystal of the bearing alloy layer can be finely divided to an average of 50 μm or less by the crystal grain growth inhibiting action of this compound. And since the strength of the bearing alloy layer is increased by the refinement of the crystal, it is possible to obtain a high-strength multilayer bearing material in combination with the increase in the bonding strength by performing the sintering at a high temperature. .
The sintering metal powder dispersed on the steel back metal layer can be a pre-alloy powder formed in advance from an alloy having the same composition as the bearing alloy layer.
In the present invention, the bearing alloy layer is mainly expressed as a sintered layer during the production of the multilayer bearing material.

以下に本発明の製造方法を解説する。
本発明の製造方法では、まず、鋼裏金層上に焼結用金属粉末を散布し、これを焼結する。以下では、この焼結を一次焼結と称する。
この一次焼結は急速加熱の必要がないから、従来より一般的に用いられている電気炉による加熱焼結を採用することができる。焼結温度としては、軸受合金層の接合強度を高めることを目的に、高い焼結温度に設定することができる。接合強度を高めるに適する焼結温度は、軸受合金層の組成によって異なるが、概ね融点より20〜50℃低い温度である。
The production method of the present invention will be described below.
In the production method of the present invention, first, metal powder for sintering is sprayed on the steel back metal layer, and this is sintered. Hereinafter, this sintering is referred to as primary sintering.
Since this primary sintering does not require rapid heating, it is possible to employ heating sintering by an electric furnace that has been generally used. The sintering temperature can be set to a high sintering temperature for the purpose of increasing the bonding strength of the bearing alloy layer. The sintering temperature suitable for increasing the bonding strength varies depending on the composition of the bearing alloy layer, but is generally 20 to 50 ° C. lower than the melting point.

焼結に用いる金属粉末が純Cu粉末、純Sn粉末、純Fe粉末等の純金属元素の粉末を混合したものであった場合、それらの金属元素は焼結によって拡散し、Cu−Sn合金を形成する。しかし、実用的な焼結温度・焼結時間では、Fe元素がCuマトリクス中に殆ど拡散せず、Sn−Fe化合物が生成され難い場合がある。
この問題を解消するには、焼結用金属粉末として、プレアロイ粉末を用いると良い。プレアロイ粉末は、軸受合金層と同組成の成分元素を溶融して混合し、そしてガスや水を吹き付けて粉末としたものである。このプレアロイ粉末では、それ自身が既に銅合金化され、FeもCuマトリクス中に固溶しているため、上述のような問題は生じない。
When the metal powder used for sintering is a mixture of pure metal powders such as pure Cu powder, pure Sn powder, pure Fe powder, etc., these metal elements diffuse by sintering, and the Cu-Sn alloy Form. However, at practical sintering temperatures and times, Fe elements hardly diffuse into the Cu matrix, and it may be difficult to produce Sn—Fe compounds.
In order to solve this problem, pre-alloy powder is preferably used as the metal powder for sintering. The pre-alloy powder is a powder obtained by melting and mixing component elements having the same composition as the bearing alloy layer, and spraying gas or water. In this pre-alloy powder, the above-mentioned problems do not occur because the alloy itself is already made into a copper alloy and Fe is also dissolved in the Cu matrix.

一次焼結した直後、図2に示すように、その焼結層Aは、多孔質となっている。なお、図2中、符号Bは空孔、符号Cは鋼裏金層を示す。この多孔質状態のままで圧延を行うと、焼結層に不均一な歪が発生してしまい、その結果、Sn−Fe化合物の析出が不均一になる。これを避けるために、焼結層の空孔を実質なくして焼結層の緻密化を行う。本発明において、この緻密化のための処理は、焼結層の空孔を潰して空孔率を大幅に減少させるための圧延と、その後の金属粉末どうしの密着性を増すための焼結とを含む。なお、中間複合材の空孔率は5%以下が好ましい。より好ましくは1%以下である。以下、この緻密化のための圧延と焼結を、それぞれ一次圧延、二次焼結と称する。ここで、二次焼結直後の焼結層の結晶粒の状態を図1(a)に示す。   Immediately after the primary sintering, as shown in FIG. 2, the sintered layer A is porous. In FIG. 2, symbol B indicates a hole, and symbol C indicates a steel back metal layer. If rolling is performed in this porous state, non-uniform distortion occurs in the sintered layer, and as a result, the precipitation of the Sn—Fe compound becomes non-uniform. In order to avoid this, the sintered layer is densified by substantially eliminating voids in the sintered layer. In the present invention, the treatment for densification includes rolling for crushing the pores of the sintered layer to greatly reduce the porosity, and sintering for increasing the adhesion between the metal powders thereafter. including. The porosity of the intermediate composite material is preferably 5% or less. More preferably, it is 1% or less. Hereinafter, rolling and sintering for densification are referred to as primary rolling and secondary sintering, respectively. Here, the state of the crystal grains of the sintered layer immediately after the secondary sintering is shown in FIG.

次に、焼結層の緻密化により形成された中間複合材、つまり鋼裏金層上に焼結層を接合してなる中間複合材を5%以上の圧下率で圧延する。圧延は、ロール圧延によることが量産性の点で好ましい。ここで、圧下率とは、圧延前の中間複合材の厚さと圧延後の中間複合材の厚さとの差を、圧延前の中間複合材の厚さで除した値の百分率である。この圧延によって焼結層に結晶歪を与える。この結晶歪を与えるための圧延を、以下では二次圧延と称することとする。   Next, an intermediate composite material formed by densification of the sintered layer, that is, an intermediate composite material obtained by joining the sintered layer onto the steel back metal layer is rolled at a reduction ratio of 5% or more. In terms of mass productivity, rolling is preferably performed by roll rolling. Here, the rolling reduction is a percentage of a value obtained by dividing the difference between the thickness of the intermediate composite material before rolling and the thickness of the intermediate composite material after rolling by the thickness of the intermediate composite material before rolling. This rolling gives crystal strain to the sintered layer. Hereinafter, this rolling for giving crystal strain is referred to as secondary rolling.

二次圧延によって与えられた結晶歪は、Sn−Fe化合物の析出の核となる。5%未満の圧下率では、結晶歪が不均一となり、その結果、Sn−Fe化合物の析出の分布も不均一となるから、その後の熱処理時の細粒化も不均一なものとなる。
二次圧延で焼結層に結晶歪をより均一に与えるためには、圧下率を10%以上とすることが好ましい。結晶歪を均一に与えるための圧下率に上限はないが、30%以下とすることが好ましい。1回のロール圧延で与えることができる圧下率は30%が限度であり、従って30%を超える圧下率は、1回の圧延では済まず、複数回の圧延を実施することとなって製造コストの上昇をもたらすからである。
The crystal distortion given by secondary rolling becomes the nucleus of precipitation of the Sn—Fe compound. When the rolling reduction is less than 5%, the crystal strain becomes non-uniform, and as a result, the precipitation distribution of the Sn—Fe compound becomes non-uniform, so that the grain refinement during the subsequent heat treatment becomes non-uniform.
In order to more uniformly impart crystal strain to the sintered layer by secondary rolling, the rolling reduction is preferably 10% or more. There is no upper limit to the rolling reduction for uniformly giving crystal strain, but it is preferably 30% or less. The rolling reduction that can be given by one roll rolling is limited to 30%. Therefore, if the rolling reduction exceeds 30%, it is not necessary to carry out one rolling, and it is necessary to carry out a plurality of rollings. Because it brings about a rise in

この二次圧延によって焼結層に均一な結晶歪を与えることができる。そして、この二次圧延後、中間複合材を熱処理する。この熱処理は、中間複合材を700〜890℃に加熱することによって行う。この熱処理によって、銅合金である焼結層にSn−Fe化合物が析出し、図1(c)に示すように、結晶の細粒化が行われる。Sn−Fe化合物は、650℃でも析出し始めるが、その分布が不均一であり、その結果、細粒化も不均一なものとなる(図1(b)参照)。   By this secondary rolling, uniform crystal strain can be applied to the sintered layer. Then, after the secondary rolling, the intermediate composite material is heat treated. This heat treatment is performed by heating the intermediate composite material to 700 to 890 ° C. By this heat treatment, a Sn—Fe compound is deposited on the sintered layer which is a copper alloy, and the crystal is refined as shown in FIG. The Sn—Fe compound starts to precipitate even at 650 ° C., but its distribution is non-uniform, and as a result, fine graining is also non-uniform (see FIG. 1B).

ここで、図1(b)および(c)において、黒点は析出したSn−Fe化合物を示す。なお、図1(b)および(c)に示した程度の倍率では、現実には析出したSn−Fe化合物を見ることはできないが、理解し易くするために黒点で強調して示したものである。図1(b)によれば、Sn−Fe化合物が焼結層中に不均一ではあるが析出しており、その不均一ながらも同化合物が析出した部分で、結晶の細粒化が行われているが、元々Sn−Fe化合物の析出が不均一であるため、細粒化も不均一であることが理解される。   Here, in FIG.1 (b) and (c), a black point shows the deposited Sn-Fe compound. In addition, at the magnification of the degree shown in FIGS. 1B and 1C, the deposited Sn—Fe compound cannot actually be seen, but is highlighted with black dots for easy understanding. is there. According to FIG. 1 (b), the Sn—Fe compound is non-uniformly precipitated in the sintered layer, but the crystal is refined at the portion where the non-uniform but the same compound is precipitated. However, it is understood that since the precipitation of the Sn—Fe compound is originally non-uniform, the grain refinement is also non-uniform.

熱処理温度が900℃以上では、析出したSn−Fe化合物が消失し、焼結層の結晶粒は急激に成長する。このようなことから、Sn−Fe化合物を均一に析出させて均一に結晶を細粒化するための熱処理温度としては、700〜890℃に定める。この熱処理時間としては、2分以上の保持が好ましい。   When the heat treatment temperature is 900 ° C. or higher, the precipitated Sn—Fe compound disappears, and the crystal grains of the sintered layer grow rapidly. For this reason, the heat treatment temperature for uniformly depositing the Sn—Fe compound and uniformly refining the crystal is set to 700 to 890 ° C. The heat treatment time is preferably 2 minutes or longer.

以下に本発明の実施例を説明する。
[二次圧延、熱処理の効果]
(1)厚さ1.5mmの鋼板(JIS:SPCC)上に、次の表1に示す組成のプレアロイ粉末を散布し、これを還元性雰囲気の電気炉で、表1に示す焼結温度にて10〜30分間の一次焼結を行い、次いで冷却して、一次圧延を行った後、一次焼結と同一条件にて二次焼結を行い、緻密化された中間複合材(空孔率0.5%)を得た。その後、この中間複合材を表1に示す圧下率にて二次圧延を行い、続いて表1に示す温度にて熱処理を3分間行って実施例品1〜3を得た。
Examples of the present invention will be described below.
[Effects of secondary rolling and heat treatment]
(1) On a steel plate (JIS: SPCC) having a thickness of 1.5 mm, a prealloy powder having the composition shown in the following Table 1 is dispersed, and this is applied to a sintering temperature shown in Table 1 in an electric furnace in a reducing atmosphere. After performing primary sintering for 10 to 30 minutes, then cooling and performing primary rolling, secondary sintering is performed under the same conditions as primary sintering, and a densified intermediate composite material (porosity) 0.5%). Then, this intermediate composite material was subjected to secondary rolling at the rolling reduction shown in Table 1, followed by heat treatment at the temperature shown in Table 1 for 3 minutes to obtain Example Products 1 to 3.

Figure 2006022896
Figure 2006022896

(2)また、厚さ1.5mmの鋼板(JIS:SPCC)上に、表1に示す組成のプレアロイ粉末を散布し、これを還元性雰囲気の電気炉で、表1に示す焼結温度にて10〜30分間の一次焼結を行い、次いで冷却して、一次圧延を行った後、一次焼結と同一条件にて二次焼結を行い、空孔率0.5%の比較例品1〜3を得た。   (2) Further, a prealloy powder having the composition shown in Table 1 is sprayed on a steel sheet (JIS: SPCC) having a thickness of 1.5 mm, and this is applied to a sintering temperature shown in Table 1 in an electric furnace in a reducing atmosphere. After performing primary sintering for 10 to 30 minutes, then cooling and performing primary rolling, secondary sintering is performed under the same conditions as primary sintering, and a comparative example product having a porosity of 0.5% 1-3 were obtained.

(3)次に、上述のようにして得た実施例品1〜3、比較例品1〜3について、軸受合金層の平均結晶粒径をJIS0501の伸銅品結晶粒度試験法にて計測すると共に、軸受合金層の硬さを計測し、その結果を表1に示した。実施例品1と比較例品1、実施例品2と比較例品2、実施例品3と比較例品3とは、それぞれ軸受合金層の組成、一次焼結、一次圧延および二次焼結の条件が同じで、相違点は、二次圧延と、その後の熱処理が実施されているか否かにある。   (3) Next, with respect to Examples 1 to 3 and Comparative Examples 1 to 3 obtained as described above, the average crystal grain size of the bearing alloy layer is measured by the JIS 0501 copper grain size test method. In addition, the hardness of the bearing alloy layer was measured, and the results are shown in Table 1. Example product 1 and comparative product 1, Example product 2 and comparative product 2, Example product 3 and comparative product 3 are the composition of the bearing alloy layer, primary sintering, primary rolling and secondary sintering, respectively. These conditions are the same, and the difference lies in whether secondary rolling and subsequent heat treatment are performed.

表1に示されている通り、二次圧延および熱処理を行った実施例品1〜3は、それを行っていない比較例品1〜3に比較して、軸受合金層の結晶粒が非常に細かく、マトリクスの平均結晶粒径がいずれも50μm以下になっている。そして、この結晶の細粒化によって、実施例品1は比較例品1より、実施例品2は比較例品2より、実施例品3は比較例品3より、軸受合金層の硬度が高くなっている。   As shown in Table 1, the example products 1 to 3 subjected to the secondary rolling and the heat treatment had a very large crystal grain size of the bearing alloy layer compared to the comparative products 1 to 3 that did not. Finely, the average crystal grain size of the matrix is 50 μm or less. Then, by the refinement of the crystal, the hardness of the bearing alloy layer is higher in the example product 1 than in the comparative product 1, the example product 2 is higher than the comparative product 2, and the test product 3 is higher than the comparative product 3. It has become.

以上のことから、Cu−Sn系の軸受合金にFeを添加し、一次焼結→一次圧延→二次焼結→二次圧延→熱処理を行うと、軸受合金層の結晶が細粒化されることが理解される。更に、二次圧延、熱処理を行う場合、FeとSnの含有量が多いほど、結晶の細粒化がより良く行われることも理解される。つまり、二次圧延、熱処理を施すと、軸受合金層にSnおよびFeの含有量に応じた量のSn−Fe化合物が均一に析出し、この化合物の結晶成長抑制機能によって同化合物の析出量に応じた結晶の細粒化が行われるのである。   From the above, when Fe is added to a Cu—Sn bearing alloy and primary sintering → primary rolling → secondary sintering → secondary rolling → heat treatment, the crystal of the bearing alloy layer is refined. It is understood. Furthermore, it is understood that when secondary rolling and heat treatment are performed, the finer the crystal, the better the content of Fe and Sn. In other words, when secondary rolling and heat treatment are performed, an amount of Sn—Fe compound corresponding to the content of Sn and Fe is uniformly deposited on the bearing alloy layer, and the amount of precipitation of the compound is reduced by the crystal growth inhibiting function of this compound. Corresponding crystal refinement is performed.

[添加元素の影響と二次圧延の圧下率および熱処理温度の影響]
(1)上述したと同様の鋼板上に、次の表2に示す組成のプレアロイ粉末を散布し、これを還元性雰囲気の電気炉で、表2に示す焼結温度にて10〜30分間の一次焼結を行い、次いで冷却して、一次圧延を行った後、一次焼結と同一条件にて二次焼結を行い、空孔率0.5%の中間複合材を得た。次いで、この中間複合材に対し、表2に示す圧下率にて二次圧延を行った後、同じく表2に示す温度にて熱処理を行い、実施例品4〜10および比較例品4〜9を得た。
[Effects of additive elements and secondary rolling reduction and heat treatment temperature]
(1) A pre-alloy powder having the composition shown in the following Table 2 is dispersed on the same steel plate as described above, and this is applied in an electric furnace in a reducing atmosphere at a sintering temperature shown in Table 2 for 10 to 30 minutes. After performing primary sintering and then cooling and performing primary rolling, secondary sintering was performed under the same conditions as the primary sintering, and an intermediate composite material having a porosity of 0.5% was obtained. Next, the intermediate composite material was subjected to secondary rolling at the rolling reduction shown in Table 2 and then heat-treated at the temperature shown in Table 2 to obtain Example products 4 to 10 and Comparative product products 4 to 9. Got.

Figure 2006022896
Figure 2006022896

(2)次に、上述のようにして得た実施例品4〜10、比較例品4〜9について、軸受合金層の平均結晶粒径を計測すると共に、軸受合金層の硬さを計測し、その結果を表2に示した。
表2から明らかなように、軸受合金層にFeまたはSnを含んでいない比較例品4および5では、二次圧延の圧下率および熱処理温度が本発明の範囲内にあっても、結晶粒は大きく、細粒化はなされていない。これは、FeまたはSnを欠くことから、熱処理時にSn−Fe化合物の析出がなく、そのために結晶の細粒化が行われないものと考えられる。
また、軸受合金層にFeおよびSnを含んでいても、二次圧延の圧下率が5%に満たない比較例品6、熱処理温度が本発明の上下限から外れている比較例品7〜9も、結晶粒は大きい。
(2) Next, for the example products 4 to 10 and the comparative example products 4 to 9 obtained as described above, the average crystal grain size of the bearing alloy layer was measured and the hardness of the bearing alloy layer was measured. The results are shown in Table 2.
As is apparent from Table 2, in Comparative Examples 4 and 5 in which the bearing alloy layer does not contain Fe or Sn, the crystal grains are not affected even when the rolling reduction and heat treatment temperature of the secondary rolling are within the scope of the present invention. It is large and not refined. This is presumably because there is no precipitation of Sn—Fe compound during the heat treatment because Fe or Sn is absent, and therefore the crystal is not finely divided.
Further, even if the bearing alloy layer contains Fe and Sn, the comparative example product 6 in which the rolling reduction ratio of the secondary rolling is less than 5%, and the comparative example products 7 to 9 in which the heat treatment temperature is out of the upper and lower limits of the present invention. However, the crystal grains are large.

ただ、比較例品6,7の平均結晶粒径は、他の比較例品に比べて小さくなっている。これは比較例品6の二次圧延の圧下率が実施例品4〜7の5%より若干低い3%であり、また、比較例品7の熱処理温度が実施例品4〜7の700℃よりも若干低い650℃であるので、比較例品6,7では、熱処理時にSn−Fe化合物が不均一ながらも若干析出し、そのために平均結晶粒径は他の比較例品に比べて小さくなっていると思われる。   However, the average crystal grain sizes of the comparative example products 6 and 7 are smaller than those of the other comparative example products. This is 3% in which the rolling reduction ratio of the comparative example product 6 is slightly lower than 5% of the example products 4 to 7, and the heat treatment temperature of the comparative example product 7 is 700 ° C. of the example products 4 to 7. In Comparative Examples 6 and 7, the Sn—Fe compound was slightly deposited in the heat treatment, but the average grain size was smaller than that of the other Comparative Examples. It seems that

比較例品8,9は、熱処理温度が900℃、925℃で、本発明の熱処理温度の上限を超えているため、Sn−Fe化合物が消失し、これによって結晶粒が成長したものと思われる。これに対し、実施例品9は、熱処理を、890℃で実施している。この温度では、結晶の細粒化は損なわれていない。しかし、上述のように、熱処理温度を900℃とした比較例品8では、結晶は粗大化してしまっている。   In Comparative Examples 8 and 9, the heat treatment temperatures were 900 ° C. and 925 ° C., which exceeded the upper limit of the heat treatment temperature of the present invention. Therefore, the Sn—Fe compound disappeared, and it seems that crystal grains grew. . On the other hand, in Example Product 9, heat treatment was performed at 890 ° C. At this temperature, crystal grain refinement is not impaired. However, as described above, in Comparative Product 8 in which the heat treatment temperature is 900 ° C., the crystals are coarsened.

なお、以上の比較例品7〜9についての考察に基づき、Sn−Fe化合物の析出を均一化して結晶の細粒化を均一に行わせるための条件として、二次圧延の圧下率は5%以上、熱処理温度は700〜890℃に定めたのである。
一方、実施例品4〜10では、平均結晶粒径は小さく、50μm以下になっている。このことは、5%以上の圧下率で二次圧延を行うことにより、焼結層の全体に均一な結晶歪が生じ、700〜890℃にて熱処理を行うことにより、Sn−Fe化合物が均一に析出して結晶の細粒化が均一に行われることを裏付けている。
In addition, based on the consideration about the above comparative example products 7 to 9, as a condition for making the precipitation of the Sn—Fe compound uniform and making the crystal finely uniform, the rolling reduction of the secondary rolling is 5%. As described above, the heat treatment temperature is set to 700 to 890 ° C.
On the other hand, in Example goods 4-10, the average crystal grain diameter is small and has become 50 micrometers or less. This is because by performing secondary rolling at a rolling reduction of 5% or more, uniform crystal distortion occurs in the entire sintered layer, and by performing heat treatment at 700 to 890 ° C., the Sn—Fe compound is uniform. It is confirmed that the crystals are uniformly refined.

また、軸受合金層にP、Ni、Ag、Pb、Biが添加された実施例品4〜7は、他の実施例品8,9、表1の実施例品1〜3などと平均結晶粒径は同等である。このことから、それら添加元素は、結晶の細粒化に何等の悪影響を与えないといえる。従って、P、Ni、Ag、Pb、Biの添加により、結晶の細粒化を妨げることなく、軸受合金層の耐食性や潤滑性を向上させることができる。
また、二次圧延の圧下率が30%である実施例品10では、結晶の細粒化程度は高い。このことから、圧下率は、結晶の細粒化(Sn−Fe化合物の析出)に大きな影響を与え、圧下率が高いほど細粒化(Sn−Fe化合物の析出)が促進されるといえる。
In addition, the example products 4 to 7 in which P, Ni, Ag, Pb, and Bi are added to the bearing alloy layer are the average crystal grains of the other example products 8 and 9, the example products 1 to 3 in Table 1, and the like. The diameter is the same. From this, it can be said that these additive elements do not have any adverse effect on crystal grain refinement. Therefore, the addition of P, Ni, Ag, Pb, and Bi can improve the corrosion resistance and lubricity of the bearing alloy layer without hindering crystal grain refinement.
In Example product 10 in which the rolling reduction of secondary rolling is 30%, the degree of crystal grain refinement is high. From this, it can be said that the rolling reduction has a great influence on the refinement of crystals (precipitation of Sn-Fe compound), and the higher the reduction ratio, the more the refinement (precipitation of Sn-Fe compound) is promoted.

[軸受合金層の接合強度]
(1)厚さ1.5mmの鋼板(JIS:SPCC)上に、次の表3に示す組成のプレアロイ粉末を散布し、これを還元性雰囲気の電気炉で、表3に示す焼結温度にて10〜30分間の一次焼結を行い、次いで冷却して、一次圧延を行った後、一次焼結と同一条件にて二次焼結を行い、空孔率0.5%の比較例品10および11を得た。
[Bearing alloy layer joint strength]
(1) A prealloy powder having the composition shown in the following Table 3 is sprayed on a steel plate (JIS: SPCC) having a thickness of 1.5 mm, and this is applied to a sintering temperature shown in Table 3 in an electric furnace in a reducing atmosphere. After performing primary sintering for 10 to 30 minutes, then cooling and performing primary rolling, secondary sintering is performed under the same conditions as primary sintering, and a comparative example product having a porosity of 0.5% 10 and 11 were obtained.

Figure 2006022896
Figure 2006022896

(2)そして、表1の実施例品1、上記比較例品10および11に対し、鋼板(鋼裏金層)への軸受合金層の接合性をみるために、剪断試験を行った。この剪断試験のために、実施例品1、上記比較例品10および11を加工して図3に示す試験片1を製作した。この試験片1には、円形の開口部2が2つ設けられ、この2つの開口部2を引張試験機に引っ掛けて引っ張ることによって鋼板3と軸受合金層4との剪断強さ(接合力)を測定した。この試験の結果を表3に示す。   (2) Then, a shear test was performed on Example Product 1 in Table 1 and Comparative Product 10 and 11 described above in order to see the bondability of the bearing alloy layer to the steel plate (steel back metal layer). For this shear test, the test piece 1 shown in FIG. 3 was manufactured by processing the example product 1 and the comparative example products 10 and 11 described above. The test piece 1 is provided with two circular openings 2, and the two openings 2 are hooked on a tensile tester to pull the shear strength (bonding force) between the steel plate 3 and the bearing alloy layer 4. Was measured. The results of this test are shown in Table 3.

この表3から明らかなように、焼結温度を950℃とした比較例品10では、鋼板と軸受合金層との接合強度は高い。しかし、軸受合金層の結晶粒が大きく成長している。一方、焼結温度を850℃とした比較例品11では、鋼板と軸受合金層との接合強度は低くなっているが、軸受合金層の結晶粒は細かくなっている。このように、焼結温度は、接合強度と結晶粒径に大きな影響を与え、高いと、接合強度は上がるが、結晶粒径は大きくなり、逆に低いと、接合強度は低下するが、結晶粒径は小さくなる。   As is clear from Table 3, in Comparative Example Product 10 in which the sintering temperature was 950 ° C., the bonding strength between the steel plate and the bearing alloy layer was high. However, the crystal grains of the bearing alloy layer have grown greatly. On the other hand, in Comparative Product 11 in which the sintering temperature is 850 ° C., the bonding strength between the steel plate and the bearing alloy layer is low, but the crystal grains of the bearing alloy layer are fine. As described above, the sintering temperature has a great influence on the bonding strength and the crystal grain size. If the sintering temperature is high, the bonding strength increases, but the crystal grain size increases. The particle size becomes smaller.

これに対し、実施例品1では、鋼板と軸受合金層との接合強度は高く、軸受合金層の結晶粒も細かい。これは、実施例品1では、焼結温度を950℃と高く設定したことから、鋼板と軸受合金層との接合強度が高くなり、そして、この高焼結温度とすることにより結晶が成長しても、その後の二次圧延および熱処理によって結晶を細粒化できたからである。   On the other hand, in Example Product 1, the bonding strength between the steel plate and the bearing alloy layer is high, and the crystal grains of the bearing alloy layer are fine. In Example Product 1, since the sintering temperature was set as high as 950 ° C., the bonding strength between the steel plate and the bearing alloy layer was increased, and crystals were grown by using this high sintering temperature. This is because the crystals could be refined by subsequent secondary rolling and heat treatment.

[伸び、耐疲労性]
(1)厚さ1.5mmの鋼板(JIS:SPCC)上に、次の表4に示す組成のプレアロイ粉末を散布し、これを還元性雰囲気の電気炉で、表4に示す焼結温度にて10〜30分間の一次焼結を行い、次いで冷却して、一次圧延を行った後、一次焼結と同一条件にて二次焼結を行い、空孔率0.5%の中間複合材を得た。この中間複合材に対し、表4に示すように圧下率5.7%で二次圧延を行って比較例品12を得た。
[Elongation and fatigue resistance]
(1) A prealloy powder having the composition shown in the following Table 4 is sprayed on a steel sheet (JIS: SPCC) having a thickness of 1.5 mm, and this is applied to a sintering temperature shown in Table 4 in an electric furnace in a reducing atmosphere. After performing primary sintering for 10 to 30 minutes, then cooling and performing primary rolling, secondary sintering is performed under the same conditions as primary sintering, and an intermediate composite material having a porosity of 0.5% Got. As shown in Table 4, this intermediate composite material was subjected to secondary rolling at a reduction rate of 5.7% to obtain a comparative product 12.

Figure 2006022896
Figure 2006022896

(2)そして、表1の実施例品1、表3の比較例品10、11および上記比較例品12に対し、疲労試験を行った。疲労試験は、実施例品1、比較例品10〜12をそれぞれ半割軸受に形成し、これを試験機に取り付けて実施した。試験機は、回転荷重による衝撃荷重と軸の撓みによる片当たりによって耐疲労性を評価する軸受動荷重試験機を使用した。なお、疲労試験条件は次の表5の通りである。   (2) A fatigue test was performed on Example Product 1 in Table 1, Comparative Product 10 and 11 in Table 3, and the above Comparative Product 12. The fatigue test was carried out by forming Example Product 1 and Comparative Product 10 to 12 into half bearings, respectively, and attaching them to a testing machine. The tester used was a bearing dynamic load tester that evaluates fatigue resistance based on impact load due to rotational load and contact per piece due to shaft deflection. The fatigue test conditions are as shown in Table 5 below.

Figure 2006022896
Figure 2006022896

また、比較例品12については、前述した剪断試験も併せて行い、同時に軸受合金層の伸びも測定した。なお、表4の実施例品1、比較例品10、11に対して剪断試験を行った際にも、同様に軸受合金層の伸びを測定しておいた。   Further, the comparative product 12 was also subjected to the shear test described above, and at the same time, the elongation of the bearing alloy layer was measured. In addition, also when the shear test was done with respect to Example product 1 and Comparative product 10 and 11 in Table 4, the elongation of the bearing alloy layer was measured in the same manner.

上記の疲労試験の結果、剪断試験結果および伸びの測定結果を表4に示した。
軸受合金に限らず、一般に、金属の特性として、衝撃的な負荷に対しては伸びなどの延性の影響が大きく、延性が高いほど耐衝撃性は高くなる。このことから、軸受動荷重試験機による疲労試験では、延性(伸び)に優れたものほど、耐疲労性に優れたものとなる。
実施例品1は、軸受合金層の結晶が細粒化されているので、硬度が高く、高強度であり、また、伸びについても、硬度の低い比較例品10と同程度で、延性にも優れている。このため、実施例品1では、焼結温度が950℃で軸受合金層の接合強度が高いことと相俟って、優れた耐疲労性を示している。
Table 4 shows the results of the fatigue test, the shear test results, and the elongation measurement results.
In general, not only for bearing alloys, but as a characteristic of metals, the impact of ductility such as elongation is large for impact loads, and the higher the ductility, the higher the impact resistance. From this, in a fatigue test using a bearing dynamic load tester, the better the ductility (elongation), the better the fatigue resistance.
Since the crystal of the bearing alloy layer is refined, the example product 1 has high hardness and high strength. Also, the elongation is the same as that of the comparative example product 10 having low hardness, and the ductility is also high. Are better. For this reason, the example product 1 exhibits excellent fatigue resistance in combination with the sintering temperature of 950 ° C. and the high bonding strength of the bearing alloy layer.

これに対し、比較例品10は、焼結温度が実施例品1と同じ950℃で、鋼板と軸受合金層との接合強度は高いが、しかし結晶粒径が大きい(軸受合金層の強度が低い。)ので、耐疲労性に劣る。比較例品11は、焼結温度が850℃と低いので、軸受合金層の結晶粒径は小さくなっているが、鋼板と軸受合金層との接合強度が低いので、耐疲労性は比較例品10よりも更に低くなっている。   On the other hand, the comparative product 10 has a sintering temperature of 950 ° C., which is the same as that of the product 1 of Example, and the bonding strength between the steel plate and the bearing alloy layer is high, but the crystal grain size is large (the strength of the bearing alloy layer is high). Low), so it is inferior in fatigue resistance. Since the comparative example product 11 has a sintering temperature as low as 850 ° C., the crystal grain size of the bearing alloy layer is small, but since the bonding strength between the steel plate and the bearing alloy layer is low, the fatigue resistance is a comparative example product. It is even lower than 10.

また、比較例品12は、冷間での二次圧延を施したままで、その後の熱処理を行っていない。このため、冷間での二次圧延による加工硬化がそのまま軸受合金層に残り、その硬度は実施例品1と同程度になっていると共に、剪断強さも実施例品1(焼結温度が同じ)と同等となっている。しかし、比較例品12は、熱処理を行っていないため、軸受合金層の結晶の細粒化が生じておらず(軸受合金層の強度が低い。)、また延性が低いので耐疲労性は低い。   Moreover, the comparative example product 12 is not subjected to subsequent heat treatment while being subjected to cold secondary rolling. For this reason, work hardening due to cold secondary rolling remains in the bearing alloy layer as it is, the hardness thereof is the same as that of Example Product 1, and the shear strength is also that of Example Product 1 (sintering temperature is the same). ). However, since the comparative example product 12 is not heat-treated, the bearing alloy layer has no crystal grain refinement (the strength of the bearing alloy layer is low), and the ductility is low, so the fatigue resistance is low. .

なお、本発明は上記し且つ実施例に示すものに限定されることはなく、以下のような変更および拡張が可能である。
一次焼結→一次圧延→二次焼結→二次圧延→熱処理により、結晶の細粒化を行った後、更に冷間での三次圧延を施して軸受合金層を加工硬化させても良い。この場合、細粒化された結晶を持つ軸受合金層は、圧延に対する変形抵抗が大きく、圧延率が同じならば、細粒化のための熱処理を施していないものに比べて、加工硬化の程度が高くなる。逆に言えば、同じ硬度を得ようとするなら、本発明の軸受合金層の結晶を細粒化したものに対しては、小さい圧下率で良く、従って軸受合金層の延性低下が少なく、耐衝撃性の低下が少なくて済む。
鋼裏金層の表面には、軸受合金層の接合強度を高めるためのCuメッキ層などの接着層を設けても良い。
The present invention is not limited to the above-described example and can be modified and expanded as follows.
After the crystal is refined by primary sintering → primary rolling → secondary sintering → secondary rolling → heat treatment, cold tertiary rolling may be further performed to work harden the bearing alloy layer. In this case, the bearing alloy layer having finely divided crystals has a high degree of deformation resistance to rolling, and if the rolling rate is the same, the degree of work hardening is higher than that of the case where heat treatment for fine graining is not performed. Becomes higher. In other words, if the same hardness is to be obtained, a small reduction ratio is sufficient for the bearing alloy layer crystal of the present invention that is made finer, and therefore the bearing alloy layer has a small decrease in ductility. Less impact degradation is required.
An adhesive layer such as a Cu plating layer for increasing the bonding strength of the bearing alloy layer may be provided on the surface of the steel back metal layer.

(a)は二次焼結後、(b)は650℃の熱処理後、(c)は700〜890℃の熱処理後、の軸受合金層(焼結層)の結晶粒の状態を示す模式図(A) after secondary sintering, (b) after heat treatment at 650 ° C., (c) is a schematic diagram showing the state of crystal grains of the bearing alloy layer (sintered layer) after heat treatment at 700 to 890 ° C. 二次焼結直後の軸受合金層(焼結層)の模式図Schematic diagram of bearing alloy layer (sintered layer) immediately after secondary sintering 剪断試験を行う試験片を示すもので、(a)は平面図、(b)は側面図The test piece which performs a shear test is shown, (a) is a top view, (b) is a side view.

符号の説明Explanation of symbols

図面中、3は鋼板(鋼裏金層)、4は軸受合金層である。   In the drawings, 3 is a steel plate (steel back metal layer), and 4 is a bearing alloy layer.

Claims (4)

鋼裏金層上に銅合金からなる軸受合金層を接合して構成する複層軸受材料において、
前記軸受合金層の組成がCuを主成分として0.5〜12質量%のSn、0.5〜5質量%のFeを含み、
前記軸受合金層中にはSn−Feの化合物が析出し、且つ当該軸受合金層の結晶粒の大きさが平均で50μm以下であることを特徴とする複層軸受材料。
In a multi-layer bearing material configured by joining a bearing alloy layer made of a copper alloy on a steel back metal layer,
The composition of the bearing alloy layer includes 0.5 to 12% by mass of Sn and 0.5 to 5% by mass of Fe mainly composed of Cu,
A multi-layer bearing material, wherein a compound of Sn-Fe is precipitated in the bearing alloy layer, and the average grain size of the bearing alloy layer is 50 μm or less.
前記軸受合金層には、更に、Pを0.2質量%以下、NiおよびAgのうち少なくとも一方を総量で5質量%以下、PbおよびBiのうち少なくとも一方を総量で25質量%以下添加することを特徴とする請求項1記載の複層軸受材料。   The bearing alloy layer further includes P in an amount of 0.2% by mass or less, at least one of Ni and Ag in a total amount of 5% by mass or less, and at least one of Pb and Bi in a total amount of 25% by mass or less. The multilayer bearing material according to claim 1. 前記請求項1または2記載の複層軸受材料を製造する方法において、
軸受合金層を形成するための焼結用金属粉末を鋼裏金層上に散布して焼結して焼結層を設け、且つその焼結層の緻密化を行って、中間複合材を形成し、この中間複合材を5%以上の圧下率で圧延した後、700〜890℃に加熱する熱処理を行うことを特徴とする複層軸受材料の製造方法。
In the method for producing a multilayer bearing material according to claim 1 or 2,
A metal powder for sintering for forming the bearing alloy layer is dispersed on the steel back metal layer and sintered to provide a sintered layer, and the sintered layer is densified to form an intermediate composite material. A method for producing a multilayer bearing material, wherein the intermediate composite material is rolled at a rolling reduction of 5% or more and then heat-treated at 700 to 890 ° C.
前記鋼裏金層上に散布する焼結用金属粉末は、予め前記軸受合金層と同じ組成の合金から形成したプレアロイ粉末であることを特徴とする請求項3記載の複層軸受材料の製造方法。

4. The method for producing a multi-layer bearing material according to claim 3, wherein the sintering metal powder dispersed on the steel back metal layer is a pre-alloy powder previously formed from an alloy having the same composition as the bearing alloy layer.

JP2004201957A 2004-07-08 2004-07-08 Double-layered bearing material and its manufacturing method Pending JP2006022896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004201957A JP2006022896A (en) 2004-07-08 2004-07-08 Double-layered bearing material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004201957A JP2006022896A (en) 2004-07-08 2004-07-08 Double-layered bearing material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006022896A true JP2006022896A (en) 2006-01-26

Family

ID=35796319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004201957A Pending JP2006022896A (en) 2004-07-08 2004-07-08 Double-layered bearing material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006022896A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088997A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
WO2007089012A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Method for manufacturing electrophotographic photoreceptor
WO2007089000A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Electronic photographing photosensitive body, process cartridge, and electronic photographing device
WO2007088994A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Method of image forming and electrophotographic apparatus making use of the method
JP2007260704A (en) * 2006-03-27 2007-10-11 Daido Metal Co Ltd Method for manufacturing clad material composed of bronze alloy and steel
CN102834630A (en) * 2010-04-14 2012-12-19 米巴·格来特来格有限公司 Gear train for a wind turbine
WO2015025576A1 (en) * 2013-08-20 2015-02-26 日立オートモティブシステムズ株式会社 Electric air flow control device for internal combustion engines
WO2020136935A1 (en) * 2018-12-26 2020-07-02 株式会社明石合銅 Bronze alloy, and sliding member using said bronze alloy
CN111961914A (en) * 2020-08-20 2020-11-20 合肥波林新材料股份有限公司 Tin bronze-steel bimetal composite material and preparation method thereof
EP3769957A1 (en) 2019-07-22 2021-01-27 Daido Metal Company Ltd. Sliding member
EP3770452A1 (en) 2019-07-22 2021-01-27 Daido Metal Company Ltd. Sliding member
CN112555283A (en) * 2019-09-26 2021-03-26 大同金属工业株式会社 Sliding member
KR20210036831A (en) 2019-09-26 2021-04-05 다이도 메탈 고교 가부시키가이샤 Sliding member
CN117570114A (en) * 2024-01-15 2024-02-20 中国机械总院集团宁波智能机床研究院有限公司 Forming method and device of Babbitt metal bearing and Babbitt metal bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819413A (en) * 1981-07-27 1983-02-04 Mitsubishi Metal Corp High strength copper-base sintered bearing having high oil content and showing superior performance in high load region
JPS62130250A (en) * 1985-12-02 1987-06-12 Japanese National Railways<Jnr> Sliding material for collecting current
JP2001131660A (en) * 1999-11-09 2001-05-15 Fukuda Metal Foil & Powder Co Ltd Alloy powder for copper series high strength sintered parts
JP2001271129A (en) * 2000-03-27 2001-10-02 Komatsu Ltd Sintering material and composite sintered sliding part
JP2003194061A (en) * 2001-12-27 2003-07-09 Daido Metal Co Ltd Copper-based sintered sliding material and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819413A (en) * 1981-07-27 1983-02-04 Mitsubishi Metal Corp High strength copper-base sintered bearing having high oil content and showing superior performance in high load region
JPS62130250A (en) * 1985-12-02 1987-06-12 Japanese National Railways<Jnr> Sliding material for collecting current
JP2001131660A (en) * 1999-11-09 2001-05-15 Fukuda Metal Foil & Powder Co Ltd Alloy powder for copper series high strength sintered parts
JP2001271129A (en) * 2000-03-27 2001-10-02 Komatsu Ltd Sintering material and composite sintered sliding part
JP2003194061A (en) * 2001-12-27 2003-07-09 Daido Metal Co Ltd Copper-based sintered sliding material and its manufacturing method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088997A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
WO2007089012A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Method for manufacturing electrophotographic photoreceptor
WO2007089000A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Electronic photographing photosensitive body, process cartridge, and electronic photographing device
WO2007088994A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Method of image forming and electrophotographic apparatus making use of the method
JP2007260704A (en) * 2006-03-27 2007-10-11 Daido Metal Co Ltd Method for manufacturing clad material composed of bronze alloy and steel
CN102834630A (en) * 2010-04-14 2012-12-19 米巴·格来特来格有限公司 Gear train for a wind turbine
US9745646B2 (en) 2013-08-20 2017-08-29 Hitachi Automotive Systems, Ltd. Electric air flow control device for internal combustion engines
CN105658974A (en) * 2013-08-20 2016-06-08 日立汽车系统株式会社 Electric air flow control device for internal combustion engines
JPWO2015025576A1 (en) * 2013-08-20 2017-03-02 日立オートモティブシステムズ株式会社 Electric air flow control device for internal combustion engine
EP3037686A4 (en) * 2013-08-20 2017-04-19 Hitachi Automotive Systems, Ltd. Electric air flow control device for internal combustion engines
WO2015025576A1 (en) * 2013-08-20 2015-02-26 日立オートモティブシステムズ株式会社 Electric air flow control device for internal combustion engines
US20200232068A1 (en) * 2018-12-26 2020-07-23 Akashi Gohdoh Inc. Bronze alloy, and sliding member using the bronze alloy
WO2020136772A1 (en) * 2018-12-26 2020-07-02 株式会社明石合銅 Bronze alloy for casting use, and sliding member comprising said bronze alloy
WO2020136935A1 (en) * 2018-12-26 2020-07-02 株式会社明石合銅 Bronze alloy, and sliding member using said bronze alloy
JPWO2020136935A1 (en) * 2018-12-26 2021-02-18 株式会社明石合銅 Bronze alloy and sliding members using the bronze alloy
EP3816310A4 (en) * 2018-12-26 2021-12-29 Akashi Gohdoh Inc. Bronze alloy, and sliding member using said bronze alloy
US11215227B2 (en) 2019-07-22 2022-01-04 Daido Metal Company Ltd. Sliding member
EP3769957A1 (en) 2019-07-22 2021-01-27 Daido Metal Company Ltd. Sliding member
EP3770452A1 (en) 2019-07-22 2021-01-27 Daido Metal Company Ltd. Sliding member
US11193536B2 (en) 2019-07-22 2021-12-07 Daido Metal Company Ltd. Sliding member
US11098761B2 (en) 2019-09-26 2021-08-24 Daido Metal Company Ltd. Sliding member
KR20210036832A (en) 2019-09-26 2021-04-05 다이도 메탈 고교 가부시키가이샤 Sliding member
KR20210036831A (en) 2019-09-26 2021-04-05 다이도 메탈 고교 가부시키가이샤 Sliding member
CN112555283A (en) * 2019-09-26 2021-03-26 大同金属工业株式会社 Sliding member
US11333198B2 (en) 2019-09-26 2022-05-17 Daido Metal Company Ltd. Sliding member
CN112555283B (en) * 2019-09-26 2022-11-15 大同金属工业株式会社 Sliding member
JP7389601B2 (en) 2019-09-26 2023-11-30 大同メタル工業株式会社 sliding member
CN111961914A (en) * 2020-08-20 2020-11-20 合肥波林新材料股份有限公司 Tin bronze-steel bimetal composite material and preparation method thereof
CN117570114A (en) * 2024-01-15 2024-02-20 中国机械总院集团宁波智能机床研究院有限公司 Forming method and device of Babbitt metal bearing and Babbitt metal bearing

Similar Documents

Publication Publication Date Title
JP4190570B2 (en) Lead-free free-cutting copper alloy extruded material
JP5289941B2 (en) Sliding bearing composite material, use of sliding bearing composite material, and manufacturing method of sliding bearing composite material
US4857267A (en) Aluminum base bearing alloy and method of producing same
JP4424810B2 (en) Sintered material
WO2010122960A1 (en) High-strength copper alloy
KR102393772B1 (en) Copper-nickel-tin alloy, method for manufacturing and use thereof
CN106065443B (en) Copper alloy and method for producing same
JP2006022896A (en) Double-layered bearing material and its manufacturing method
JP2003194061A (en) Copper-based sintered sliding material and its manufacturing method
JP4545162B2 (en) Composite sintered sliding member and manufacturing method thereof
JPWO2008140100A1 (en) Pb-free copper alloy sliding material and plain bearing
CN101326296B (en) Sn-containing heavy-duty material composition, method for the production of a heavy-duty coating, and use thereof
JP2007297706A (en) Material composite in strip form and its use, composite sliding element consisting of the material composite in strip form
JP2007297707A (en) Multicomponent copper alloy and its use
JP2009228100A (en) Aluminum-based bearing alloy
JP2010280957A (en) Iron-base sintered alloy, method for producing iron-base sintered alloy, and connecting rod
KR20190030660A (en) Copper-nickel-tin alloy, its preparation method and use
CN102762754B (en) Aluminum alloy for slide bearing, slide bearing and method for producing same
CN111630194B (en) Bronze alloy and sliding member using the same
US8845199B2 (en) Solid bronze bearing with hardness gradient
JP4422255B2 (en) Aluminum base bearing alloy
JP3920656B2 (en) High rigidity aluminum alloy containing boron
JPS62235455A (en) Aluminum bearing alloy and its production
JPH06145887A (en) Composite high-speed steel sleeve roll and its production
JPH0569894B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111