JP4349719B2 - Aluminum bronze sintered bearing material and manufacturing method thereof - Google Patents

Aluminum bronze sintered bearing material and manufacturing method thereof Download PDF

Info

Publication number
JP4349719B2
JP4349719B2 JP2000128838A JP2000128838A JP4349719B2 JP 4349719 B2 JP4349719 B2 JP 4349719B2 JP 2000128838 A JP2000128838 A JP 2000128838A JP 2000128838 A JP2000128838 A JP 2000128838A JP 4349719 B2 JP4349719 B2 JP 4349719B2
Authority
JP
Japan
Prior art keywords
sintered
alloy
aluminum bronze
powder
back metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000128838A
Other languages
Japanese (ja)
Other versions
JP2001303107A (en
Inventor
康志 齊藤
Original Assignee
エヌデーシー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌデーシー株式会社 filed Critical エヌデーシー株式会社
Priority to JP2000128838A priority Critical patent/JP4349719B2/en
Publication of JP2001303107A publication Critical patent/JP2001303107A/en
Application granted granted Critical
Publication of JP4349719B2 publication Critical patent/JP4349719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高強度で耐焼付性、耐摩耗性、耐腐食性に優れたアルミニウム青銅焼結軸受材料およびその製造方法に関する。
【0002】
【従来の技術】
従来の青銅焼結軸受材料は、Cu合金の粉末を帯鋼上に散布後、還元性雰囲気を有する焼結炉で一次焼結を行い、この焼結材を圧延して合金層の密度を上げ、再び焼結炉で二次焼結を行い製造する方法が一般的である。
【0003】
【発明が解決しようとする課題】
この青銅焼結軸受材料は、軸受運転中に表面の摺動面側に硫化や酸化が起こるが、青銅の硫化膜や酸化膜は低強度であり厚く成長し摺動表面より容易に取り去られるため、耐焼付性、耐摩耗性、耐腐食性が充分ではない。
【0004】
そのため、従来の青銅焼結軸受材料で耐摩耗性向上のため硬質粒子を含有するものもあるが、摺動面での硬質粒子と相手側との摩擦熱により硬質粒子に接する青銅の腐食が激しく発生し硬質粒子の脱落が起こりやすい。
【0005】
また、アルミニウム青銅合金粉末や、Cu合金とAlやAl合金の混合粉末を用いる試みもあるが、アルミニウム青銅合金粉末を用いる場合は、焼結雰囲気に還元力の強い水素ガスを用いてもアルミニウム青銅粉末表面の酸化膜は還元されないため、粉末同士や、粉末と帯鋼との焼結が殆ど進まず、実用的なアルミニウム青銅焼結軸受材料は得られない。
【0006】
Cu合金とAlやAl合金の混合粉末を用いる場合は、焼結炉中でCu合金の粉末表面の還元ガスによる酸化膜の還元が充分に起こる前に、融点の低いAlやAl合金が溶解しCu合金の粉末表面に拡散するが、この拡散したAlがCu合金の粉末の酸化膜を還元し、表面に還元ガスでも還元できない強固な酸化膜を作るため粉末同士や、粉末と帯鋼との焼結が不十分となり、やはり、実用的なアルミニウム青銅焼結軸受材料は得られない。
【0007】
さらに、鋳造法により鋼裏金なしのアルミニウム青銅ソリッド軸受を造る製造方法もある。一般的な軸受形状としてブシュ形状があるが、ブシュ形状の軸受は軸受運転中におけるハウジングからのブシュの抜け出しや軸との共回りを防止するため、ハウジング内径よりブシュ外径を若干大きくする締め代で固定されている。そのため、軸受には周方向の圧縮応力が発生し設計上軸受が降伏しない様に、軸受の厚さや幅が決定されるが、アルミニウム青銅ソリッド軸受は、鋼裏金付ではないので降伏応力は低く、締め代により発生する周方向の圧縮応力で降伏しないためには軸受の厚さを厚くしたり、軸受幅を広くしたりしなければならない。このためこの軸受は高価になり、かつ、軸受装置も大きくならざるを得ない。
【0008】
本発明は、上記の問題に鑑みてなされたものであって、高強度で耐焼付性、耐摩耗性、耐腐食性に優れ、かつ、安価で軸受装置をコンパクトにできるアルミニウム青銅焼結軸受材料およびその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明のアルミニウム青銅焼結軸受材料の製造方法は、CuまたはCu合金の粉末または、CuまたはCu合金の粉末と硬質粒子との混合粉末を鋼裏金上に散布後焼結し、得られた焼結材表面にAlまたはAl合金の箔を圧着後焼結し前記鋼裏金上にCu系焼結層を積層する。
【0010】
また、アルミニウム青銅焼結軸受材料の製造方法は、CuまたはCu合金の粉末または、CuまたはCu合金の粉末と硬質粒子との混合粉末を鋼裏金上に散布後焼結し、得られた焼結材表面にAlまたはAl合金の粉末を散布し圧着後焼結し前記鋼裏金上にCu系焼結層を積層する。
【0011】
また、アルミニウム青銅焼結軸受材料は、鋼裏金と、CuまたはCu合金の粉末または、CuまたはCu合金の粉末と硬質粒子との混合粉末を前記鋼裏金上に散布後焼結し、得られた焼結材表面にAlまたはAl合金の箔を圧着後焼結し前記鋼裏金上に積層したCu系焼結層とを有し、前記Cu系焼結層は、Snを含まないCu系焼結層とし、前記鋼裏金との界面側はAl成分を含まないCuまたはCu合金からなり、表面の摺動面側は13重量%以下のAlを含有するCuまたはCu合金からなる
【0012】
また、アルミニウム青銅焼結軸受材料は、鋼裏金と、CuまたはCu合金の粉末または、CuまたはCu合金の粉末と硬質粒子との混合粉末を前記鋼裏金上に散布後焼結し、得られた焼結材表面にAlまたはAl合金の粉末を散布し圧着後焼結し前記鋼裏金上に積層したCu系焼結層とを有し、前記Cu系焼結層は、Snを含まないCu系焼結層とし、前記鋼裏金との界面側はAl成分を含まないCuまたはCu合金からなり、表面の摺動面側は13重量%以下のAlを含有するCuまたはCu合金からなる
【0014】
また、前記Snを含まないCu系焼結層は、さらに、0.1〜15体積%の硬質粒子を含有するCuまたはCu合金からなる。
【0017】
【発明の実施の形態】
以下、本発明の実施例を説明する。
【0018】
アルミニウム青銅焼結軸受材料の製造は、一次焼結と二次焼結とを行う。
【0019】
一次焼結は、CuまたはCu合金の粉末を通常の鋼裏金上に散布し、還元性雰囲気を有する焼結炉で行なう。この一次焼結は、CuまたはCu合金の粉末同士および、CuまたはCu合金の粉末と鋼裏金とをある程度焼結させ、次工程でAlまたはAl合金の箔や粉末の圧着と、CuまたはCu合金層の緻密化をさせ、次工程の二次焼結は冷間圧延でCuまたはCu合金層の緻密化およびAl青銅層
を形成するために行う焼結である。
【0020】
一次焼結の完了した焼結材料表面は凹凸状となり、AlまたはAl合金の箔または、AlまたはAl合金の粉末の圧着は容易であり、CuまたはCu合金層の緻密化の為に行う圧延と同時に行うことができる。
【0021】
二次焼結では、AlまたはAl合金の箔または粉末を圧着した焼結材が焼結炉中でAlまたはAl合金の融点に達するとAlまたはAl合金が液相化し、急激にCuまたはCu合金へ拡散し、短時間で固相のアルミニウム青銅層が形成され、所定の焼結温度に達するとCuまたはCu合金層が一層緻密に焼結される。
【0022】
CuまたはCu合金の粉末と硬質粒子との混合粉末を鋼裏金上に散布し焼結する場合は、一次焼結で硬質粒子が分散状態で焼結されAlまたはAl合金の箔または、AlまたはAl合金の粉末の圧着後に行う二次焼結でも硬質粒子が溶融しないため分散状態でより緻密に焼結される。
【0023】
本焼結工程が完了した段階でCu系焼結層が得られるが、このCu系焼結層は、アルミニウム青銅層または、アルミニウム青銅層とアルミニウムを含まないCuまたはCu合金層が鋼裏金上に積層され、アルミニウム青銅焼結軸受材料は、アルミニウム青銅層と鋼裏金との二層となるか、または、アルミニウム青銅層と、アルミニウムを含まないCuまたはCu合金層と、鋼裏金との三層となる。
【0024】
アルミニウム青銅焼結軸受材料は、アルミニウム青銅層と鋼裏金との密着性は良好であり、また、アルミニウム青銅層とCuまたはCu合金層およびCuまたはCu合金層と鋼裏金との密着性も良好であり、軸受材料として充分な密着力を有する。
【0025】
図1は、アルミニウム青銅焼結軸受材料およびその製造方法の第1実施例を説明するための図を示す。1は鋼裏金となる帯鋼、6は粉末を散布するタンク、5は帯鋼1を巻き戻すアンコイラー、10は帯鋼1を巻き取るリコイラーである。
【0026】
帯鋼1上にCuまたはCu合金の粉末2を散布し、一次焼結炉3で一次焼結して、ある程度CuまたはCu合金の粉末同士と、CuまたはCu合金と帯鋼とを焼結させる。この一次焼結は通常還元性雰囲気で、750〜1050℃、10〜30分間行われる。
【0027】
一次焼結された焼結材表面は凹凸状となり、圧延ロール7にてアンコイラー11より巻き戻されたAlまたはAl合金の箔4の圧着は容易で、焼結されたCuまたはCu合金層の緻密化と厚さ調整が行われる。
【0028】
続いて、表面にAlまたはAl合金の箔4が圧着された焼結材が二次焼結炉8に入り、二次焼結が行われる。この二次焼結で、まず、AlまたはAl合金の箔4の融点になるとAlまたはAl合金の箔4は液相化し、CuまたはCu合金層へ拡散し、短時間で固相のアルミニウム青銅層が形成され、さらに焼結が進みアルミニウム青銅層が緻密となり、アルミニウム青銅層と帯鋼1が強固に焼結され、アルミニウム青銅焼結軸受材料が製造される。
【0029】
また、鋼裏金となる帯鋼1との界面側にAlを含まないCuまたはCu合金とする場合は、圧延ロール7で緻密化されたCuまたはCu合金層がこの二次焼結でより緻密に焼結され、CuまたはCu合金層と帯鋼1がより強固に焼結される。
【0030】
この二次焼結は通常還元性雰囲気で、750〜1050℃、10〜30分間行われ、圧延ロール9で二次焼結後の焼結材の厚さ調整が行われる。
【0031】
図3は、本発明の製造方法により製造された第1実施例のアルミニウム青銅焼結軸受材料の組織断面写真を示す。このアルミニウム青銅焼結軸受材料は、Cu合金の粉末にCu−5重量%SnとMoの粉末との混合粉末と、Alの箔を用いて製造したものを示し、Mo粒子を含有するCu合金層(Cu―Sn層)とアルミニウム青銅層とが鋼裏金となる帯鋼1に積層されたものである。
【0032】
図2は、アルミニウム青銅焼結軸受材料およびその製造方法の第2実施例を説明するための図を示す。帯鋼1上にCuまたはCu合金の粉末2を散布し、一次焼結炉3で一次焼結して、ある程度CuまたはCu合金の粉末同士と、CuまたはCu合金と帯鋼を焼結させる。この一次焼結は通常還元性雰囲気で、750〜1050℃、10〜30分間行われる。
【0033】
一次焼結された焼結材表面は凹凸状となり、圧延ロール7にて散布タンク12より散布されたAlまたはAl合金の粉末13の圧着は容易で、焼結されたCuまたはCu合金層の緻密化と厚さ調整が行われる。
【0034】
続いて、表面にAlまたはAl合金の粉末13が圧着された焼結材が二次焼結炉8に入り、二次焼結が行われる。この二次焼結で、まず、AlまたはAl合金の粉末13が融点になるとAlまたはAl合金の粉末13は液相化し、CuまたはCu合金層へ拡散し、短時間で固相のアルミニウム青銅層が形成され、さらに焼結が進みアルミニウム青銅層が緻密となり、アルミニウム青銅層と帯鋼1が強固に焼結され、アルミニウム青銅焼結軸受材料が製造される。
【0035】
また、帯鋼1との界面側にAlを含まないCuまたはCu合金とする場合は圧延ロール7で緻密化されたCuまたはCu合金層がこの二次焼結でより緻密に焼結され、CuまたはCu合金層と帯鋼1がより強固に焼結される。
【0036】
この二次焼結は通常還元性雰囲気で、750〜1050℃、10〜30分間行われ、圧延ロール9では二次焼結後の焼結材の厚さ調整が行われる。
【0037】
図4は、本発明の製造方法により製造された第2実施例のアルミニウム青銅焼結軸受材料の組織断面写真を示す。このアルミニウム青銅焼結軸受材料は、Cuの粉末とAlの粉末を用いて製造したものを示し、アルミニウム青銅層が鋼裏金となる帯鋼1に積層されたものである。
【0038】
次に、本発明の製造方法により製造したアルミニウム青銅焼結軸受材料によるアルミニウム青銅焼結軸受と、従来の鋳造法による鋼裏金なしのアルミニウム青銅ソリッド軸受との比較につき述べる。本発明によるアルミニウム青銅焼結軸受と従来のアルミニウム青銅ソリッド軸受は組成が同じなら同等の表面性能、耐摩耗性、耐腐食性を有する。
【0039】
前記したごとくアルミニウム青銅ソリッド軸受は、鋼裏金付ではないので降伏応力は低く、締め代により発生する周方向の圧縮応力で降伏しないためには軸受の厚さを厚くしたり、軸受幅を広くしたりしなければならず、このため軸受は高価になり、かつ、軸受装置も大きくならざるを得ないが、本発明によるアルミニウム青銅焼結軸受は鋼裏金付とすることができたため降伏応力が高く、従来のアルミニウム青銅ソリッド軸受に対して軸受寸法を薄く、狭くすることができるので安価で軸受装置をコンパクトにすることができる。
【0040】
また、本発明によるアルミニウム青銅焼結軸受は、鋼裏金付とすることができ高強度のため、締め代を大きくして軸受背面をハウジング内面に緊密に密着させられ、軸受運転中のブシュやハウジングのフレッチング損傷を最小限に抑制でき、また、発生した熱の放熱性も向上し軸受を長寿命とすることができる。
【0041】
さらに、本発明のアルミニウム青銅焼結軸受は、従来の鋳造法によるアルミニウム青銅ソリッド軸受では不可能な耐摩耗性向上のための硬質粒子含有が可能である。
【0042】
次に、本発明の製造方法により製造したアルミニウム青銅焼結軸受材料によるアルミニウム青銅焼結軸受と、従来の青銅焼結軸受材料による青銅焼結軸受との比較につき述べる。
【0043】
従来の青銅焼結軸受材料による青銅焼結軸受は、軸受運転中に表面の摺動面側に硫化や酸化が起こるが青銅の硫化膜や酸化膜は低強度であり、かつ、厚く成長し摺動表面より容易に取り去られるため、耐焼付性、耐摩耗性、耐腐食性が充分でないが、本発明によるアルミニウム青銅焼結軸受は、摺動面の酸化膜が緻密で高強度でありかつ厚く成長しないため軸受運転中も容易に取り去られることはなく、また、酸化膜が破壊され新生面が露出しても急速に酸化膜が形成されるので耐焼付性、耐摩耗性、耐腐食性が優れたものとすることができる。
【0044】
さらに、従来の青銅焼結軸受材料で耐摩耗性向上のため硬質粒子を含有する軸受は、軸受運転中の摺動面での硬質粒子と相手軸との摩擦熱により硬質粒子に接する青銅の腐食が激しく発生し硬質粒子の脱落が起こりやすいが、本発明によるアルミニウム青銅焼結軸受材料で硬質粒子を含有する軸受は、耐腐食性が優れるため硬質粒子は脱落し難く、耐摩耗性、耐焼付性を長期安定的に発揮できる。
【0045】
なお、本発明のアルミニウム青銅焼結軸受材料は、CuまたはCu合金の粉末はCuを主成分として、Fe、Ni、Mn、Sn、Pb、Biなどを必要により含有し、耐摩耗性、耐焼付性をさらに向上させることもできる。
【0046】
また、本発明のアルミニウム青銅焼結軸受材料は、Al合金箔またはAl合金の粉末はAlを主成分として、Fe、Ni、Mnなどを必要により含有し、耐摩耗性、耐焼付性をさらに向上させることもできる。
【0047】
さらに、本発明のアルミニウム青銅焼結軸受材料は、硬質粒子として焼結過程で溶融しないMo、W、Co、FeP、FeB、SiC、Si、FeB、NiB、AlN、Cなどの金属または非金属を添加できる。
【0048】
次に、本発明のアルミニウム青銅焼結軸受材料の摩耗試験、焼付試験と疲労試験結果を説明する。実施例の試料はアトマイズ法により製造したCuまたはCu合金の粉末(−60メッシュ)あるいはアトマイズ法により製造したCuまたはCu合金の粉末にMoやC粉末を0.1〜15体積%混合後、鋼裏金に散布し、温度750〜1050℃の還元性雰囲気下で15〜30分焼結して得られた焼結材表面にロールでアルミニウムまたはアルミニウム合金の箔あるいは粉末を圧着し、同時に焼結層を緻密化し再び750〜1050℃の還元性雰囲気下で15〜30分焼結後、冷間圧延を施しアルミニウム青銅焼結軸受材料を完成させた。
【0049】
表1に試料No.1〜21の組成を示す。No.1〜13は本発明の実施例であり、No.14〜21は比較例である。本発明の実施例No.1、2、9〜12は鋼裏金との密着界面側がAlを含有しないCu系焼結層となる様に、No.3〜8、13は鋼裏金との密着界面側が摺動面側と同量のAlを含有するアルミニウム青銅層となる様にアルミニウム青銅焼結軸受材料を完成させた。
【0050】
【表1】

Figure 0004349719
【0051】
No.15は本発明範囲外であるAl含有量が15重量%、No.16、17は硬質粒子(Mo、C)含有量が17体積%となり、鋼裏金との界面側がAlを含有するCu系焼結層となる様に上記焼結方法でアルミニウム青銅焼結軸受材料を製造したものである。
【0052】
No.14、20、21は表1に示したCuまたはCu合金の粉末(−60メッシュ)をアトマイズ法により製造後、アルミニウムまたはアルミニウム合金の箔あるいは粉末を圧着する工程を除き、上記焼結方法で青銅焼結軸受材料を製造したものである。
【0053】
No.18、19は表1に示したうちMoやCを除く組成のCu合金の粉末(−60メッシュ)をアトマイズ法により製造しMoやCが表1の組成となるように混合後、アルミニウムまたはアルミニウム合金の箔あるいは粉末を圧着する工程を除き、上記焼結方法で青銅焼結軸受材料を製造したものである。
【0054】
試験供試品の形状は摩耗試験、焼付試験は平板であり、疲労試験は半割軸受形状である。
【0055】
今回実施した摩耗試験の条件は以下である。
1.試験機 円筒平板型摩擦摩耗試験機
2.すべり速度 60m/min
3.荷重 2940N
4.潤滑油 10W−30
5.油温 100℃
6.潤滑方法 油浴
7.相手軸 S45C 粗さ Ra0.2
8.試験時間 1Hr
【0056】
今回実施した焼付試験条件を以下に示す。
1.試験機 円筒平板型摩擦摩耗試験機
2.すべり速度 60m/min
3.荷重 98N/10min毎
4.潤滑油 10W−30
5.油温 100℃
6.潤滑方法 油浴
7.相手軸 S45C 粗さ Ra0.2
8.焼付判定基準 摩擦面背面温度が200℃以上
【0057】
今回実施した疲労試験条件を以下に示す。
1.試験機 アンダーウッド試験機
2.回転数 3500rpm
3.面圧 88.2MPa
4.潤滑油 10W−30
5.油温 150℃
6.潤滑方法 強制潤滑
7.相手軸 S45C 粗さ Ra0.02
8.疲労性評価 軸受合金に割れが発生せず、正常な状態で運転できた時間
【0058】
試料No.1〜21の摩擦試験、焼付試験、疲労試験の結果は表1の右側欄に示す。
【0059】
本発明の実施例No.1〜13は、従来の内燃機関で軸受として使用されている比較例No.20、21と比較すると耐摩耗性、耐焼付性、耐疲労性共優れていることがわかる。
【0060】
本発明でAlを0.1〜13重量%含有する効果はAlを全く含有しない比較例No.14に対し本発明の実施例でAlのみを含有するCu合金であるNo.1〜4、12,13は耐摩耗性、耐焼付性、耐疲労性に優れ、また、本発明のAl含有量範囲を越えてAlを含有する比較例No.15に対し本発明のAl含有量範囲内上限のAlを含有するNo.12、13は特に耐疲労性が優れている。
【0061】
Alを0.1〜13重量%含有し硬質粒子を0.1〜15体積%含有する本発明の効果はAlおよび硬質粒子を含有しない比較例No.14に対し本発明の実施例でAlおよび硬質粒子を含有するNo.6〜11は耐摩耗性、耐焼付性、耐疲労性に優れ、また、本発明の硬質粒子含有範囲を越えて硬質粒子を含有するNo.16、17に対しAl含有量は同一で硬質粒子含有量範囲内上限の硬質粒子を含有するNo.8、11は耐焼付性、耐疲労性に優れていることがわかる。
【0062】
さらに、本発明の硬質粒子含有範囲内の硬質粒子を含有しAlを含有しない比較例No.18、19に対し、同量の硬質粒子とAlとを含有する本発明の実施例No.7、10は耐摩耗性、耐焼付性、耐疲労性に優れ、試験後の摩擦面を観察すると比較例No.18、19は硬質粒子周辺のCu合金の腐食により硬質粒子の脱落が多いが、本発明実施例No.7、10では脱落量が少なく耐腐食性にも優れていることがわかる。
【0063】
なお、アルミニウム青銅層の組成および厚さは、Cu合金の粉末の組成、Al合金の箔や粉末の組成、一次焼結前のCuまたはCu合金粉末の散布厚、圧着するAlまたはAl合金の箔厚やAlまたはAl合金の粉末散布厚、AlまたはAl合金の箔や粉末の圧着時の圧下率、二次焼結時の焼結温度などの調整により、所要の状態にできる。
【0064】
また、本発明の製造方法で完成したアルミニウム青銅焼結軸受材料は、従来の鋳物で造ったアルミニウム青銅軸受と同様な熱処理が後処理として可能で、多くの軸受用途に適合するアルミニウム青銅組織とすることが可能である。
【0065】
鋼裏金界面側のCuまたはCu合金にAlを含ませない場合の理由は、アルミニウム青銅層とCuまたはCu合金層および、CuまたはCu合金層と鋼裏金との密着性は軸受材料として充分な密着力を有し、緻密に焼結されたCuまたはCu合金層の強度は高く摺動面側はアルミニウム青銅層であるので、鋼裏金界面側のCuまたはCu合金にAlを含む本発明のアルミニウム青銅焼結軸受材料と同等の性能を有するからである。
【0066】
また、摺動面側のアルミニウム青銅のAlを13重量%以下(0%を含まず)に限定する理由は、13重量%を超えると軸受材料として脆くなり過ぎて実用に供せないからである。
【0067】
また、硬質粒子を0.1〜15体積%に限定する理由は、0.1体積%未満では耐摩耗性、耐焼付性の向上が不充分で、15体積%を越えると軸受材料として脆くなり過ぎて実用に供せないからである。
【0068】
さらに、本発明のアルミニウム青銅焼結軸受材料は必要により固体潤滑材として焼結過程で溶融しないグラファイト、WS、MoSなどを添加することもできる。
【0069】
【発明の効果】
本発明により従来製造できなかった鋼裏金付のアルミニウム青銅焼結軸受材料を得ることができる。本発明のアルミニウム青銅焼結軸受材料は、鋼裏金付にできるため、従来のアルミニウム青銅ソリッド軸受材料より高強度で、軸受寸法も小さくすることができ、安価にもできる。また、軸受とハウジングを緊密に密着させることができるのでフレッチング損傷を軽減でき、長寿命である。
【0070】
また、本発明のアルミニウム青銅焼結軸受材料は、硬質粒子の添加が可能であり耐摩耗性、耐焼付性をさらに向上させることができる。
【0071】
また、本発明のアルミニウム青銅焼結軸受材料は、従来の青銅焼結軸受材料より耐焼付性、耐摩耗性、耐腐食性に優れ、硬質粒子を添加しても軸受運転中に発生する腐食による硬質粒子の脱落は極めて少ないものとすることができる。
【図面の簡単な説明】
【図1】アルミニウム青銅焼結軸受材料およびその製造方法の第1実施例を説明するための図を示す。
【図2】アルミニウム青銅焼結軸受材料およびその製造方法の第2実施例を説明するための図を示す。
【図3】本発明の製造方法により製造された第1実施例のアルミニウム青銅焼結軸受材料の組織断面写真を示す。
【図4】本発明の製造方法により製造された第2実施例のアルミニウム青銅焼結軸受材料の組織断面写真を示す。
【符号の説明】
1 帯鋼
2 CuまたはCu合金の粉末
3 一次焼結炉
4 AlまたはAl合金の箔
5 アンコイラー
6 散布タンク
7 圧延ロール
8 二次焼結炉
9 圧延ロール
10 リコイラー
11 アンコイラー
12 散布タンク
13 AlまたはAl合金の粉末[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum bronze sintered bearing material having high strength and excellent seizure resistance, wear resistance, and corrosion resistance, and a method for producing the same.
[0002]
[Prior art]
Conventional bronze sintered bearing materials are made by spreading Cu alloy powder on the steel strip, then performing primary sintering in a sintering furnace having a reducing atmosphere, and rolling the sintered material to increase the density of the alloy layer. A method of performing secondary sintering again in a sintering furnace is generally used.
[0003]
[Problems to be solved by the invention]
This bronze sintered bearing material undergoes sulfidation and oxidation on the sliding side of the surface during bearing operation, but bronze sulfide and oxide films are low in strength and grow thick and are easily removed from the sliding surface. , Seizure resistance, wear resistance and corrosion resistance are not sufficient.
[0004]
For this reason, some conventional bronze sintered bearing materials contain hard particles to improve wear resistance, but the bronze in contact with the hard particles is severely corroded by the frictional heat between the hard particles on the sliding surface and the other side. Occurring and easy removal of hard particles.
[0005]
There is also an attempt to use aluminum bronze alloy powder or mixed powder of Cu alloy and Al or Al alloy, but when using aluminum bronze alloy powder, aluminum bronze can be used even if hydrogen gas with strong reducing power is used in the sintering atmosphere. Since the oxide film on the surface of the powder is not reduced, sintering between the powders or between the powder and the strip steel hardly proceeds, and a practical aluminum bronze sintered bearing material cannot be obtained.
[0006]
When using a mixed powder of Cu alloy and Al or Al alloy, the low melting point Al or Al alloy dissolves before the oxide film is sufficiently reduced by the reducing gas on the surface of the Cu alloy powder in the sintering furnace. Although it diffuses to the surface of the Cu alloy powder, this diffused Al reduces the oxide film of the Cu alloy powder and creates a strong oxide film on the surface that cannot be reduced by reducing gas. Sintering becomes insufficient, and a practical aluminum bronze sintered bearing material cannot be obtained.
[0007]
In addition, there is a manufacturing method for producing an aluminum bronze solid bearing without a steel back metal by a casting method. There is a bush shape as a general bearing shape, but a bush shape bearing has a tightening allowance that slightly increases the outer diameter of the bush than the inner diameter of the housing in order to prevent the bush from slipping out of the housing and rotating together with the shaft. It is fixed with. Therefore, the thickness and width of the bearing are determined so that the bearing does not yield in the design due to circumferential compressive stress, but aluminum bronze solid bearings are not steel-backed, so the yield stress is low, In order not to yield by the circumferential compressive stress generated by the tightening allowance, the thickness of the bearing must be increased or the bearing width must be increased. For this reason, this bearing becomes expensive and the bearing device must be enlarged.
[0008]
The present invention has been made in view of the above problems, and is an aluminum bronze sintered bearing material that has high strength, excellent seizure resistance, wear resistance, and corrosion resistance, and that can be made compact at a low cost. And it aims at providing the manufacturing method.
[0009]
[Means for Solving the Problems]
The method for producing an aluminum bronze sintered bearing material of the present invention is obtained by applying Cu or Cu alloy powder or a mixed powder of Cu or Cu alloy powder and hard particles onto a steel back metal and sintering it, followed by sintering. An Al or Al alloy foil is pressed on the surface of the binder and then sintered, and a Cu-based sintered layer is laminated on the steel backing metal.
[0010]
Moreover, the manufacturing method of the aluminum bronze sintered bearing material is obtained by applying Cu or Cu alloy powder or a mixed powder of Cu or Cu alloy powder and hard particles onto a steel back metal and sintering it, and then obtaining the obtained sintered material. Al or Al alloy powder is sprayed on the surface of the material, pressed and sintered, and a Cu-based sintered layer is laminated on the steel back metal.
[0011]
Moreover, the aluminum bronze sintered bearing material was obtained by spraying a steel back metal and Cu or Cu alloy powder, or a mixed powder of Cu or Cu alloy powder and hard particles on the steel back metal and then sintering. the foil Al or Al alloy sintered material surface and sintered after crimping possess a Cu-based sintered layer which is laminated on the steel back metal, the Cu-based sintered layer, Cu-based sintered without the Sn The surface side of the steel backing metal is made of Cu or Cu alloy containing no Al component, and the sliding surface side of the surface is made of Cu or Cu alloy containing 13% by weight or less of Al .
[0012]
Moreover, the aluminum bronze sintered bearing material was obtained by spraying a steel back metal and Cu or Cu alloy powder, or a mixed powder of Cu or Cu alloy powder and hard particles on the steel back metal and then sintering. have a sintering material surface Al or sintering after spraying crimp the powder of Al alloy the steel back metal Cu-based sintered layer laminated on the Cu-based sintered layer, Cu system containing no Sn The sintered layer is made of Cu or Cu alloy containing no Al component on the interface side with the steel back metal, and the surface of the sliding surface is made of Cu or Cu alloy containing 13 wt% or less of Al .
[0014]
The Cu-based sintered layer containing no Sn is further made of Cu or a Cu alloy containing 0.1 to 15% by volume of hard particles.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described below.
[0018]
The aluminum bronze sintered bearing material is produced by primary sintering and secondary sintering.
[0019]
The primary sintering is performed in a sintering furnace having a reducing atmosphere in which Cu or Cu alloy powder is dispersed on a normal steel back metal. In this primary sintering, Cu or Cu alloy powders and Cu or Cu alloy powder and steel back metal are sintered to some extent, and in the next step, Al or Al alloy foil or powder is pressed and Cu or Cu alloy is sintered. The secondary sintering in the next step is densification of the layer, and sintering performed to form a densified Cu or Cu alloy layer and to form an Al bronze layer by cold rolling.
[0020]
The surface of the sintered material that has been subjected to primary sintering becomes uneven, and it is easy to press the foil of Al or Al alloy or the powder of Al or Al alloy, and the rolling performed for densification of the Cu or Cu alloy layer Can be done simultaneously.
[0021]
In secondary sintering, when a sintered material obtained by pressure bonding an Al or Al alloy foil or powder reaches the melting point of Al or Al alloy in a sintering furnace, the Al or Al alloy becomes a liquid phase and suddenly Cu or Cu alloy. A solid-phase aluminum bronze layer is formed in a short time, and when a predetermined sintering temperature is reached, the Cu or Cu alloy layer is sintered more densely.
[0022]
When a mixed powder of Cu or Cu alloy powder and hard particles is dispersed and sintered on the steel back metal, the hard particles are sintered in a dispersed state by primary sintering, and the foil of Al or Al alloy or Al or Al Even in the secondary sintering performed after the pressure bonding of the alloy powder, the hard particles are not melted, so that they are sintered more densely in a dispersed state.
[0023]
A Cu-based sintered layer is obtained when the main sintering process is completed. This Cu-based sintered layer is composed of an aluminum bronze layer or an aluminum bronze layer and a Cu or Cu alloy layer not containing aluminum on the steel back metal. The laminated aluminum bronze sintered bearing material is either two layers of an aluminum bronze layer and a steel back metal, or three layers of an aluminum bronze layer, an aluminum-free Cu or Cu alloy layer, and a steel back metal. Become.
[0024]
Aluminum bronze sintered bearing material has good adhesion between the aluminum bronze layer and the steel back metal, and also good adhesion between the aluminum bronze layer and the Cu or Cu alloy layer and between the Cu or Cu alloy layer and the steel back metal. Yes, it has sufficient adhesion as a bearing material.
[0025]
FIG. 1 is a view for explaining a first embodiment of an aluminum bronze sintered bearing material and a manufacturing method thereof. Reference numeral 1 denotes a steel strip as a steel back metal, 6 a tank for spraying powder, 5 an uncoiler for rewinding the steel strip 1, and 10 a recoiler for winding the steel strip 1.
[0026]
Cu or Cu alloy powder 2 is spread on the steel strip 1 and primary sintered in a primary sintering furnace 3 to sinter Cu or Cu alloy powders to a certain extent and Cu or Cu alloy and steel strip. . This primary sintering is usually performed in a reducing atmosphere at 750 to 1050 ° C. for 10 to 30 minutes.
[0027]
The surface of the sintered material that has been primarily sintered becomes uneven, and the pressure bonding of the Al or Al alloy foil 4 unwound from the uncoiler 11 by the rolling roll 7 is easy, and the sintered Cu or Cu alloy layer is dense. And thickness adjustment.
[0028]
Subsequently, the sintered material having the Al or Al alloy foil 4 pressed on the surface thereof enters the secondary sintering furnace 8 to perform secondary sintering. In this secondary sintering, when the melting point of the Al or Al alloy foil 4 is reached, the Al or Al alloy foil 4 becomes a liquid phase and diffuses into the Cu or Cu alloy layer. The aluminum bronze layer becomes dense and the aluminum bronze layer and the strip steel 1 are strongly sintered to produce an aluminum bronze sintered bearing material.
[0029]
Moreover, when it is set as Cu or Cu alloy which does not contain Al in the interface side with the steel strip 1 used as a steel back metal, Cu or Cu alloy layer densified with the rolling roll 7 becomes denser by this secondary sintering. It is sintered and the Cu or Cu alloy layer and the strip steel 1 are more strongly sintered.
[0030]
This secondary sintering is usually performed in a reducing atmosphere at 750 to 1050 ° C. for 10 to 30 minutes, and the thickness of the sintered material after secondary sintering is adjusted by the rolling roll 9.
[0031]
FIG. 3 shows a structural cross-sectional photograph of the aluminum bronze sintered bearing material of the first embodiment manufactured by the manufacturing method of the present invention. This aluminum bronze sintered bearing material is a Cu alloy powder produced by using a mixed powder of Cu-5 wt% Sn and Mo powder and an Al foil, and a Cu alloy layer containing Mo particles. A (Cu—Sn layer) and an aluminum bronze layer are laminated on a steel strip 1 serving as a steel backing metal.
[0032]
FIG. 2 is a view for explaining a second embodiment of the sintered aluminum bronze bearing material and the manufacturing method thereof. Cu or Cu alloy powder 2 is spread on the steel strip 1 and primary sintered in a primary sintering furnace 3 to sinter the Cu or Cu alloy powder to each other and the Cu or Cu alloy and steel strip. This primary sintering is usually performed in a reducing atmosphere at 750 to 1050 ° C. for 10 to 30 minutes.
[0033]
The surface of the sintered material that has been primarily sintered is uneven, and it is easy to press the Al or Al alloy powder 13 sprayed from the spray tank 12 by the rolling roll 7, and the sintered Cu or Cu alloy layer is dense. And thickness adjustment.
[0034]
Subsequently, the sintered material with the Al or Al alloy powder 13 pressed on the surface enters the secondary sintering furnace 8 to perform secondary sintering. In this secondary sintering, first, when the Al or Al alloy powder 13 reaches the melting point, the Al or Al alloy powder 13 becomes a liquid phase and diffuses into the Cu or Cu alloy layer, and in a short time a solid-state aluminum bronze layer. The aluminum bronze layer becomes dense and the aluminum bronze layer and the strip steel 1 are strongly sintered to produce an aluminum bronze sintered bearing material.
[0035]
Further, when Cu or Cu alloy not containing Al is present on the interface side with the steel strip 1, the Cu or Cu alloy layer densified by the rolling roll 7 is more densely sintered by this secondary sintering, and Cu Alternatively, the Cu alloy layer and the steel strip 1 are more strongly sintered.
[0036]
This secondary sintering is usually performed in a reducing atmosphere at 750 to 1050 ° C. for 10 to 30 minutes, and the rolling roll 9 adjusts the thickness of the sintered material after the secondary sintering.
[0037]
FIG. 4 shows a structural cross-sectional photograph of the aluminum bronze sintered bearing material of the second embodiment manufactured by the manufacturing method of the present invention. This aluminum bronze sintered bearing material is a material manufactured using Cu powder and Al powder, and an aluminum bronze layer is laminated on a steel strip 1 serving as a steel back metal.
[0038]
Next, a comparison between an aluminum bronze sintered bearing made of an aluminum bronze sintered bearing material produced by the production method of the present invention and an aluminum bronze solid bearing without a steel back metal made by a conventional casting method will be described. If the aluminum bronze sintered bearing according to the present invention and the conventional aluminum bronze solid bearing have the same composition, they have equivalent surface performance, wear resistance, and corrosion resistance.
[0039]
As mentioned above, aluminum bronze solid bearings are not steel-backed, so the yield stress is low.To prevent yielding due to circumferential compressive stress generated by tightening, the bearing thickness is increased or the bearing width is increased. For this reason, the bearing becomes expensive and the bearing device must be large. However, since the sintered aluminum bronze bearing according to the present invention can be provided with a steel backing, the yield stress is high. Since the bearing size can be made thinner and narrower than the conventional aluminum bronze solid bearing, the bearing device can be made inexpensive and compact.
[0040]
In addition, the sintered aluminum bronze bearing according to the present invention can have a steel backing and has high strength, so that the tightening margin is increased so that the back of the bearing is brought into close contact with the inner surface of the housing. Fretting damage can be suppressed to a minimum, and the heat dissipation of the generated heat can be improved, and the bearing can have a long life.
[0041]
Furthermore, the sintered aluminum bronze bearing of the present invention can contain hard particles for improving wear resistance, which is impossible with an aluminum bronze solid bearing produced by a conventional casting method.
[0042]
Next, a comparison between an aluminum bronze sintered bearing using an aluminum bronze sintered bearing material manufactured by the manufacturing method of the present invention and a bronze sintered bearing using a conventional bronze sintered bearing material will be described.
[0043]
Conventional bronze sintered bearings made of sintered bronze bearings undergo sulfidation and oxidation on the sliding surface of the surface during bearing operation, but bronze sulfide and oxide films have low strength and are thick and slid. Because it is easily removed from the moving surface, seizure resistance, wear resistance, and corrosion resistance are not sufficient, but the aluminum bronze sintered bearing according to the present invention has a dense, high strength and thick oxide film on the sliding surface. Since it does not grow, it is not easily removed during bearing operation, and even if the oxide film is destroyed and the new surface is exposed, an oxide film is rapidly formed, so it has excellent seizure resistance, wear resistance, and corrosion resistance. Can be.
[0044]
Furthermore, a conventional bronze sintered bearing material that contains hard particles to improve wear resistance is the corrosion of bronze that comes into contact with the hard particles due to frictional heat between the hard particles and the mating shaft on the sliding surface during bearing operation. However, the hard bronze bearing material of the present invention containing hard particles has excellent corrosion resistance, so hard particles do not easily fall off, wear resistance, and seizure resistance. The ability to demonstrate long-term stability.
[0045]
In addition, the sintered aluminum bronze bearing material of the present invention has Cu or Cu alloy powder containing Cu as a main component and Fe, Ni, Mn, Sn, Pb, Bi, etc. as necessary, and wear resistance and seizure resistance. The sex can be further improved.
[0046]
Moreover, the aluminum bronze sintered bearing material of the present invention contains Al alloy foil or Al alloy powder containing Al as a main component and Fe, Ni, Mn, etc. as necessary, further improving wear resistance and seizure resistance. It can also be made.
[0047]
Furthermore, the aluminum bronze sintered bearing material of the present invention is hard particles that do not melt in the sintering process as Mo, W, Co, Fe 3 P, FeB, SiC, Si 3 N 4 , Fe 2 B, NiB, AlN, C Metals or non-metals such as can be added.
[0048]
Next, the wear test, seizure test and fatigue test results of the aluminum bronze sintered bearing material of the present invention will be described. Samples of the examples were prepared by mixing 0.1 to 15% by volume of Mo or C powder with Cu or Cu alloy powder (-60 mesh) produced by the atomizing method or Cu or Cu alloy powder produced by the atomizing method. Aluminum or aluminum alloy foil or powder is pressure-bonded to the sintered material surface by spraying on the back metal and sintered in a reducing atmosphere at a temperature of 750 to 1050 ° C. for 15 to 30 minutes. After densifying and sintering again in a reducing atmosphere at 750 to 1050 ° C. for 15 to 30 minutes, cold rolling was performed to complete an aluminum bronze sintered bearing material.
[0049]
In Table 1, Sample No. The composition of 1-21 is shown. No. Examples 1 to 13 are examples of the present invention. 14 to 21 are comparative examples. Example No. 5 of the present invention. Nos. 1, 2 and 9 to 12 are No. 1 so that the adhesion interface side with the steel back metal is a Cu-based sintered layer containing no Al. 3-8 and 13 completed the aluminum bronze sintered bearing material so that the adhesion interface side with the steel back metal was an aluminum bronze layer containing the same amount of Al as the sliding surface side.
[0050]
[Table 1]
Figure 0004349719
[0051]
No. 15 is 15% by weight of Al content outside the scope of the present invention. 16 and 17 have a hard particle (Mo, C) content of 17% by volume, and an aluminum bronze sintered bearing material is produced by the above sintering method so that the interface side with the steel back metal is a Cu-based sintered layer containing Al. It is manufactured.
[0052]
No. Nos. 14, 20, and 21 were prepared by manufacturing the Cu or Cu alloy powder (−60 mesh) shown in Table 1 by the atomizing method, and then bronzing the aluminum or aluminum alloy foil or powder by the above sintering method except for the step of pressure bonding. A sintered bearing material is manufactured.
[0053]
No. Nos. 18 and 19 are prepared by preparing an alloy powder of Cu alloy (−60 mesh) excluding Mo and C shown in Table 1 by the atomizing method, and mixing Mo or C so that the composition shown in Table 1 becomes aluminum or aluminum. A bronze sintered bearing material is manufactured by the above-described sintering method except for the step of pressure bonding an alloy foil or powder.
[0054]
The shape of the test specimen is a wear test, the seizure test is a flat plate, and the fatigue test is a half bearing shape.
[0055]
The conditions of the abrasion test conducted this time are as follows.
1. Testing machine Cylindrical flat plate friction and wear testing machine2. Sliding speed 60m / min
3. Load 2940N
4). Lubricating oil 10W-30
5. Oil temperature 100 ° C
6). Lubrication method Oil bath 7. Mating shaft S45C Roughness Ra0.2
8). Test time 1Hr
[0056]
The seizure test conditions performed this time are shown below.
1. Testing machine Cylindrical flat plate friction and wear testing machine2. Sliding speed 60m / min
3. Load every 98 N / 10 min Lubricating oil 10W-30
5. Oil temperature 100 ° C
6). Lubrication method Oil bath 7. Mating shaft S45C Roughness Ra0.2
8). Seizure criteria Friction surface back surface temperature is 200 ° C or higher.
The fatigue test conditions conducted this time are shown below.
1. Testing machine Underwood testing machine Rotation speed 3500rpm
3. Surface pressure 88.2 MPa
4). Lubricating oil 10W-30
5. Oil temperature 150 ° C
6). Lubrication method Forced lubrication 7. Mating shaft S45C Roughness Ra0.02
8). Fatigue evaluation Time when the bearing alloy is operated in a normal state without cracking.
Sample No. The results of the friction test, seizure test, and fatigue test of 1-21 are shown in the right column of Table 1.
[0059]
Example No. 5 of the present invention. Comparative Examples No. 1 to No. 13 are used as bearings in conventional internal combustion engines. Compared with 20 and 21, it can be seen that the wear resistance, seizure resistance, and fatigue resistance are all excellent.
[0060]
In the present invention, the effect of containing 0.1 to 13% by weight of Al is comparative example No. containing no Al. 14 is a Cu alloy containing only Al in the examples of the present invention. 1-4, 12, and 13 are excellent in wear resistance, seizure resistance, and fatigue resistance, and are comparative examples No. 1 containing Al beyond the Al content range of the present invention. No. 15 containing the upper limit of Al in the Al content range of the present invention. Nos. 12 and 13 are particularly excellent in fatigue resistance.
[0061]
The effect of the present invention containing 0.1 to 13% by weight of Al and 0.1 to 15% by volume of hard particles is the comparative example No. containing no Al and hard particles. No. 14 containing Al and hard particles in Examples of the present invention. Nos. 6 to 11 are excellent in wear resistance, seizure resistance and fatigue resistance, and No. 6 containing hard particles exceeding the hard particle content range of the present invention. 16 and 17, the Al content is the same and no hard particle containing the upper limit of the hard particle content range. 8 and 11 show excellent seizure resistance and fatigue resistance.
[0062]
Furthermore, comparative example No. which contains hard particles within the hard particle content range of the present invention and does not contain Al. 18 and 19, Example No. of the present invention containing the same amount of hard particles and Al. Nos. 7 and 10 are excellent in wear resistance, seizure resistance, and fatigue resistance. Nos. 18 and 19 have many hard particles falling off due to corrosion of the Cu alloy around the hard particles. 7 and 10 show that the amount of dropout is small and the corrosion resistance is excellent.
[0063]
The composition and thickness of the aluminum bronze layer are the composition of the Cu alloy powder, the composition of the Al alloy foil and powder, the spray thickness of the Cu or Cu alloy powder before the primary sintering, and the Al or Al alloy foil to be pressed. The desired state can be achieved by adjusting the thickness, the Al or Al alloy powder spraying thickness, the Al or Al alloy foil or powder rolling reduction ratio, and the sintering temperature during secondary sintering.
[0064]
In addition, the aluminum bronze sintered bearing material completed by the manufacturing method of the present invention can be subjected to the same heat treatment as an aluminum bronze bearing made of a conventional casting as a post-treatment, and has an aluminum bronze structure suitable for many bearing applications. It is possible.
[0065]
The reason why Al is not included in the Cu or Cu alloy on the steel back metal interface side is that the adhesion between the aluminum bronze layer and the Cu or Cu alloy layer, and the Cu or Cu alloy layer and the steel back metal is sufficient as a bearing material. Since the strength of the densely sintered Cu or Cu alloy layer is high and the sliding surface side is an aluminum bronze layer, the aluminum bronze of the present invention containing Al in the Cu or Cu alloy on the steel back metal interface side This is because it has the same performance as the sintered bearing material.
[0066]
The reason for limiting the aluminum bronze Al on the sliding surface side to 13% by weight or less (not including 0%) is that if it exceeds 13% by weight, it becomes too brittle as a bearing material and cannot be put to practical use. .
[0067]
Further, the reason for limiting the hard particles to 0.1 to 15% by volume is that if the amount is less than 0.1% by volume, the improvement in wear resistance and seizure resistance is insufficient, and if it exceeds 15% by volume, the bearing material becomes brittle. It is because it cannot pass for practical use.
[0068]
Furthermore, if necessary, the aluminum bronze sintered bearing material of the present invention may contain graphite, WS 2 , MoS 2 or the like that does not melt during the sintering process as a solid lubricant.
[0069]
【The invention's effect】
According to the present invention, it is possible to obtain an aluminum bronze sintered bearing material with a steel backing which could not be produced conventionally. Since the aluminum bronze sintered bearing material of the present invention can be steel-backed, the strength is higher than the conventional aluminum bronze solid bearing material, the bearing size can be reduced, and the cost can be reduced. Further, since the bearing and the housing can be closely adhered, fretting damage can be reduced and the life is long.
[0070]
Moreover, the aluminum bronze sintered bearing material of the present invention can be added with hard particles, and can further improve wear resistance and seizure resistance.
[0071]
In addition, the sintered aluminum bronze bearing material of the present invention is superior to conventional bronze sintered bearing materials in terms of seizure resistance, wear resistance, and corrosion resistance, and due to corrosion that occurs during bearing operation even when hard particles are added. The falling off of the hard particles can be extremely small.
[Brief description of the drawings]
FIG. 1 is a view for explaining a first embodiment of an aluminum bronze sintered bearing material and a manufacturing method thereof.
FIG. 2 is a view for explaining a second embodiment of the sintered aluminum bronze bearing material and the manufacturing method thereof.
FIG. 3 is a structural cross-sectional photograph of the aluminum bronze sintered bearing material of the first embodiment manufactured by the manufacturing method of the present invention.
FIG. 4 shows a structural cross-sectional photograph of an aluminum bronze sintered bearing material of a second embodiment manufactured by the manufacturing method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel strip 2 Cu or Cu alloy powder 3 Primary sintering furnace 4 Al or Al alloy foil 5 Uncoiler 6 Spreading tank 7 Rolling roll 8 Secondary sintering furnace 9 Rolling roll 10 Recoiler 11 Uncoiler 12 Spreading tank 13 Al or Al Alloy powder

Claims (5)

CuまたはCu合金の粉末または、CuまたはCu合金の粉末と硬質粒子との混合粉末を鋼裏金上に散布後焼結し、得られた焼結材表面にAlまたはAl合金の箔を圧着後焼結し前記鋼裏金上にCu系焼結層を積層することを特徴とするアルミニウム青銅焼結軸受材料の製造方法。  After spraying Cu or Cu alloy powder or mixed powder of Cu or Cu alloy powder and hard particles on the steel backing metal, sintering, and then bonding the Al or Al alloy foil on the surface of the obtained sintered material A method for producing an aluminum bronze sintered bearing material, characterized in that a Cu-based sintered layer is laminated on the steel backing metal. CuまたはCu合金の粉末または、CuまたはCu合金の粉末と硬質粒子との混合粉末を鋼裏金上に散布後焼結し、得られた焼結材表面にAlまたはAl合金の粉末を散布し圧着後焼結し前記鋼裏金上にCu系焼結層を積層することを特徴とするアルミニウム青銅焼結軸受材料の製造方法。  After spraying Cu or Cu alloy powder or mixed powder of Cu or Cu alloy powder and hard particles on the steel back metal, sintering and spraying Al or Al alloy powder on the surface of the obtained sintered material A method for producing an aluminum bronze sintered bearing material, comprising post-sintering and laminating a Cu-based sintered layer on the steel back metal. 鋼裏金と、CuまたはCu合金の粉末または、CuまたはCu合金の粉末と硬質粒子との混合粉末を前記鋼裏金上に散布後焼結し、得られた焼結材表面にAlまたはAl合金の箔を圧着後焼結し前記鋼裏金上に積層したCu系焼結層とを有し、前記Cu系焼結層は、Snを含まないCu系焼結層とし、前記鋼裏金との界面側はAl成分を含まないCuまたはCu合金からなり、表面の摺動面側は13重量%以下のAlを含有するCuまたはCu合金からなることを特徴とするアルミニウム青銅焼結軸受材料。A steel back metal and Cu or Cu alloy powder, or a mixed powder of Cu or Cu alloy powder and hard particles are dispersed on the steel back metal and sintered, and the surface of the obtained sintered material is made of Al or Al alloy. foil was sintered after crimping possess a Cu-based sintered layer which is laminated on the steel back metal, the Cu-based sintered layer, a Cu-based sintered layer containing no Sn, interface side between the steel back metal Is made of Cu or Cu alloy containing no Al component, and the sliding surface side of the surface is made of Cu or Cu alloy containing 13% by weight or less of Al . 鋼裏金と、CuまたはCu合金の粉末または、CuまたはCu合金の粉末と硬質粒子との混合粉末を前記鋼裏金上に散布後焼結し、得られた焼結材表面にAlまたはAl合金の粉末を散布し圧着後焼結し前記鋼裏金上に積層したCu系焼結層とを有し、前記Cu系焼結層は、Snを含まないCu系焼結層とし、前記鋼裏金との界面側はAl成分を含まないCuまたはCu合金からなり、表面の摺動面側は13重量%以下のAlを含有するCuまたはCu合金からなることを特徴とするアルミニウム青銅焼結軸受材料。A steel back metal and Cu or Cu alloy powder, or a mixed powder of Cu or Cu alloy powder and hard particles are dispersed on the steel back metal and sintered, and the surface of the obtained sintered material is made of Al or Al alloy. powder was sintered after spraying crimp the possess a Cu-based sintered layer which is laminated on the steel back metal, the Cu-based sintered layer, a Cu-based sintered layer containing no Sn, and the steel back metal An aluminum bronze sintered bearing material characterized in that the interface side is made of Cu or Cu alloy containing no Al component, and the sliding surface side is made of Cu or Cu alloy containing 13 wt% or less of Al . 前記Snを含まないCu系焼結層は、さらに、0.1〜15体積%の硬質粒子を含有するCuまたはCu合金からなることを特徴とする請求項3または請求項4に記載のアルミニウム青銅焼結軸受材料。The aluminum bronze according to claim 3 or 4 , wherein the Cu-based sintered layer containing no Sn is further made of Cu or a Cu alloy containing 0.1 to 15% by volume of hard particles. Sintered bearing material.
JP2000128838A 2000-04-28 2000-04-28 Aluminum bronze sintered bearing material and manufacturing method thereof Expired - Fee Related JP4349719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000128838A JP4349719B2 (en) 2000-04-28 2000-04-28 Aluminum bronze sintered bearing material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000128838A JP4349719B2 (en) 2000-04-28 2000-04-28 Aluminum bronze sintered bearing material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001303107A JP2001303107A (en) 2001-10-31
JP4349719B2 true JP4349719B2 (en) 2009-10-21

Family

ID=18638213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000128838A Expired - Fee Related JP4349719B2 (en) 2000-04-28 2000-04-28 Aluminum bronze sintered bearing material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4349719B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4794814B2 (en) * 2003-12-16 2011-10-19 大豊工業株式会社 Copper alloy sintered sliding material
JP5213791B2 (en) * 2009-04-28 2013-06-19 大同メタル工業株式会社 Slide bearing with back layer
JP2013023732A (en) * 2011-07-21 2013-02-04 Fukuda Metal Foil & Powder Co Ltd Al BRONZE SINTERED ALLOY-SLIDING MATERIAL AND METHOD FOR PRODUCING THE SAME
CN104259439B (en) * 2014-09-16 2016-10-05 西安理工大学 A kind of preparation method of aluminium bronze-rustless steel double-metal composite

Also Published As

Publication number Publication date
JP2001303107A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
JP4675563B2 (en) Bearing and manufacturing method thereof
KR100814656B1 (en) Free copper alloy sliding material
JP4215285B2 (en) Self-lubricating sintered sliding material and manufacturing method thereof
JP3859344B2 (en) Sliding material, sliding member and method of manufacturing the sliding member
JP3839740B2 (en) Sliding material
JP2008144253A (en) Copper-based slide material and its manufacturing method
JP2010533756A (en) Lead-free sintered lubricating material and sintered powder for its production
GB2084186A (en) Alloy for antifriction bearing layers and process of forming an antifriction layer on a steel supporting strip
JP2733736B2 (en) Copper-lead alloy bearings
JPH06192774A (en) Copper alloy plain bearing having high strength back plate and its production
JP3446809B2 (en) Multi-layer sintered sliding member and manufacturing method thereof
JP3861771B2 (en) Plain bearing and manufacturing method thereof
JP4349719B2 (en) Aluminum bronze sintered bearing material and manufacturing method thereof
CN112555284B (en) Sliding member
JP7389601B2 (en) sliding member
JP2001335812A (en) Lead-free plain bearing and its production method
US5665480A (en) Copper-lead alloy bearing
JP2001107106A (en) Coppery sintered sliding material
JP2001107162A (en) Bronze series sintered alloy, bearing using the same and their producing method
JP2003214433A (en) Manufacturing method of aluminum bronze bearing material
JP3308473B2 (en) Sliding metal and manufacturing method thereof
JPS5939481B2 (en) Multi-layer sintered sliding member and its manufacturing method
JPS5834538B2 (en) How to use it
JPH04339A (en) Copper-base sintered alloy excellent in wear resistance at high temperature
JP2005098294A (en) Swash plate and method for its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees