WO2016147930A1 - Composite sliding member and production process therefor - Google Patents
Composite sliding member and production process therefor Download PDFInfo
- Publication number
- WO2016147930A1 WO2016147930A1 PCT/JP2016/056970 JP2016056970W WO2016147930A1 WO 2016147930 A1 WO2016147930 A1 WO 2016147930A1 JP 2016056970 W JP2016056970 W JP 2016056970W WO 2016147930 A1 WO2016147930 A1 WO 2016147930A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal substrate
- oxide film
- resin layer
- sliding member
- metal
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
- B22F7/04—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/14—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/14—Special methods of manufacture; Running-in
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/20—Sliding surface consisting mainly of plastics
Definitions
- the present invention relates to a composite sliding member in which a resin layer having a sliding surface is provided on the surface of a metal substrate, and a method for manufacturing the same.
- Comparative Example 5 has a medium density of 6.2 g / cm 3 , but the heating temperature is as low as 350 ° C., so that the crushing strength is as low as 80 MPa even after treatment for 120 minutes.
- Comparative Example 10 has a density of 7.0 g / cm 3 and a high density, a heating temperature of 600 ° C. and a treatment time of 1 minute show a crushing strength of 160 MPa, but a dimensional change rate is as large as ⁇ 0.20%.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Sliding-Contact Bearings (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Powder Metallurgy (AREA)
Abstract
A composite sliding member which comprises a metallic base 2, a resin layer 3 disposed on a surface of the metallic base 2, and a sliding surface disposed on the resin layer 3. The metallic base 2 is constituted of a powder compact in which metal-powder particles (iron particles 10) have been bonded to one another with an oxide coating 11 disposed thereamong. The oxide coating 11 in a region extending from the surface of the metallic base 2 to a depth of 50 µm therefrom has a maximum thickness of 2 µm or less. Some of the resin layer 4 has infiltrated into the surface openings 13 of the metallic base 2.
Description
本発明は、金属基体の表面に、摺動面を有する樹脂層を設けてなる複合摺動部材及びその製造方法に関する。
The present invention relates to a composite sliding member in which a resin layer having a sliding surface is provided on the surface of a metal substrate, and a method for manufacturing the same.
例えば特許文献1には、筒状の金属基体(軸受外周部)をインサート部品として樹脂で射出成形することで、金属基体の内周面に樹脂層を形成したすべり軸受が示されている。このように、すべり軸受の大部分を金属で形成することで線膨張係数や吸水率が抑えられると共に、樹脂層に軸受面を設けることで摺動性が高められる。また、金属基体を焼結金属で形成することで、金属基体の内周面に形成された微小な凹部に樹脂が入り込んでアンカー効果が発揮され、金属基体と樹脂層との密着性が向上する。
For example, Patent Document 1 discloses a slide bearing in which a cylindrical metal substrate (bearing outer peripheral portion) is injection-molded with resin as an insert part to form a resin layer on the inner peripheral surface of the metal substrate. Thus, the linear expansion coefficient and the water absorption rate can be suppressed by forming the majority of the slide bearing with metal, and the slidability can be improved by providing the bearing surface on the resin layer. In addition, by forming the metal base with sintered metal, the resin enters the minute recesses formed on the inner peripheral surface of the metal base to exert an anchor effect, and the adhesion between the metal base and the resin layer is improved. .
焼結金属は、通常、圧粉工程、焼結工程、矯正(サイジング)工程を経て製造される。尚、以下では、金属粉末を圧粉成形した後に高温での焼結処理を施さないものを圧粉体と呼び、さらに焼結処理を施した焼結体と区別することとする。
Sintered metal is usually manufactured through a compacting process, a sintering process, and a straightening (sizing) process. In the following description, a metal powder that has been compacted and not subjected to a sintering process at a high temperature is referred to as a green compact, and is further distinguished from a sintered body that has been subjected to a sintering process.
上記の各工程うち、焼結工程は、鉄系材料の場合800℃以上の高温域で処理されるのが一般的であり、そのコストは、製造コスト全体の1/4~1/2を占める。さらに、高温での焼結工程を経ることにより、圧粉体が膨張‐収縮するため、目的の寸法ないし精度に収めるために矯正工程が不可欠となる。
Among the above processes, the sintering process is generally performed in a high temperature range of 800 ° C. or more in the case of an iron-based material, and its cost accounts for 1/4 to 1/2 of the entire manufacturing cost. . Furthermore, since the green compact expands and contracts through a high-temperature sintering process, a correction process is indispensable in order to achieve a target dimension or accuracy.
また、焼結工程は、一般に、窒素やアルゴンなどの不活性ガスや水素などの還元性ガス、またはそれらの混合ガス中、あるいは真空中など、非酸化性雰囲気中で行われる。これは、焼結時に金属粉末の表面に酸化物皮膜が形成されるのを抑制し、粒子間の融着を促進することが目的である。このような焼結工程を経ることで、金属粒子間の融着、ネッキングが起こり、強度が向上するのであるが、コスト高を招く上、上記のようなすべり軸受の金属基体としては過剰品質でもある。従って、より低温での処理で、すべり軸受の金属基体としての十分な強度が担保されれば、製造コストが低減できるだけでなく、寸法変化を抑制でき、矯正工程を省略することが可能となる。
In addition, the sintering process is generally performed in a non-oxidizing atmosphere such as an inert gas such as nitrogen or argon, a reducing gas such as hydrogen, a mixed gas thereof, or a vacuum. The purpose of this is to suppress the formation of an oxide film on the surface of the metal powder during sintering and to promote fusion between particles. Through such a sintering process, fusion and necking between metal particles occur, and the strength is improved. However, in addition to the high cost, the metal base of the slide bearing as described above may be of excessive quality. is there. Therefore, if sufficient strength as a metal base of the slide bearing is ensured by processing at a lower temperature, not only the manufacturing cost can be reduced, but also the dimensional change can be suppressed and the correction process can be omitted.
上記のような高温での焼結工程を経ることなく圧粉体を高強度化させる方法として、例えば特許文献2には、鉄粉からなる圧粉体を酸化性雰囲気中で400~700℃に加熱して各鉄粉の表面に鉄酸化物を生成させ、この鉄酸化物により鉄粉同士を固結させる技術が示されている。具体的には、圧粉体を加熱することで、まず個々の鉄粉の表面が酸化して鉄酸化物が生成され、この鉄酸化物が圧粉体内の空孔を充填し同時に互いに網状につながることで、個々の粒子が強固に結合される。
As a method for increasing the strength of a green compact without undergoing a sintering process at a high temperature as described above, for example, Patent Document 2 discloses that a green compact made of iron powder is heated to 400 to 700 ° C. in an oxidizing atmosphere. A technique is shown in which iron oxide is generated on the surface of each iron powder by heating and the iron powder is solidified by this iron oxide. Specifically, by heating the green compact, the surface of each iron powder is first oxidized to produce iron oxide, which fills the pores in the green compact and simultaneously forms a network. By connecting, individual particles are firmly bonded.
しかし、特許文献2の技術では、圧粉体を酸化性雰囲気中で加熱して酸化物を生成させることで、圧粉体の内部空孔が酸化物で埋められてしまうため、圧粉体の表面開口率が大幅に低下する。このような圧粉体を複合摺動部材の金属基体に適用すると、金属基体の表面に設けられた凹部に樹脂が入り込みにくくなり、金属基体と樹脂層との密着力が低下する。
However, in the technique of Patent Document 2, by heating the green compact in an oxidizing atmosphere to generate an oxide, the internal pores of the green compact are filled with oxide. The surface aperture ratio is greatly reduced. When such a green compact is applied to the metal base of the composite sliding member, it becomes difficult for the resin to enter the recess provided on the surface of the metal base, and the adhesion between the metal base and the resin layer is reduced.
以上のような問題は、すべり軸受に限らず、金属基体の表面にインサート成形により樹脂層を設けた複合摺動部材において、同様に生じる。
The above problems occur not only in the sliding bearing but also in the composite sliding member in which the resin layer is provided on the surface of the metal substrate by insert molding.
以上の事情に鑑み、本発明が解決すべき課題は、圧粉体からなる金属基体の表面にインサート成形により樹脂層を設けた複合摺動部材において、金属基体と樹脂層とを強固に密着させることにある。
In view of the above circumstances, the problem to be solved by the present invention is to firmly adhere the metal substrate and the resin layer in the composite sliding member in which the resin layer is provided on the surface of the metal substrate made of the green compact by insert molding. There is.
前記課題を解決するためになされた本発明に係る複合摺動部材は、金属基体と、前記金属基体の表面に設けられた樹脂層と、前記樹脂層に設けられた摺動面とを備える。前記金属基体は、金属粉末の粒子同士を酸化物被膜を介して結合した圧粉体からなる。前記金属基体の表面から深さ50μm以内の領域における前記酸化物皮膜の最大膜厚は、2μm以下である。前記金属基体の表面開口には、前記樹脂層の一部が入り込んでいる。
A composite sliding member according to the present invention made to solve the above-described problems includes a metal base, a resin layer provided on the surface of the metal base, and a sliding surface provided on the resin layer. The metal substrate is made of a green compact in which metal powder particles are bonded together through an oxide film. The maximum film thickness of the oxide film in a region within a depth of 50 μm from the surface of the metal substrate is 2 μm or less. A part of the resin layer enters the surface opening of the metal substrate.
また、前記課題を解決するためになされた本発明に係る複合摺動部材の製造方法は、金属粉末を圧縮して圧粉体を成形する工程と、前記圧粉体を酸化性雰囲気中で加熱処理することにより、前記金属粉末の粒子同士を、各粒子の表面に生成される酸化物被膜を介して結合して金属基体を形成する工程と、前記金属基体をインサート部品として樹脂で射出成形することにより、前記金属基体の表面に、摺動面を有する樹脂層を形成する工程とを有する。前記金属基体の表面から深さ50μm以内の領域における前記酸化物被膜の最大膜厚が2μm以下となるように、前記圧粉体の加熱処理の条件を設定する。
In addition, the manufacturing method of the composite sliding member according to the present invention made to solve the above problems includes a step of compressing a metal powder to form a green compact, and heating the green compact in an oxidizing atmosphere. By processing, the metal powder particles are bonded to each other through an oxide film formed on the surface of each particle to form a metal base, and the metal base is used as an insert part to perform injection molding with a resin. And a step of forming a resin layer having a sliding surface on the surface of the metal substrate. Conditions for the heat treatment of the green compact are set so that the maximum film thickness of the oxide film in a region within a depth of 50 μm from the surface of the metal substrate is 2 μm or less.
このように、金属基体(圧粉体)の表層における酸化物皮膜を極薄(最大膜厚2μm以下)にすることで、金属基体の表面開口が酸化物皮膜で埋められる割合が低減され、金属基体の表層における空孔率(表面開口率)が高められる。この金属基体の表面開口に樹脂を入り込ませることにより、金属基体と樹脂層とを強固に固着することができる。
Thus, by making the oxide film on the surface of the metal substrate (green compact) extremely thin (maximum film thickness of 2 μm or less), the ratio of filling the surface opening of the metal substrate with the oxide film is reduced, and the metal The porosity (surface aperture ratio) in the surface layer of the substrate is increased. By allowing the resin to enter the surface opening of the metal substrate, the metal substrate and the resin layer can be firmly fixed.
圧粉体を酸化性雰囲気中で加熱処理すると、圧粉体の内部(具体的には、表面から深さ300μm±10μmの領域)は、圧粉体の表層と比べて酸化性ガスが入り込みにくいため、酸化物皮膜が形成されにくい。従って、上記のように、金属基体の表層に形成される酸化物皮膜を薄くすると、金属基体の内部に形成される酸化物皮膜はさらに薄くなり、例えば、表層中の酸化物皮膜の最大膜厚の1/2以下となることがある。本発明者らの検証によれば、このような超極薄の酸化物皮膜でも、複合摺動部材の金属基体として必要な強度(具体的には、圧環強さ100MPa以上)が得られることが判明した。
When the green compact is heat-treated in an oxidizing atmosphere, the oxidizing gas is less likely to enter the inside of the green compact (specifically, a region having a depth of 300 μm ± 10 μm from the surface) compared to the surface layer of the green compact. Therefore, it is difficult to form an oxide film. Therefore, as described above, when the oxide film formed on the surface layer of the metal substrate is thinned, the oxide film formed inside the metal substrate is further thinned. For example, the maximum film thickness of the oxide film in the surface layer May be less than or equal to 1/2. According to the verification by the present inventors, even with such an ultra-thin oxide film, it is possible to obtain the strength necessary for the metal base of the composite sliding member (specifically, the crushing strength is 100 MPa or more). found.
圧粉体を加熱処理する際の酸化性雰囲気としては、例えば水蒸気雰囲気が考えられる。しかし、圧粉体を水蒸気雰囲気中で加熱すると、金属粉末の表面に酸化物皮膜が生成されやすいため、金属基体の表層における酸化物皮膜の厚さを2μm以下に制御することが困難となる。また、炉内に十分な量の水蒸気を導入し、且つ、炉内を高温高圧に保持するためには、設備が大掛かりになり、コスト高を招く。そこで、圧粉体の加熱処理は、水蒸気雰囲気よりも酸化性被膜の生成速度が遅い酸化性雰囲気、具体的には、酸素又は空気、あるいはこれらに対して不活性ガスを混合した酸化性ガス雰囲気中で行うことが好ましい。尚、空気雰囲気とは、純空気を炉内に供給した雰囲気や、雰囲気制御しない大気雰囲気を含む。
As the oxidizing atmosphere when the green compact is heat-treated, for example, a steam atmosphere is conceivable. However, when the green compact is heated in a water vapor atmosphere, an oxide film is likely to be formed on the surface of the metal powder, making it difficult to control the thickness of the oxide film on the surface of the metal substrate to 2 μm or less. In addition, in order to introduce a sufficient amount of water vapor into the furnace and keep the inside of the furnace at a high temperature and high pressure, the equipment becomes large and the cost increases. Therefore, the heat treatment of the green compact is performed in an oxidizing atmosphere in which the generation rate of the oxidizing film is slower than that in the water vapor atmosphere, specifically, an oxygen gas atmosphere in which an inert gas is mixed with oxygen or air. It is preferable to carry out in the inside. The air atmosphere includes an atmosphere in which pure air is supplied into the furnace and an air atmosphere in which the atmosphere is not controlled.
上記のように表層における酸化物皮膜を薄くすることで、金属基体の表面開口率を15%以上とすることが可能となる。
As described above, by reducing the thickness of the oxide film on the surface layer, the surface opening ratio of the metal substrate can be made 15% or more.
以上のように、圧粉体からなる金属基体の表面にインサート成形により樹脂層を設けた複合摺動部材において、金属基体の表層に生成される酸化物皮膜の最大膜厚を2μm以下に抑えることで、金属基体と樹脂層とを強固に固着することができる。
As described above, in the composite sliding member in which the resin layer is provided on the surface of the metal base made of green compact by insert molding, the maximum film thickness of the oxide film generated on the surface layer of the metal base is suppressed to 2 μm or less. Thus, the metal substrate and the resin layer can be firmly fixed.
以下、本発明に係る複合摺動部材を、内周面に軸受面を有するすべり軸受に適用した場合について説明する。
Hereinafter, the case where the composite sliding member according to the present invention is applied to a slide bearing having a bearing surface on the inner peripheral surface will be described.
図1に示すすべり軸受1は、筒状(図示例では円筒状)を成した金属基体2と、金属基体2の内周面2aに設けられた樹脂層3とを備える。樹脂層3の内周面3aは、内周に挿入された軸4を支持する摺動面(軸受面)として機能する。
1 includes a metal base 2 having a cylindrical shape (cylindrical in the illustrated example) and a resin layer 3 provided on an inner peripheral surface 2a of the metal base 2. The inner peripheral surface 3a of the resin layer 3 functions as a sliding surface (bearing surface) that supports the shaft 4 inserted in the inner periphery.
金属基体2は、鉄粉を主体とする圧粉体からなる。図2A及び図2Bに示すように、鉄粒子10の表面には鉄酸化物皮膜11が生成されている。この酸化物皮膜11を介して、鉄粒子10同士が結合されている。尚、全ての鉄粒子10同士が酸化物皮膜11を介して結合されているわけではなく、一部の鉄粒子10同士は、酸化物皮膜11を介することなく直接接触して、融着している。
The metal substrate 2 is made of a green compact mainly composed of iron powder. As shown in FIGS. 2A and 2B, an iron oxide film 11 is formed on the surface of the iron particles 10. The iron particles 10 are bonded to each other through the oxide film 11. Not all the iron particles 10 are bonded to each other through the oxide film 11, and some of the iron particles 10 are directly in contact with each other without the oxide film 11 and fused. Yes.
金属基体2の表層(表面から深さ50μm以内の領域)における鉄酸化物皮膜11の最大膜厚は、2μm以下となっている。尚、酸化物皮膜の「最大」膜厚とは、酸化物皮膜のうち、偶発的に形成された局部的な厚肉部を除く部分における最大膜厚を言うものとする。このように、金属基体2の表層における鉄酸化物皮膜11の膜厚を薄くすることで、金属基体2の表面開口13が鉄酸化物皮膜11で埋められにくくなるため、金属基体2の表面に、内部空孔12と連通した表面開口13が多数形成される。具体的には、金属基体2の表面開口率が、15%以上、好ましくは20%以上とされる。尚、表面開口率とは、金属基体2の表面に開口した空孔の単位面積当たりに締める総面積の割合(面積比)である。また、金属基体2の表面開口率は、樹脂層3との接触面(本実施形態では内周面2a)で測定することが好ましいが、本実施形態では、金属基体2を構成する圧粉体に矯正(サイジング)が施されておらず、全表面の表面開口率は略一定であると推定されるため、内周面2a以外の表面(例えば外周面2b)の開口率を測定してもよい。
The maximum film thickness of the iron oxide film 11 on the surface layer of the metal substrate 2 (region within a depth of 50 μm from the surface) is 2 μm or less. The “maximum” film thickness of the oxide film refers to the maximum film thickness in a portion of the oxide film excluding a locally thick part formed accidentally. Thus, by reducing the film thickness of the iron oxide film 11 on the surface layer of the metal substrate 2, the surface opening 13 of the metal substrate 2 is less likely to be filled with the iron oxide film 11. A large number of surface openings 13 communicating with the internal holes 12 are formed. Specifically, the surface opening ratio of the metal substrate 2 is 15% or more, preferably 20% or more. The surface opening ratio is the ratio (area ratio) of the total area to be tightened per unit area of the holes opened on the surface of the metal substrate 2. In addition, the surface area ratio of the metal substrate 2 is preferably measured on the contact surface with the resin layer 3 (in this embodiment, the inner peripheral surface 2a). In this embodiment, the green compact constituting the metal substrate 2 is used. Is not subjected to correction (sizing) and the surface aperture ratio of the entire surface is estimated to be substantially constant. Therefore, even if the aperture ratio of the surface other than the inner peripheral surface 2a (for example, the outer peripheral surface 2b) is measured. Good.
また、表面開口率が大きすぎると、内部の空孔率が大きくなり、金属基体2の強度が不足するおそれがある。従って、金属基体2の表面開口率は、50%以下、好ましくは40%以下とすることが望ましい。
Also, if the surface opening ratio is too large, the internal porosity increases, and the strength of the metal substrate 2 may be insufficient. Therefore, it is desirable that the surface aperture ratio of the metal substrate 2 is 50% or less, preferably 40% or less.
図2Bに示す金属基体2の内部における鉄酸化物皮膜11の膜厚は、図2Aに示す金属基体2の表層における鉄酸化物皮膜11の膜厚よりも薄くなっている。具体的には、金属基体2の内部(表面から深さ300μm±10μmの領域)における鉄酸化物皮膜11の最大膜厚が、金属基体2の表層における鉄酸化物皮膜11の最大膜厚の少なくとも1/2以下、あるいは1/5以下、さらには1/10以下となっている。このように内部における酸化物皮膜の膜厚が極小であっても、すべり軸受等の複合摺動部品として要求される強度を有しており、具体的には圧環強さ100MPa以上となっている。
The film thickness of the iron oxide film 11 inside the metal substrate 2 shown in FIG. 2B is thinner than the film thickness of the iron oxide film 11 on the surface layer of the metal substrate 2 shown in FIG. 2A. Specifically, the maximum film thickness of the iron oxide film 11 inside the metal substrate 2 (region having a depth of 300 μm ± 10 μm from the surface) is at least the maximum film thickness of the iron oxide film 11 on the surface layer of the metal substrate 2. It is 1/2 or less, or 1/5 or less, and further 1/10 or less. Thus, even if the film thickness of the oxide film inside is minimal, it has the strength required as a composite sliding part such as a slide bearing, specifically, the crushing strength is 100 MPa or more. .
樹脂層3は、金属基体2をインサート部品とした樹脂の射出成形で形成される。樹脂層3の外周面3bは、金属基体2の内周面2aに密着している。詳しくは、金属基体2の内周面2aに設けられた無数の微小な表面開口13に、樹脂層3の一部が入り込んでいる。これにより、アンカー効果が発揮され、金属基体2の内周面2aと樹脂層3の外周面3bとが強固に固着する。
The resin layer 3 is formed by resin injection molding using the metal substrate 2 as an insert part. The outer peripheral surface 3 b of the resin layer 3 is in close contact with the inner peripheral surface 2 a of the metal substrate 2. Specifically, a part of the resin layer 3 enters a myriad of minute surface openings 13 provided on the inner peripheral surface 2 a of the metal base 2. Thereby, an anchor effect is exhibited and the inner peripheral surface 2a of the metal base 2 and the outer peripheral surface 3b of the resin layer 3 are firmly fixed.
樹脂層3の材料は、樹脂層の要求特性に応じて任意に決定できる。樹脂材料の主成分となる合成樹脂としては、例えば、ポリアミド(PA)樹脂、ポリカーボネート(PC)樹脂、ポリアセタール(POM)樹脂、全芳香族ポリエステル樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルイミド(PEI)樹脂、射出成形可能なポリイミド(PI)樹脂、ポリテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)樹脂、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)樹脂、エチレン-テトラフルオロエチレン共重合体(ETFE)樹脂などの射出成形可能なフッ素樹脂(ポリフッ化オレフィン系樹脂)、射出成形可能なPE樹脂などのオレフィン系樹脂などが挙げられる。これらの各合成樹脂は、単独で使用してもよく、2種類以上混合したポリマーアロイであってもよい。
The material of the resin layer 3 can be arbitrarily determined according to the required characteristics of the resin layer. Examples of the synthetic resin as the main component of the resin material include polyamide (PA) resin, polycarbonate (PC) resin, polyacetal (POM) resin, wholly aromatic polyester resin, polyphenylene sulfide (PPS) resin, polyether ether ketone ( PEEK resin, polyamideimide (PAI) resin, polyetherimide (PEI) resin, injection moldable polyimide (PI) resin, polytetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) resin, tetrafluoroethylene Olefin resins such as hexafluoropropylene copolymer (FEP) resin, ethylene-tetrafluoroethylene copolymer (ETFE) resin such as injection moldable fluororesin (polyfluorinated olefin resin), and injection moldable PE resin Etc., and the like. Each of these synthetic resins may be used alone or may be a polymer alloy in which two or more kinds are mixed.
これらの中でも、射出成形可能なPE樹脂を主成分とし、耐摩耗性の改善を図る充填材を含む材料を用いることが好ましい。このような充填材としては、例えばポリテトラフルオロエチレン(PTFE)樹脂や、非射出成形性の超高分子量ポリエチレン(UHMWPE)樹脂などが挙げられる。また、摩擦摩耗特性を改善し、また、線膨張係数を小さくする充填材を添加してもよい。このような充填材としては、例えばポリテトラフルオロエチレン(PTFE)樹脂、非射出成形性の超高分子量ポリエチレン(UHMWPE)樹脂、ガラス繊維、炭素繊などの繊維類、炭酸カルシウムやタルク、シリカ、クレー、マイカなどの鉱物類、硼酸アルミニウムウィスカー、チタン酸カリウムウィスカーなどの無機ウィスカー類、ポリイミド樹脂やポリベンゾイミダゾールなどの各種耐熱性樹脂などが挙げられる。さらに、帯電防止剤(カーボンナノ繊維、カーボンブラック、黒鉛など)、離型剤、難燃剤、耐候性改良剤、酸化防止剤、顔料などの充填材を添加してもよい。以上のような充填材は、適宜組み合わせて使用することができる。
Among these, it is preferable to use a material containing a filler that is mainly composed of injection-moldable PE resin and improves wear resistance. Examples of such a filler include polytetrafluoroethylene (PTFE) resin and non-injectable ultrahigh molecular weight polyethylene (UHMWPE) resin. Moreover, you may add the filler which improves a friction wear characteristic and makes a linear expansion coefficient small. Examples of such fillers include polytetrafluoroethylene (PTFE) resin, non-injectable ultra high molecular weight polyethylene (UHMWPE) resin, fibers such as glass fiber and carbon fiber, calcium carbonate, talc, silica, clay And minerals such as mica, inorganic whiskers such as aluminum borate whisker and potassium titanate whisker, and various heat resistant resins such as polyimide resin and polybenzimidazole. Furthermore, fillers such as antistatic agents (carbon nanofibers, carbon black, graphite, etc.), mold release agents, flame retardants, weather resistance improvers, antioxidants, and pigments may be added. The fillers as described above can be used in appropriate combination.
樹脂層3が温度変化に伴って膨張あるいは収縮すると、樹脂層3の外周面3bは金属基体2で拘束されているため、樹脂層3の内周面3aが縮径あるいは拡径する。その結果、軸受面と軸との間の隙間が過少となってトルクの増大を招いたり、隙間が過大となって軸にがたつきが生じたりする恐れがある。このため、樹脂層3の線膨張係数(1/℃)×肉厚(μm)は、0.15以下がよく、0.13以下が好ましく、0.10以下がさらに好ましい。また、成形性を考慮すると、樹脂層3の線膨張係数×肉厚は0.003以上、好ましくは0.01以上、さらに好ましくは0.015以上とすることが望ましい。
When the resin layer 3 expands or contracts as the temperature changes, the outer peripheral surface 3b of the resin layer 3 is constrained by the metal substrate 2, so that the inner peripheral surface 3a of the resin layer 3 is reduced or expanded. As a result, the clearance between the bearing surface and the shaft may be too small, resulting in an increase in torque, or the clearance may be excessive and the shaft may be rattled. For this reason, the linear expansion coefficient (1 / ° C.) × thickness (μm) of the resin layer 3 is preferably 0.15 or less, preferably 0.13 or less, and more preferably 0.10 or less. In consideration of moldability, the linear expansion coefficient × thickness of the resin layer 3 is 0.003 or more, preferably 0.01 or more, more preferably 0.015 or more.
樹脂層3の肉厚は、100~500μmとすることが好ましい。尚、本発明における「樹脂層3の肉厚」とは、金属基体2の表面開口に入り込まない部分の厚さ(径方向厚さ)である。樹脂層3の肉厚が100μm未満では、長期使用時の耐久性に劣るおそれがある。一方、樹脂層3の肉厚が500μmを超えると、ヒケが発生し寸法精度が低下する、摩擦による熱が金属基体2に逃げにくく摺動面の温度が高くなる、荷重による変形量が大きくなる、摺動面における軸との接触面積が大きくなり摩擦力及び摩擦発熱が高くなる、といった問題が生じる。
The thickness of the resin layer 3 is preferably 100 to 500 μm. The “thickness of the resin layer 3” in the present invention is the thickness (diameter direction thickness) of the portion that does not enter the surface opening of the metal substrate 2. If the thickness of the resin layer 3 is less than 100 μm, the durability during long-term use may be poor. On the other hand, if the thickness of the resin layer 3 exceeds 500 μm, sink marks are generated and the dimensional accuracy is lowered. Heat due to friction is difficult to escape to the metal base 2 and the temperature of the sliding surface is increased. As a result, there is a problem that the contact area with the shaft on the sliding surface increases and the frictional force and the heat generated by friction increase.
以下、すべり軸受1の製造方法を、金属基体2の製造方法を中心に説明する。
Hereinafter, the manufacturing method of the slide bearing 1 will be described focusing on the manufacturing method of the metal base 2.
すべり軸受1は、図3に示すように、混合工程、圧粉工程、脱脂工程、及び酸化工程を経て金属基体2を形成する工程と、この金属基体2を用いたインサート成形により樹脂層3を形成するインサート成形工程とを経て製造される。以下、各工程を詳しく説明する。
As shown in FIG. 3, the plain bearing 1 has a resin layer 3 formed by a step of forming a metal base 2 through a mixing step, a compacting step, a degreasing step, and an oxidation step, and insert molding using the metal base 2. It is manufactured through an insert molding process to be formed. Hereinafter, each process will be described in detail.
(1)混合工程
混合工程は、各種金属粉末を混合し、原料粉末を作製する工程である。本実施形態の原料粉末は、鉄粉を主に含む。鉄粉は、製法(例えば、アトマイズ法、還元法、スタンプ法、カルボニル法など)を問わず使用可能である。また、主成分が鉄である合金粉(例えば、予合金化したプレアロイ粉、部分的に拡散合金化させた部分拡散合金粉)や、複数種の金属粉を事前に混合したプレミックス粉を使用することも可能である。また、潤滑性向上や高強度化などのため、Sn、Znなどの低融点金属粉末、黒鉛やカーボンブラックなどの炭素系粉末を原料粉末に適宜添加してもよい。 (1) Mixing process A mixing process is a process of mixing various metal powders and producing raw material powder. The raw material powder of this embodiment mainly contains iron powder. Iron powder can be used regardless of the production method (for example, atomization method, reduction method, stamp method, carbonyl method, etc.). Also, alloy powders whose main component is iron (for example, pre-alloyed pre-alloy powder, partially diffusion-alloyed partial diffusion alloy powder) or pre-mixed powders premixed with multiple types of metal powders are used. It is also possible to do. In addition, in order to improve lubricity, increase strength, etc., low melting point metal powders such as Sn and Zn, and carbon-based powders such as graphite and carbon black may be appropriately added to the raw material powder.
混合工程は、各種金属粉末を混合し、原料粉末を作製する工程である。本実施形態の原料粉末は、鉄粉を主に含む。鉄粉は、製法(例えば、アトマイズ法、還元法、スタンプ法、カルボニル法など)を問わず使用可能である。また、主成分が鉄である合金粉(例えば、予合金化したプレアロイ粉、部分的に拡散合金化させた部分拡散合金粉)や、複数種の金属粉を事前に混合したプレミックス粉を使用することも可能である。また、潤滑性向上や高強度化などのため、Sn、Znなどの低融点金属粉末、黒鉛やカーボンブラックなどの炭素系粉末を原料粉末に適宜添加してもよい。 (1) Mixing process A mixing process is a process of mixing various metal powders and producing raw material powder. The raw material powder of this embodiment mainly contains iron powder. Iron powder can be used regardless of the production method (for example, atomization method, reduction method, stamp method, carbonyl method, etc.). Also, alloy powders whose main component is iron (for example, pre-alloyed pre-alloy powder, partially diffusion-alloyed partial diffusion alloy powder) or pre-mixed powders premixed with multiple types of metal powders are used. It is also possible to do. In addition, in order to improve lubricity, increase strength, etc., low melting point metal powders such as Sn and Zn, and carbon-based powders such as graphite and carbon black may be appropriately added to the raw material powder.
さらに、後述する圧粉工程における原料粉末と金型との潤滑、あるいは原料粉末同士の潤滑を担保するべく、潤滑剤を原料粉末に添加してもよい。潤滑剤としては、金属セッケンやアミドワックスなどが使用できる。潤滑剤は、粉末として原料粉末に混合する他、上記に挙げた潤滑剤を溶液に分散させ、金属粉末に噴霧又は浸漬させ、溶剤成分を揮発・除去することで、潤滑剤を金属粉末の表面に被覆させてもよい。
Furthermore, a lubricant may be added to the raw material powder in order to ensure the lubrication between the raw material powder and the mold in the compacting step, which will be described later, or between the raw material powders. As the lubricant, metal soap or amide wax can be used. The lubricant is mixed with the raw material powder as a powder, and the lubricant listed above is dispersed in a solution, sprayed or immersed in the metal powder, and the solvent component is volatilized and removed to remove the lubricant on the surface of the metal powder. May be coated.
また、成形性を確保するために、原料粉末にバインダーを添加してもよい。バインダーとしては、炭化水素系樹脂やワックス、ポリビニルアルコールなどが挙げられる。バインダーは、主原料粉末に添加、噴霧して使用され、粉末間の結合力を増加させる役割を果たす。ただし、バインダーを添加することで成形体の密度が低下するので、注意が必要となる。
Also, in order to ensure moldability, a binder may be added to the raw material powder. Examples of the binder include hydrocarbon resins, waxes, polyvinyl alcohol, and the like. The binder is used by being added to and sprayed on the main raw material powder and plays a role of increasing the bonding force between the powders. However, since the density of a molded object falls by adding a binder, attention is required.
(2)圧粉工程
圧粉工程は、上記混合工程で作製した原料粉末を金型に供給し、圧粉成形することで、円筒状の圧粉体を得る工程である。圧粉工程の手法は特に問わず、一軸加圧成形の他、多軸CNCプレスによる成形、射出成形(MIM)などが適用可能である。 (2) Compacting step The compacting step is a step of obtaining a cylindrical compact by supplying the raw material powder produced in the mixing step to a mold and compacting it. The method of the compacting process is not particularly limited, and other than uniaxial pressure molding, molding by a multi-axis CNC press, injection molding (MIM), and the like are applicable.
圧粉工程は、上記混合工程で作製した原料粉末を金型に供給し、圧粉成形することで、円筒状の圧粉体を得る工程である。圧粉工程の手法は特に問わず、一軸加圧成形の他、多軸CNCプレスによる成形、射出成形(MIM)などが適用可能である。 (2) Compacting step The compacting step is a step of obtaining a cylindrical compact by supplying the raw material powder produced in the mixing step to a mold and compacting it. The method of the compacting process is not particularly limited, and other than uniaxial pressure molding, molding by a multi-axis CNC press, injection molding (MIM), and the like are applicable.
通常、焼結部品においては密度が高い方が強度は向上する。しかし、本実施形態のように、圧粉体に酸化処理を施すことで高強度化を図る場合は、圧粉密度が高すぎると、圧粉体内部まで空気等の酸化性ガスが侵入できず、酸化物皮膜の形成が圧粉体のごく表層に限られるため、却って強度が低下する恐れがある。この点に鑑み、圧粉密度は、6.8g/cm3以下、好ましくは6.4g/cm3以下とするのがよい。一方、圧粉密度が低すぎると、取扱い時に欠けや割れが発生してしまう(ラトラ値が大きい)、粒子間距離が長過ぎて酸化物皮膜が粒子間にわたって形成されない、といった懸念がある。この点に鑑み、圧粉密度は、5.8g/cm3以上、好ましくは6.0g/cm3以上とするのがよい。尚、圧粉密度の測定は、寸法測定法による。
Usually, in a sintered part, the higher the density, the higher the strength. However, as in this embodiment, in the case of increasing the strength by subjecting the green compact to oxidation treatment, if the density of the green compact is too high, an oxidizing gas such as air cannot penetrate into the green compact. In addition, since the formation of the oxide film is limited to the very surface layer of the green compact, the strength may be lowered. In view of this point, the green density should be 6.8 g / cm 3 or less, preferably 6.4 g / cm 3 or less. On the other hand, if the powder density is too low, chipping or cracking may occur during handling (large rattra value), and there is a concern that the interparticle distance is too long to form an oxide film between the particles. In view of this point, the green density should be 5.8 g / cm 3 or more, preferably 6.0 g / cm 3 or more. In addition, the measurement of a compacting density is based on the dimension measuring method.
(3)脱脂工程
脱脂工程は、圧粉体を加熱して、圧粉体に含まれる潤滑剤成分を除去(脱ろう)する工程である。本実施形態の脱脂工程は、潤滑剤の分解温度より高く、後述の酸化工程よりも低い温度で行われ、例えば350℃で90分間加熱される。従来の手法では、圧粉体に含まれる潤滑剤成分は、焼結工程において高温に保持されるために分解し、焼結後の製品中には含まれない。しかし、本発明を適用した場合、圧粉体の密度や処理温度、保持時間によっては潤滑剤成分が残存し得る。そのため、酸化処理に先立ち、あらかじめ潤滑剤成分を分解・除去するための脱脂工程を設け、脱脂工程後に連続して同じ雰囲気で酸化処理をする、といった手法を取ることが望ましい。ただし、脱脂工程を設けずに、潤滑剤を含有したまま酸化処理をしても、高強度化が図れることは確認済みである。また、脱脂工程を、別途の加熱装置を用いて、酸化工程とは異なる雰囲気(例えば、不活性ガスや還元性ガス、真空中など)で実施してもよい。 (3) Degreasing process The degreasing process is a process in which the green compact is heated to remove (dewax) the lubricant component contained in the green compact. The degreasing process of this embodiment is performed at a temperature higher than the decomposition temperature of the lubricant and lower than the oxidation process described later, and is heated at 350 ° C. for 90 minutes, for example. In the conventional method, the lubricant component contained in the green compact is decomposed because it is kept at a high temperature in the sintering process, and is not contained in the sintered product. However, when the present invention is applied, the lubricant component may remain depending on the density, processing temperature, and holding time of the green compact. Therefore, it is desirable to take a technique in which a degreasing process for decomposing and removing the lubricant component is provided in advance prior to the oxidation process, and the oxidation process is continuously performed in the same atmosphere after the degreasing process. However, it has been confirmed that high strength can be achieved even if an oxidation treatment is carried out while containing a lubricant without providing a degreasing step. In addition, the degreasing step may be performed in an atmosphere (for example, an inert gas, a reducing gas, or in a vacuum) different from the oxidation step using a separate heating device.
脱脂工程は、圧粉体を加熱して、圧粉体に含まれる潤滑剤成分を除去(脱ろう)する工程である。本実施形態の脱脂工程は、潤滑剤の分解温度より高く、後述の酸化工程よりも低い温度で行われ、例えば350℃で90分間加熱される。従来の手法では、圧粉体に含まれる潤滑剤成分は、焼結工程において高温に保持されるために分解し、焼結後の製品中には含まれない。しかし、本発明を適用した場合、圧粉体の密度や処理温度、保持時間によっては潤滑剤成分が残存し得る。そのため、酸化処理に先立ち、あらかじめ潤滑剤成分を分解・除去するための脱脂工程を設け、脱脂工程後に連続して同じ雰囲気で酸化処理をする、といった手法を取ることが望ましい。ただし、脱脂工程を設けずに、潤滑剤を含有したまま酸化処理をしても、高強度化が図れることは確認済みである。また、脱脂工程を、別途の加熱装置を用いて、酸化工程とは異なる雰囲気(例えば、不活性ガスや還元性ガス、真空中など)で実施してもよい。 (3) Degreasing process The degreasing process is a process in which the green compact is heated to remove (dewax) the lubricant component contained in the green compact. The degreasing process of this embodiment is performed at a temperature higher than the decomposition temperature of the lubricant and lower than the oxidation process described later, and is heated at 350 ° C. for 90 minutes, for example. In the conventional method, the lubricant component contained in the green compact is decomposed because it is kept at a high temperature in the sintering process, and is not contained in the sintered product. However, when the present invention is applied, the lubricant component may remain depending on the density, processing temperature, and holding time of the green compact. Therefore, it is desirable to take a technique in which a degreasing process for decomposing and removing the lubricant component is provided in advance prior to the oxidation process, and the oxidation process is continuously performed in the same atmosphere after the degreasing process. However, it has been confirmed that high strength can be achieved even if an oxidation treatment is carried out while containing a lubricant without providing a degreasing step. In addition, the degreasing step may be performed in an atmosphere (for example, an inert gas, a reducing gas, or in a vacuum) different from the oxidation step using a separate heating device.
(4)酸化工程
酸化工程は、圧粉体を酸化性雰囲気中で加熱することにより、金属基体2を形成する工程である。詳しくは、圧粉体を加熱することで、金属粉末(特に主成分となる鉄粉)の各粒子の表面に酸化物皮膜を生成させ、この酸化物皮膜を介して粒子同士が結合される。本実施形態では、上記で示した酸化物皮膜が得られるように、酸化工程の処理条件(加熱温度、加熱時間、加熱雰囲気)が設定される。具体的に、本実施形態の酸化工程における加熱温度は、350℃以上、好ましくは450℃以上に設定される。また、加熱温度が高すぎると、圧粉体の寸法変化が大きくなるため、加熱温度は600℃以下とすることが好ましい。加熱時間は、5分~2時間の範囲で、適宜設定される。加熱雰囲気は、積極的な酸化を促すために酸化性雰囲気とされる。ただし、水蒸気雰囲気は、酸化物皮膜の生成速度が速く、表層における膜厚が2μmを超えやすいため、これよりも酸化物皮膜の生成速度が遅い酸化性雰囲気とすることが好ましい。具体的には、空気又は酸素、あるいはこれらに窒素やアルゴンなどの不活性ガスを混合した酸化性ガスの何れかの雰囲気中で加熱することが好ましい。 (4) Oxidation step The oxidation step is a step of forming themetal substrate 2 by heating the green compact in an oxidizing atmosphere. Specifically, by heating the green compact, an oxide film is generated on the surface of each particle of the metal powder (particularly, iron powder as a main component), and the particles are bonded to each other through the oxide film. In this embodiment, the processing conditions (heating temperature, heating time, heating atmosphere) of the oxidation process are set so that the oxide film shown above is obtained. Specifically, the heating temperature in the oxidation step of the present embodiment is set to 350 ° C. or higher, preferably 450 ° C. or higher. Moreover, since the dimensional change of a green compact will become large when heating temperature is too high, it is preferable that heating temperature shall be 600 degrees C or less. The heating time is appropriately set in the range of 5 minutes to 2 hours. The heating atmosphere is an oxidizing atmosphere in order to promote positive oxidation. However, since the water vapor atmosphere has a high production rate of the oxide film and the film thickness on the surface layer easily exceeds 2 μm, it is preferable to use an oxidizing atmosphere in which the production rate of the oxide film is slower than this. Specifically, it is preferable to heat in an atmosphere of air or oxygen, or an oxidizing gas in which an inert gas such as nitrogen or argon is mixed.
酸化工程は、圧粉体を酸化性雰囲気中で加熱することにより、金属基体2を形成する工程である。詳しくは、圧粉体を加熱することで、金属粉末(特に主成分となる鉄粉)の各粒子の表面に酸化物皮膜を生成させ、この酸化物皮膜を介して粒子同士が結合される。本実施形態では、上記で示した酸化物皮膜が得られるように、酸化工程の処理条件(加熱温度、加熱時間、加熱雰囲気)が設定される。具体的に、本実施形態の酸化工程における加熱温度は、350℃以上、好ましくは450℃以上に設定される。また、加熱温度が高すぎると、圧粉体の寸法変化が大きくなるため、加熱温度は600℃以下とすることが好ましい。加熱時間は、5分~2時間の範囲で、適宜設定される。加熱雰囲気は、積極的な酸化を促すために酸化性雰囲気とされる。ただし、水蒸気雰囲気は、酸化物皮膜の生成速度が速く、表層における膜厚が2μmを超えやすいため、これよりも酸化物皮膜の生成速度が遅い酸化性雰囲気とすることが好ましい。具体的には、空気又は酸素、あるいはこれらに窒素やアルゴンなどの不活性ガスを混合した酸化性ガスの何れかの雰囲気中で加熱することが好ましい。 (4) Oxidation step The oxidation step is a step of forming the
金属基体2の鉄粉の表面に形成される鉄酸化物皮膜は、Fe3O4、Fe2O3、FeOの2種類以上の混相である。これらの酸化物の比率は、材料および処理条件(加熱雰囲気、加熱温度、加熱時間)によって異なる。
The iron oxide film formed on the surface of the iron powder of the metal substrate 2 is a mixed phase of two or more of Fe 3 O 4 , Fe 2 O 3 and FeO. The ratio of these oxides varies depending on the material and processing conditions (heating atmosphere, heating temperature, heating time).
この酸化工程により、金属粉末の各粒子の表面に生成される酸化物皮膜が、鉄粉の粒子間に行き渡ってネットワークを形成することで、従来のような高温での焼結による結合力を代替し、圧粉体が高強度化される。また、本実施形態では、主成分となる鉄粉の全粒子が酸化物皮膜を介して接合されているわけではなく、一部の粒子同士が酸化物皮膜を介することなく直接接触して融着している。酸化工程を経た圧粉体の強度は、すべり軸受1の金属基体2として必要な強度、具体的には圧環強さ100MPa以上、好ましくは150MPa以上とされる。
By this oxidation process, the oxide film generated on the surface of each particle of the metal powder spreads between the particles of the iron powder to form a network, replacing the conventional bonding force by sintering at high temperature Thus, the green compact is strengthened. Further, in this embodiment, not all particles of iron powder as a main component are bonded through an oxide film, but some particles are directly in contact with each other without an oxide film and fused. is doing. The strength of the green compact that has undergone the oxidation step is the strength required for the metal substrate 2 of the slide bearing 1, specifically, the crushing strength is 100 MPa or more, preferably 150 MPa or more.
上記の酸化工程は、従来の高温での焼結工程と比べて処理温度が低いため、寸法変化が小さく、材質、処理条件、製品形状、寸法等によってはその後の矯正(サイジング)工程を省略することが可能となる。これに伴い、製造工程が短縮化され、コストが低減できると共に、製品及び圧粉成形用の金型の設計が容易になる。
Since the above oxidation process has a lower processing temperature than the conventional high temperature sintering process, the dimensional change is small, and the subsequent sizing process is omitted depending on the material, processing conditions, product shape, dimensions, etc. It becomes possible. Accordingly, the manufacturing process is shortened, the cost can be reduced, and the product and the mold for compacting can be easily designed.
上記の酸化工程は、圧粉体の形状や寸法によらず適用可能である。また、酸化工程を施した圧粉体(金属基体2)の表面は酸化物皮膜で覆われるため、防錆効果が高く、場合によっては防錆処理が不要となる。また、酸化工程の処理温度が比較的低いため、この処理温度を超える温度で変性、分解するような添加剤(例えば摺動性や潤滑性を有する材料)を添加して、製品の高機能化を図ることも可能である。
The above oxidation process can be applied regardless of the shape and size of the green compact. Further, since the surface of the green compact (metal substrate 2) subjected to the oxidation step is covered with an oxide film, the antirust effect is high, and in some cases, the antirust treatment is unnecessary. In addition, since the processing temperature of the oxidation process is relatively low, an additive that denatures and decomposes at a temperature exceeding this processing temperature (for example, a material having slidability and lubricity) is added to enhance the functionality of the product. It is also possible to plan.
(5)インサート成形工程
こうして形成された金属基体2をインサート部品として樹脂で射出成形することで、樹脂層3が形成される。具体的には、射出成形金型のキャビティに金属基体2をインサート部品として供給する。そして、ゲートからキャビティに溶融樹脂を射出した後、溶融樹脂を冷却して固化させることで、樹脂層3が形成される。その後、金型を型開きして、金属基体2と樹脂層3との一体品を取り出すことで、すべり軸受1が完成する。 (5) Insert molding process Theresin layer 3 is formed by carrying out the injection molding of the metal base | substrate 2 formed in this way with resin as insert parts. Specifically, the metal base 2 is supplied as an insert part to the cavity of the injection mold. And after injecting molten resin from a gate to a cavity, the resin layer 3 is formed by cooling and solidifying molten resin. Thereafter, the mold is opened, and the integral product of the metal base 2 and the resin layer 3 is taken out, whereby the plain bearing 1 is completed.
こうして形成された金属基体2をインサート部品として樹脂で射出成形することで、樹脂層3が形成される。具体的には、射出成形金型のキャビティに金属基体2をインサート部品として供給する。そして、ゲートからキャビティに溶融樹脂を射出した後、溶融樹脂を冷却して固化させることで、樹脂層3が形成される。その後、金型を型開きして、金属基体2と樹脂層3との一体品を取り出すことで、すべり軸受1が完成する。 (5) Insert molding process The
本発明は、上記の実施形態に限られない。例えば、上記の実施形態では、樹脂層3が金属基体2の内周面2aにのみ設けられた場合を示したが、これに限られない。例えば、金属基体2の端面や外周面に樹脂層を設け、これらの樹脂層に摺動面を設けてもよい。また、樹脂層3を、金属基体2の内周面、端面、外周面のうちの複数箇所に設けてもよい。
The present invention is not limited to the above embodiment. For example, in the above embodiment, the case where the resin layer 3 is provided only on the inner peripheral surface 2a of the metal base 2 has been described, but the present invention is not limited thereto. For example, a resin layer may be provided on the end surface or the outer peripheral surface of the metal substrate 2 and a sliding surface may be provided on these resin layers. Further, the resin layer 3 may be provided at a plurality of locations on the inner peripheral surface, end surface, and outer peripheral surface of the metal base 2.
また、上記の実施形態では、樹脂層3の内周面3a(摺動面)が凹凸の無い円筒面である場合を示したが、これに限られない。例えば、樹脂層3の内周面3aに溝を設けてもよい。図4に示す実施形態では、樹脂層3の内周面3aに、軸方向と平行な複数(例えば6本)の溝5を設けている。溝5は、樹脂層3の内周面3aの軸方向全長にわたって延びている。複数の溝5は、周方向等間隔に配されている。この溝5の底面にゲート跡6を設けることで、ゲート跡6の後処理が不要となる。また、周方向等間隔に配された複数(偶数)の溝5の一本おきにゲート跡6を設ければ、ゲート跡6が設けられていない溝5にウェルドラインが形成される。
In the above embodiment, the case where the inner peripheral surface 3a (sliding surface) of the resin layer 3 is a cylindrical surface without unevenness is shown, but the present invention is not limited to this. For example, a groove may be provided on the inner peripheral surface 3 a of the resin layer 3. In the embodiment shown in FIG. 4, a plurality of (for example, six) grooves 5 parallel to the axial direction are provided on the inner peripheral surface 3 a of the resin layer 3. The groove 5 extends over the entire axial length of the inner peripheral surface 3 a of the resin layer 3. The plurality of grooves 5 are arranged at equal intervals in the circumferential direction. By providing the gate trace 6 on the bottom surface of the groove 5, post-processing of the gate trace 6 becomes unnecessary. If gate traces 6 are provided every other plurality (even number) of grooves 5 arranged at equal intervals in the circumferential direction, weld lines are formed in the grooves 5 where the gate traces 6 are not provided.
また、すべり軸受1を、樹脂層3の内周面3aと軸4の外周面との間のラジアル軸受隙間の潤滑流体(例えば油)の動圧作用で軸4を非接触支持する、流体動圧軸受として使用してもよい。この場合、樹脂層3の内周面3aに動圧溝を設けてもよい。動圧溝は、例えばへリングボーン形状やスパイラル形状に配列される。この動圧溝は、例えば圧粉工程で成形することができる。
Further, the fluid dynamics in which the slide bearing 1 is supported in a non-contact manner by the dynamic pressure action of the lubricating fluid (for example, oil) in the radial bearing gap between the inner peripheral surface 3 a of the resin layer 3 and the outer peripheral surface of the shaft 4. It may be used as a pressure bearing. In this case, a dynamic pressure groove may be provided on the inner peripheral surface 3 a of the resin layer 3. The dynamic pressure grooves are arranged in a herringbone shape or a spiral shape, for example. This dynamic pressure groove can be formed by, for example, a compacting process.
また、金属基体2は筒状に限らず、例えば直方体や球状でもよい
Further, the metal substrate 2 is not limited to a cylindrical shape, and may be a rectangular parallelepiped or a spherical shape, for example.
上記のすべり軸受の金属基体の製造方法において、好ましい条件を確認するために、以下の試験を行った。各試験片の条件等を表1に示す。尚、以下では、圧環強さ100MPa以上、且つ、寸法変化率±0.1%以下を満たすものを「実施例」と言い、これらの何れかを満たさないものを「比較例」と言う。
The following tests were conducted in order to confirm preferable conditions in the above-described method for manufacturing a metal substrate of a plain bearing. Table 1 shows the conditions of each test piece. In the following, a material satisfying a crushing strength of 100 MPa or more and a dimensional change rate of ± 0.1% or less is referred to as an “example”, and one not satisfying any of these is referred to as a “comparative example”.
実施例1
市販の還元鉄粉(ヘガネス社製/SC100.26)および成形潤滑剤(アクラワックスC):0.7重量%を添加し、Vブレンダーにてドライ混合(40min)した。その後、混合粉末を粉末成形用金型内に投入し、室温、140MPaにて圧縮成形し、リング形状の圧粉体(外径φ16mm×内径φ8.5mm×厚さ5mm)を製作した。圧粉体密度は、5.8g/cm3であった。得られたリング状の圧粉体を、バッチ式加熱炉に投入し、空気流量:0.1L/minで室温から350℃まで昇温速度:10℃/min、で昇温し、その後、350℃×30min保持し、昇温速度:10℃/minで400℃まで昇温し、10分間保持した後、炉例で室温まで空冷した。 Example 1
Commercially available reduced iron powder (manufactured by Höganäs / SC100.26) and molding lubricant (Accra wax C): 0.7% by weight were added and dry-mixed (40 min) with a V blender. Thereafter, the mixed powder was put into a powder molding die and compression molded at room temperature and 140 MPa to produce a ring-shaped green compact (outer diameter φ16 mm × inner diameter φ8.5 mm ×thickness 5 mm). The green density was 5.8 g / cm 3 . The obtained ring-shaped green compact is put into a batch-type heating furnace, heated from room temperature to 350 ° C. at an air flow rate of 0.1 L / min, at a rate of temperature increase of 10 ° C./min, and then 350 The temperature was maintained at ℃ × 30 min, the temperature was increased to 400 ° C. at a rate of temperature increase of 10 ° C./min, held for 10 minutes, and then cooled to room temperature in the furnace example.
市販の還元鉄粉(ヘガネス社製/SC100.26)および成形潤滑剤(アクラワックスC):0.7重量%を添加し、Vブレンダーにてドライ混合(40min)した。その後、混合粉末を粉末成形用金型内に投入し、室温、140MPaにて圧縮成形し、リング形状の圧粉体(外径φ16mm×内径φ8.5mm×厚さ5mm)を製作した。圧粉体密度は、5.8g/cm3であった。得られたリング状の圧粉体を、バッチ式加熱炉に投入し、空気流量:0.1L/minで室温から350℃まで昇温速度:10℃/min、で昇温し、その後、350℃×30min保持し、昇温速度:10℃/minで400℃まで昇温し、10分間保持した後、炉例で室温まで空冷した。 Example 1
Commercially available reduced iron powder (manufactured by Höganäs / SC100.26) and molding lubricant (Accra wax C): 0.7% by weight were added and dry-mixed (40 min) with a V blender. Thereafter, the mixed powder was put into a powder molding die and compression molded at room temperature and 140 MPa to produce a ring-shaped green compact (outer diameter φ16 mm × inner diameter φ8.5 mm ×
処理前後で外径寸法を測定し、加熱処理による寸法変化量を測定した。また、処理後の圧粉体について、圧環強さを測定した。加熱処理による外径寸法変化率は-0.04%(収縮側)、圧粉体の圧環強さは110MPaを示した。
The outer diameter was measured before and after the treatment, and the dimensional change due to the heat treatment was measured. Further, the crushing strength of the green compact after the treatment was measured. The outer diameter dimensional change rate by the heat treatment was -0.04% (contraction side), and the green compaction strength of the green compact was 110 MPa.
尚、寸法変化率は、((処理後外径寸法-処理前外径寸法)/(処理前外径寸法))×100の計算式に従って求めた。また、圧環強さは、JIS Z2507「焼結軸受-圧環強さ試験方法」に準ずる。
The rate of dimensional change was determined according to the formula: ((outside diameter after processing−outside diameter before processing) / (outside diameter before processing)) × 100. The crushing strength conforms to JIS Z2507 “Sintered bearing-crushing strength test method”.
実施例2~14
実施例1と同様の混合粉末を使用し、同じ金型で成形圧力を調整して所定の密度の圧粉体を得た。得られたリング状圧粉体を実施例と同じ脱脂処理を行い、その後、同じ昇温パターンで所定の温度まで昇温し、所定時間保持した後、炉例で室温まで空冷した。各種条件は表1に示すとおりである。 Examples 2-14
A powder mixture having a predetermined density was obtained by using the same mixed powder as in Example 1 and adjusting the molding pressure with the same mold. The obtained ring-shaped green compact was subjected to the same degreasing treatment as in the example, then heated to a predetermined temperature with the same temperature rising pattern, held for a predetermined time, and then air-cooled to room temperature in the furnace example. Various conditions are as shown in Table 1.
実施例1と同様の混合粉末を使用し、同じ金型で成形圧力を調整して所定の密度の圧粉体を得た。得られたリング状圧粉体を実施例と同じ脱脂処理を行い、その後、同じ昇温パターンで所定の温度まで昇温し、所定時間保持した後、炉例で室温まで空冷した。各種条件は表1に示すとおりである。 Examples 2-14
A powder mixture having a predetermined density was obtained by using the same mixed powder as in Example 1 and adjusting the molding pressure with the same mold. The obtained ring-shaped green compact was subjected to the same degreasing treatment as in the example, then heated to a predetermined temperature with the same temperature rising pattern, held for a predetermined time, and then air-cooled to room temperature in the furnace example. Various conditions are as shown in Table 1.
処理前後で外径寸法を測定し、加熱処理による寸法変化量を測定した。また、処理後の圧粉体について、圧環強さを測定した。圧環強さおよび寸法変化率を表1に併記する。
The outer diameter was measured before and after the treatment, and the dimensional change due to the heat treatment was measured. Further, the crushing strength of the green compact after the treatment was measured. The crushing strength and dimensional change rate are also shown in Table 1.
実施例15、16
実施例1と同様の混合粉末を使用し、同じ金型で成形圧力を調整して所定の密度の圧粉体を得た。得られたリング状圧粉体で脱脂処理を行わず、そのまま、同じ昇温パターンで所定の温度まで昇温し、所定時間保持した後、炉例で室温まで空冷した。各種条件は表1に示すとおりである。 Examples 15 and 16
A powder mixture having a predetermined density was obtained by using the same mixed powder as in Example 1 and adjusting the molding pressure with the same mold. The obtained ring-shaped green compact was not degreased, and was heated as it was to a predetermined temperature with the same temperature rising pattern, held for a predetermined time, and then air-cooled to room temperature in the furnace example. Various conditions are as shown in Table 1.
実施例1と同様の混合粉末を使用し、同じ金型で成形圧力を調整して所定の密度の圧粉体を得た。得られたリング状圧粉体で脱脂処理を行わず、そのまま、同じ昇温パターンで所定の温度まで昇温し、所定時間保持した後、炉例で室温まで空冷した。各種条件は表1に示すとおりである。 Examples 15 and 16
A powder mixture having a predetermined density was obtained by using the same mixed powder as in Example 1 and adjusting the molding pressure with the same mold. The obtained ring-shaped green compact was not degreased, and was heated as it was to a predetermined temperature with the same temperature rising pattern, held for a predetermined time, and then air-cooled to room temperature in the furnace example. Various conditions are as shown in Table 1.
処理前後で外径寸法を測定し、加熱処理による寸法変化量を測定した。また、処理後の圧粉体について、圧環強さを測定した。圧環強さおよび寸法変化率を表1に併記する。
The outer diameter was measured before and after the treatment, and the dimensional change due to the heat treatment was measured. Further, the crushing strength of the green compact after the treatment was measured. The crushing strength and dimensional change rate are also shown in Table 1.
実施例17
鉄粉に神戸製鋼所製水アトマイズ粉MH28Nを使用し、実施例1と同様の潤滑材を混合し、同じ金型で成形圧力を調整して所定の密度の圧粉体を得た。得られたリング状圧粉体を実施例1と同じ脱脂処理を行い、その後、同じ昇温パターンで所定の温度まで昇温し、所定時間保持した後、炉例で室温まで空冷した。各種条件は表1に示すとおりである。 Example 17
Water atomized powder MH28N manufactured by Kobe Steel, Ltd. was used as the iron powder, the same lubricant as in Example 1 was mixed, and the molding pressure was adjusted with the same mold to obtain a green compact with a predetermined density. The obtained ring-shaped green compact was subjected to the same degreasing treatment as in Example 1, and then heated to a predetermined temperature with the same temperature rising pattern, held for a predetermined time, and then air-cooled to room temperature in the furnace example. Various conditions are as shown in Table 1.
鉄粉に神戸製鋼所製水アトマイズ粉MH28Nを使用し、実施例1と同様の潤滑材を混合し、同じ金型で成形圧力を調整して所定の密度の圧粉体を得た。得られたリング状圧粉体を実施例1と同じ脱脂処理を行い、その後、同じ昇温パターンで所定の温度まで昇温し、所定時間保持した後、炉例で室温まで空冷した。各種条件は表1に示すとおりである。 Example 17
Water atomized powder MH28N manufactured by Kobe Steel, Ltd. was used as the iron powder, the same lubricant as in Example 1 was mixed, and the molding pressure was adjusted with the same mold to obtain a green compact with a predetermined density. The obtained ring-shaped green compact was subjected to the same degreasing treatment as in Example 1, and then heated to a predetermined temperature with the same temperature rising pattern, held for a predetermined time, and then air-cooled to room temperature in the furnace example. Various conditions are as shown in Table 1.
処理前後で外径寸法を測定し、加熱処理による寸法変化量を測定した。また、処理後の圧粉体について、圧環強さを測定した。圧環強さおよび寸法変化率を表1に併記する。
The outer diameter was measured before and after the treatment, and the dimensional change due to the heat treatment was measured. Further, the crushing strength of the green compact after the treatment was measured. The crushing strength and dimensional change rate are also shown in Table 1.
比較例1~10
基本的に実施例1と同様の方法で成形、加熱処理を実施した。各種条件は表1に示すとおりである。 Comparative Examples 1-10
Molding and heat treatment were basically performed in the same manner as in Example 1. Various conditions are as shown in Table 1.
基本的に実施例1と同様の方法で成形、加熱処理を実施した。各種条件は表1に示すとおりである。 Comparative Examples 1-10
Molding and heat treatment were basically performed in the same manner as in Example 1. Various conditions are as shown in Table 1.
処理前後で外径寸法を測定し、加熱処理による寸法変化量を測定した。また、処理後の圧粉体について、圧環強さを測定した。圧環強さおよび寸法変化率を表1に併記する。
The outer diameter was measured before and after the treatment, and the dimensional change due to the heat treatment was measured. Further, the crushing strength of the green compact after the treatment was measured. The crushing strength and dimensional change rate are also shown in Table 1.
比較例1は、密度5.6g/cm3と低密度で、かつ加熱温度が400℃と低いので、圧環強さが70MPaと低い。
Since the comparative example 1 has a density as low as 5.6 g / cm 3 and a heating temperature as low as 400 ° C., the crushing strength is as low as 70 MPa.
比較例2は、密度5.8g/cm3と低密度で、加熱温度が400℃、かつ処理時間が1分と短いので、圧環強さが80MPaと低い。
In Comparative Example 2, the density is as low as 5.8 g / cm 3 , the heating temperature is 400 ° C., and the treatment time is as short as 1 minute, so the crushing strength is as low as 80 MPa.
比較例3は、密度5.8g/cm3と低密度だが、加熱温度が600℃かつ処理時間が120分と長いので、圧環強さ170MPaと高い。ただし、寸法変化率が-0.2%と大きい。
Comparative Example 3 has a low density of 5.8 g / cm 3 , but has a high crushing strength of 170 MPa because the heating temperature is 600 ° C. and the treatment time is as long as 120 minutes. However, the dimensional change rate is as large as -0.2%.
比較例4は、密度6.2g/cm3と中密度だが、未処理品なので、圧環強さ20MPaと低い。
Comparative Example 4 has a density of 6.2 g / cm 3 and a medium density, but since it is an untreated product, the crushing strength is as low as 20 MPa.
比較例5は、密度6.2g/cm3と中密度だが、加熱温度が350℃と低いので120分処理しても圧環強さ80MPaと低い。
Comparative Example 5 has a medium density of 6.2 g / cm 3 , but the heating temperature is as low as 350 ° C., so that the crushing strength is as low as 80 MPa even after treatment for 120 minutes.
比較例6は、密度6.2g/cm3と中密度だが、加熱温度が400℃かつ処理時間が1分と短いので圧環強さ90MPaと低い。
Comparative Example 6 has a density of 6.2 g / cm 3 and a medium density. However, since the heating temperature is 400 ° C. and the treatment time is as short as 1 minute, the crushing strength is as low as 90 MPa.
比較例7は、密度6.2g/cm3と中密度で加熱温度が500℃と比較的高温であるが、処理時間が150分と長い。このため、圧環強さは190MPaと高いが、寸法変化率が-0.14%と大きくなる。
Comparative Example 7 has a density of 6.2 g / cm 3 and a medium density, and a heating temperature of 500 ° C. and a relatively high temperature. For this reason, the crushing strength is as high as 190 MPa, but the dimensional change rate is as large as −0.14%.
比較例8は、密度6.2g/cm3と中密度で加熱温度が700℃と高温のため、処理時間が10分と短くても圧環強さ220MPaと高いが、寸法変化率が-0.4%と大きくなる。
Comparative Example 8 has a density of 6.2 g / cm 3 , a medium density, and a heating temperature as high as 700 ° C. Therefore, even if the treatment time is as short as 10 minutes, the crushing strength is as high as 220 MPa, but the dimensional change rate is −0. Increased to 4%.
比較例9は、密度7.0g/cm3と高密度のため、加熱温度が400℃、処理時間10分で圧環強さ120MPaを示すが、寸法変化率が-0.15%と大きい。
Since Comparative Example 9 has a density of 7.0 g / cm 3 , the crushing strength is 120 MPa at a heating temperature of 400 ° C. and a processing time of 10 minutes, but the dimensional change rate is as large as −0.15%.
比較例10は、密度7.0g/cm3と高密度のため、加熱温度が600℃、処理時間1分で圧環強さ160MPaを示すが、寸法変化率が-0.20%と大きい。
Since Comparative Example 10 has a density of 7.0 g / cm 3 and a high density, a heating temperature of 600 ° C. and a treatment time of 1 minute show a crushing strength of 160 MPa, but a dimensional change rate is as large as −0.20%.
以上の結果から、圧環強さ100MPa以上、且つ、寸法変化率±0.1%以下の圧粉体(金属基体)を得るためには、圧粉密度を5.8~6.8g/cm3、酸化工程の加熱温度を400~600℃、酸化工程の加熱時間を5~120分の範囲で設定することが好ましいと言える。
From the above results, in order to obtain a green compact (metal substrate) having a crushing strength of 100 MPa or more and a dimensional change rate of ± 0.1% or less, the green density is 5.8 to 6.8 g / cm 3. It can be said that it is preferable to set the heating temperature of the oxidation step to 400 to 600 ° C. and the heating time of the oxidation step to 5 to 120 minutes.
1 すべり軸受
2 金属基体
3 樹脂層
4 軸
10 鉄粒子
11 鉄酸化物皮膜
12 内部空孔
13 表面開口
DESCRIPTION OFSYMBOLS 1 Sliding bearing 2 Metal base 3 Resin layer 4 Shaft 10 Iron particle 11 Iron oxide film 12 Internal hole 13 Surface opening
2 金属基体
3 樹脂層
4 軸
10 鉄粒子
11 鉄酸化物皮膜
12 内部空孔
13 表面開口
DESCRIPTION OF
Claims (8)
- 金属基体と、前記金属基体の表面に設けられた樹脂層と、前記樹脂層に設けられた摺動面とを備えた複合摺動部材であって、
前記金属基体が、金属粉末の粒子同士を酸化物被膜を介して結合した圧粉体からなり、
前記金属基体の表面から深さ50μm以内の領域における前記酸化物皮膜の最大膜厚が2μm以下であり、
前記金属基体の表面開口に前記樹脂層の一部が入り込んだ複合摺動部材。 A composite sliding member comprising a metal substrate, a resin layer provided on the surface of the metal substrate, and a sliding surface provided on the resin layer,
The metal substrate is composed of a green compact in which metal powder particles are bonded together through an oxide film,
The maximum film thickness of the oxide film in a region within a depth of 50 μm from the surface of the metal substrate is 2 μm or less;
A composite sliding member in which a part of the resin layer enters a surface opening of the metal substrate. - 前記金属基体の表面から深さ300μm±10μmの領域における前記酸化物皮膜の最大膜厚が、前記金属基体の表面から深さ50μm以内の領域における前記酸化物皮膜の最大膜厚の1/2以下である請求項1記載の複合摺動部材。 The maximum film thickness of the oxide film in a region 300 μm ± 10 μm deep from the surface of the metal substrate is ½ or less of the maximum film thickness of the oxide film in a region within 50 μm depth from the surface of the metal substrate. The composite sliding member according to claim 1.
- 前記酸化物皮膜が、酸素又は空気、あるいはこれらに対して不活性ガスを混合した酸化性ガス雰囲気中で加熱することにより形成された請求項1又は2記載の複合摺動部材。 3. The composite sliding member according to claim 1 or 2, wherein the oxide film is formed by heating in an oxidizing gas atmosphere in which an inert gas is mixed with oxygen or air or an inert gas.
- 前記金属基体の表面開口率が15%以上である請求項1~3の何れかに記載の複合摺動部材。 The composite sliding member according to any one of claims 1 to 3, wherein a surface opening ratio of the metal substrate is 15% or more.
- 金属粉末を圧縮して圧粉体を成形する工程と、
前記圧粉体を酸化性雰囲気中で加熱処理することにより、前記金属粉末の粒子同士を、各粒子の表面に生成される酸化物被膜を介して結合して金属基体を形成する工程と、
前記金属基体をインサート部品として樹脂で射出成形することにより、前記金属基体の表面に、摺動面を有する樹脂層を形成する工程とを有する複合摺動部材の製造方法であって、
前記金属基体の表面から深さ50μm以内の領域における前記酸化物被膜の最大膜厚が2μm以下となるように、前記加熱処理の条件を設定する複合摺動部材の製造方法。 Forming a green compact by compressing metal powder;
Heat treating the green compact in an oxidizing atmosphere to bond the metal powder particles together through an oxide film formed on the surface of each particle to form a metal substrate;
Forming a resin layer having a sliding surface on the surface of the metal base by injection molding with resin as the metal base as an insert part, and a method for producing a composite sliding member,
A method for producing a composite sliding member, wherein the conditions for the heat treatment are set so that the maximum film thickness of the oxide film in a region within a depth of 50 μm from the surface of the metal substrate is 2 μm or less. - 前記金属基体の表面から深さ300μm±10μmの領域における前記酸化物皮膜の最大膜厚が、前記金属基体の表面から深さ50μm以内の領域における前記酸化物皮膜の最大膜厚の1/2以下となるように、前記加熱処理の条件を設定する請求項5記載の複合摺動部材の製造方法。 The maximum film thickness of the oxide film in a region 300 μm ± 10 μm deep from the surface of the metal substrate is ½ or less of the maximum film thickness of the oxide film in a region within 50 μm depth from the surface of the metal substrate. The manufacturing method of the composite sliding member according to claim 5, wherein the conditions for the heat treatment are set so that
- 前記加熱処理を、酸素又は空気、あるいはこれらに対して不活性ガスを混合した酸化性ガス雰囲気中で行う請求項5又は6記載の複合摺動部材の製造方法。 The method for producing a composite sliding member according to claim 5 or 6, wherein the heat treatment is performed in an oxidizing gas atmosphere in which oxygen or air or an inert gas is mixed with oxygen or air.
- 前記金属基体の表面開口率が15%以上である請求項5~7の何れか1項に記載の複合摺動部材。 The composite sliding member according to any one of claims 5 to 7, wherein a surface opening ratio of the metal substrate is 15% or more.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-056397 | 2015-03-19 | ||
JP2015056397A JP2016176515A (en) | 2015-03-19 | 2015-03-19 | Composite sliding member and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016147930A1 true WO2016147930A1 (en) | 2016-09-22 |
Family
ID=56918839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/056970 WO2016147930A1 (en) | 2015-03-19 | 2016-03-07 | Composite sliding member and production process therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016176515A (en) |
WO (1) | WO2016147930A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180264696A1 (en) * | 2015-10-14 | 2018-09-20 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Metal-resin bonded member and method of manufacturing the same |
JP2020045529A (en) * | 2018-09-19 | 2020-03-26 | 大同メタル工業株式会社 | Slide member |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4892208A (en) * | 1972-03-09 | 1973-11-30 | ||
JPS6372803A (en) * | 1986-09-12 | 1988-04-02 | Fujitsu Ltd | Production of iron-base sintered parts |
JP2008106937A (en) * | 2006-09-28 | 2008-05-08 | Daikin Ind Ltd | Sliding member and fluid machine using it |
-
2015
- 2015-03-19 JP JP2015056397A patent/JP2016176515A/en active Pending
-
2016
- 2016-03-07 WO PCT/JP2016/056970 patent/WO2016147930A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4892208A (en) * | 1972-03-09 | 1973-11-30 | ||
JPS6372803A (en) * | 1986-09-12 | 1988-04-02 | Fujitsu Ltd | Production of iron-base sintered parts |
JP2008106937A (en) * | 2006-09-28 | 2008-05-08 | Daikin Ind Ltd | Sliding member and fluid machine using it |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180264696A1 (en) * | 2015-10-14 | 2018-09-20 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Metal-resin bonded member and method of manufacturing the same |
US11633892B2 (en) * | 2015-10-14 | 2023-04-25 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Metal-resin bonded member and method of manufacturing the same |
JP2020045529A (en) * | 2018-09-19 | 2020-03-26 | 大同メタル工業株式会社 | Slide member |
Also Published As
Publication number | Publication date |
---|---|
JP2016176515A (en) | 2016-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015119231A1 (en) | Plain bearing | |
JP2009120918A (en) | Method for producing sintered component | |
WO2016147930A1 (en) | Composite sliding member and production process therefor | |
WO2016098525A1 (en) | Green compact and method for producing same | |
US20180056394A1 (en) | Machine component and production method therefor | |
JP2018040458A (en) | Dynamic pressure bearing and manufacturing method thereof | |
JP4627023B2 (en) | Soft magnetic material, dust core, and method for manufacturing dust core | |
JP6461626B2 (en) | Manufacturing method of sliding member | |
JP6608224B2 (en) | Manufacturing method of sliding member | |
EP3088106A1 (en) | Machine component using powder compact and method for producing same | |
CN109890539B (en) | Sintered bearing and method for manufacturing same | |
JP2015148285A (en) | slide bearing | |
KR100707694B1 (en) | Sliding bearing with solid-state sintered layer | |
KR100644198B1 (en) | Sliding bearing comprising of segment sintered material | |
KR200404467Y1 (en) | Sliding bearing with solid-state sintered layer | |
KR200404483Y1 (en) | Sliding bearing comprising of segment sintered material | |
JP6999259B2 (en) | Plain bearing | |
KR100707691B1 (en) | Sliding bearing with solid-state sintered layer | |
JP6675908B2 (en) | Manufacturing method of machine parts | |
JP2018145517A (en) | Compact and method for producing the same | |
JP2009085233A (en) | Method for manufacturing plain bearing | |
JP2014035013A (en) | Plain bearing | |
JP2018009222A (en) | Powder metallurgical member and method for producing the same | |
JP6199196B2 (en) | Plain bearing | |
JP6890405B2 (en) | Dynamic pressure bearings and their manufacturing methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16764760 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16764760 Country of ref document: EP Kind code of ref document: A1 |