JP2003269456A - Slide material - Google Patents

Slide material

Info

Publication number
JP2003269456A
JP2003269456A JP2002074148A JP2002074148A JP2003269456A JP 2003269456 A JP2003269456 A JP 2003269456A JP 2002074148 A JP2002074148 A JP 2002074148A JP 2002074148 A JP2002074148 A JP 2002074148A JP 2003269456 A JP2003269456 A JP 2003269456A
Authority
JP
Japan
Prior art keywords
alloy
mass
hard particles
less
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002074148A
Other languages
Japanese (ja)
Other versions
JP3839740B2 (en
Inventor
Kenji Sakai
健至 酒井
Hiroyuki Sugawara
博之 菅原
Hideo Ishikawa
日出夫 石川
Masaaki Sakamoto
雅昭 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2002074148A priority Critical patent/JP3839740B2/en
Priority to GB0301240A priority patent/GB2386610A/en
Priority to DE10305808A priority patent/DE10305808A1/en
Priority to US10/367,753 priority patent/US20030173000A1/en
Publication of JP2003269456A publication Critical patent/JP2003269456A/en
Application granted granted Critical
Publication of JP3839740B2 publication Critical patent/JP3839740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • F16C2204/12Alloys based on copper with tin as the next major constituent

Abstract

<P>PROBLEM TO BE SOLVED: To improve corrosion resistance under a high temperature condition, in a slide material using a Cu alloy. <P>SOLUTION: The slide material of the Cu alloy is generally manufactured by sintering. However, this inventor finds the fact that, if adding hard grains to an Cu-Sn-Ni alloy, the growth of crystal grains is suppressed at a final sintering process to make fine crystalline alloy. Fining of the crystal grains improves strength, provides excellent fatigue resistance, and especially has the effect on preventing corrosion due to lubricating oil. The slide material contains 0.5 to 15% by mass of Sn, 2 to 0.2 to 10% by mass of Ni, and 0.4 to 10% by mass of hard grain, and a rest part is actually made from Cu. The hard grain is made from one or more selected from WC, W<SB>2</SB>C, Mo<SB>2</SB>C, W, and Mo, and the average cross sectional area of the crystal grain of a matrix of Cu-Sn-Ni is made to be not more than 0.07 mm. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、Cu系合金からな
る摺動材料に係り、特に耐食性および耐疲労性に優れた
摺動材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding material made of a Cu-based alloy, and more particularly to a sliding material having excellent corrosion resistance and fatigue resistance.

【0002】[0002]

【発明が解決しようとする課題】従来よりCu系合金の
摺動材料としてCu‐Sn‐Pb系合金軸受がブシュ、
スラストワッシャーなどに使用されている。ところが、
コネクティングロッドの小端部に用いられるピストンブ
シュのような高温の環境下で使用される軸受では、潤滑
油による腐食の問題があり、また大きな荷重変動に対す
る耐疲労性についても問題があった。これを改善するも
のとして、Pbを減少若しくは使用せず、Niを添加し
たCu−Sn−Ni系またはCu−Sn−Ni−Pb系
材料により、耐食性および耐疲労性を向上することが試
みられている。しかしながら、最近の内燃機関のピスト
ンブシュはますます高温環境下での使用となり、このよ
うな改善では腐食の問題を完全に解決するには至ってい
ない。
Conventionally, Cu-Sn-Pb alloy bearings are bushes as sliding materials for Cu alloys.
Used in thrust washers, etc. However,
A bearing used in a high temperature environment, such as a piston bush used for a small end of a connecting rod, has a problem of corrosion due to lubricating oil and a problem of fatigue resistance against a large load change. In order to improve this, it has been attempted to improve corrosion resistance and fatigue resistance by using Cu-Sn-Ni-based or Cu-Sn-Ni-Pb-based materials to which Ni is added without reducing or using Pb. There is. However, recent piston bushes for internal combustion engines are increasingly used in high temperature environments, and such improvements have not completely solved the problem of corrosion.

【0003】本発明は上記事情に鑑みてなされたもの
で、その目的は、Cu系合金を用いた摺動材料におい
て、耐食性および耐疲労性に優れた摺動材料を提供する
ところにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a sliding material using a Cu-based alloy, which is excellent in corrosion resistance and fatigue resistance.

【0004】[0004]

【課題を解決するための手段】Cu系合金の摺動材料は
一般には焼結によって製造されるが、本発明者は、Cu
−Sn−Ni合金にある種の硬質粒子(WC、WC、
MoC、W、Moの粒子)を添加すると、最終の焼結
工程時に結晶粒の成長が抑制され、微細な結晶の合金に
なることを見出した。そして、結晶粒の微細化により、
強度が向上し、耐疲労性に優れたものになる他、特に潤
滑油による腐食の防止に効果があることを見出した。
The sliding material of a Cu-based alloy is generally manufactured by sintering.
-Sn-Ni alloy for certain hard particles (WC, W 2 C,
It has been found that the addition of (Mo 2 C, W, Mo particles) suppresses the growth of crystal grains during the final sintering step, resulting in a fine crystal alloy. And by the refinement of crystal grains,
It has been found that the strength is improved, the fatigue resistance is excellent, and in particular, it is effective in preventing corrosion due to lubricating oil.

【0005】そこで、本発明は、Sn0.5〜15質量
%、Ni0.2〜10質量%、硬質粒子0.4〜10容
積%、残部が実質的にCuからなり、前記硬質粒子をW
C、WC、MoC、W、Moのうちから選択された
1種以上とし、Cu‐Sn‐Ni系の合金マトリックス
の結晶粒の大きさを0.070mm以下にしたものであ
る(請求項1)。この結晶粒の大きさは、JIS H
0501の伸銅品結晶粒度試験方法による。
Therefore, according to the present invention, Sn is 0.5 to 15% by mass, Ni is 0.2 to 10% by mass, hard particles are 0.4 to 10% by volume, and the balance is substantially Cu.
One or more selected from C, W 2 C, Mo 2 C, W and Mo are used, and the crystal grain size of the Cu—Sn—Ni alloy matrix is 0.070 mm or less ( Claim 1). The size of this crystal grain is JIS H
0501 According to the grain size test method for copper alloy products.

【0006】この場合の硬質粒子の平均粒径は、WC、
C、MoCは0.1〜10μm、W、Moは1〜2
5μmであることが好ましい(請求項2)。また、本発
明は、総量で40質量%以下のFe、Al、Mn、C
o、Zn、Si、Pを1種以上含むことができる(請求
項3)。更に、本発明は、総量で10容積%以下のMoS
、WS、h−BN、黒鉛を1種以上含むことができ
る(請求項4)。また、総量で10質量%以下のBiおよ
び/またはPbを含むことができる(請求項5)。
The average particle diameter of the hard particles in this case is WC,
W 2 C and Mo 2 C are 0.1 to 10 μm, and W and Mo are 1 to 2
It is preferably 5 μm (claim 2). Further, the present invention provides a total amount of 40% by mass or less of Fe, Al, Mn and C.
One or more of o, Zn, Si and P can be contained (claim 3). Furthermore, the present invention provides a total amount of MoS of 10% by volume or less.
2 , WS 2 , h-BN, and graphite may be included in one or more kinds (claim 4). Further, the total amount of Bi and / or Pb may be 10% by mass or less (claim 5).

【0007】以上の限定理由を説明する。 (1)Sn:0.5〜15質量% SnはCu合金マトリックスを強化し、耐疲労性を向上
させる。0.5質量%未満ではCu合金マトリックスの
強度向上効果がなく、15質量%を超えるとCu―Sn
化合物が多く形成され、脆くなる。 (2)Ni:0.2〜10質量% NiはCu系合金マトリックスに固溶し、Cu系合金マ
トリックスの耐食性を向上させる。且つ、マトリックス
を強化させ、耐疲労性を向上させる。0.2質量%未満
では、Cu系合金マトリックスの耐食性の向上効果がな
く、強度向上効果も得られない。10質量%を超える
と、Cu系合金マトリックスが硬くなり過ぎて摺動材料
として好ましくない。
The reason for the above limitation will be described. (1) Sn: 0.5 to 15 mass% Sn strengthens the Cu alloy matrix and improves fatigue resistance. If it is less than 0.5% by mass, there is no effect of improving the strength of the Cu alloy matrix, and if it exceeds 15% by mass, Cu-Sn
Many compounds are formed and become brittle. (2) Ni: 0.2 to 10 mass% Ni dissolves in the Cu-based alloy matrix to improve the corrosion resistance of the Cu-based alloy matrix. In addition, it strengthens the matrix and improves fatigue resistance. If it is less than 0.2% by mass, the effect of improving the corrosion resistance of the Cu-based alloy matrix and the effect of improving the strength cannot be obtained. If it exceeds 10% by mass, the Cu-based alloy matrix becomes too hard, which is not preferable as a sliding material.

【0008】 (3)硬質粒子:WC、WC、MoC、W、Mo これらの硬質粒子はCu合金マトリックスとの濡れ性が
良いため、合金強度が低下せず、また合金の巣の発生も
ないので、Cu合金マトリックス中への潤滑油の浸透を
防止し、耐食性を向上させる。 (4)硬質粒子:0.4〜10容積% 硬質粒子の割合が0.4容量%未満では、Cu合金マト
リックスの結晶粒を微細にする効果がなく、その結果、
耐食性の向上効果が得られない。10容量%を超えると、
相手材への攻撃性が強くなり過ぎ、非焼付性に劣る。 (5)Cu‐Sn‐Ni系合金マトリックスの結晶粒の
大きさ:0.070mm以下 Cu‐Sn‐Ni系合金マトリックス(Cu合金マトリ
ックス)の結晶粒の大きさが0.070mmを超える
と、大き過ぎて耐食性の向上効果が得られない。
(3) Hard particles: WC, W 2 C, Mo 2 C, W, Mo Since these hard particles have good wettability with the Cu alloy matrix, the alloy strength does not decrease, and there are Since it does not occur, it prevents penetration of the lubricating oil into the Cu alloy matrix and improves the corrosion resistance. (4) Hard particles: 0.4 to 10% by volume If the proportion of hard particles is less than 0.4% by volume, there is no effect of refining the crystal grains of the Cu alloy matrix, and as a result,
The effect of improving corrosion resistance cannot be obtained. When it exceeds 10% by volume,
The aggressiveness to the mating material becomes too strong, and the non-seizure property is poor. (5) Crystal grain size of Cu-Sn-Ni alloy matrix: 0.070 mm or less If the crystal grain size of Cu-Sn-Ni alloy matrix (Cu alloy matrix) exceeds 0.070 mm, Therefore, the effect of improving corrosion resistance cannot be obtained.

【0009】(6)硬質粒子WC、WC、MoCの
大きさ:0.1〜10μm WC、WC、MoCは、0.1μm未満では、硬質
粒子が細か過ぎ、結晶粒を微細化する効果に乏しく、耐
食性の向上効果が得られない。また、10μmを超える
と、相手材への攻撃性が強くなり過ぎ、非焼付性に劣
る。また、均一な分散状態でなくなり、結晶粒の微細化
効果が少なくなる。
(6) Size of hard particles WC, W 2 C and Mo 2 C: 0.1 to 10 μm WC, W 2 C and Mo 2 C are too fine when the hard particles are too small and crystallize. The effect of refining grains is poor, and the effect of improving corrosion resistance cannot be obtained. On the other hand, when it exceeds 10 μm, the aggressiveness to the mating material becomes too strong, and the non-seizure property becomes poor. Further, the state of uniform dispersion is lost, and the effect of refining the crystal grains is reduced.

【0010】 (7)硬質粒子W、Moの大きさ:1〜25μm W、Moは、1μm未満では、硬質粒子が細か過ぎ、結
晶粒を微細化する効果に乏しく、耐食性の向上効果が得
られない。また、25μmを超えると、相手材への攻撃
性が強くなり過ぎ、非焼付性に劣る。また、均一な分散
状態でなくなり、結晶粒の微細化効果が少なくなる。
(7) Size of hard particles W and Mo: 1 to 25 μm W and Mo are less than 1 μm, the hard particles are too fine and the effect of refining crystal grains is poor, and the effect of improving corrosion resistance is obtained. Absent. On the other hand, when it exceeds 25 μm, the aggressiveness to the mating material becomes too strong and the non-seizure property becomes poor. Further, the state of uniform dispersion is lost, and the effect of refining the crystal grains is reduced.

【0011】(8)Fe、Al、Mn、Co、Zn、S
i、P:総量で40質量%以下 これらは、Cu合金マトリックスを強化し、耐疲労性を
向上させる。40質量%を超えると、耐疲労性の向上に
寄与しない。
(8) Fe, Al, Mn, Co, Zn, S
i, P: 40 mass% or less in total amount These strengthen the Cu alloy matrix and improve fatigue resistance. When it exceeds 40% by mass, it does not contribute to the improvement of fatigue resistance.

【0012】(9)MoS、WS、h−BN、黒
鉛:総量で10容積%以下 これらは固体潤滑材であり、その添加により非焼付性、
耐摩耗性を一層向上させることができる。総量で10容量
%を超えると、強度が低下する。
(9) MoS 2 , WS 2 , h-BN, graphite: 10% by volume or less in total amount These are solid lubricants, and their addition is non-seizure resistance.
The wear resistance can be further improved. If the total amount exceeds 10% by volume, the strength decreases.

【0013】 (10)Bi、Pb:総量で10質量%以下 これらはCu合金マトリックス中に分散して軟質相を形
成し、異物埋収性、非焼付性を向上させる。10質量%を
超えると、Cu合金マトリックスの強度が低下する。
(10) Bi, Pb: 10% by mass or less in total amount These are dispersed in a Cu alloy matrix to form a soft phase, which improves foreign matter embeddability and non-seizure property. If it exceeds 10% by mass, the strength of the Cu alloy matrix decreases.

【0014】[0014]

【発明の実施の形態】以下、本発明をコネクティングロ
ッドの小端部に設けられるピストンピン用のブシュに適
用した一実施例を説明する。ピストンピン用のブシュ1
は、いわゆる巻ブシュとして構成され、図1に示すよう
に、薄肉の鋼板からなる裏金2の内周面に、接着性を高
めるためのCuめっき層3を介して本発明に係る摺動材
料としての軸受合金層4を被着して構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment in which the present invention is applied to a bush for a piston pin provided at a small end portion of a connecting rod will be described below. Bush for piston pin 1
Is configured as a so-called wound bush, and as shown in FIG. 1, as a sliding material according to the present invention, a Cu plating layer 3 for enhancing adhesiveness is provided on an inner peripheral surface of a backing metal 2 made of a thin steel plate. Bearing alloy layer 4 is deposited.

【0015】前記軸受合金層4は、Cu系の焼結合金か
らなり、後述する実施例品1〜11に代表されるよう
に、特許請求の範囲に記載された成分組成を備えるもの
である。すなわち、軸受合金層4は、Sn0.5〜15
質量%、Ni0.2〜10質量%、硬質粒子0.4〜1
0容積%、残部が実質的にCuからなる。上記硬質粒子
は、WC、WC、MoC、W、Moのうちから選択
された1種以上からなり、Cu‐Sn‐Niのマトリッ
クスの結晶粒の大きさは、0.070mm以下である。
The bearing alloy layer 4 is made of a Cu-based sintered alloy and has the component composition described in the claims as represented by Examples 1 to 11 described later. That is, the bearing alloy layer 4 has a Sn content of 0.5 to 15
% By mass, Ni 0.2-10% by mass, hard particles 0.4-1
0% by volume, the balance consisting essentially of Cu. The hard particles are made of one or more selected from WC, W 2 C, Mo 2 C, W and Mo, and the size of the crystal grains of the Cu-Sn-Ni matrix is 0.070 mm or less. is there.

【0016】この場合、硬質粒子WC、WC、Mo
Cの平均粒径は0.1〜10μm、W、Moは1〜25μ
mであることが好ましい。また、Fe、Al、Mn、C
o、Zn、Si、Pのうちから1種以上を総量で40質
量%以下含ませても良いし、Biおよび/またはPbを
総量で10質量%以下含ませても良く、MoS、W
、h−BN、黒鉛のうちから1種以上を総量で10容
積%以下を含ませても良い。
In this case, the hard particles WC, WTwoC, MoTwo
The average particle size of C is 0.1 to 10 μm, and W and Mo are 1 to 25 μm.
It is preferably m. In addition, Fe, Al, Mn, C
40 kinds in total of at least one of o, Zn, Si and P
% Or less, and Bi and / or Pb may be included.
MoS may be contained in a total amount of 10% by mass or less.Two, W
S Two, H-BN, graphite at least one type with a total volume of 10 volumes
The product% or less may be included.

【0017】ここで上記のブシュ1の製造方法を簡単に
説明する。まず、所定の成分のCu合金粉末と硬質粒子
とを所定の比率となるように混合機で混合する。Cu合
金粉末は、Cu‐Sn‐Ni合金、Cu‐Sn‐Ni‐
Zn合金等が用いられる。この混合工程において、Cu
合金粉末は、硬質粒子との混合が均一に行われるように
するために、75μm以下が90%以上で、且つ45μ
m以下が60%以上の粉末を用いた。
Here, a method for manufacturing the bush 1 will be briefly described. First, a Cu alloy powder having a predetermined component and hard particles are mixed with a mixer so that a predetermined ratio is obtained. Cu alloy powder is Cu-Sn-Ni alloy, Cu-Sn-Ni-
Zn alloy or the like is used. In this mixing process, Cu
The alloy powder has 90% or more of 75 μm or less and 45 μm or less in order to uniformly mix with the hard particles.
A powder having m or less of 60% or more was used.

【0018】次に、予めCuめっき層3を被着した厚さ
1.3mmの帯鋼板(裏金2)に、上記のように混合さ
れた粉末を散布し、還元性雰囲気にて800〜950℃
に加熱して初回の焼結を約15分行い、その後、軸受合
金層の緻密化のためにロール圧延を行う。更に、軸受合
金層の緻密化のために焼結、ロール圧延を繰り返し、総
厚約1.6mm、軸受合金層の厚さ約0.4mmのバイ
メタルを得た。
Next, the powder mixed as described above is sprinkled on a 1.3 mm thick strip steel plate (back metal 2) to which the Cu plating layer 3 has been applied in advance, and the powder is mixed at 800 to 950 ° C. in a reducing atmosphere.
Then, the first sintering is performed for about 15 minutes, and then the rolling is performed for the densification of the bearing alloy layer. Further, sintering and roll rolling were repeated for densification of the bearing alloy layer to obtain a bimetal having a total thickness of about 1.6 mm and a bearing alloy layer thickness of about 0.4 mm.

【0019】このバイメタルの製造過程において、最後
に実施する焼結工程での焼結温度は、結晶粒の成長を抑
制するために920℃以下に設定した。この920℃以
下の温度は、Cu‐Sn−Ni系マトリックスにおいて
液相が発生しない温度である。後述する試験での比較例
3の試料は最終焼結温度を970℃で行った。その後、
バイメタルを機械加工して円筒状にし、最後にオーバレ
イ層5を被着してブシュ1に製造される。
In the manufacturing process of this bimetal, the sintering temperature in the last sintering step was set to 920 ° C. or lower in order to suppress the growth of crystal grains. This temperature of 920 ° C. or lower is a temperature at which a liquid phase does not occur in the Cu—Sn—Ni-based matrix. The sample of Comparative Example 3 in the test described below was performed at a final sintering temperature of 970 ° C. afterwards,
The bimetal is machined into a cylindrical shape and finally the overlay layer 5 is applied to manufacture the bush 1.

【0020】さて、本発明者は、実施例品の効果を確か
めるために、次の表1に示す組成の本発明品と比較例品
とについて、Cu合金の結晶粒の大きさを測定すると共
に、腐食試験、焼付試験、疲労試験を行った。
In order to confirm the effect of the product of the present invention, the inventor of the present invention and the product of the comparative example having the compositions shown in Table 1 below measure the size of the crystal grains of the Cu alloy. , A corrosion test, a seizure test, and a fatigue test were performed.

【0021】Cu合金の結晶粒の大きさは、JIS H
0501の伸銅品結晶粒度試験方法によった。腐食試
験は、バイメタルから総厚(軸受合金層厚さ0.3m
m)1.5mm、幅25mm、長さ50mmの試験片を
作製し、潤滑油中で行った。焼付試験は、総厚(軸受合
金層厚さ0.3mm)1.5mm、内径20mm、幅1
5mmのブシュを作製し、このブシュについて行った。
また、疲労試験は、総厚(軸受合金層厚さ0.3mm)
1.5mmの半割軸受を作製し、この半割軸受を2個突
き合わせた円筒状軸受について行った。各試験の条件
は、表2〜表4に示す通りである。
The crystal grain size of the Cu alloy is JIS H
According to 0501, the grain size test method for copper alloy products. Corrosion test is performed from bimetal to total thickness (bearing alloy layer thickness 0.3m
m) A test piece having a size of 1.5 mm, a width of 25 mm, and a length of 50 mm was prepared and carried out in lubricating oil. Seizure test, total thickness (bearing alloy layer thickness 0.3mm) 1.5mm, inner diameter 20mm, width 1
A bush having a diameter of 5 mm was prepared, and the bush was tested.
In addition, the fatigue test is the total thickness (bearing alloy layer thickness 0.3 mm)
A half bearing having a size of 1.5 mm was produced, and the test was performed on a cylindrical bearing obtained by abutting two half bearings. The conditions of each test are as shown in Tables 2-4.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】焼付試験は、軸受面圧を5Mpずつ高めて
行き、各軸受面圧毎に10分間運転し、軸受の背面温度
が200℃を超えるか、または回転軸を駆動するモータ
の駆動電流が異常値を示したときの軸受面圧よりも一段
低い軸受面圧を焼付かない最高面圧とした。疲労試験
は、半割軸受に一定荷重をかけて摺動させ、試験後軸受
合金の疲労発生の有無を確認した。
In the seizure test, the bearing surface pressure is increased by 5 Mp, the bearing back surface temperature exceeds 200 ° C. for 10 minutes for each bearing surface pressure, or the driving current of the motor for driving the rotary shaft is increased. The bearing surface pressure that was one step lower than the bearing surface pressure when an abnormal value was shown was taken as the maximum surface pressure without seizure. In the fatigue test, a fixed load was applied to the half bearing to slide it, and after the test, it was confirmed whether fatigue occurred in the bearing alloy.

【0027】表1から明らかなように、発明品1〜11
は、比較例品1〜5との比較において、耐食性では格段
に優れ、また、非焼付性および耐疲労性については同等
或いはそれ以上の優れた成績を示す。
As is clear from Table 1, invention products 1 to 11
In comparison with Comparative Examples 1 to 5, is excellent in corrosion resistance, and is equivalent or superior in anti-seizure property and fatigue resistance.

【0028】以下にCu合金マトリックスの結晶粒の大
きさ、Cu合金マトリックスの構成元素、硬質粒子の種
類と耐食性とについて述べる。 表1から明らかなように、発明品1〜11と比較例品
1〜5とは、Cu合金マトリックスの結晶粒の大きさが
0.070mm以下であるところで一致している。 発明品1〜11は、Cu合金マトリックスをCu‐S
n‐Ni系(発明品1〜10は、Cu‐Sn‐Ni、発明
品11はCu‐Sn‐Ni‐Zn)とし、硬質粒子にM
C、WC、Mo、Wを使用している。 これに対し、比較例品1は、Cu合金マトリックスを
Cu‐Sn‐Niとしているが、硬質粒子を含んでいな
い。 また、比較例品2、3は、硬質粒子としてMoCを
使用しているが、Cu合金マトリックス中にNi、Sn
を含んでいない。 更に、比較例品4、5は、Cu合金マトリックスをC
u‐Sn‐Niとし、硬質粒子としてMoCの他に、
Al3、SiCを使用している。 そして、発明品1〜11は比較例品1〜5に比べ、耐
食性に優れる。 以上のことから、結晶粒の大きさが0.070mm以
下のCu‐Sn‐Ni系のCu合金マトリックス中にM
C、WC、Mo、Wを含ませると、耐食性が向上す
ることが分かる。
The crystal grain size of the Cu alloy matrix, the constituent elements of the Cu alloy matrix, the type of hard particles and the corrosion resistance will be described below. As is clear from Table 1, the invention products 1 to 11 and the comparative example products 1 to 5 are in agreement where the size of the crystal grains of the Cu alloy matrix is 0.070 mm or less. Inventive products 1 to 11 have a Cu alloy matrix of Cu-S
n-Ni system (Inventive products 1 to 10 are Cu-Sn-Ni, Inventive product 11 is Cu-Sn-Ni-Zn)
o 2 C, WC, Mo, W are used. On the other hand, Comparative Example Product 1 uses Cu-Sn-Ni as the Cu alloy matrix, but does not contain hard particles. Further, Comparative Examples 2 and 3 use Mo 2 C as the hard particles, but Ni and Sn are contained in the Cu alloy matrix.
Does not include. Further, the comparative example products 4 and 5 are prepared by adding a Cu alloy matrix to C
u-Sn-Ni, Mo 2 C as hard particles,
Al 2 O 3 and SiC are used. The invention products 1 to 11 are superior in corrosion resistance to the comparative products 1 to 5. From the above, M in a Cu-Sn-Ni-based Cu alloy matrix with a crystal grain size of 0.070 mm or less
It can be seen that inclusion of o 2 C, WC, Mo, and W improves the corrosion resistance.

【0029】なお、本発明は上記し、且つ図面に示す実
施例に限定されるものではなく、以下のような拡張或い
は変更が可能である。硬質粒子はWCであっても良
い。硬質粒子はWC、MoC、WC、Mo、Wのう
ちから選択した2種以上を含めるようにしても良い。コ
ネクティングロッドの小端側に設けられるピストンピン
用のブシュに限らず、半割軸受として構成される内燃機
関の主軸受に適用しても良い。
The present invention is not limited to the embodiments described above and shown in the drawings, and the following expansions and modifications are possible. The hard particles may be W 2 C. The hard particles may contain two or more kinds selected from W 2 C, Mo 2 C, WC, Mo and W. The present invention is not limited to the piston pin bush provided on the small end side of the connecting rod, but may be applied to the main bearing of an internal combustion engine configured as a half bearing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブシュの断面図FIG. 1 is a sectional view of a bush showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1はブシュ、2は裏金、4は軸受合金層(摺動材料)で
ある。
1 is a bush, 2 is a back metal, and 4 is a bearing alloy layer (sliding material).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 日出夫 名古屋市北区猿投町2番地 大同メタル工 業株式会社内 (72)発明者 坂本 雅昭 名古屋市北区猿投町2番地 大同メタル工 業株式会社内 Fターム(参考) 3J011 QA03 SB02 SB03 SB04 SB05 SE01 SE06 3J033 AA05 AB03 AC01 GA05 GA07   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideo Ishikawa             Daido Metal Works, 2 Sanarucho-cho, Kita-ku, Nagoya-shi             Business (72) Inventor Masaaki Sakamoto             Daido Metal Works, 2 Sanarucho-cho, Kita-ku, Nagoya-shi             Business F term (reference) 3J011 QA03 SB02 SB03 SB04 SB05                       SE01 SE06                 3J033 AA05 AB03 AC01 GA05 GA07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Sn0.5〜15質量%、Ni0.2〜
10質量%、硬質粒子0.4〜10容積%、残部が実質
的にCuからなり、 前記硬質粒子はWC、WC、MoC、WおよびMo
のうちから選択された1種以上からなり、Cu‐Sn‐
Ni系マトリックスの結晶粒の大きさが0.070mm
以下であることを特徴とする摺動材料。
1. Sn 0.5 to 15% by mass, Ni 0.2 to
10% by mass, 0.4 to 10% by volume of hard particles, and the balance substantially consisting of Cu, and the hard particles are WC, W 2 C, Mo 2 C, W and Mo.
Cu-Sn- consisting of one or more selected from
Ni-based crystal grain size is 0.070 mm
The following are sliding materials.
【請求項2】 前記硬質粒子の平均粒径は、WC、W
CおよびMoCは0.1〜10μm、WおよびMoは1
〜25μmであることを特徴とする請求項1記載の摺動
材料。
2. The average particle diameter of the hard particles is WC, W 2
C and Mo 2 C are 0.1 to 10 μm, and W and Mo are 1
The sliding material according to claim 1, wherein the sliding material has a thickness of -25 μm.
【請求項3】 Fe、Al、Mn、Co、Zn、Siお
よびPのうちから1種以上を総量で40質量%以下含む
ことを特徴とする請求項1または2記載の摺動材料。
3. The sliding material according to claim 1, wherein the total amount of one or more selected from Fe, Al, Mn, Co, Zn, Si and P is 40 mass% or less.
【請求項4】 MoS、WS、h−BNおよび黒鉛
のうちから1種以上を総量で10容積%以下含むことを特
徴とする請求項1ないし3のいずれかに記載の摺動材
料。
4. The sliding material according to claim 1, wherein the total amount of one or more selected from MoS 2 , WS 2 , h-BN and graphite is 10% by volume or less.
【請求項5】 総量で10質量%以下のBiおよび/また
はPbを含むことを特徴とする請求項1ないし4のいず
れかに記載の摺動材料。
5. The sliding material according to claim 1, which contains Bi and / or Pb in a total amount of 10% by mass or less.
JP2002074148A 2002-03-18 2002-03-18 Sliding material Expired - Fee Related JP3839740B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002074148A JP3839740B2 (en) 2002-03-18 2002-03-18 Sliding material
GB0301240A GB2386610A (en) 2002-03-18 2003-01-20 A sliding bearing material
DE10305808A DE10305808A1 (en) 2002-03-18 2003-02-12 sliding
US10/367,753 US20030173000A1 (en) 2002-03-18 2003-02-19 Sliding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002074148A JP3839740B2 (en) 2002-03-18 2002-03-18 Sliding material

Publications (2)

Publication Number Publication Date
JP2003269456A true JP2003269456A (en) 2003-09-25
JP3839740B2 JP3839740B2 (en) 2006-11-01

Family

ID=19193234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002074148A Expired - Fee Related JP3839740B2 (en) 2002-03-18 2002-03-18 Sliding material

Country Status (4)

Country Link
US (1) US20030173000A1 (en)
JP (1) JP3839740B2 (en)
DE (1) DE10305808A1 (en)
GB (1) GB2386610A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179692A (en) * 2003-12-16 2005-07-07 Taiho Kogyo Co Ltd Copper alloy sintered sliding material
JP2006242386A (en) * 2005-03-03 2006-09-14 Miba Gleitlager Gmbh Sliding bearing
JP2007260704A (en) * 2006-03-27 2007-10-11 Daido Metal Co Ltd Method for manufacturing clad material composed of bronze alloy and steel
JP2012031935A (en) * 2010-07-30 2012-02-16 Daido Metal Co Ltd Sliding structure and sliding member used for the sliding structure
JP2012509993A (en) * 2008-11-26 2012-04-26 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Bearing material
CN102494026A (en) * 2011-12-03 2012-06-13 河南省恒丰汽车配件制造有限公司 Aluminum-silicon alloy and molybdenum disulfide bearing bush
WO2013129226A1 (en) * 2012-02-29 2013-09-06 株式会社ダイヤメット Sintered alloy having excellent abrasion resistance
US8623518B2 (en) 2011-08-30 2014-01-07 Daido Metal Company Ltd. Copper-based sliding material
KR20160009612A (en) * 2013-05-08 2016-01-26 페데랄-모굴 비스바덴 게엠베하 Copper alloy, use of a copper alloy, bearing having a copper alloy, and method for producing a bearing composed of a copper alloy
CN107559301A (en) * 2017-09-03 2018-01-09 安徽天裕汽车零部件制造有限公司 A kind of automobile straight tube bushing and preparation method thereof
KR20200113205A (en) * 2018-01-29 2020-10-06 포라이트 가부시키가이샤 Sintered bearing and manufacturing method of sintered bearing

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507766B2 (en) * 2004-08-27 2010-07-21 株式会社ダイヤメット Sintered Cu alloy bearing for recirculation exhaust gas flow control valve of EGR type internal combustion engine showing high strength and excellent wear resistance in high temperature environment
CN101541989B (en) * 2006-08-05 2014-05-28 大丰工业株式会社 Lead-free copper alloy sliding material
DE102007033902B3 (en) 2007-07-20 2008-12-18 Federal-Mogul Wiesbaden Gmbh Lead-free sintered sliding bearing material and sintered powder for producing the same
CN101970701B (en) 2008-01-23 2013-08-14 大丰工业株式会社 Process for production of sintered copper alloy sliding material and sintered copper alloy sliding material
DE102009002442B4 (en) * 2009-04-16 2013-04-18 Federal-Mogul Wiesbaden Gmbh Sintered sliding bearing material and plain bearing element
JP5984633B2 (en) * 2012-11-16 2016-09-06 大同メタル工業株式会社 Multi-layer sliding member
GB2509173A (en) * 2012-12-24 2014-06-25 Mahle Int Gmbh A sliding bearing
CN103352913A (en) * 2013-07-09 2013-10-16 山西太钢不锈钢股份有限公司 Bearing for tail lifting platform of 650 rolling mill
CN105154711A (en) * 2015-08-31 2015-12-16 苏州莱特复合材料有限公司 Carbon nano tube reinforcement aluminum-bronze-based composite material and preparation method thereof
CN105665696A (en) * 2016-02-23 2016-06-15 桐乡市搏腾贸易有限公司 Nanometer silicon nitride bearing material for machinery and preparation method thereof
CN109692951B (en) * 2018-12-20 2022-03-01 东睦新材料集团股份有限公司 Method for manufacturing powder metallurgy self-lubricating bearing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166278A (en) * 1993-12-15 1995-06-27 Tokai Carbon Co Ltd Coppery sliding material and production thereof
JP2000104132A (en) * 1998-09-29 2000-04-11 Ndc Co Ltd Copper sintered sliding material
JP2001050273A (en) * 1999-08-02 2001-02-23 Daido Metal Co Ltd Copper system sliding material
JP2001107106A (en) * 1999-10-12 2001-04-17 Ndc Co Ltd Coppery sintered sliding material
JP2001240933A (en) * 2000-02-29 2001-09-04 Daido Metal Co Ltd Copper based sliding material, its production method, plain bearing material and its producing method
JP2001240925A (en) * 2000-02-29 2001-09-04 Daido Metal Co Ltd Copper series sliding material
JP3831182B2 (en) * 2000-07-24 2006-10-11 大同メタル工業株式会社 Copper-based sliding material, manufacturing method thereof and plain bearing

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179692A (en) * 2003-12-16 2005-07-07 Taiho Kogyo Co Ltd Copper alloy sintered sliding material
JP2006242386A (en) * 2005-03-03 2006-09-14 Miba Gleitlager Gmbh Sliding bearing
JP2007260704A (en) * 2006-03-27 2007-10-11 Daido Metal Co Ltd Method for manufacturing clad material composed of bronze alloy and steel
US7749428B2 (en) 2006-03-27 2010-07-06 Daido Metal Co Ltd. Method of manufacturing a clad material of bronze alloy and steel
JP2012509993A (en) * 2008-11-26 2012-04-26 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Bearing material
JP2012031935A (en) * 2010-07-30 2012-02-16 Daido Metal Co Ltd Sliding structure and sliding member used for the sliding structure
US8623518B2 (en) 2011-08-30 2014-01-07 Daido Metal Company Ltd. Copper-based sliding material
CN102494026A (en) * 2011-12-03 2012-06-13 河南省恒丰汽车配件制造有限公司 Aluminum-silicon alloy and molybdenum disulfide bearing bush
WO2013129226A1 (en) * 2012-02-29 2013-09-06 株式会社ダイヤメット Sintered alloy having excellent abrasion resistance
US9663844B2 (en) 2012-02-29 2017-05-30 Diamet Corporation Sintered alloy superior in wear resistance
KR20160009612A (en) * 2013-05-08 2016-01-26 페데랄-모굴 비스바덴 게엠베하 Copper alloy, use of a copper alloy, bearing having a copper alloy, and method for producing a bearing composed of a copper alloy
KR102309320B1 (en) * 2013-05-08 2021-10-06 페데랄-모굴 비스바덴 게엠베하 Copper alloy, use of a copper alloy, bearing having a copper alloy, and method for producing a bearing composed of a copper alloy
CN107559301A (en) * 2017-09-03 2018-01-09 安徽天裕汽车零部件制造有限公司 A kind of automobile straight tube bushing and preparation method thereof
KR20200113205A (en) * 2018-01-29 2020-10-06 포라이트 가부시키가이샤 Sintered bearing and manufacturing method of sintered bearing
KR102579560B1 (en) 2018-01-29 2023-09-19 포라이트 가부시키가이샤 Sintered bearings and manufacturing methods of sintered bearings

Also Published As

Publication number Publication date
GB0301240D0 (en) 2003-02-19
DE10305808A1 (en) 2003-10-16
JP3839740B2 (en) 2006-11-01
US20030173000A1 (en) 2003-09-18
GB2386610A (en) 2003-09-24

Similar Documents

Publication Publication Date Title
JP2003269456A (en) Slide material
JP3507388B2 (en) Copper-based sliding material
JP5492089B2 (en) Pb-free Cu-Bi sintered material sliding parts
US6334914B2 (en) Copper alloy sliding material
JP3939931B2 (en) Copper-based multi-layer sliding material
JP3298634B2 (en) Sliding material
KR101265391B1 (en) Pb-FREE COPPER ALLOY SLIDING MATERIAL AND PLAIN BEARINGS
US6692548B2 (en) Copper-based sliding material, method of manufacturing the same, and sliding bearing
JP2001081523A (en) Coppery sliding material
GB2185041A (en) Aluminium base bearing alloy and method of producing same
JP2001240933A (en) Copper based sliding material, its production method, plain bearing material and its producing method
US8703660B2 (en) Lead-free sintered lubricating material and sinter powder for manufacture of the same
JP4389026B2 (en) Sliding material and manufacturing method thereof
JPH0684528B2 (en) Graphite-containing lead bronze multilayer sliding material and method for producing the same
JP5377557B2 (en) Copper-based sliding material
JPH07179964A (en) Copper-lead alloy bearing
JPH0247232A (en) Aluminum bearing alloy
JP7376998B2 (en) Alloys for sliding parts, sliding parts, internal combustion engines, and automobiles
JP3042539B2 (en) Sliding material
JP5566394B2 (en) Bearing material
JP2001107106A (en) Coppery sintered sliding material
JP4422255B2 (en) Aluminum base bearing alloy
JP2001050273A (en) Copper system sliding material
JP3531248B2 (en) Bearing and bearing material
JP2574274B2 (en) Aluminum bearing alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3839740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees