JP4769287B2 - Bronze powder for powder metallurgy and method for producing the same - Google Patents

Bronze powder for powder metallurgy and method for producing the same Download PDF

Info

Publication number
JP4769287B2
JP4769287B2 JP2008327054A JP2008327054A JP4769287B2 JP 4769287 B2 JP4769287 B2 JP 4769287B2 JP 2008327054 A JP2008327054 A JP 2008327054A JP 2008327054 A JP2008327054 A JP 2008327054A JP 4769287 B2 JP4769287 B2 JP 4769287B2
Authority
JP
Japan
Prior art keywords
powder
bronze
mass
copper
segregation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008327054A
Other languages
Japanese (ja)
Other versions
JP2010150570A5 (en
JP2010150570A (en
Inventor
忠司 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2008327054A priority Critical patent/JP4769287B2/en
Priority to CN200910118001A priority patent/CN101760664A/en
Publication of JP2010150570A publication Critical patent/JP2010150570A/en
Publication of JP2010150570A5 publication Critical patent/JP2010150570A5/ja
Application granted granted Critical
Publication of JP4769287B2 publication Critical patent/JP4769287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、粉末冶金の原料粉として使用される、分離偏析が少なく成形性が良好で、焼結時の寸法変化率の安定した青銅粉末、およびその製造方法に関するものである。   The present invention relates to a bronze powder that is used as a raw material powder for powder metallurgy, has little segregation, has good moldability, and has a stable dimensional change rate during sintering, and a method for producing the same.

従来、青銅系焼結部品を製造する場合の原料粉としては、銅粉と錫粉とを所定の割合で混合した混合粉、あるいはアトマイズ法等によって製造される合金粉が用いられてきた。
しかしながら混合粉を用いた場合には、銅粉と錫粉の比重、粒度、粒形などに差があるために均一に混合することが困難で、またたとえ均一に混合できたとしても、輸送、ホッパーへの装入および流出、金型への充填時に成分の分離偏析を起こし、得られる焼結部品の寸法精度、強度、金属組織の均一性が低下する。さらにまた、焼結中にSnの液相が出現し急速に焼結が進行するために、寸法変化率が不安定になり製品の寸法精度がばらつきやすい欠点もある。
Conventionally, as raw material powder for producing bronze-based sintered parts, mixed powder obtained by mixing copper powder and tin powder at a predetermined ratio, or alloy powder produced by an atomizing method or the like has been used.
However, when mixed powder is used, it is difficult to mix uniformly due to differences in specific gravity, particle size, particle shape, etc. of copper powder and tin powder, and even if it can be mixed uniformly, Separation and segregation of components occur at the time of charging and discharging into the hopper and filling into the mold, and the dimensional accuracy, strength and uniformity of the metal structure of the resulting sintered part are lowered. Furthermore, since the Sn liquid phase appears during sintering and the sintering proceeds rapidly, the dimensional change rate becomes unstable and the dimensional accuracy of the product tends to vary.

成分粉末の分離偏析を抑えるために、有機バインダーを用いて主成分粉末と副成分粉末を接着することも考えられているが、青銅系の場合主成分の銅への炭素の拡散が殆ど起こらずバインダー成分の残留炭素が焼結を阻害する。これを防ぐためにはバインダーの添加量を極力抑え、プレスで軽く圧着する等、接着を補助する方法を取る必要があるが工程が複雑になりコストがかかる問題があった(特許文献1)。またこの方法を用いると分離偏析は抑制されるが、単純混合の場合と同じく、焼結中にSnの液相が出現し急速に焼結が進行するために、寸法変化率が不安定になり製品の寸法精度がばらつきやすい。   In order to suppress the segregation and segregation of the component powder, it is also considered to bond the main component powder and the subcomponent powder using an organic binder. However, in the case of bronze type, almost no diffusion of carbon to the main component copper occurs. Residual carbon in the binder component hinders sintering. In order to prevent this, it is necessary to take a method of assisting adhesion such as suppressing the addition amount of the binder as much as possible and lightly pressing with a press, but there is a problem that the process becomes complicated and the cost is high (Patent Document 1). In addition, segregation and segregation are suppressed when this method is used. However, as in the case of simple mixing, the liquid phase of Sn appears during sintering and the rapid progress of sintering makes the dimensional change rate unstable. Product dimensional accuracy tends to vary.

一方合金粉を用いた場合には、成分の分離偏析に対しての問題はなく、焼結も固相焼結であるので焼結寸法変化は安定するが、粉末粒子の硬さが固溶硬化のために高くなって成形性が悪くなり、特に含油軸受のような多孔質な焼結部品を製造する場合にはきわめて不利となる。粒子の硬さを低くするため粉末を熱処理して焼鈍することがあるが、この場合 基質硬さは低下するものの、粉末粒子表面の微細な凹凸がなくなり、成形性をほとんど向上させることができない。   On the other hand, when alloy powder is used, there is no problem with segregation and segregation of components, and since sintering is also solid phase sintering, the sinter dimensional change is stable, but the hardness of the powder particles is solid solution hardening. For this reason, it becomes high and the formability becomes worse, and this is extremely disadvantageous particularly when a porous sintered part such as an oil-impregnated bearing is manufactured. In order to reduce the hardness of the particles, the powder may be annealed by heat treatment. In this case, although the substrate hardness is reduced, the fine irregularities on the surface of the powder particles are eliminated and the moldability can hardly be improved.

また、分離偏析が少なくかつ成形性の良好な青銅系粉末として、銅粉とはんだ粉、あるいは銅粉とはんだ粉と錫粉とを混合した後に熱処理を行う、部分合金化粉の製造方法が報告されている(特許文献2)。しかしながら、はんだや錫は融点が低くまた銅粉と非常に濡れ性が良いため、183〜232℃の融点で融解すると速やかに銅粉の表面に塗れ広がり、その後粒子の表面全体から銅粉中に拡散する。このため合金化が速やかに進行し、固溶硬化のために粉末が硬くなりやすい欠点があった。
特開平8-134502号公報 特公平4-4361号公報
Also reported as a bronze-based powder with little segregation and good formability, a method for producing partially alloyed powder, in which copper powder and solder powder, or copper powder, solder powder and tin powder are mixed and heat-treated (Patent Document 2). However, solder and tin have a low melting point and very good wettability with copper powder, so when melted at a melting point of 183 to 232 ° C, it spreads quickly on the surface of the copper powder, and then the entire surface of the particle enters the copper powder. Spread. For this reason, there existed a fault which alloying progresses rapidly and a powder tends to become hard for solid solution hardening.
JP-A-8-13502 Japanese Patent Publication No. 4-4361

本発明は上記問題点を解決するため、成形性が良好で成分の分離偏析がなく、焼結寸法変化の安定した青銅粉末を提供することを課題とする。   In order to solve the above-mentioned problems, an object of the present invention is to provide a bronze powder having good moldability, no separation and segregation of components, and stable sintering dimensional change.

課題を解決するため、銅粉と青銅合金粉とを混合し、この混合物を加熱することにより銅粉と青銅合金粉とを拡散結合させた後に解砕して、銅粉と青銅合金粉が一粒子中に存在する造粒粒子を得る。   In order to solve the problem, the copper powder and the bronze alloy powder are mixed, and the mixture is heated to diffusely bond the copper powder and the bronze alloy powder, and then crushed so that the copper powder and the bronze alloy powder are combined. Granulated particles present in the particles are obtained.

本発明における銅粉は製造方法は限定しないが例えばアトマイズ法、電解法などで製造された粉末を使用することができる。また、青銅合金粉はアトマイズ法により製造されたCu-Sn合金粉で、錫の含有量が10〜50質量%であるものを用いることができる。   Although the manufacturing method is not limited for the copper powder in this invention, For example, the powder manufactured by the atomizing method, the electrolytic method, etc. can be used. Further, the bronze alloy powder is a Cu—Sn alloy powder produced by an atomizing method, and a tin content of 10 to 50 mass% can be used.

これら銅粉と青銅合金粉とを、全体の錫含有量が5〜20質量%となるように混合し、非酸化性雰囲気中400〜800℃で熱処理、部分的に拡散結合させた後に解砕して上記青銅粉末を得る。
本発明の青銅粉の粒度は特に限定しないが、一般的には目開き75μm〜350μmの篩を通過可能な粒径となるまで解砕を行う。
These copper powder and bronze alloy powder are mixed so that the total tin content is 5 to 20% by mass, heat-treated at 400 to 800 ° C. in a non-oxidizing atmosphere, and partially diffusively bonded. Thus, the bronze powder is obtained.
The particle size of the bronze powder of the present invention is not particularly limited, but in general, the bronze powder is pulverized until it has a particle size that can pass through a sieve having an opening of 75 μm to 350 μm.

この時原料の青銅合金粉のSn成分が40〜50質量%の場合は400℃程度で熱処理を行い、用いる青銅合金粉のSn成分が少なくなるにつれて熱処理温度を高くする。10質量%のSnを含む青銅合金粉を用いた場合には熱処理温度は750〜800℃にするのが好ましい。このようにすることで熱処理中に液相を出現させることなく固相領域でSnを銅粒子中に拡散させ、銅粉と青銅合金粉を拡散結合させながら、銅粉中への過剰なSnの拡散を防ぐことができ、Cu部の硬さを低く抑えることができる。   At this time, when the Sn component of the raw material bronze alloy powder is 40 to 50% by mass, heat treatment is performed at about 400 ° C., and the heat treatment temperature is increased as the Sn component of the bronze alloy powder to be used decreases. When using bronze alloy powder containing 10% by mass of Sn, the heat treatment temperature is preferably 750 to 800 ° C. In this way, Sn is diffused into the copper particles in the solid phase region without causing a liquid phase to appear during the heat treatment, and while the copper powder and the bronze alloy powder are diffusion-bonded, excessive Sn in the copper powder Diffusion can be prevented and the hardness of the Cu part can be kept low.

このようにして得られた本発明による青銅粉末は、光学顕微鏡による組織観察で銅粉と青銅合金粉とが結合していることが確認でき、かつ荷重10gで測定されたCu部のビッカース硬さHvが 50〜100 であることを特徴とする粉末である。   The bronze powder according to the present invention thus obtained was confirmed to be bonded with copper powder and bronze alloy powder by structure observation with an optical microscope, and the Vickers hardness of the Cu part measured at a load of 10 g. It is a powder characterized by Hv of 50-100.

この造粒粉末は銅部と青銅部が結合しているために、分離偏析を生じず、またプレス成形時に軟らかい銅部が変形し、硬い青銅部と密着するため非常に成形性が良好である。さらに焼結中に液相が出現しないため、焼結寸法変化率が安定している。   This granulated powder has a separable segregation because the copper part and the bronze part are bonded together, and the soft copper part is deformed during press molding and adheres to the hard bronze part, so the formability is very good. . Furthermore, since a liquid phase does not appear during sintering, the rate of change in sinter dimensions is stable.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において、青銅粉末全体の錫含有量を5〜20質量%としたのは、5質量%より少ないとSnの固溶量が少ないために焼結体の基質が軟らかく強度が低くなってしまうためで、20質量%を超えるとSn成分が多すぎて脆い中間相が多く出現して強度の低下を招くためである。   In the present invention, the tin content of the entire bronze powder is set to 5 to 20% by mass. If the content is less than 5% by mass, the solid substrate of the sintered body is soft and the strength is low because the solid solution amount of Sn is small. For this reason, if it exceeds 20% by mass, there are too many Sn components and many brittle intermediate phases appear, leading to a decrease in strength.

原料の青銅合金粉のSn含有量を10〜50質量%としたのは次の理由による。Sn含有量が10質量%より少ない場合には、これを銅粉と混合して全体のSn含有量を5質量%以上にしようとすると、軟らかい銅粉の混合量が著しく減少し硬い青銅粒子の比率が多くなるために成形時の粒子の変形が十分でなく、高い成形体強度が得られない。また、50質量%より多いと熱処理温度を低く設定しても熱処理時に相当量のCu-Sn液相が出現し、これが混合したCu粒子の表面に速やかに濡れて急速にCu粒子中にSnが拡散することによりCu粒子が固溶硬化し、成形性が低下する。   The reason why the Sn content of the raw material bronze alloy powder is 10 to 50% by mass is as follows. If the Sn content is less than 10% by mass, mixing this with copper powder to increase the total Sn content to 5% by mass or more will significantly reduce the amount of soft copper powder mixed, resulting in hard bronze particles. Since the ratio increases, the deformation of the particles at the time of molding is not sufficient, and a high molded body strength cannot be obtained. On the other hand, if it exceeds 50% by mass, a considerable amount of Cu-Sn liquid phase appears at the time of heat treatment even if the heat treatment temperature is set low, and this quickly wets the surface of the mixed Cu particles, and Sn is rapidly contained in the Cu particles. By diffusing, Cu particles are solid-hardened and formability is lowered.

熱処理温度は400〜800℃としたが、原料の青銅合金粉のSn成分が40〜50質量%の場合は400℃程度の低温で熱処理を行い、用いる青銅合金粉のSn成分が少なくなるにつれて熱処理温度を高くすることが望ましく、10質量%のSnを含む銅合金粉を用いた場合には熱処理温度は750〜800℃にするのが好ましい。このようにすることで、熱処理中に液相を出現させることなく固相焼結領域で銅粉と青銅合金粉を拡散結合させることができ、銅粉中への過剰なSnの拡散を防いでCu部の硬さを低く抑えることができる。これにより、銅粉と青銅合金粉との分離偏析を抑制しながら、高い成形体強度が得られる成形性の良好な青銅粉末を得ることができる。熱処理温度が800℃を超えると、Cu中へのSnの拡散速度が速くなりCu粒子の固溶硬化が進行して成形性が低下するとともに、ケーキが硬くなり粉砕が困難になって生産性が著しく低下する。
尚、本発明では、上記の熱処理を非酸化性雰囲気中で行なう必要があり、一般的には窒素やアルゴン等の不活性ガス、水素や水素と窒素の混合ガス等の還元雰囲気中で熱処理が行なわれる。
The heat treatment temperature was 400-800 ° C, but when the Sn component of the raw material bronze alloy powder is 40-50 mass%, heat treatment is performed at a low temperature of about 400 ° C, and the heat treatment is performed as the Sn component of the bronze alloy powder used decreases. It is desirable to increase the temperature. When copper alloy powder containing 10% by mass of Sn is used, the heat treatment temperature is preferably 750 to 800 ° C. In this way, copper powder and bronze alloy powder can be diffusion-bonded in the solid phase sintering region without causing a liquid phase to appear during heat treatment, preventing excessive Sn from diffusing into the copper powder. The hardness of the Cu part can be kept low. Thereby, it is possible to obtain a bronze powder with good moldability and high mold strength while suppressing segregation of copper powder and bronze alloy powder. When the heat treatment temperature exceeds 800 ° C., the diffusion rate of Sn into the Cu is increased, the solid solution hardening of the Cu particles proceeds, the moldability is lowered, the cake becomes harder and the pulverization becomes difficult, and the productivity is increased. It drops significantly.
In the present invention, it is necessary to perform the above heat treatment in a non-oxidizing atmosphere. Generally, the heat treatment is performed in a reducing atmosphere such as an inert gas such as nitrogen or argon, hydrogen or a mixed gas of hydrogen and nitrogen. Done.

このようにして得られた本発明による青銅粉末は、図1に示すように光学顕微鏡による組織観察で銅粉と青銅合金粉とが結合していることが確認でき、かつ荷重10gで測定されたCu部のビッカース硬さHvが 50〜100 であることを特徴とする粉末である。   The bronze powder according to the present invention thus obtained was confirmed to be bonded with copper powder and bronze alloy powder by microstructure observation with an optical microscope as shown in FIG. 1, and measured with a load of 10 g. It is a powder characterized in that the Vickers hardness Hv of the Cu part is 50 to 100.

また、本発明の青銅粉を使用する際に、通常粉末冶金で青銅に添加するような添加物、すなわち鉛、亜鉛、ビスマス、Cu-P等の単体金属あるいは合金粉末、黒鉛、二硫化モリブデン、硫化マンガン等の固体潤滑剤、炭化物、窒化物などの硬質粒子、金属石鹸、ワックス等の成形潤滑剤が添加混合されても良い。   In addition, when using the bronze powder of the present invention, additives that are usually added to bronze by powder metallurgy, that is, single metal or alloy powder such as lead, zinc, bismuth, Cu-P, graphite, molybdenum disulfide, Solid lubricants such as manganese sulfide, hard particles such as carbides and nitrides, and molding lubricants such as metal soaps and waxes may be added and mixed.

次に本発明を実施例に基づいて詳細に述べる。
以下に示す実施例1〜5および比較例6〜12は、平均粒径 50 μmの水アトマイズ銅粉と、Sn成分含有量が 5〜60質量%で平均粒径40〜50μmの水アトマイズ青銅合金粉とを混合し、所定の温度で水素75体積%、窒素25体積%の混合ガス中で20分間熱処理を行った後に、焼結してケーキ状になった粉末塊を小型粉砕機にて解砕し、100 mesh の篩(目開き 150μm)を通して作製した粉末である。実施例6は銅粉に平均粒径45μmの電解銅粉を用いて同様に作製した。
比較例1は、平均粒径 50 μmの水アトマイズ銅粉90質量%と平均粒径 25 μmの水アトマイズ錫粉10質量%とを混合機で混合した単純混合粉末である。
比較例2は、平均粒径 50 μmの水アトマイズ銅粉90質量%にポリビニルピロリドン5質量%水溶液を金属粉全体の1質量%添加混合し、さらに平均粒径 25 μmの水アトマイズ錫粉10質量%を加えて混合した後、これを金型に入れて6 MPaの加圧力で加圧、オーブンで100℃‐1時間乾燥してから小型粉砕機にて解砕し、100 mesh の篩を通して得られた偏析防止処理青銅粉である。
比較例3は平均粒径 50 μmの水アトマイズ銅粉90質量%と平均粒径 25 μmの水アトマイズ錫粉10質量%とを混合し、水素75体積%、窒素25体積%の混合ガス中で400℃‐20分間熱処理を行った後に、焼結してケーキ状になった粉末塊を小型粉砕機にて解砕し、100 mesh の篩を通して作製した部分合金化青銅粉である。
比較例4は平均粒径 50 μmの水アトマイズ銅粉と、Sn成分含有量が 30質量%で平均粒径45μmの水アトマイズ青銅合金粉とを混合した混合粉末である。
比較例5は水アトマイズで作製した平均粒径48μのCu-10質量%Sn合金粉である。
Next, the present invention will be described in detail based on examples.
Examples 1 to 5 and Comparative Examples 6 to 12 shown below are a water atomized copper powder having an average particle size of 50 μm, and a water atomized bronze alloy having an Sn component content of 5 to 60% by mass and an average particle size of 40 to 50 μm. After mixing with powder and heat-treating for 20 minutes in a mixed gas of 75 vol% hydrogen and 25 vol% nitrogen at a specified temperature, the powder lump that has been sintered into a cake is disintegrated with a small grinder. This powder was crushed and made through a 100 mesh sieve (mesh size 150μm). Example 6 was produced in the same manner using electrolytic copper powder having an average particle size of 45 μm as copper powder.
Comparative Example 1 is a simple mixed powder obtained by mixing 90% by mass of water atomized copper powder having an average particle size of 50 μm and 10% by mass of water atomized tin powder having an average particle size of 25 μm by a mixer.
Comparative Example 2 is a mixture of 90% by mass of water atomized copper powder having an average particle size of 50 μm and 1% by mass of an aqueous solution of 5% by weight of polyvinylpyrrolidone added to the entire metal powder, and 10% by mass of water atomized tin powder having an average particle size of 25 μm. After mixing in a mold, pressurize with a pressure of 6 MPa , dry in an oven at 100 ° C for 1 hour, crush in a small pulverizer, and pass through a 100 mesh sieve. Segregation preventing treatment bronze powder.
In Comparative Example 3, 90% by mass of water atomized copper powder having an average particle size of 50 μm and 10% by mass of water atomized tin powder having an average particle size of 25 μm were mixed, and in a mixed gas of 75% by volume of hydrogen and 25% by volume of nitrogen. This is a partially alloyed bronze powder produced by heat treatment at 400 ° C for 20 minutes, and then pulverizing the powder lump that has been sintered into a cake shape with a small pulverizer and passing through a 100 mesh sieve.
Comparative Example 4 is a mixed powder obtained by mixing water atomized copper powder having an average particle size of 50 μm and water atomized bronze alloy powder having an Sn component content of 30% by mass and an average particle size of 45 μm.
Comparative Example 5 is a Cu-10 mass% Sn alloy powder having an average particle size of 48 μ and made by water atomization.

これらの粉末について粒子断面のCu部の硬さ、圧粉体抗折力、焼結寸法変化率およびそのばらつき、焼結体圧環強さを測定し、焼結体外観の状態を観察した。   With respect to these powders, the hardness of the Cu portion of the particle cross section, the green compact bending strength, the rate of change in the sinter dimensions and the variation thereof, and the sintered compact crushing strength were measured, and the appearance of the sintered compact was observed.

Cu部の硬さは、粉末を樹脂埋めして研磨し、研磨による歪を取り除くために軽くエッチングした後に、図1の1に示すCu部のほぼ中心部を20粒子、荷重10gでビッカース硬さ試験を行い平均を取った値である。荷重10gで測定したビッカース硬さHvは、良く焼鈍された不純物の少ないCuでは約50程度であるが、結晶粒が微細であったり、不純物や合金成分が多かったりすると高い値となる。Cu部のHv値が低いとプレス成形時によく変形し、硬い青銅部と密着するために成形性に優れた粉末となり、次に示す圧粉体抗折力が向上する。反対にHv値が高くなると成形性が悪くなっていき、特に 100以上になると実用上問題がある程度にまで成形性が低下する。
尚、Cuの硬さを荷重10gでビッカース硬さを測定した場合、最も低い値で50程度であり、それより低い値にはならない。
The hardness of the Cu part is filled with resin and polished, lightly etched to remove the strain caused by polishing, and then the V center hardness of 20 parts in the center of the Cu part shown in 1 of FIG. It is a value obtained by conducting an average test. The Vickers hardness Hv measured at a load of 10 g is about 50 for Cu that is well annealed and has few impurities, but becomes high when the crystal grains are fine or there are many impurities and alloy components. When the Hv value of the Cu part is low, it deforms well at the time of press forming and adheres to the hard bronze part, resulting in a powder having excellent formability, and the following green compact bending strength is improved. On the other hand, as the Hv value increases, the moldability deteriorates. Particularly, when the Hv value exceeds 100, the moldability deteriorates to some extent in practical use.
When the hardness of Cu is measured with a load of 10 g and the Vickers hardness is measured, the lowest value is about 50, which is not lower than that.

圧粉体抗折力は粉末の成形性を評価する数値であるが、粉末に成形潤滑剤としてワックス系潤滑剤を混合し、 圧粉体密度が 6.3 g/cm3になるように30×12×6 mm の直方体に成形し、ISO 3995規格に基づいて破壊強度を測定した。この値は実際に製造する部品の寸法や形状によっても求められる水準は多少異なるが、概ね8.0 MPa以上の強度を持つことが望ましい。 The green compact bending strength is a numerical value that evaluates the moldability of the powder, but it is 30 × 12 so that the powder density is 6.3 g / cm 3 by mixing the powder with a wax-based lubricant as a molding lubricant. It was molded into a 6 mm rectangular parallelepiped and its fracture strength was measured based on the ISO 3995 standard. This value is slightly different depending on the size and shape of the parts actually manufactured, but it is desirable that the strength is approximately 8.0 MPa or more.

焼結に際しても、粉末に成形潤滑剤としてワックス系潤滑剤を混合し、 圧粉体密度が 6.3 g/cm3になるようにφ14×φ7×7 mm の円筒形に成形し、水素75体積%、窒素25体積%の混合ガス中で780℃、20分間行った。焼結はそれぞれの試料粉末について10個行い、焼結前後の寸法変化率を測定、さらに焼結体の強度としてJIS Z 2507規格に基づいて圧環強さを測定した。以下の表に示す測定結果にはそれらの平均値と、寸法変化率のばらつきを表す数値として標準偏差を記載した。焼結を行うと一般に寸法は収縮し寸法変化率はマイナスになるが、その値自体の大小は、成形金型作製時に寸法変化分を考慮して金型寸法を決定するため特に問題にならない。しかしその値が試料によってばらつくと、製品の寸法精度が低下するために問題がある。寸法変化率の標準偏差値は小さいほど望ましいが、概ね0.1を超えると実用上問題が生じてくると考えられる。焼結体の圧環強さはより高い方が望ましいが、200 MPa以上あれば実用上問題ない程度である。 During sintering, a wax-based lubricant was mixed with the powder as a molding lubricant, and the powder was molded into a cylindrical shape of φ14 × φ7 × 7 mm so that the green compact density was 6.3 g / cm 3, and 75% by volume of hydrogen And in a mixed gas of 25% by volume of nitrogen at 780 ° C. for 20 minutes. Sintering was performed 10 times for each sample powder, the dimensional change rate before and after sintering was measured, and the crushing strength was measured based on JIS Z 2507 standard as the strength of the sintered body. In the measurement results shown in the following table, the standard deviation was described as the average value and the numerical value representing the variation in the dimensional change rate. When sintering is performed, the dimensions generally shrink and the dimensional change rate becomes negative. However, the magnitude of the value itself is not particularly problematic because the mold dimensions are determined in consideration of the dimensional change when forming the mold. However, if the value varies depending on the sample, there is a problem because the dimensional accuracy of the product decreases. The standard deviation value of the dimensional change rate is preferably as small as possible, but if it exceeds about 0.1, it is considered that there will be practical problems. A higher crushing strength of the sintered body is desirable, but if it is 200 MPa or more, there is no practical problem.

偏析状態は焼結体側面を目視観察し、Snリッチ部の筋状の模様が見られるか否かを基準とした。筋状の模様が観察されるものを「偏析」、観察されないものを「なし」と表した。   The segregation state was determined by visually observing the side surface of the sintered body and determining whether or not the streaky pattern of the Sn rich portion was observed. The case where the streak pattern was observed was expressed as “segregation” and the case where the streak pattern was not observed was expressed as “none”.

以下に示す実施例および比較例では、これらの項目を総合的に評価して、Cu部のビッカース硬さHvが50〜100、圧粉体抗折力が8.0 MPa以上、焼結寸法変化率の標準偏差が0.1以下、焼結体圧環強さが200 MPa以上、焼結体外観に筋状の偏析が観察されない粉末を○、いずれかの項目がこの範囲外のものを×と記した。 In the following examples and comparative examples, these items are comprehensively evaluated, and the Vickers hardness Hv of the Cu part is 50 to 100, the green compact bending strength is 8.0 MPa or more, and the sintered dimensional change rate is A powder having a standard deviation of 0.1 or less, a sintered body crushing strength of 200 MPa or more, and no streaking segregation observed on the appearance of the sintered body was marked with ◯, and any item outside this range was marked with ×.

表1に種々の製造方法で製造した青銅粉末の結果を示す。比較例1および4の混合粉はCu成分とSn成分が結合していないために偏析を生じ、焼結体側面に筋状のSnリッチ部が観察された。比較例2は偏析は起こしていないが、比較例1と同様液相焼結となるので寸法変化率のばらつきが大きい。比較例1、2、4に用いた水アトマイズ銅粉は急冷凝固で結晶粒が微細なため、粒子が硬く成形性が悪い。比較例3は熱処理による焼鈍効果もあるものの、Snの拡散による固溶硬化の影響もあり、粒子が硬く成形性が悪い。比較例5のアトマイズによる合金粉は粒子の硬さが非常に高く、成形性が著しく悪い。これらに対し実施例1に示す本発明による青銅粉は、成形性、寸法変化のばらつき、焼結体強度、偏析のいずれも良好であった。
Table 1 shows the results of bronze powder produced by various production methods. In the mixed powders of Comparative Examples 1 and 4, since the Cu component and the Sn component were not bonded, segregation occurred, and a streaky Sn-rich portion was observed on the side surface of the sintered body. In Comparative Example 2, segregation does not occur, but since the liquid phase sintering is performed in the same manner as Comparative Example 1, the variation in the dimensional change rate is large. The water-atomized copper powder used in Comparative Examples 1, 2, and 4 is rapidly solidified and the crystal grains are fine, so the particles are hard and have poor moldability. Although Comparative Example 3 has an annealing effect by heat treatment, it is also affected by solid solution hardening due to diffusion of Sn, and the particles are hard and have poor moldability. The alloy powder obtained by atomization in Comparative Example 5 has very high particle hardness and remarkably poor formability. On the other hand, the bronze powder according to the present invention shown in Example 1 was good in all of moldability, dimensional variation, sintered body strength, and segregation.

表2に全体の組成が粉末の特性におよぼす影響を示す。
比較例6に示すように、全体のSn量が5質量%より少なくなるとSnの固溶量が少ないために焼結後の焼結体の基質が軟らかく、強度が低くなってくる。また比較例7のように20質量%を超えた場合には、Sn成分が多すぎて脆い中間相が多く出現し強度の低下を引き起こす。
Table 2 shows the influence of the overall composition on the properties of the powder.
As shown in Comparative Example 6, when the total amount of Sn is less than 5% by mass, the solid solution amount of Sn is small, so that the substrate of the sintered body after sintering is soft and the strength is lowered. On the other hand, when it exceeds 20% by mass as in Comparative Example 7, there are too many Sn components and many brittle intermediate phases appear, causing a decrease in strength.

表3に熱処理温度の影響を示す。
比較例8のように熱処理温度が800℃を超えると、Cu粒子中へのSnの拡散が進みすぎ、Cu部の硬さが高くなって、圧粉体抗折力が低くなる。また、比較例10のように熱処理温度が400℃より低くなると、比較的低温でも焼結が進行しやすいCu-50質量%Sn組成の青銅合金粉を原料粉に使用したとしてもほとんど焼結が進行せず、銅粉と青銅合金粉の結合が不十分でその結果分離偏析を生じてしまう。
実施例1〜3に示すように、原料の青銅合金粉のSn成分が10質量%の場合には750℃、30質量%の場合には600℃、50質量%の場合には400℃で熱処理を行うことで、Cu部の硬さが低く成形性が良好で、分離偏析のない青銅粉末が得られた。
Table 3 shows the influence of the heat treatment temperature.
When the heat treatment temperature exceeds 800 ° C. as in Comparative Example 8, the diffusion of Sn into the Cu particles proceeds excessively, the hardness of the Cu portion increases, and the green compact bending strength decreases. In addition, when the heat treatment temperature is lower than 400 ° C. as in Comparative Example 10, even if a bronze alloy powder having a Cu-50 mass% Sn composition, which is easy to proceed at a relatively low temperature, is used as the raw material powder, the sintering is almost complete. It does not proceed and the bonding between the copper powder and the bronze alloy powder is insufficient, resulting in separation and segregation.
As shown in Examples 1 to 3, heat treatment was performed at 750 ° C. when the Sn component of the raw material bronze alloy powder was 10% by mass, 600 ° C. when 30% by mass, and 400 ° C. when 50% by mass. As a result, a bronze powder with low Cu part hardness and good formability and no segregation was obtained.

表4に原料粉として用いる青銅合金粉の組成の影響を示す。
比較例11ように青銅合金粉の組成が5質量%の場合、全体の組成を5質量%以上にするためには銅粉を添加する余地がなく、すべて青銅合金粉のみとなってしまう。この結果Cu部がなく、粉末全体を占める青銅部の硬さは134と高い値となる。このため成形時の粉末粒子の変形が少なく成形性が低下した。
比較例12のように青銅合金粉の組成が50質量%を超える場合には、400℃で熱処理しても多量の液相が出現して急速にCu粒子中にSnが拡散することによりCu粒子硬さが111と高くなり、成形性が低下した。
実施例1〜5に示すように、青銅合金粉のSn含有量が10〜50質量%の場合には、適当な熱処理温度を選定することにより良好な粉末を得ることができた。
Table 4 shows the influence of the composition of the bronze alloy powder used as the raw material powder.
When the composition of the bronze alloy powder is 5% by mass as in Comparative Example 11, there is no room for adding copper powder in order to make the total composition 5% by mass or more, and only the bronze alloy powder is used. As a result, there is no Cu part and the hardness of the bronze part occupying the entire powder is as high as 134. For this reason, there was little deformation of the powder particles at the time of molding and moldability was lowered.
When the composition of the bronze alloy powder exceeds 50% by mass as in Comparative Example 12, a large amount of liquid phase appears even after heat treatment at 400 ° C., and Sn rapidly diffuses into the Cu particles. Hardness increased to 111 and formability decreased.
As shown in Examples 1 to 5, when the Sn content of the bronze alloy powder was 10 to 50% by mass, a good powder could be obtained by selecting an appropriate heat treatment temperature.

表5の実施例6は実施例1の原料銅粉のアトマイズ銅粉の代わりに電解銅粉を用いて同様の組成、製造条件で製造した粉末であるが、いずれもCu部の硬さが低く成形性が良好で、分離偏析もなく焼結体強度の高い結果が得られている。   Example 6 in Table 5 is a powder produced with the same composition and production conditions using electrolytic copper powder instead of the atomized copper powder of the raw material copper powder of Example 1, but the hardness of the Cu part is low. Good formability, no segregation, and high strength of the sintered body are obtained.

本発明による青銅粉末は、銅系粉末冶金全般の原料粉として利用可能である。特に分離偏析を生じず成形性、焼結性が優れていることから、精密で小型・複雑形状の部品を製造するための原料粉として良好な特性が得られ、広く適用される可能性がある。   The bronze powder according to the present invention can be used as a raw material powder for general copper-based powder metallurgy. In particular, since segregation does not occur and formability and sinterability are excellent, good characteristics can be obtained as a raw material powder for manufacturing precision, small, and complicated parts, which may be widely applied. .

本発明の方法で製造された本発明の青銅粉末の粒子断面写真である。It is a particle | grain cross-sectional photograph of the bronze powder of this invention manufactured by the method of this invention.

符号の説明Explanation of symbols

1 銅部
2 青銅部
1 Copper part 2 Bronze part

Claims (2)

粉末冶金用の青銅粉末であって、当該青銅粉末においては、銅粉と、錫の含有量が10〜50質量%の青銅合金粉とが拡散結合しており、青銅粉末全体の錫含有量が5〜20質量%であり、かつ荷重10gで測定された銅部のビッカース硬さHvが 50〜100であることを特徴とする粉末冶金用青銅粉末。   A bronze powder for powder metallurgy, in which the copper powder and a bronze alloy powder having a tin content of 10 to 50% by mass are diffusion-bonded, and the tin content of the entire bronze powder is Bronze powder for powder metallurgy, characterized in that the Vickers hardness Hv of the copper part measured at 5 to 20% by mass and a load of 10 g is 50 to 100. 粉末冶金用の青銅粉末を製造するための方法であって、銅粉と、アトマイズ法により製造された錫の含有量が10〜50質量%の青銅合金粉とを、全体の錫含有量が5〜20質量%となるように混合し、得られた混合物を非酸化性雰囲気中400〜800℃で熱処理して、部分的に拡散結合させた後に解砕することを特徴とする粉末冶金用青銅粉末の製造方法。   A method for producing bronze powder for powder metallurgy, comprising copper powder and bronze alloy powder having a tin content of 10 to 50% by mass produced by an atomizing method, and a total tin content of 5 Bronze for powder metallurgy, characterized in that it is mixed so as to be ˜20% by mass, and the resulting mixture is heat treated at 400 to 800 ° C. in a non-oxidizing atmosphere, partially diffused and then crushed. Powder manufacturing method.
JP2008327054A 2008-12-24 2008-12-24 Bronze powder for powder metallurgy and method for producing the same Active JP4769287B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008327054A JP4769287B2 (en) 2008-12-24 2008-12-24 Bronze powder for powder metallurgy and method for producing the same
CN200910118001A CN101760664A (en) 2008-12-24 2009-02-23 Bronze powder for powder metallurgy and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008327054A JP4769287B2 (en) 2008-12-24 2008-12-24 Bronze powder for powder metallurgy and method for producing the same

Publications (3)

Publication Number Publication Date
JP2010150570A JP2010150570A (en) 2010-07-08
JP2010150570A5 JP2010150570A5 (en) 2010-10-21
JP4769287B2 true JP4769287B2 (en) 2011-09-07

Family

ID=42492040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008327054A Active JP4769287B2 (en) 2008-12-24 2008-12-24 Bronze powder for powder metallurgy and method for producing the same

Country Status (2)

Country Link
JP (1) JP4769287B2 (en)
CN (1) CN101760664A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105382253A (en) * 2015-12-10 2016-03-09 湖南省天心博力科技有限公司 Method for producing premixed copper-tin 10 bronze

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480988B (en) * 2013-09-26 2015-08-19 郑州机械研究所 A kind of high tin money base welding rod
CN105458275B (en) * 2015-12-10 2018-01-30 湖南省天心博力科技有限公司 A kind of manufacture method of the alloy powder of powder used in metallurgy copper and tin 10
WO2019016874A1 (en) 2017-07-18 2019-01-24 福田金属箔粉工業株式会社 Copper powder for additive manufacturing, and additive manufactured product
CN109530677B (en) * 2018-12-27 2020-07-03 广东省材料与加工研究所 Tungsten-copper alloy feed and preparation method thereof
CN110576181B (en) * 2019-10-18 2022-09-23 镇江伟益五金有限公司 Manufacturing process of wear-resisting plate for automobile tire mold
CN111378868B (en) * 2020-04-23 2021-09-10 西安理工大学 Preparation method of high-tin-content high-density copper-tin alloy
CN112536436B (en) * 2020-11-20 2023-04-07 昌河飞机工业(集团)有限责任公司 Preparation method of self-lubricating copper-based powder metallurgy structural part for helicopter
CN113878123B (en) * 2021-04-15 2023-06-23 芜湖松合新材料科技有限公司 Preparation method of high-quality copper-tin powder
CN113399672A (en) * 2021-06-21 2021-09-17 扬州保来得科技实业有限公司 Cu-10Sn bronze powder and preparation method and application thereof
CN114990373B (en) * 2022-05-30 2023-05-12 河南科技大学 Preparation method of aluminum oxide dispersion strengthening copper-based composite material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832712A (en) * 1971-09-02 1973-05-02
JPS5435565B2 (en) * 1974-04-10 1979-11-02
JPS6468401A (en) * 1987-09-08 1989-03-14 Fukuda Metal Foil Powder Production of partial alloying copper powder
JP3675658B2 (en) * 1999-02-09 2005-07-27 日本科学冶金株式会社 bearing
JP4808375B2 (en) * 2003-12-26 2011-11-02 Jfeスチール株式会社 Iron-based powder mixture for powder metallurgy
WO2006126353A1 (en) * 2005-05-27 2006-11-30 Nippon Mining & Metals Co., Ltd. Cu-Sn MIXTURE POWDER AND PROCESS FOR PRODUCING THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105382253A (en) * 2015-12-10 2016-03-09 湖南省天心博力科技有限公司 Method for producing premixed copper-tin 10 bronze
CN105382253B (en) * 2015-12-10 2018-01-30 湖南省天心博力科技有限公司 A kind of production method for being pre-mixed the bronze of copper and tin 10

Also Published As

Publication number Publication date
CN101760664A (en) 2010-06-30
JP2010150570A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP4769287B2 (en) Bronze powder for powder metallurgy and method for producing the same
JP5504278B2 (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
CN110079691B (en) Molybdenum-copper alloy with low molybdenum content and preparation method thereof
JP5999285B1 (en) Iron-base alloy powder for powder metallurgy and sintered forged parts
JP2009007650A (en) Mixed powder for sintered aluminum-containing copper alloy, and method for producing the same
JP4401326B2 (en) Method for producing high-strength wear-resistant aluminum sintered alloy
TWI465589B (en) Production method of sintered bronze alloy powder
JP4397425B1 (en) Method for producing Ti particle-dispersed magnesium-based composite material
JP2013023707A (en) Mixed powder for powder metallurgy
KR101350768B1 (en) Hard metal mold for manufacturing aspherical lens
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
JP5403707B2 (en) Cu-based infiltration powder
CN107427923A (en) Mechanical part and its manufacture method
JP2006169547A (en) METHOD FOR PRODUCING Mo ALLOY POWDER TO BE PRESSURE-SINTERED, AND METHOD FOR PRODUCING TARGET MATERIAL FOR SPUTTERING
JP6363931B2 (en) Copper alloy for slide bearing
JP2001131660A (en) Alloy powder for copper series high strength sintered parts
WO2018181107A1 (en) Sintered aluminum alloy material and method for producing same
Coovattanachai et al. Effect of admixed ceramic particles on properties of sintered 316L stainless steel
JP2007031757A (en) Alloy steel powder for powder metallurgy
JPH0689363B2 (en) High strength alloy steel powder for powder metallurgy
JP3336370B2 (en) Method of manufacturing semiconductor substrate material, semiconductor substrate material and semiconductor package
JP2813159B2 (en) Manufacturing method of aluminum sintered material
JP5923023B2 (en) Mixed powder for powder metallurgy and method for producing sintered material
JPH0688153A (en) Production of sintered titanium alloy
JP6467535B1 (en) Cu-based powder for infiltration

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110617

R150 Certificate of patent or registration of utility model

Ref document number: 4769287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250