JPH11256206A - Small-sized motor and manufacture of sintered alloy-made oil impregnated bearing thereof - Google Patents

Small-sized motor and manufacture of sintered alloy-made oil impregnated bearing thereof

Info

Publication number
JPH11256206A
JPH11256206A JP10073167A JP7316798A JPH11256206A JP H11256206 A JPH11256206 A JP H11256206A JP 10073167 A JP10073167 A JP 10073167A JP 7316798 A JP7316798 A JP 7316798A JP H11256206 A JPH11256206 A JP H11256206A
Authority
JP
Japan
Prior art keywords
alloy
powder
bearing
weight
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10073167A
Other languages
Japanese (ja)
Inventor
Shinya Iio
真也 飯尾
Ryoichi Sugita
良一 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mabuchi Motor Co Ltd
Original Assignee
Mabuchi Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mabuchi Motor Co Ltd filed Critical Mabuchi Motor Co Ltd
Priority to JP10073167A priority Critical patent/JPH11256206A/en
Priority to TW88103283A priority patent/TW498002B/en
Priority to CN 99105609 priority patent/CN1084949C/en
Publication of JPH11256206A publication Critical patent/JPH11256206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a small-sized motor and a sintered alloy-made oil impregnated bearing thereof in which the wear resistance of a sliding bearing is improved and also, the noise of the motor developed with wearing can be reduced. SOLUTION: In this small-sized motor in which a permanent magnet 3 is fitted on the inner peripheral surface 2 of a casing 4 and a rotor 5 is disposed in the inner part of the casing 4 and the rotating shaft 6 of the motor is supported to be freely rotated with the bearing parts 7 and 8 provided in the casing 4, sliding bearings 19 and 22 in the bearing parts are the sintered alloy- made oil imprgnant bearing, in which a mixture blended into the blended composition so as to be 4-27 wt.% at least one side of powder between a single element of Ni and an alloy containing the Ni element, 3-5 wt.% a single element powder of Sn, 18-55 wt.% an alloy powder containing the Sn element and the balance, a single element of Cu with inevitable impurities, is formed by compressing and sintering.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は小型モータに係り、
特に、小型カメラ等の光学精密機器,CDプレーヤ等の
音響・映像機器,複写機等のOA機器,ヘヤードライヤ
ー等の家庭用電気機器,自動車用電装機器,及び玩具等
に使用される小型モータ及びその焼結合金製含油軸受の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small motor,
In particular, small motors used in optical precision equipment such as small cameras, audio / video equipment such as CD players, OA equipment such as copying machines, home electric equipment such as hair dryers, electric equipment for automobiles, and toys. The present invention relates to a method for manufacturing the oil-impregnated bearing made of a sintered alloy.

【0002】[0002]

【従来の技術】小型モータは、前記各種機器のほかあら
ゆる分野で広く使用されており、軸受の摩耗,モータの
機械ノイズ(モータ騒音等)及び消費電流などの低減が
求められている。小型モータは、ケーシングの内周面に
固定子を取付け、ケーシングの内部に回転子を配設し、
ケーシングに設けられた軸受部により回転子の回転軸を
回転自在に支持している。軸受部のすべり軸受には、焼
結合金製の含油軸受(以下、焼結含油軸受と記載)が多
く使用されている。
2. Description of the Related Art Small motors are widely used in various fields in addition to the above-mentioned devices, and are required to reduce bearing wear, motor noise (motor noise, etc.) and current consumption. For small motors, a stator is mounted on the inner peripheral surface of the casing, and a rotor is arranged inside the casing,
A rotating shaft of the rotor is rotatably supported by a bearing provided on the casing. Oil bearings made of a sintered alloy (hereinafter, referred to as sintered oil bearings) are often used as sliding bearings in the bearing portion.

【0003】[0003]

【発明が解決しようとする課題】焼結合金は鉄系材料又
は銅系材料により構成されているが、鉄系材料の焼結含
油軸受の場合には、耐摩耗性は良好であるが、回転軸が
回転する時の摺動音の振動数が高いので比較的硬い感じ
の音が発生する。これに対して、銅系材料の焼結含油軸
受の場合には、摺動音の振動数が低いので比較的柔らか
い感じの音が発生するが、鉄系材料と比べて耐摩耗性が
低いのでモータの耐久性に問題があり、摩耗によってモ
ータ騒音が高くなるという課題がある。そのため従来
は、モータの用途に応じて鉄系材料と銅系材料の焼結含
油軸受を使い分けていた。
The sintered alloy is made of an iron-based material or a copper-based material. In the case of a sintered oil-impregnated bearing made of an iron-based material, the wear resistance is good, but the rotation speed is high. Since the frequency of the sliding sound when the shaft rotates is high, a relatively hard sound is generated. On the other hand, in the case of a sintered oil-impregnated bearing made of a copper-based material, a relatively soft sound is generated because the frequency of the sliding noise is low, but the wear resistance is lower than that of an iron-based material. There is a problem in durability of the motor, and there is a problem that motor noise increases due to wear. For this reason, conventionally, a sintered oil-impregnated bearing made of an iron-based material and a copper-based material has been selectively used depending on the use of the motor.

【0004】特開平6−264110号公報には、摩擦
係数及びなじみ性の改良を図った青銅系の焼結含油軸受
に関する技術が開示されている。しかしながら、この公
報に記載の焼結含油軸受は、高荷重に耐えるだけの十分
な強度を有しているとはいえない場合がある。また、偏
心側圧荷重や低回転時に大きな側圧荷重等が焼結含油軸
受に掛かった場合には、この焼結含油軸受に含浸された
潤滑油の効果がそれほど発揮されないので、耐摩耗性が
十分とはいえない場合がある。
Japanese Patent Application Laid-Open No. 6-264110 discloses a technique relating to a bronze-based sintered oil-impregnated bearing in which the friction coefficient and conformability are improved. However, the sintered oil-impregnated bearing described in this publication may not have sufficient strength to withstand a high load in some cases. In addition, when a large side pressure load or the like is applied to the sintered oil-impregnated bearing at the time of eccentric side pressure or low rotation, since the effect of the lubricating oil impregnated in the sintered oil-impregnated bearing is not so much exhibited, the wear resistance is sufficient. Not always.

【0005】本発明は、斯かる課題を解決するためにな
されたもので、耐摩耗性が向上するとともに、摩耗によ
って生じるモータ騒音を低減させることができる焼結合
金製含油軸受を有する小型モータ及び前記焼結合金製含
油軸受の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has a small motor having a sintered alloy oil-impregnated bearing capable of improving abrasion resistance and reducing motor noise caused by abrasion. An object of the present invention is to provide a method for manufacturing the oil-impregnated bearing made of the sintered alloy.

【0006】[0006]

【課題を解決するための手段】以下、図1ないし図9を
参照して本発明を説明する。まず最初に、本発明に係る
小型モータの全体の構成を説明する。図1は小型モータ
の片側を断面で示す正面図である。図1に示すように、
小型モータとしての小型直流モータ1は、内周面2に一
対の固定子3が取付けられたケーシング4と、ケーシン
グ4の内部に配設された回転子5とを備えている。回転
子5の回転軸6は、ケーシング4に設けられた軸受部
7,8により回転自在に支持されている。
Hereinafter, the present invention will be described with reference to FIGS. First, the overall configuration of the small motor according to the present invention will be described. FIG. 1 is a front view showing a cross section of one side of a small motor. As shown in FIG.
The small DC motor 1 as a small motor includes a casing 4 having a pair of stators 3 attached to an inner peripheral surface 2 and a rotor 5 disposed inside the casing 4. The rotating shaft 6 of the rotor 5 is rotatably supported by bearings 7 and 8 provided on the casing 4.

【0007】ケーシング4は、有底中空筒状に形成され
たハウジング9と、ハウジング9の開口部10に嵌合し
た蓋部材11とを備えている。ハウジング9は金属製の
板材によって一体的に形成されており、蓋部材11は、
ハウジング9と同じ金属材料又は樹脂材料等により一体
的に形成されている。軸受部7,8はケーシング4の両
端部にそれぞれ設けられており、一方の軸受部7はハウ
ジング9に、他方の軸受部8は蓋部材11にそれぞれ取
付けられている。一対の固定子3は、ハウジング9の内
周面2に固着されて対向配置されている。
The casing 4 has a housing 9 formed in a hollow cylindrical shape with a bottom, and a lid member 11 fitted into an opening 10 of the housing 9. The housing 9 is integrally formed of a metal plate, and the lid member 11 is
It is integrally formed of the same metal material or resin material as the housing 9. The bearings 7 and 8 are provided at both ends of the casing 4. One bearing 7 is attached to the housing 9, and the other bearing 8 is attached to the lid member 11. The pair of stators 3 are fixed to the inner peripheral surface 2 of the housing 9 and are opposed to each other.

【0008】回転子5は、回転中心となる中心軸線の方
向に延びる回転軸6と、回転軸6に取付けられたコアに
電機子巻線がコイル状に巻回された電機子12と、回転
軸6に取付けられるとともに電機子巻線に電気的に接続
された整流子13とを備えている。複数組(例えば、二
組)のブラシ14が整流子13と摺動係合しており、各
ブラシ14には、複数(例えば、2個)の接続端子15
がそれぞれ電気的に接続されている。接続端子15は蓋
部材11に取付けられ、蓋部材11から外方に突出して
配線等に接続される。ハウジング9の平坦面16の中央
部には、円筒状の突出部17が一体的に形成されてい
る。突出部17の内周面18には、一方の軸受部7を構
成し摺動面を有する一方のすべり軸受19が圧入固定さ
れている。このすべり軸受19は、回転軸6の出力側を
回転自在に軸支している。
The rotor 5 includes a rotating shaft 6 extending in the direction of a central axis serving as a center of rotation, an armature 12 in which an armature winding is wound around a core attached to the rotating shaft 6 in a coil shape, A commutator 13 attached to the shaft 6 and electrically connected to the armature winding. A plurality (for example, two) of brushes 14 are slidably engaged with the commutator 13, and each brush 14 has a plurality (for example, two) of connection terminals 15.
Are electrically connected to each other. The connection terminal 15 is attached to the lid member 11, protrudes outward from the lid member 11, and is connected to a wiring or the like. A cylindrical projection 17 is integrally formed at the center of the flat surface 16 of the housing 9. On the inner peripheral surface 18 of the protruding portion 17, one sliding bearing 19 which forms one bearing portion 7 and has a sliding surface is press-fitted and fixed. The slide bearing 19 rotatably supports the output side of the rotating shaft 6.

【0009】回転軸6の反出力側を回転自在に軸支する
他方の軸受部8は、回転軸6の端部21をスラスト方向
に関して支持するスラスト受け部材20と、回転軸端部
21を回転自在に軸支する他方のすべり軸受22とを備
えている。スラスト受け部材20は、潤滑性の良好な合
成樹脂等により形成されている。すべり軸受22は、蓋
部材11に形成された突出部23の内周面24に圧入固
定されている。すべり軸受19,22には焼結含油軸受
(焼結合金製含油軸受)が使用されている。このモータ
1において、接続端子15からブラシ14及び整流子1
3を介して電機子12の電機子巻線に電流を流せば、一
対の固定子3によって形成されている磁界中に存在する
回転子5に回転力が付与されて、回転子5は回転運動を
する。これにより、モータ1は、回転する回転軸6の出
力部を介して光学精密機器等を駆動する。
The other bearing portion 8 that rotatably supports the non-output side of the rotating shaft 6 includes a thrust receiving member 20 that supports the end 21 of the rotating shaft 6 in the thrust direction and a rotating shaft end 21 that rotates. And the other sliding bearing 22 that freely supports the bearing. The thrust receiving member 20 is formed of a synthetic resin or the like having good lubricity. The slide bearing 22 is press-fitted and fixed to an inner peripheral surface 24 of a protrusion 23 formed on the lid member 11. Sintered oil-impregnated bearings (sintered alloy oil-impregnated bearings) are used for the slide bearings 19 and 22. In the motor 1, the brush 14 and the commutator 1
When a current is passed through the armature winding of the armature 12 via the armature 3, a rotational force is applied to the rotor 5 existing in the magnetic field formed by the pair of stators 3, and the rotor 5 rotates. do. Thereby, the motor 1 drives an optical precision device or the like via the output section of the rotating shaft 6.

【0010】次に、すべり軸受19,22に使用される
焼結含油軸受について説明する。図2は焼結含油軸受の
製造工程を示すブロック図、図3は焼結工程における被
焼結物の温度変化の一例を示すグラフであり、横軸は時
間を示し、縦軸は被焼結物の温度を示している。
Next, the sintered oil-impregnated bearing used for the slide bearings 19 and 22 will be described. FIG. 2 is a block diagram showing a manufacturing process of the sintered oil-impregnated bearing, and FIG. 3 is a graph showing an example of a temperature change of the material to be sintered in the sintering process. Indicates the temperature of the object.

【0011】焼結合金製含油軸受について、日本工業規
格としてはJIS B1581−1976に「焼結含油
軸受」として規定しており、軸受の種類は、成分組成及
び含油率によって区分されている。例えば、青銅系の軸
受「SBK−1218」の場合には、Snが8〜11重
量%,Cが2重量%以下,残りがCuなどと規定されて
いる。これら青銅系の焼結含油軸受は、従来は、Cu,
Cu−Sn,Snの各粉末を所定の配合組成に配合して
圧縮成形したのち焼結処理することにより製造してい
る。しかしながら、この青銅系の焼結含油軸受をモータ
のすべり軸受に使用した場合には、耐摩耗性や、摩耗に
よって生じるモータ騒音の低減などの点で不十分であっ
た。
[0011] Oil-impregnated bearings made of sintered alloys are defined as "sintered oil-impregnated bearings" in Japanese Industrial Standards in JIS B1581-1976, and the types of bearings are classified by component composition and oil content. For example, in the case of a bronze-based bearing “SBK-1218”, Sn is defined as 8 to 11% by weight, C is 2% by weight or less, and the rest is Cu or the like. Conventionally, these bronze-based sintered oil-impregnated bearings are made of Cu,
It is manufactured by compounding each powder of Cu-Sn and Sn into a predetermined compounding composition, compressing and then sintering. However, when this bronze-based sintered oil-impregnated bearing is used for a plain bearing of a motor, it is insufficient in terms of wear resistance and reduction of motor noise caused by wear.

【0012】ところで、焼結処理は、材料粉末全体を完
全に溶融させて合金にするのではなく、金属又は合金の
粉体(粉末)を加圧成形したものを融点以下の温度で熱
処理した場合に、粉体間の結合が生じて成形した形で固
まる現象を利用して焼き固めるものである。そのため、
成分組成が同じでも、材料粉末の配合組成が異なると製
品の物性は異なったものになる。そこで、本発明では、
焼結含油軸受の材料として、Cu,Cu−Sn,Snの
各粉末に更にCu−Niの粉末を加えたものを用いてい
る。そして、これらの粉末を所定の配合組成に配合し、
得られた混合物を圧縮成形して圧粉体にし、この圧粉体
を所定の条件で焼結して焼結体にすることにより、優れ
た物性を有する焼結含油軸受を製造している。
By the way, the sintering is not performed by completely melting the entire material powder into an alloy, but by heat-treating a metal or alloy powder (powder) under pressure at a temperature lower than the melting point. In addition, the powder is baked and solidified by utilizing a phenomenon in which the bonding between powders occurs and the powder is solidified in a molded form. for that reason,
Even if the component composition is the same, if the composition of the material powder is different, the physical properties of the product will be different. Therefore, in the present invention,
As a material for the sintered oil-impregnated bearing, a material obtained by further adding Cu-Ni powder to each powder of Cu, Cu-Sn and Sn is used. Then, these powders are blended into a predetermined blending composition,
The obtained mixture is compression-molded into a green compact, and the green compact is sintered under predetermined conditions to form a sintered body, thereby producing a sintered oil-impregnated bearing having excellent physical properties.

【0013】具体的に説明すると、本発明におけるすべ
り軸受19,22を構成する焼結含油軸受は、Niの単
一元素及びNiの元素を含む合金のうち少なくとも一方
の粉末が4〜27重量%、Snの単一元素粉末が3〜5
重量%、Snの元素を含む合金の粉末が18〜55重量
%、残りがCuの単一元素及び不可避不純物の粉末とな
るような配合組成に配合された混合物を圧縮成形し且つ
焼結することにより成形されている。また、この焼結含
油軸受の成分組成は、Niが3〜13重量%、Snが
7.5〜12重量%、残りがCu及び不可避不純物とな
るようにするのが好ましい。更に、焼結含油軸受は、焼
結体のCu−Ni−Sn合金の一部又は全体が、θ相
(NiとSnからなる金属間化合物、例えば、Ni3
n)の組織及びスピノーダル分解によってできる変調構
造の少なくとも一方の組織を有するのが好ましい。
More specifically, in the sintered oil-impregnated bearings constituting the sliding bearings 19 and 22 in the present invention, powder of at least one of an alloy containing a single element of Ni and an element containing Ni is 4 to 27% by weight. , Sn single element powder is 3 to 5
Compression molding and sintering of a mixture in which the powder of the alloy containing the element of Sn is 18 to 55% by weight and the balance is a powder of the single element of Cu and unavoidable impurities. It is molded by. The composition of the sintered oil-impregnated bearing is preferably such that Ni is 3 to 13% by weight, Sn is 7.5 to 12% by weight, and the remainder is Cu and inevitable impurities. Further, in the sintered oil-impregnated bearing, a part or the whole of the Cu—Ni—Sn alloy of the sintered body is formed of a θ phase (an intermetallic compound composed of Ni and Sn, for example, Ni 3 S
It is preferable to have at least one of the structure of n) and a modulation structure formed by spinodal decomposition.

【0014】前記焼結含油軸受を製造する方法は、Ni
の単一元素及びNiの元素を含む合金のうち少なくとも
一方の粉末が4〜27重量%、Snの単一元素粉末が3
〜5重量%、Snの元素を含む合金の粉末が18〜55
重量%、残りがCuの単一元素及び不可避不純物の粉末
となるような配合組成に配合された混合物を圧縮成形
し、圧縮成形された圧粉体を還元雰囲気中で約700〜
約800℃で所定時間のあいだ焼結して焼結体にしたの
ち、この焼結体を約300℃まで冷却した時点で、この
焼結体のCu−Ni−Sn合金の一部又は全体がCu−
Ni−Sn合金三元系平衡状態図の「α(Cu−Ni−
Sn固溶体)+θ(NiとSnからなる金属間化合
物)」の成分範囲内にあり、θ相が析出するような冷却
速度で前記焼結体を徐々に冷却し、得られた前記焼結体
を所定の形状にサイジングしたのち浸油処理を行うよう
にしている。
[0014] The method for manufacturing the sintered oil-impregnated bearing is as follows.
Powder of at least one of the alloy containing the single element of Ni and the element of Ni is 4 to 27% by weight, and the powder of the single element of Sn is 3 to 27% by weight.
The powder of the alloy containing the element of Sn is 18 to 55% by weight.
% By weight, and a mixture blended in a composition such that the balance is a powder of a single element of Cu and unavoidable impurities.
After sintering at about 800 ° C. for a predetermined time to form a sintered body, when the sintered body is cooled to about 300 ° C., a part or the whole of the Cu—Ni—Sn alloy of the sintered body is Cu-
In the ternary equilibrium diagram of the Ni-Sn alloy, "α (Cu-Ni-
(Sn solid solution) + θ (intermetallic compound consisting of Ni and Sn) ”, and gradually cools the sintered body at a cooling rate such that the θ phase is precipitated. After sizing to a predetermined shape, oil immersion processing is performed.

【0015】なお、前記焼結含油軸受及びその製造方法
において、原料粉末の配合組成は、Niの単一元素及び
Niの元素を含む合金のうち少なくとも一方の粉末が7
〜15重量%、Snの単一元素粉末が3〜5重量%、S
nの元素を含む合金の粉末が36〜50重量%、残りが
Cuの単一元素及び不可避不純物の粉末であるのが好ま
しい。また、成分組成は、Niが6〜10重量%、Sn
が8〜10重量%、残りがCu及び不可避不純物である
のが好ましい。
In the sintered oil-impregnated bearing and the method for manufacturing the same, the compounding composition of the raw material powder is such that at least one of the powder of the alloy containing the single element of Ni and the alloy containing the element of Ni is 7%.
~ 15 wt%, Sn single element powder 3-5 wt%, S
It is preferable that the powder of the alloy containing the element n is 36 to 50% by weight, and the balance is a powder of a single element of Cu and unavoidable impurities. The composition of the composition is as follows: Ni is 6 to 10% by weight;
Is preferably 8 to 10% by weight, and the balance is Cu and inevitable impurities.

【0016】前記製造方法において、前記圧粉体を還元
雰囲気中で約750℃で約1時間焼結して焼結体にした
のち、この焼結体を約3〜約5℃/min の冷却速度で徐
々に冷却するのが好ましい。なお、前記焼結体の気孔率
が約18〜約28容量%の場合、又は、浸油処理後の含
油率が約18〜約28容量%の場合、又は、前記焼結体
の気孔率が約18〜約28容量%で且つ浸油処理後の含
油率が約18〜約28容量%の場合が好ましい。ここ
で、「気孔率」は、多孔質体の総体積に対する全ての気
孔の体積の割合を百分率で表したものである。
In the above manufacturing method, the green compact is sintered in a reducing atmosphere at about 750 ° C. for about 1 hour to form a sintered body, and the sintered body is cooled at a rate of about 3 to about 5 ° C./min. It is preferred to cool slowly at a rate. The porosity of the sintered body is about 18 to about 28% by volume, or the oil content after oil immersion is about 18 to about 28% by volume, or the porosity of the sintered body is It is preferred that the oil content be about 18 to about 28% by volume and the oil content after the oil immersion treatment be about 18 to about 28% by volume. Here, the “porosity” is a percentage of the volume of all pores to the total volume of the porous body.

【0017】上述のように、本発明では、焼結後の冷却
によって銅合金に固溶しきれない前記金属間化合物、及
びスピノーダル分解によってできる変調構造のいずれか
一方又は両方を析出させている。この析出物は、金属結
晶の転位の運動(即ち、塑性変形)を抑制するので、他
の相の組織よりも耐熱性(即ち、高温強度)及び硬度が
高くなっている。ここで、「スピノーダル分解」とは、
二成分以上の混合系を高温度から冷却し不安定状態にお
いた場合に起こる二相分離の過程のことであり、顕著な
硬化をきたす。スピノーダル分解は第二相の析出過程の
初期段階として起こるものであり、また、周期的に二相
分離した固溶体組織を変調構造という。
As described above, in the present invention, one or both of the intermetallic compound which is not completely dissolved in the copper alloy by cooling after sintering and the modulation structure formed by spinodal decomposition are precipitated. This precipitate suppresses the dislocation movement (ie, plastic deformation) of the metal crystal, and thus has higher heat resistance (ie, high-temperature strength) and hardness than other phase structures. Here, "spinodal decomposition"
This is a process of two-phase separation that occurs when a mixed system of two or more components is cooled from a high temperature to an unstable state, and causes remarkable hardening. Spinodal decomposition occurs as an initial stage of the precipitation process of the second phase, and a solid solution structure that is periodically separated into two phases is called a modulated structure.

【0018】[0018]

【発明の実施の形態】以下、本発明に係る焼結含油軸受
及びその製造方法の実施の形態の一例について説明す
る。図2及び図3に示すように、混合工程101では、
原料粉末(原料粉体)を所定の配合組成及び成分組成に
配合し、これを全体が均一になるように十分に混合した
混合物にする。下記の表1及び表2は、焼結含油軸受を
成形する場合の混合物の配合組成、及び前記焼結含油軸
受の成分組成をそれぞれ示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a sintered oil-impregnated bearing and a method of manufacturing the same according to the present invention will be described. As shown in FIGS. 2 and 3, in the mixing step 101,
The raw material powder (raw material powder) is blended into a predetermined blending composition and component composition, and the mixture is sufficiently mixed so that the whole becomes uniform. Tables 1 and 2 below show the composition of the mixture when molding the sintered oil-impregnated bearing and the component composition of the sintered oil-impregnated bearing, respectively.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】混合工程101で、原料粉末を、表1に示
す配合組成及び表2に示す成分組成になるように配合
し、原料粉末にステアリン酸亜鉛を加えて混合した混合
物を圧粉工程102に送る。ステアリン酸亜鉛は、金型
との焼き付き等を防止するために一時的に添加される潤
滑剤であり、沸点が低い(約250℃)ので焼結時には
蒸発して除去される。このステアリン酸亜鉛は混合物全
体の約1重量%加えられる。圧粉工程102では、混合
物を金型に入れて所定形状に圧縮成形することにより圧
粉体を形成している。
In the mixing step 101, the raw material powder is blended so as to have the composition shown in Table 1 and the component composition shown in Table 2, and the mixture obtained by adding zinc stearate to the raw material powder and mixing is subjected to the compacting step 102. send. Zinc stearate is a lubricant that is temporarily added in order to prevent seizure with a mold and the like, and has a low boiling point (about 250 ° C.) and is evaporated off during sintering. The zinc stearate is added at about 1% by weight of the total mixture. In the compacting step 102, a compact is formed by putting the mixture into a mold and compression-molding the mixture into a predetermined shape.

【0022】次いで、この圧粉体を焼結工程103に送
る。焼結工程103には例えばコンベア式連続焼結炉が
使用されている。この焼結炉の炉内をアンモニア分解ガ
スなど還元ガスが充填された還元雰囲気にすることによ
り、被焼結物(即ち、圧粉体及び焼結体)の酸化を防止
している。被焼結物は、ベルトコンベアに載せられた状
態で炉内を連続的に移動して焼結処理される。焼結工程
103では、圧粉工程102で圧縮成形された圧粉体
を、還元雰囲気中で約700〜約800℃で所定時間の
あいだ焼結して焼結体にする。
Next, the green compact is sent to a sintering step 103. In the sintering step 103, for example, a conveyor type continuous sintering furnace is used. By setting the inside of the sintering furnace to a reducing atmosphere filled with a reducing gas such as an ammonia decomposition gas, the sintering object (that is, the green compact and the sintered body) is prevented from being oxidized. The object to be sintered is continuously moved in a furnace while being placed on a belt conveyor, and is subjected to a sintering process. In the sintering step 103, the green compact compacted in the compacting step 102 is sintered in a reducing atmosphere at about 700 to about 800 ° C. for a predetermined time to form a sintered body.

【0023】本実施形態の焼結工程103では、初め
に、圧粉体を約400〜約450℃に加熱してステアリ
ン酸亜鉛を蒸発させる予備焼結を約1時間行う。次い
で、本焼結では、圧粉体を約400〜約450℃から約
750℃に加熱し、この約750℃の焼結温度で約1時
間焼結して焼結体にする。その後、この焼結体を約3時
間かけて約750℃から約40℃まで、例えば約3.9
℃/min の冷却速度で徐々に冷却したのち、炉外の大気
中に搬出する。
In the sintering step 103 of this embodiment, first, pre-sintering for heating the green compact to about 400 to about 450 ° C. to evaporate zinc stearate is performed for about 1 hour. Next, in the main sintering, the green compact is heated from about 400 to about 450 ° C. to about 750 ° C., and sintered at the sintering temperature of about 750 ° C. for about 1 hour to form a sintered body. Thereafter, the sintered body is heated from about 750 ° C. to about 40 ° C. in about 3 hours, for example, about 3.9 ° C.
After gradually cooling at a cooling rate of ° C / min, the material is discharged into the atmosphere outside the furnace.

【0024】焼結炉から搬出された焼結体の表面には、
錆止めのための油付け処理104がなされる。油付け処
理104後のサイジング工程105で、前記焼結体が所
定の形状になるようにサイジングを行ったのち、焼結体
の表面に付着しているごみ,不純物及び油等を除去する
洗浄処理106を行う。洗浄処理106の後、清浄にな
った焼結体を潤滑油の中に浸して真空下で加熱する浸油
処理107を行うことにより、焼結体の気孔率が約18
〜約28容量%、又は、浸油処理後の含油率が約18〜
約28容量%、又は、焼結体の気孔率が約18〜約28
容量%で且つ浸油処理後の含油率が約18〜約28容量
%の焼結含油軸受が完成する。本実施形態では、焼結体
の内径が2mm,摺動長が2mmの円筒形になるようにサイ
ジングを行っており、20.8〜22.2容量%の含油
率を有する円筒形の焼結含油軸受である本発明軸受N−
1〜N−8と、従来の焼結含油軸受に相当する比較軸受
S−1〜S−3を作成した(表1ないし表4)。
On the surface of the sintered body carried out of the sintering furnace,
An oiling process 104 for preventing rust is performed. In a sizing process 105 after the oiling process 104, a sizing process is performed so that the sintered body has a predetermined shape, and then a cleaning process for removing dust, impurities, oil, and the like attached to the surface of the sintered body. Perform 106. After the cleaning process 106, the clean sintered body is immersed in lubricating oil and subjected to an oil immersion process 107 in which the sintered body is heated under vacuum, so that the porosity of the sintered body is about 18%.
About 28% by volume, or an oil content of about 18 to
About 28% by volume, or a porosity of about 18 to about 28
Thus, a sintered oil-impregnated bearing having an oil content of about 18 to about 28% by volume after the oil immersion treatment is completed. In the present embodiment, the sintered body is sized so as to have a cylindrical shape with an inner diameter of 2 mm and a sliding length of 2 mm, and the cylindrical sintered body having an oil content of 20.8 to 22.2% by volume. The present invention bearing N- which is an oil-impregnated bearing
Comparative bearings S-1 to S-3 corresponding to conventional sintered oil-impregnated bearings were prepared (Tables 1 to 4).

【0025】表1及び表2に示すように、本発明軸受N
−1〜N−5は、Niの含有率が70重量%のCu−N
iの合金粉末を使用しており、他の本発明軸受N−6〜
N−8は、Niの含有率が30重量%のCu−Niの合
金粉末を使用している。比較軸受S−1〜S−3は、配
合組成及び成分組成のいずれも本発明の範囲から外れた
条件で作成されており、Niを含んでいない。特に、比
較軸受S−1は、JIS B1581−1976のSB
K−1218に相当する従来の青銅系焼結含油軸受であ
る。
As shown in Tables 1 and 2, the present bearing N
-1 to N-5 are Cu-N containing 70% by weight of Ni.
i is used, and the other bearings of the present invention N-6 to
For N-8, a Cu-Ni alloy powder having a Ni content of 30% by weight is used. Each of the comparative bearings S-1 to S-3 was prepared under conditions outside of the scope of the present invention in both the compounding composition and the component composition, and did not contain Ni. In particular, the comparative bearing S-1 is the SB of JIS B1581-1976.
It is a conventional bronze-based sintered oil-impregnated bearing corresponding to K-1218.

【0026】下記の表3は、本発明軸受N−1〜N−8
及び比較軸受S−1〜S−3における含油率,硬さ等の
測定結果を示している。
Table 3 below shows the bearings N-1 to N-8 of the present invention.
5 shows measurement results of oil content, hardness, and the like in comparative bearings S-1 to S-3.

【0027】[0027]

【表3】 [Table 3]

【0028】表3において、Cu−Ni−Sn合金,C
u−Sn合金,比較的Snの多いCu−Sn合金の硬さ
は、焼結材料の気孔の影響を含んだ押込み硬さである
「見掛け硬さ」ではなく、焼結材料の気孔部分を避けて
金属部分だけを測定する「マトリックス硬さ」によって
測定した。このマトリックス硬さ(Hv)はビッカース
硬度計にて測定し、その測定条件は、試験荷重が9.8
1×10-2Nとし、保持時間は5秒とした。表3に示す
ように、本発明軸受N−1〜N−8では、焼結体が、C
u−Sn合金(Niを微量含んでおり、圧粉体時にCu
又はCu−Sn合金であった部分)と、Cu−Ni−S
n合金(圧粉体時にNi又はCu−Ni合金であった部
分)とからなり、このCu−Ni−Sn合金は、硬度が
前記Cu−Sn合金よりも高くマトリックス硬さが25
0Hv以上であり耐摩耗性に優れている。焼結体中に
は、硬度が高く耐摩耗性に優れた前記Cu−Ni−Sn
合金が約4.3〜26.7重量%(好ましくは、5〜2
5重量%)含まれている。Cu−Ni−Sn合金は、圧
粉体時にNi又はCu−Ni粉末であった部分であり、
前記数値は、表1に示すCu−Ni粉末の量に基づいて
いる。
In Table 3, Cu—Ni—Sn alloy, C
The hardness of the u-Sn alloy and the Cu-Sn alloy containing a relatively large amount of Sn is not the apparent hardness, which is the indentation hardness including the effect of the pores of the sintered material, but the pores of the sintered material are avoided. It was measured by "matrix hardness", which measures only metal parts. The matrix hardness (Hv) was measured with a Vickers hardness tester, and the measurement conditions were such that the test load was 9.8.
1 × 10 −2 N and the holding time was 5 seconds. As shown in Table 3, in the bearings N-1 to N-8 of the present invention, the sintered body is C
u-Sn alloy (contains a small amount of Ni,
Or Cu-Sn alloy) and Cu-Ni-S
n-alloy (a portion that was Ni or Cu-Ni alloy at the time of green compacting). This Cu-Ni-Sn alloy has a higher hardness than the Cu-Sn alloy and a matrix hardness of 25.
It is 0Hv or more and has excellent wear resistance. In the sintered body, the Cu—Ni—Sn having high hardness and excellent wear resistance is used.
About 4.3 to 26.7% by weight of the alloy (preferably 5 to 2%);
5% by weight). Cu-Ni-Sn alloy is a portion that was Ni or Cu-Ni powder at the time of compacting,
The above numerical values are based on the amounts of the Cu-Ni powder shown in Table 1.

【0029】本発明軸受N−1〜N−8においては、C
u−Ni−Sn合金のマトリックス硬さは、Cu−Sn
合金より約1.5〜約3倍硬くなっているが、常温では
比較軸受S−1〜S−3における比較的Snの多いCu
−Sn合金のマトリックス硬さと大差がないので、本発
明軸受N−1〜N−8をモータ1に用いても、比較軸受
と比べて、回転軸6を多く傷つけたり摩耗させたりする
ことは殆どない。
In the bearings N-1 to N-8 of the present invention, C
The matrix hardness of the u-Ni-Sn alloy is Cu-Sn
The alloy is about 1.5 to about 3 times harder than the alloy, but at room temperature, Cu in the comparative bearings S-1 to S-3 has a relatively large amount of Sn.
-Since there is no great difference from the matrix hardness of the Sn alloy, even if the bearings N-1 to N-8 of the present invention are used for the motor 1, it is almost impossible to damage or wear the rotary shaft 6 more than the comparative bearing. Absent.

【0030】図4は、含油率が圧環強さに与える影響を
示すグラフで、横軸は含油率、縦軸は圧環強さをそれぞ
れ示している。一般的に、図4に示すように、含油率が
18容量%以下では焼結含油軸受は十分な圧環強さを有
するが、含浸された潤滑油の量が少ないので、短時間の
うちに潤滑油が消費されて焼結含油軸受の寿命が短くな
る。一方、一般的に、含油率が28容量%以上では、焼
結含油軸受は十分な量の潤滑油を含浸しているが、圧環
強さが小さいので、焼結含油軸受をモータ1のケーシン
グ4に圧入するとき歪んだり割れたりする恐れがある。
したがって、焼結含油軸受の含油率が約18〜約28容
量%であれば、適切な含油量と圧環強さを兼ね備えた焼
結含油軸受になる。本発明軸受では、含油率が21.3
〜22.2容量%なので、比較軸受とほぼ同じ圧環強さ
になっている。
FIG. 4 is a graph showing the effect of the oil content on the radial crushing strength. The horizontal axis represents the oil content and the vertical axis represents the radial crushing strength. Generally, as shown in FIG. 4, when the oil content is 18% by volume or less, the sintered oil-impregnated bearing has a sufficient radial crushing strength, but since the amount of the impregnated lubricating oil is small, the lubricating oil can be lubricated in a short time. Oil is consumed and the life of the sintered oil-impregnated bearing is shortened. On the other hand, in general, when the oil content is 28% by volume or more, the sintered oil-impregnated bearing is impregnated with a sufficient amount of lubricating oil. May be distorted or cracked when press-fitted.
Therefore, when the oil content of the sintered oil-impregnated bearing is about 18 to about 28% by volume, the sintered oil-impregnated bearing has both an appropriate oil content and a radial crushing strength. In the bearing of the present invention, the oil content is 21.3.
Since it is 2222.2% by volume, the radial crushing strength is almost the same as that of the comparative bearing.

【0031】次に、焼結時の金属組織の変化について説
明する。図5は780℃でのCu−Ni−Sn合金三元
系平衡状態図(以下、平衡状態図と記載)、図6は焼結
工程における金属組織の変化の状態の一例を示す概略説
明図、図7は図6における金属組織の原子構造の状態の
一例を示す概略説明図、図8は本発明に係る焼結含油軸
受の金属表面(即ち、本発明軸受の摺動面)の組織図、
図9は偏心側圧荷重試験の結果を示すグラフである。
Next, the change of the metal structure during sintering will be described. FIG. 5 is a ternary system diagram of a Cu—Ni—Sn alloy at 780 ° C. (hereinafter referred to as an equilibrium diagram), FIG. 6 is a schematic explanatory diagram showing an example of a state of a change in a metal structure in a sintering process, 7 is a schematic explanatory view showing an example of the state of the atomic structure of the metal structure in FIG. 6, FIG. 8 is a structural diagram of the metal surface of the sintered oil-impregnated bearing according to the present invention (that is, the sliding surface of the bearing of the present invention),
FIG. 9 is a graph showing the results of the eccentric side pressure load test.

【0032】混合工程101,圧粉工程102で、Cu
粉末,Cu−Ni粉末,Cu−Sn粉末及びSn粉末を
混合して混合物を圧縮成形したのち、圧粉体を焼結工程
103で焼結すると、焼結温度(約700〜約800
℃)より融点の低いSn粉末が融解して周囲に拡散す
る。これにより、Cu粉末,Cu−Ni粉末及びCu−
Sn粉末は、それぞれCu−Sn合金,Cu−Ni−S
n合金及びCu−Sn合金になる。また、融解するSn
ほどではないがNiも周囲に拡散するので、Cu−Sn
合金(Niを微量含む)とCu−Ni−Sn合金が形成
される。Cu−Sn合金(Niを微量含む)は、焼結前
はCu粉末又はCu−Sn粉末であった部分であり、C
u−Ni−Sn合金は、焼結前はCu−Ni粉末であっ
た部分である。
In the mixing step 101 and the compacting step 102, Cu
After powder, Cu-Ni powder, Cu-Sn powder and Sn powder are mixed and the mixture is compression-molded, the green compact is sintered in a sintering step 103 to obtain a sintering temperature (about 700 to about 800).
C.), the Sn powder having a lower melting point melts and diffuses around. Thereby, Cu powder, Cu-Ni powder and Cu-
Sn powders are Cu-Sn alloy and Cu-Ni-S, respectively.
It becomes n alloy and Cu-Sn alloy. In addition, the melting Sn
To a lesser extent, Ni also diffuses around, so Cu-Sn
An alloy (including a trace amount of Ni) and a Cu-Ni-Sn alloy are formed. The Cu-Sn alloy (containing a trace amount of Ni) is a portion that was a Cu powder or Cu-Sn powder before sintering,
The u-Ni-Sn alloy is a portion that was a Cu-Ni powder before sintering.

【0033】Cu−Ni合金は全率固溶体であり、Ni
はCuにいくらでも固溶することができるので、Cu−
Ni合金は、Niの量をいくら増やしてもNiが析出す
ることはない。しかし、Cu−Ni合金にSnが拡散し
てCu−Ni−Sn合金になると全率固溶体ではなくな
ってしまうので、固溶限以上のNi,Snは金属間化合
物Ni3 SnとしてCu−Ni−Sn合金上に析出す
る。
The Cu—Ni alloy is an all-solid solution,
Can form a solid solution in Cu, so Cu-
The Ni alloy does not precipitate Ni no matter how much the amount of Ni is increased. However, Cu-Ni since alloy Sn becomes not a complete solid solution and will diffuse Cu-Ni-Sn alloy, or solid solution limit of Ni, Sn is Cu-Ni-Sn intermetallic compound Ni 3 Sn Precipitates on the alloy.

【0034】図5の平衡状態図において、実線Bは78
0℃でのα相の固溶限曲線を示し、破線Cは300℃で
のα相の固溶限曲線を示している。図示するように、α
相の固溶限曲線B,Cの位置は大きく異なっているの
で、焼結体を780℃から300℃まで徐々に冷却する
と、Cu−Ni−Sn合金からはθ相(Ni3 Snな
ど、NiとSnからなる金属間化合物)の析出が起こ
り、またスピノーダル分解が起こる。
In the equilibrium diagram of FIG.
The solid solubility curve of the α phase at 0 ° C. is shown, and the dashed line C shows the solid solubility curve of the α phase at 300 ° C. As shown, α
Since the solid solubility curves B and C of the phases are greatly different from each other, when the sintered body is gradually cooled from 780 ° C. to 300 ° C., the θ phase (Ni 3 Sn or other Ni) is removed from the Cu—Ni—Sn alloy. And Sn), and spinodal decomposition occurs.

【0035】具体的には、固溶限までNiとSnが固溶
しているα固溶体(Cu−Ni−Sn合金)を高温から
徐々に冷却していくと、固溶限が小さくなるのでNiと
SnがCu−Ni−Sn合金中に固溶しきれなくなる。
その結果、θ相(例えば、Ni3 Snの金属間化合物)
の析出とスピノーダル分解即ち変調構造の析出が起こ
る。θ相の析出が起こるようにするには、Cu−Ni−
Sn合金では、NiとSnの配合比率ではなくて、Cu
の固溶限までNiとSnを固溶させることが重要であ
る。そのために、本発明では、Cu−Ni−Sn合金が
飽和固溶体になるように原料粉末の配合組成と成分組成
におけるNiとSnの量を規定している。しかし、Ni
とSnを入れ過ぎると摩耗増大等の不具合が生じるの
で、NiとSnの量には上限を設けている。
More specifically, when the α solid solution (Cu—Ni—Sn alloy) in which Ni and Sn are dissolved to the solid solution limit is gradually cooled from a high temperature, the solid solution limit becomes small. And Sn cannot be completely dissolved in the Cu-Ni-Sn alloy.
As a result, the θ phase (for example, an intermetallic compound of Ni 3 Sn)
And spinodal decomposition, that is, precipitation of a modulated structure. Cu-Ni-
In the case of Sn alloy, not the mixing ratio of Ni and Sn, but Cu
It is important that Ni and Sn form a solid solution up to the solid solubility limit of. For this purpose, in the present invention, the amounts of Ni and Sn in the composition and composition of the raw material powder are defined so that the Cu-Ni-Sn alloy becomes a saturated solid solution. However, Ni
If too much Sn and Sn are added, problems such as increased wear occur, so the upper limits are set for the amounts of Ni and Sn.

【0036】図6は、本発明軸受N−8を例にとって金
属組織の変化の状態の一例を示している。本発明軸受N
−8を製造する時の混合物(表1に示す配合組成に配合
され表2に示す成分組成を有する混合物)は、焼結前に
は図6(a)の状態になっている。この混合物を約75
0℃で約1時間焼結すると、図6(b)に示すように、
Cu−Sn合金(Niを微量に含む)とα固溶体(即
ち、Cu−Ni−Sn合金)になる。この時のα固溶体
を、約750℃での平衡状態図D中に符号Eで示す。
FIG. 6 shows an example of the state of the change of the metal structure taking the bearing N-8 of the present invention as an example. Inventive bearing N
The mixture at the time of producing -8 (mixture having the composition shown in Table 1 and having the composition shown in Table 2) is in a state shown in FIG. 6A before sintering. About 75 of this mixture
After sintering at 0 ° C. for about 1 hour, as shown in FIG.
It becomes a Cu-Sn alloy (containing a trace amount of Ni) and an α solid solution (that is, a Cu-Ni-Sn alloy). The α solid solution at this time is indicated by the symbol E in the equilibrium diagram D at about 750 ° C.

【0037】次に、この焼結体を約750℃から約30
0℃まで所定の冷却速度で徐々に冷却すると、図6
(c)に示すように、θ相(例えば、Ni3 Snの金属
間化合物)の析出と、スピノーダル分解による変調構造
の析出とが起こる。図6(c)に示す約300℃での平
衡状態図D1 では、α相の固溶限曲線Fが750℃の場
合より図中下方に移動しているので、α固溶体の位置E
はα相の成分範囲からα+θ相の成分範囲に変化するこ
とになり、θ相を析出するとともにスピノーダル分解を
起こす。
Next, the sintered body is heated from about 750 ° C. to about 30 ° C.
When gradually cooled at a predetermined cooling rate to 0 ° C., FIG.
As shown in (c), precipitation of a θ phase (for example, an intermetallic compound of Ni 3 Sn) and precipitation of a modulated structure due to spinodal decomposition occur. In equilibrium diagram D 1 of the at about 300 ° C. shown in FIG. 6 (c), since the solid solubility limit curve F of alpha phase is moving in the figure below the case 750 ° C., alpha solid solution position E
Changes from the component range of the α phase to the component range of the α + θ phase, causing precipitation of the θ phase and spinodal decomposition.

【0038】この変化を確実に起こさせるためには、図
5及び図6(c)に示す平衡状態図からも分かるよう
に、Niの成分組成の多少より、Snの成分組成を多く
する方が重要である。即ち、Snを多く含むような配合
組成に前記混合物を配合すれば、α固溶体の位置Eがα
相の成分範囲からα+θ相の成分範囲に変化して、θ相
の析出とスピノーダル分解を起こし易い。ところで、も
し仮に、焼結体を図6(d)に示すように急速に冷却す
ると、θ相の析出とスピノーダル分解を起こすのに十分
な時間がないので、組織変化は起こらないか又は不十分
になる。したがって、焼結体を所定の冷却速度又はそれ
以下で徐々に冷却するのが好ましい。
As can be seen from the equilibrium diagrams shown in FIG. 5 and FIG. 6C, in order to cause this change reliably, it is better to increase the Sn composition rather than the Ni composition. is important. That is, if the mixture is blended in a blended composition containing a large amount of Sn, the position E of the α solid solution becomes α
The composition range of the phase changes to the composition range of the α + θ phase, and the precipitation of the θ phase and spinodal decomposition are easily caused. By the way, if the sintered body is rapidly cooled as shown in FIG. 6 (d), there is not enough time for the precipitation of the θ phase and the spinodal decomposition, so that the structural change does not occur or is insufficient. become. Therefore, it is preferable to gradually cool the sintered body at a predetermined cooling rate or lower.

【0039】図7(a)は、α固溶体が約750℃で焼
結されて不安定状態になった場合の原子構造を示してい
る。このα固溶体を所定の冷却速度で徐々に冷却する
と、図7(b)に示すようにスピノーダル分解が起こ
り、Sn濃度の高いCu−Ni−Sn合金と、Ni濃度
の高いCu−Ni−Sn合金に分離する二相分離が起こ
る。この時の状態は準安定状態である。Snの原子半径
(1.41×10-10 又は1.51×10-10 m)は、
Niの原子半径(1.25×10-10 m)やCuの原子
半径(1.28×10-10 m)と比較して大きく、各原
子の格子定数に差異があるので周期的弾性応力場を生じ
る。これが転位の運動に対して効果的な障害物となるの
で、スピノーダル分解は合金の強度の向上に大きく貢献
する。
FIG. 7A shows the atomic structure when the α solid solution is sintered at about 750 ° C. and becomes unstable. When this α solid solution is gradually cooled at a predetermined cooling rate, spinodal decomposition occurs as shown in FIG. 7B, and a Cu—Ni—Sn alloy with a high Sn concentration and a Cu—Ni—Sn alloy with a high Ni concentration Two-phase separation occurs. The state at this time is a metastable state. The atomic radius of Sn (1.41 × 10 −10 or 1.51 × 10 −10 m) is
Ni atomic radius (1.25 × 10 -10 m) and atomic radius (1.28 × 10 -10 m) of Cu large compared to, cyclic elastic stress field since there is a difference in the lattice constant of each atom Is generated. Spinodal decomposition greatly contributes to the improvement of the strength of the alloy, as this is an effective obstacle to dislocation movement.

【0040】更に、この焼結体を所定の冷却速度で徐々
に冷却すると、図7(c)に示すように、スピノーダル
分解の進行に加えてα相にθ相が析出して安定状態にな
る。析出した組織は、金属結晶の転位の運動を抑制する
ので耐熱性及び硬度が高い。このようにして製造された
本発明の焼結合金製含油軸受30は、図8に示すよう
に、Niを微量含むCu−Sn合金の相31と、Niと
Snからなる金属間化合物(Ni3 Sn)を析出させた
Cu−Ni−Sn合金の相32の二つの相を主として含
む金属組織になっており、組織内の空隙部は潤滑油が含
浸される油孔33になっている。
Further, when this sintered body is gradually cooled at a predetermined cooling rate, as shown in FIG. 7 (c), in addition to the progress of the spinodal decomposition, the θ phase precipitates in the α phase and becomes stable. . The precipitated structure has high heat resistance and hardness because it suppresses the movement of the dislocation of the metal crystal. As shown in FIG. 8, the sintered alloy oil-impregnated bearing 30 of the present invention thus manufactured has a Cu-Sn alloy phase 31 containing a small amount of Ni and an intermetallic compound (Ni 3 It has a metal structure mainly including two phases of a Cu-Ni-Sn alloy phase 32 in which Sn) is precipitated, and voids in the structure are oil holes 33 impregnated with lubricating oil.

【0041】焼結体を徐々に冷却して、NiとSnから
なる前記金属間化合物を析出させるためには、高温の環
境にある焼結時の被焼結物に、NiとSnを固溶限付近
まで固溶させなければならない。そのためには、原料粉
末の配合組成を、Niの単一元素及びNiの元素を含む
合金のうち少なくとも一方の粉末が4〜27重量%、S
nの単一元素粉末が3〜5重量%、Snの元素を含む合
金の粉末が18〜55重量%、残りがCuの単一元素及
び不可避不純物の粉末(例えば、Cuの単一元素及び不
可避不純物の粉末が38〜50重量%)となるような組
成にして、Cu−Ni−Sn合金に固溶するNiとSn
の量を多くする必要がある。
In order to gradually cool the sintered body to precipitate the intermetallic compound consisting of Ni and Sn, Ni and Sn are dissolved in the material to be sintered at the time of sintering in a high temperature environment. Must be dissolved to near the limit. For this purpose, the composition of the raw material powder is set so that at least one of the powders of the alloy containing a single element of Ni and the element containing Ni is 4 to 27% by weight,
3 to 5% by weight of a single element powder of n, 18 to 55% by weight of an alloy powder containing an element of Sn, and a powder of a single element of Cu and inevitable impurities (for example, a single element of Cu and an inevitable impurity) Ni and Sn which form a solid solution in the Cu-Ni-Sn alloy by making the composition so that the impurity powder is 38 to 50% by weight.
Need to be increased.

【0042】Cu−Niの粉末やSnの粉末の配合量を
前記配合組成以上に増やし過ぎると、焼結含油軸受中の
Cu−Ni−Sn合金の割合が多くなって、Cu−Ni
−Sn合金中に前記金属間化合物が大量に析出する。そ
の結果、焼結含油軸受と内周面全体の硬度が高くなりす
ぎて、なじみ性が悪くなり回転軸6を傷付ける恐れがあ
る。一方、Snの粉末の配合量を前記配合組成より増や
し過ぎると、比較的Snの多いCu−Sn合金ができる
ので、耐熱性が低下するという不具合がある。したがっ
て、原料粉末の配合組成を本発明のようにすれば、Cu
−Ni−Sn合金とCu−Sn合金の割合が適度になる
とともに、Ni−Snからなる前記金属間化合物の析出
量が適度になる(表4の偏心荷重試験結果を参照)。
If the amount of the Cu—Ni powder or Sn powder is too large, the proportion of the Cu—Ni—Sn alloy in the sintered oil-impregnated bearing increases and the Cu—Ni
The intermetallic compound precipitates in a large amount in the -Sn alloy. As a result, the hardness of the sintered oil-impregnated bearing and the entire inner peripheral surface becomes too high, and the conformability is deteriorated, and the rotating shaft 6 may be damaged. On the other hand, if the compounding amount of the Sn powder is too large, the Cu-Sn alloy containing a relatively large amount of Sn can be formed. Therefore, if the composition of the raw material powder is set as in the present invention, Cu
-The ratio of the Ni-Sn alloy and the Cu-Sn alloy becomes moderate, and the precipitation amount of the intermetallic compound composed of Ni-Sn becomes moderate (see the eccentric load test results in Table 4).

【0043】したがって、前記金属間化合物とスピノー
ダル分解によってできる変調構造とを析出させたCu−
Ni−Sn合金は、Cu−Sn合金よりも耐熱性及び硬
度が大幅に向上する(表3参照)。即ち、焼結含油軸受
30では、銅合金中に前記金属間化合物の組織と前記変
調構造とを析出分散させたので、耐熱性及び硬度が向上
する。
Therefore, the Cu-metal having the intermetallic compound and the modulated structure formed by spinodal decomposition precipitated.
The Ni-Sn alloy has significantly improved heat resistance and hardness compared to the Cu-Sn alloy (see Table 3). That is, in the sintered oil-impregnated bearing 30, since the structure of the intermetallic compound and the modulation structure are precipitated and dispersed in the copper alloy, heat resistance and hardness are improved.

【0044】このように、Cu−Ni−Sn合金は、耐
熱性が優れているので、焼結含油軸受30をモータ1の
すべり軸受19,22に適用した場合に、表3のマトリ
ックス硬さのデータに示すように、常温での最大硬度は
従来品と大差ないが、すべり軸受19,22と回転軸6
との摺動によって摺動面の温度が上昇した時にも、Sn
を比較的多く含むCu−Sn合金と比較して硬度の変化
が小さい。特に、すべり軸受19,22の焼結含油軸受
に偏心側圧荷重や低回転時の高い側圧荷重等が掛かっ
て、焼結含油軸受に含浸された潤滑油の潤滑効果がそれ
ほど発揮されないような過酷な条件では、潤滑油の特性
よりも焼結含油軸受金属組織の特性の占める割合が大き
くなる。したがって、本発明の焼結含油軸受によれば、
すべり軸受の摩耗が低減されるとともに、摩耗の低減に
よってモータ1の騒音(機械ノイズ)を低減することが
できる。
As described above, since the Cu—Ni—Sn alloy has excellent heat resistance, when the sintered oil-impregnated bearing 30 is applied to the sliding bearings 19 and 22 of the motor 1, the matrix hardness shown in Table 3 is obtained. As shown in the data, the maximum hardness at room temperature is not much different from that of the conventional product, but the sliding bearings 19 and 22 and the rotating shaft 6
When the temperature of the sliding surface rises due to sliding with
Changes in hardness are smaller than those of Cu-Sn alloys containing a relatively large amount of. In particular, such a severe condition that the eccentric side pressure load or the high side pressure load at the time of low rotation is applied to the sintered oil-impregnated bearings of the slide bearings 19 and 22 so that the lubricating oil impregnated in the sintered oil-impregnated bearing does not exert much lubricating effect. Under the conditions, the ratio of the characteristics of the metal structure of the sintered oil-impregnated bearing becomes larger than the characteristics of the lubricating oil. Therefore, according to the sintered oil-impregnated bearing of the present invention,
Wear of the slide bearing is reduced, and noise (mechanical noise) of the motor 1 can be reduced by reducing the wear.

【0045】次に、本発明軸受N−1〜N−8と比較軸
受S−1〜S−3の偏心側圧荷重試験と側圧荷重試験の
結果を、下記の表4及び図9に示す。
Next, the results of the eccentric side pressure load test and the side pressure load test of the bearings N-1 to N-8 of the present invention and the comparative bearings S-1 to S-3 are shown in Table 4 below and FIG.

【0046】[0046]

【表4】 [Table 4]

【0047】偏心側圧荷重試験の試験条件は、本発明軸
受N−1〜N−8及び比較軸受S−1〜S−3をすべり
軸受19,22に装着したモータ1を準備し、モータ1
の回転子5を9000min-1 (即ち、すべり軸受の摺動
速度が56.5m/min )で回転した時に、すべり軸受
19に8.44N(即ち、荷重が209N/cm2 )の偏
心側圧荷重が掛かるようにした偏心プーリを回転子5に
装着した。そして、モータ1を同一回転方向に連続96
時間,9000min-1 で回転させ、偏心側圧荷重試験前
後の機械ノイズ(モータ騒音)と軸受内径寸法を測定す
ることにより、焼結含油軸受の特性を評価した。機械ノ
イズは、偏心プーリを取外した状態でモータに2.4V
の電圧を印加し、約7600min-1 で回転させ、JIS
−A特性の条件で測定した。なお、偏心側圧荷重試験条
件のPV値は、11792N/cm2 ・m/min である。
The test conditions for the eccentric side pressure load test were as follows. A motor 1 in which the present bearings N-1 to N-8 and comparative bearings S-1 to S-3 were mounted on sliding bearings 19 and 22 was prepared.
When the rotor 5 is rotated at 9000 min -1 (that is, the sliding speed of the slide bearing is 56.5 m / min), the eccentric pressure load of 8.44 N (that is, the load is 209 N / cm 2 ) is applied to the slide bearing 19. The eccentric pulley was set on the rotor 5. Then, the motor 1 is continuously rotated 96 in the same rotation direction.
The characteristics of the sintered oil-impregnated bearing were evaluated by measuring the mechanical noise (motor noise) and the inner diameter of the bearing before and after the eccentric pressure test by rotating at 9000 min -1 for a time. Mechanical noise is 2.4V applied to the motor with the eccentric pulley removed.
And rotate at about 7600 min -1
-Measured under the condition of the A characteristic. The PV value under the eccentric side pressure load test condition is 11792 N / cm 2 · m / min.

【0048】側圧荷重試験は、本発明の焼結含油軸受を
小型モータではなく摩擦係数測定装置に装着して行っ
た。焼結含油軸受に係合して摺動する相手側軸材は、小
型モータに使用している回転軸と同じ材質のものを使用
した。前記摩擦係数測定装置は、荷重が280N/cm2
(重りが1.14kg)、摺動速度が3.1m/min (即
ち、回転数が500min-1 )という、低回転で高荷重を
掛けることにより、焼結含油軸受に含浸された潤滑油の
効果があまり発揮されない条件の下で測定した。なお、
摩擦係数測定条件のPV値は878N/cm2 ・m/min
であり、摩擦係数の測定時期としては、初期なじみが終
了した状態で測定するために、回転開始から1時間後と
した。前記偏心側圧荷重試験及び側圧荷重試験の各試験
条件は、焼結含油軸受に含浸された潤滑油の効果がそれ
ほど発揮されない厳しい状態であり、このような状態で
は、潤滑油の特性よりも焼結含油軸受の金属の特性が占
める割合が大きくなるので、金属自体の特性を調べるに
は好都合な条件である。
The side pressure load test was performed by mounting the sintered oil-impregnated bearing of the present invention not on a small motor but on a friction coefficient measuring device. The mating shaft member that slides by engaging with the sintered oil-impregnated bearing was made of the same material as the rotating shaft used for the small motor. The friction coefficient measuring device has a load of 280 N / cm 2
(A weight of 1.14 kg) and a sliding speed of 3.1 m / min (that is, a rotational speed of 500 min -1 ). It was measured under conditions where the effect was not so significant. In addition,
The PV value under the friction coefficient measurement condition is 878 N / cm 2 · m / min.
The friction coefficient was measured one hour after the start of rotation in order to measure the friction coefficient after the initial adaptation. Each test condition of the eccentric side pressure load test and the side pressure load test is a severe condition in which the effect of the lubricating oil impregnated in the sintered oil-impregnated bearing is not so much exerted. Since the ratio of the properties of the metal of the oil-impregnated bearing increases, this is a convenient condition for examining the properties of the metal itself.

【0049】表4から分かるように、本発明軸受では、
比較軸受と比べて試験前後の機械ノイズの変化量(即
ち、モータ騒音)が約1〜約5dB(デシベル)低くなっ
ている。また、本発明軸受では、軸受N−5を除くと、
試験前後の軸受内径寸法変化量(即ち、摩耗量)が、比
較軸受の中で最も良好な軸受S−1よりも更に約1〜2
μm小さくなっており、耐摩耗性が大きく向上している
ことが分かる。本発明軸受の摩擦係数は、比較軸受より
も約0.02〜0.10低くなっており、特に、本発明
軸受N−8の摩擦係数は、比較軸受S−1よりも約0.
07低くなっている。このように、本発明軸受は比較軸
受よりも摩擦係数が小さいので、小型モータの消費電流
を低減させることができる。本発明軸受及び比較軸受に
おいて、偏心側圧荷重試験及び側圧荷重試験のいずれの
場合でも、試験後の回転軸を観察した時に摺動による傷
は見られなかった。
As can be seen from Table 4, in the bearing of the present invention,
The amount of change in mechanical noise (ie, motor noise) before and after the test is about 1 to about 5 dB (decibel) lower than that of the comparative bearing. In the bearing of the present invention, except for the bearing N-5,
The amount of change in the bearing inner diameter before and after the test (that is, the amount of wear) is about 1 to 2 more than the best bearing S-1 among the comparative bearings.
μm, it can be seen that the wear resistance is greatly improved. The coefficient of friction of the bearing of the present invention is about 0.02 to 0.10 lower than that of the comparative bearing. In particular, the coefficient of friction of the bearing N-8 of the present invention is about 0.
07 low. As described above, since the bearing of the present invention has a smaller friction coefficient than the comparative bearing, the current consumption of the small motor can be reduced. In the bearing of the present invention and the comparative bearing, in any of the eccentric side pressure load test and the side pressure load test, no damage due to sliding was observed when the rotating shaft after the test was observed.

【0050】図9(A),(B)は、表4に示す偏心側
圧荷重試験における試験前後の軸受内径寸法変化量をグ
ラフ化したものであり、縦軸は試験前後の軸受内径寸法
変化量(即ち、摩耗量)を示している。横軸は成分組成
(重量%)を示しており、図9(A)は比較軸受S−1
〜S−3のSn含有量を、図9(B)は比較軸受S−1
及び本発明軸受N−1〜N−8のNi含有量を、それぞ
れ示している。一般的に、融点が高いCu−Ni粉(例
えば、Niを70%含有,融点が約1380℃)などの
物質は原子間の結合力が大きいので、加熱によって原子
の熱振動が大きくなっても、結合が壊れ難いことを意味
している。概して、物質の融点が高くなるほど、耐熱性
が向上するという傾向がある。
FIGS. 9A and 9B are graphs showing the change in the bearing inner diameter before and after the test in the eccentric side pressure load test shown in Table 4. The vertical axis indicates the change in the bearing inner diameter before and after the test. (That is, the amount of wear). The horizontal axis indicates the component composition (% by weight), and FIG. 9A shows the comparative bearing S-1.
9B shows the Sn content of Comparative Bearing S-1.
And the Ni content of the bearings N-1 to N-8 of the present invention are shown. In general, a substance such as a Cu-Ni powder having a high melting point (for example, containing 70% of Ni and having a melting point of about 1380 ° C.) has a large bonding force between atoms. , Which means that the bond is hard to break. In general, the higher the melting point of a substance, the better the heat resistance tends to be.

【0051】図9(A)に示すように、比較軸受S−2
の如くSnの成分組成を7.5%以下にすると、焼結体
はα固溶体になり展延性に富む合金になる。この合金は
なじみ性には優れているが、硬度を向上させる効果のあ
るSnの量が少ないため、硬度が小さくなり耐摩耗性が
悪い。一方、比較軸受S−3のようにSnの成分組成を
12%以上にすると、焼結体は、β固溶体が分解してで
きるδ相(Cu3 Snの金属間化合物)がα固溶体中に
析出して比較的Snの多いCu−Sn合金(約410℃
で液相を生じる)になる。
As shown in FIG. 9A, the comparative bearing S-2
When the composition of Sn is set to 7.5% or less as described above, the sintered body becomes an α solid solution and becomes an alloy having high ductility. Although this alloy is excellent in conformability, the amount of Sn having an effect of improving the hardness is small, so that the hardness is low and the wear resistance is poor. On the other hand, when the component composition of Sn is set to 12% or more as in the comparative bearing S-3, a δ phase (intermetallic compound of Cu 3 Sn) formed by decomposition of a β solid solution precipitates in an α solid solution. Cu-Sn alloy with a relatively large amount of Sn (about 410 ° C
To form a liquid phase).

【0052】δ相は硬くて脆い金属組織なのでこの合金
は硬度は高いが、融点の低いSn(融点が約232℃)
を多く含むので耐熱性が悪くなっている。この合金のビ
ッカース硬さの値はCu−Ni−Sn合金とほぼ同等で
あるが、焼結含油軸受と回転軸の摺動によって摺動面の
温度が上昇すると、硬度が低下して焼結含油軸受の摩耗
が増大し、図9(A)に示すように耐摩耗性が低下して
焼結含油軸受が焼き付く恐れがある。比較軸受S−1の
ようにSnの成分組成を9.5%にすると、硬度が高く
比較的耐熱性の優れた合金になるので耐摩耗性が向上す
る。したがって、焼結含油軸受では、Snの成分組成を
7.5〜12重量%にすれば耐摩耗性に優れたものにな
ることが分かる。
Since the δ phase is a hard and brittle metal structure, this alloy has high hardness but low melting point Sn (melting point is about 232 ° C.)
, The heat resistance is poor. The value of Vickers hardness of this alloy is almost the same as that of Cu-Ni-Sn alloy, but when the temperature of the sliding surface rises due to sliding of the sintered oil-impregnated bearing and the rotating shaft, the hardness decreases and the sintered oil-impregnated The wear of the bearing increases, and as shown in FIG. 9 (A), the wear resistance may decrease and the sintered oil-impregnated bearing may be seized. When the composition ratio of Sn is 9.5% as in the comparative bearing S-1, an alloy having high hardness and relatively excellent heat resistance improves wear resistance. Therefore, it can be seen that in the sintered oil-impregnated bearing, when the composition of Sn is 7.5 to 12% by weight, the wear resistance is excellent.

【0053】図9(B)及び表2に示すように、本発明
軸受N−1,N−6のようにNiの成分組成が3%以下
の場合には、耐熱性及び硬度に優れたCu−Ni−Sn
合金が全体に占める割合が少なく、Cu−Sn合金(N
iを微量含む)の性質が強調されるので、Niを添加し
た効果は小さくなる。Niの成分組成を3%より少なく
すると耐摩耗性が低下する傾向が見られ、本発明軸受と
比較軸受S−1との間で耐摩耗性の差があまりなくな
る。
As shown in FIG. 9B and Table 2, when the composition of Ni is 3% or less as in the case of the bearings N-1 and N-6 of the present invention, Cu having excellent heat resistance and hardness is obtained. -Ni-Sn
The alloy accounts for a small percentage of the whole, and the Cu-Sn alloy (N
(i.e., a small amount of i) is emphasized, so that the effect of adding Ni is reduced. If the Ni composition is less than 3%, the abrasion resistance tends to decrease, and the difference in abrasion resistance between the present invention and the comparative bearing S-1 is reduced.

【0054】一方、本発明軸受N−5のように、Niの
成分組成が13%以上の場合には、耐熱性及び硬度に優
れたCu−Ni−Sn合金が全体に占める割合が大きく
なり、この合金の性質が強調される。本発明軸受N−5
のように、Niの成分組成が13%以上の場合には、S
nはCu粉末よりもCu−Ni粉末に優先的に拡散す
る。また、Snの添加量自体が少なくなっていることも
あり、Cu−Sn合金(焼結前はCu粉末であった部
分)中のSn量が少なくなってしまう。そのため、表2
及び表3からも分かるように、Ni量が増えていくとC
u−Sn合金のマトリックス硬さが小さくなり、この部
分の耐摩耗性が低下する。その結果、図9(B)に示す
ように、Niの成分組成を13%以上にすると、焼結含
油軸受全体としての耐摩耗性は低下していく。
On the other hand, when the component composition of Ni is 13% or more as in the bearing N-5 of the present invention, the proportion of the Cu—Ni—Sn alloy excellent in heat resistance and hardness becomes large, The properties of this alloy are emphasized. Inventive bearing N-5
When the component composition of Ni is 13% or more as in
n diffuses preferentially in Cu-Ni powder over Cu powder. Further, the addition amount of Sn itself may be small, so that the Sn amount in the Cu-Sn alloy (the portion which was Cu powder before sintering) will be small. Therefore, Table 2
As can be seen from Table 3 and Table 3, as the amount of Ni increases, C increases.
The matrix hardness of the u-Sn alloy decreases, and the wear resistance of this portion decreases. As a result, as shown in FIG. 9B, when the Ni composition is 13% or more, the wear resistance of the sintered oil-impregnated bearing as a whole decreases.

【0055】一方、本発明軸受N−1〜N−4,N−6
〜N−8のように、Niの成分組成が3〜13重量%の
場合には、耐熱性及び硬度に優れたCu−Ni−Sn合
金と、なじみ性に優れたCu−Sn合金(Niを微量含
む)とが、良好な割合になって両者の優れた特性が強調
されることになり、比較軸受の中で最も耐摩耗性のよい
軸受S−1と比べても、耐摩耗性が明らかに優れてい
る。Niの成分組成が3〜13重量%の本発明軸受の中
でも、本発明軸受N−3,N−8等のように、Niの成
分組成がほぼ8%のものが最も耐摩耗性に優れているこ
とが分かる。したがって、焼結含油軸受の成分組成を、
Niが3〜13重量%,Snが7.5〜12重量%,残
りがCu及び不可避不純物(例えば、Cu及び不可避不
純物が75〜89.5重量%)となるようにすれば、耐
摩耗性に優れたものになることが分かる。
On the other hand, the bearings N-1 to N-4, N-6 of the present invention
To N-8, when the composition of Ni is 3 to 13% by weight, a Cu—Ni—Sn alloy excellent in heat resistance and hardness and a Cu—Sn alloy excellent in conformability (Ni (Including a very small amount) and the excellent characteristics of the two are emphasized at a favorable ratio, and the wear resistance is clear even in comparison with the best wear resistant bearing S-1 among the comparative bearings. Is excellent. Among the bearings of the present invention having a Ni composition of 3 to 13% by weight, those having a Ni composition of about 8%, such as the present invention bearings N-3 and N-8, are the most excellent in wear resistance. You can see that there is. Therefore, the component composition of the sintered oil-impregnated bearing is
If Ni is 3 to 13% by weight, Sn is 7.5 to 12% by weight, and the remainder is Cu and unavoidable impurities (for example, 75 to 89.5% by weight of Cu and unavoidable impurities), wear resistance is improved. It turns out that it is excellent.

【0056】このように、本発明の焼結含油軸受を小型
モータのすべり軸受に適用すれば、すべり軸受の摩耗が
低減し、モータの機械ノイズや消費電流が低減される。
この焼結含油軸受は、銅系材料の軸受なので柔らかい感
じの摺動音が発生し、しかも耐摩耗性が良好で耐久性が
あるので、従来のように鉄系材料と銅系材料の焼結含油
軸受を使い分けなくても、モータの用途に拘らず一種類
の本発明の焼結含油軸受を使用することができる。な
お、本発明の焼結含油軸受は、上述の整流子付きのモー
タのほか、すべり軸受を用いたブラシレスモータ,ステ
ッピングモータ等の小型モータにも適用することができ
る。なお、各図中同一符号は同一又は相当部分を示す。
As described above, when the sintered oil-impregnated bearing of the present invention is applied to a sliding bearing of a small motor, wear of the sliding bearing is reduced, and mechanical noise and current consumption of the motor are reduced.
Since this sintered oil-impregnated bearing is a bearing made of copper-based material, it produces a soft sliding noise and has good wear resistance and durability. Even if the oil-impregnated bearings are not used properly, one kind of the sintered oil-impregnated bearing of the present invention can be used regardless of the use of the motor. The sintered oil-impregnated bearing of the present invention can be applied to a small motor such as a brushless motor or a stepping motor using a plain bearing, in addition to the above-described motor with a commutator. The same reference numerals in the drawings indicate the same or corresponding parts.

【0057】[0057]

【発明の効果】本発明は上述のように構成したので、す
べり軸受の耐摩耗性が向上するとともに、摩耗によって
生じるモータ騒音を低減させることができる。
As described above, according to the present invention, the wear resistance of the sliding bearing is improved and the motor noise caused by the wear can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1ないし図9は本発明の実施形態の一例を示
す図で、図1は小型モータの片側を断面で示す正面図で
ある。
FIGS. 1 to 9 are views showing an example of an embodiment of the present invention, and FIG. 1 is a front view showing a cross section of one side of a small motor.

【図2】焼結合金製含油軸受の製造工程を示すブロック
図である。
FIG. 2 is a block diagram showing a manufacturing process of a sintered alloy oil-impregnated bearing.

【図3】焼結工程における被焼結物の温度変化の一例を
示すグラフである。
FIG. 3 is a graph showing an example of a temperature change of an object to be sintered in a sintering step.

【図4】含油率が圧環強さに与える影響を示すグラフで
ある。
FIG. 4 is a graph showing the effect of oil content on radial crushing strength.

【図5】780℃でのCu−Ni−Sn合金三元系平衡
状態図である。
FIG. 5 is a ternary equilibrium diagram of a Cu—Ni—Sn alloy at 780 ° C.

【図6】焼結工程における金属組織の変化の状態を示す
概略説明図である。
FIG. 6 is a schematic explanatory view showing a state of a change in a metal structure in a sintering step.

【図7】図6における金属組織の原子構造の状態の一例
を示す概略説明図である。
7 is a schematic explanatory view showing an example of a state of an atomic structure of a metal structure in FIG.

【図8】本発明に係る焼結合金製含油軸受の金属表面の
組織図である。
FIG. 8 is a structural diagram of a metal surface of the oil-impregnated bearing made of a sintered alloy according to the present invention.

【図9】図9(A)は比較軸受のSn含有量と摩耗量と
の関係を示すグラフ、図9(B)は本発明軸受及び比較
軸受S−1のNi含有量と摩耗量との関係を示すグラフ
である。
9A is a graph showing the relationship between the Sn content and the wear amount of the comparative bearing, and FIG. 9B is a graph showing the relationship between the Ni content and the wear amount of the present invention bearing and the comparative bearing S-1. It is a graph which shows a relationship.

【符号の説明】[Explanation of symbols]

1 小型直流モータ(小型モータ) 2 内周面 3 固定子 4 ケーシング 5 回転子 6 回転軸 7,8 軸受部 19,22 すべり軸受 30 焼結合金製含油軸受 107 浸油処理 DESCRIPTION OF SYMBOLS 1 Small DC motor (Small motor) 2 Inner peripheral surface 3 Stator 4 Casing 5 Rotor 6 Rotating shaft 7,8 Bearing part 19,22 Sliding bearing 30 Sintered alloy oil impregnated bearing 107 Oil immersion treatment

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H02K 5/167 H02K 5/167 A // C22C 1/04 C22C 1/04 A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI H02K 5/167 H02K 5/167 A // C22C 1/04 C22C 1/04 A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ケーシング(4)の内周面(2)に固定
子(3)を取付け、前記ケーシングの内部に回転子
(5)を配設し、前記ケーシングに設けられた軸受部
(7,8)により前記回転子の回転軸(6)を回転自在
に支持する小型モータにおいて、 前記軸受部のすべり軸受(19,22)は、 Niの単一元素及びNiの元素を含む合金のうち少なく
とも一方の粉末が4〜27重量%、Snの単一元素粉末
が3〜5重量%、Snの元素を含む合金の粉末が18〜
55重量%、残りがCuの単一元素及び不可避不純物の
粉末となるような配合組成に配合された混合物を圧縮成
形し且つ焼結することにより成形された焼結合金製含油
軸受(30)であることを特徴とする小型モータ。
1. A stator (3) is mounted on an inner peripheral surface (2) of a casing (4), a rotor (5) is disposed inside the casing, and a bearing (7) provided on the casing is provided. , 8), the small-sized motor rotatably supporting the rotating shaft (6) of the rotor, wherein the sliding bearings (19, 22) of the bearing portion are made of an alloy containing a single element of Ni and an element of Ni. 4 to 27% by weight of at least one powder, 3 to 5% by weight of a single element powder of Sn, 18 to 18% by weight of an alloy containing Sn element.
An oil-impregnated bearing made of a sintered alloy (30) formed by compression-molding and sintering a mixture blended in such a composition that 55% by weight, with the balance being a powder of a single element of Cu and inevitable impurities. A small motor characterized by the following.
【請求項2】 ケーシングの内周面に固定子を取付け、
前記ケーシングの内部に回転子を配設し、前記ケーシン
グに設けられた軸受部(7,8)により前記回転子の回
転軸を回転自在に支持する小型モータにおいて、 前記軸受部のすべり軸受(19,22)は、 Niが3〜13重量%、Snが7.5〜12重量%、残
りがCu及び不可避不純物となるような成分組成の焼結
合金製含油軸受であることを特徴とする小型モータ。
2. A stator is mounted on the inner peripheral surface of the casing,
A small motor in which a rotor is disposed inside the casing and the rotating shaft of the rotor is rotatably supported by bearings (7, 8) provided in the casing. , 22) is an oil-impregnated bearing made of a sintered alloy having a composition of 3 to 13% by weight of Ni, 7.5 to 12% by weight of Sn, and the remainder being Cu and inevitable impurities. motor.
【請求項3】 ケーシングの内周面に固定子を取付け、
前記ケーシングの内部に回転子を配設し、前記ケーシン
グに設けられた軸受部(7,8)により前記回転子の回
転軸を回転自在に支持する小型モータにおいて、 前記軸受部のすべり軸受(19,22)は、 Niの単一元素及びNiの元素を含む合金のうち少なく
とも一方の粉末が4〜27重量%、Snの単一元素粉末
が3〜5重量%、Snの元素を含む合金の粉末が18〜
55重量%、残りがCuの単一元素及び不可避不純物の
粉末となるような配合組成に配合された混合物を圧縮成
形し且つ焼結することにより成形され、Niが3〜13
重量%、Snが7.5〜12重量%、残りがCu及び不
可避不純物となるような成分組成の焼結合金製含油軸受
であり、 焼結体のCu−Ni−Sn合金の一部又は全体が、θ相
(NiとSnからなる金属間化合物)の組織及びスピノ
ーダル分解によってできる変調構造の少なくとも一方の
組織を有することを特徴とする小型モータ。
3. A stator is mounted on the inner peripheral surface of the casing,
A small motor in which a rotor is disposed inside the casing and the rotating shaft of the rotor is rotatably supported by bearings (7, 8) provided in the casing. , 22) are at least one powder of 4 to 27% by weight of the alloy containing the single element of Ni and the element containing Ni, 3 to 5% by weight of the single element powder of Sn, and 3% by weight of the alloy containing the element of Sn. Powder 18 ~
The mixture is formed by compression-molding and sintering a mixture having a composition of 55% by weight, with the balance being a powder of a single element of Cu and unavoidable impurities.
It is an oil-impregnated bearing made of a sintered alloy having a component composition such that the content of Sn is 7.5 to 12% by weight, and the remainder is Cu and unavoidable impurities. A motor having at least one of a structure of a θ phase (intermetallic compound composed of Ni and Sn) and a structure of a modulation structure formed by spinodal decomposition.
【請求項4】 ケーシングの内周面に固定子を取付け、
前記ケーシングの内部に回転子を配設し、前記ケーシン
グに設けられた軸受部(7,8)により前記回転子の回
転軸を回転自在に支持する小型モータにおける前記軸受
部のすべり軸受(19,22)を構成する焼結合金製含
油軸受の製造方法であって、 Niの単一元素及びNiの元素を含む合金のうち少なく
とも一方の粉末が4〜27重量%、Snの単一元素粉末
が3〜5重量%、Snの元素を含む合金の粉末が18〜
55重量%、残りがCuの単一元素及び不可避不純物の
粉末となるような配合組成に配合された混合物を圧縮成
形し、 圧縮成形された圧粉体を還元雰囲気中で約700〜約8
00℃で所定時間のあいだ焼結して焼結体にしたのち、 この焼結体を約300℃まで冷却した時点で、この焼結
体のCu−Ni−Sn合金の一部又は全体がCu−Ni
−Sn合金三元系平衡状態図の「α(Cu−Ni−Sn
固溶体)+θ(NiとSnからなる金属間化合物)」の
成分範囲内にあり、θ相が析出するような冷却速度で前
記焼結体を徐々に冷却し、 得られた前記焼結体を所定の形状にサイジングしたのち
浸油処理を行うことを特徴とする小型モータの焼結合金
製含油軸受の製造方法。
4. A stator is mounted on an inner peripheral surface of the casing,
A rotor is disposed inside the casing, and the bearing (7, 8) provided in the casing rotatably supports the rotating shaft of the rotor. 22) A method for producing a sintered alloy-made oil-impregnated bearing constituting item 22), wherein at least one powder of a single element of Ni and an alloy containing an element of Ni is 4 to 27% by weight, and the single element powder of Sn is 3-5% by weight of alloy powder containing Sn element is 18-
A mixture having a composition of 55% by weight, with the balance being a powder of a single element of Cu and unavoidable impurities, is compression-molded, and the compression-molded green compact is reduced to about 700 to about 8 in a reducing atmosphere.
After sintering at 00 ° C. for a predetermined time to form a sintered body, when the sintered body is cooled to about 300 ° C., a part or the whole of the Cu—Ni—Sn alloy of the sintered body becomes Cu −Ni
-(Sn alloy ternary equilibrium diagram "α (Cu-Ni-Sn
Solid solution) + θ (intermetallic compound composed of Ni and Sn), and gradually cools the sintered body at a cooling rate at which the θ phase is precipitated. A method for producing an oil-impregnated bearing made of a sintered alloy for a small motor, wherein the oil-impregnated bearing for a small motor is subjected to oil immersion treatment after sizing to the shape of the above.
JP10073167A 1998-03-06 1998-03-06 Small-sized motor and manufacture of sintered alloy-made oil impregnated bearing thereof Pending JPH11256206A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10073167A JPH11256206A (en) 1998-03-06 1998-03-06 Small-sized motor and manufacture of sintered alloy-made oil impregnated bearing thereof
TW88103283A TW498002B (en) 1998-03-06 1999-03-04 A compact motor and a method for producing a porous bearing thereof made from sintered alloy
CN 99105609 CN1084949C (en) 1998-03-06 1999-03-05 Mfg. method of small motor and sintered alloy-made oil containing bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10073167A JPH11256206A (en) 1998-03-06 1998-03-06 Small-sized motor and manufacture of sintered alloy-made oil impregnated bearing thereof

Publications (1)

Publication Number Publication Date
JPH11256206A true JPH11256206A (en) 1999-09-21

Family

ID=13510342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10073167A Pending JPH11256206A (en) 1998-03-06 1998-03-06 Small-sized motor and manufacture of sintered alloy-made oil impregnated bearing thereof

Country Status (3)

Country Link
JP (1) JPH11256206A (en)
CN (1) CN1084949C (en)
TW (1) TW498002B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001789A1 (en) * 2006-06-27 2008-01-03 Mitsubishi Materials Pmg Corporation Cu-Ni-Sn COPPER BASE SINTERED ALLOY EXCELLENT IN WEAR RESISTANCE AND BEARING MEMBER MADE OF THE ALLOY
JP2008019929A (en) * 2006-07-12 2008-01-31 Hitachi Powdered Metals Co Ltd Oil-impregnated sintered bearing
JP2013023707A (en) * 2011-07-18 2013-02-04 Fukuda Metal Foil & Powder Co Ltd Mixed powder for powder metallurgy
WO2015025576A1 (en) * 2013-08-20 2015-02-26 日立オートモティブシステムズ株式会社 Electric air flow control device for internal combustion engines
CN104907566A (en) * 2015-04-23 2015-09-16 上海精科粉末冶金科技有限公司 Manufacturing method for rotating bearing frame
JP2016094637A (en) * 2014-11-13 2016-05-26 株式会社村田製作所 Oilless bearing manufacturing method and oilless bearing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479174B2 (en) * 2004-03-31 2009-01-20 Mitsubishi Materials Pmg Corporation Inner rotor and outer rotor of internal gear pump
WO2006073090A1 (en) * 2005-01-05 2006-07-13 Ntn Corporation Sintered metallic material, oil-retaining bearing constituted of the metallic material, and fluid bearing apparatus
CN100543328C (en) * 2006-07-11 2009-09-23 陈韵如 The method for making of self-lubrication type bearing
WO2014156856A1 (en) * 2013-03-25 2014-10-02 Ntn株式会社 Method for manufacturing sintered bearing, sintered bearing, and vibration motor equipped with same
CN104426303B (en) * 2013-08-21 2017-07-28 广东肇庆爱龙威机电有限公司 The motor assembled for the assembly method of permanent magnet DC motor and by this method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001789A1 (en) * 2006-06-27 2008-01-03 Mitsubishi Materials Pmg Corporation Cu-Ni-Sn COPPER BASE SINTERED ALLOY EXCELLENT IN WEAR RESISTANCE AND BEARING MEMBER MADE OF THE ALLOY
JP2008007796A (en) * 2006-06-27 2008-01-17 Mitsubishi Materials Pmg Corp Cu-Ni-Sn SERIES COPPER BASED SINTERED ALLOY HAVING EXCELLENT FRICTION/WEAR RESISTANCE AND BEARING MATERIAL COMPOSED OF THE ALLOY
JP2008019929A (en) * 2006-07-12 2008-01-31 Hitachi Powdered Metals Co Ltd Oil-impregnated sintered bearing
JP2013023707A (en) * 2011-07-18 2013-02-04 Fukuda Metal Foil & Powder Co Ltd Mixed powder for powder metallurgy
WO2015025576A1 (en) * 2013-08-20 2015-02-26 日立オートモティブシステムズ株式会社 Electric air flow control device for internal combustion engines
JPWO2015025576A1 (en) * 2013-08-20 2017-03-02 日立オートモティブシステムズ株式会社 Electric air flow control device for internal combustion engine
EP3037686A4 (en) * 2013-08-20 2017-04-19 Hitachi Automotive Systems, Ltd. Electric air flow control device for internal combustion engines
US9745646B2 (en) 2013-08-20 2017-08-29 Hitachi Automotive Systems, Ltd. Electric air flow control device for internal combustion engines
JP2016094637A (en) * 2014-11-13 2016-05-26 株式会社村田製作所 Oilless bearing manufacturing method and oilless bearing
CN104907566A (en) * 2015-04-23 2015-09-16 上海精科粉末冶金科技有限公司 Manufacturing method for rotating bearing frame

Also Published As

Publication number Publication date
CN1084949C (en) 2002-05-15
CN1230044A (en) 1999-09-29
TW498002B (en) 2002-08-11

Similar Documents

Publication Publication Date Title
JPH11256206A (en) Small-sized motor and manufacture of sintered alloy-made oil impregnated bearing thereof
JP2834550B2 (en) Sliding contact material for small current region and method of manufacturing the same
JP3299282B2 (en) Sliding contact material, clad composite material, and small DC motor using the same
US20050212376A1 (en) Brush of rotary electric machine
US20140001916A1 (en) Contact brush
JP3789291B2 (en) Ni metal particle dispersion type Ag-Ni alloy sliding contact material and clad composite material and DC small motor using the same
WO2016158373A1 (en) Sintered bearing and method of manufacturing same
CN1281955A (en) Powder metallurgy rare-earth iron bronze alloy oil-impregnated bearing and its manufacturing method
JP3774614B2 (en) Sintered oil-impregnated bearing material using copper-coated iron powder and manufacturing method thereof
JP3711174B2 (en) AC generator joint ring and cylindrical commutator made of sintered copper graphite composite
CN108603249B (en) Sliding contact material and method for producing same
US4220884A (en) Carbon brush for motors and method of making the same
CN110475982B (en) Sintered bearing and method for manufacturing same
CN1288114A (en) Powder metallurgy, rare-earth, iron and brass alloy oil-impregnated bearing and its mfg. method
JP2001107162A (en) Bronze series sintered alloy, bearing using the same and their producing method
JPH1113765A (en) Magnetic fluid-impregnated sintered slide bearing and manufacture thereof
JPH0438152A (en) Electrical brush
JPH08260078A (en) Sliding contact material, clad composite material and dc compact motor using the same
JP3320468B2 (en) Rolling bearing and manufacturing method thereof
JP4480334B2 (en) Compact DC motor with excellent recyclability
WO1991009981A1 (en) Sintered alloy bearing
JP6428180B2 (en) Oil-impregnated bearing manufacturing method, oil-impregnated bearing
JPH05344687A (en) Small size motor
JP2019207030A (en) Sintered bearing and manufacturing method thereof
KR100729482B1 (en) Metal-Graphite Brush