JP2008007796A - Cu-Ni-Sn SERIES COPPER BASED SINTERED ALLOY HAVING EXCELLENT FRICTION/WEAR RESISTANCE AND BEARING MATERIAL COMPOSED OF THE ALLOY - Google Patents

Cu-Ni-Sn SERIES COPPER BASED SINTERED ALLOY HAVING EXCELLENT FRICTION/WEAR RESISTANCE AND BEARING MATERIAL COMPOSED OF THE ALLOY Download PDF

Info

Publication number
JP2008007796A
JP2008007796A JP2006176255A JP2006176255A JP2008007796A JP 2008007796 A JP2008007796 A JP 2008007796A JP 2006176255 A JP2006176255 A JP 2006176255A JP 2006176255 A JP2006176255 A JP 2006176255A JP 2008007796 A JP2008007796 A JP 2008007796A
Authority
JP
Japan
Prior art keywords
phase
component composition
sintered alloy
wear resistance
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006176255A
Other languages
Japanese (ja)
Other versions
JP5371182B2 (en
Inventor
Toshiro Harakawa
俊郎 原川
Teruo Shimizu
輝夫 清水
Tsuneo Maruyama
恒夫 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamet Corp
Original Assignee
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamet Corp filed Critical Diamet Corp
Priority to JP2006176255A priority Critical patent/JP5371182B2/en
Priority to CNA2007800314685A priority patent/CN101517105A/en
Priority to US12/306,524 priority patent/US20090311129A1/en
Priority to DE112007001514.4T priority patent/DE112007001514B4/en
Priority to PCT/JP2007/062841 priority patent/WO2008001789A1/en
Publication of JP2008007796A publication Critical patent/JP2008007796A/en
Application granted granted Critical
Publication of JP5371182B2 publication Critical patent/JP5371182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Cu-Ni-Sn series copper based sintered alloy having excellent strength and friction/wear resistance, and to provide a bearing material composed of the alloy. <P>SOLUTION: The Cu-Ni-Sn series copper based sintered alloy having excellent strength and friction/wear resistance has a componential composition comprising 10 to 40% Ni and 5 to 25% Sn, and, if required, further comprising 0.1 to 0.9% P, 1 to 10% C, 0.3 to 6% calcium fluoride and 0.3 to 6% molybdenum disulfide, and the balance Cu with inevitable impurities, and has a structure where a phase having a componential composition composed of Cu<SB>(4-x-y)</SB>Ni<SB>x</SB>Sn<SB>y</SB>(wherein,(x): 1.7 to 2.3, (y):0.2 to 1.3) is dispersed into the base. The bearing material is composed of the alloy. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、耐摩擦摩耗性に優れた軸受用Cu−Ni−Sn系銅基焼結合金およびその合金からなる軸受材に関するものである。   The present invention relates to a bearing Cu—Ni—Sn copper-based sintered alloy having excellent friction and wear resistance and a bearing material made of the alloy.

従来から軸受材としてCu−Ni−Sn系銅基焼結合金が使用されており、このCu−Ni−Sn系銅基焼結合金は特に高温環境下で耐摩擦摩耗性が優れているところから、例えば、高温環境下で耐摩擦摩耗性が要求されるEGR式内燃機関の再循環排ガス流量制御弁を作動させるステンレス鋼製往復動シャフトの軸受(例えば特許文献1参照)や内接式ギヤポンプのインナローターおよびアウタローター(例えば特許文献2参照)などに使用されている。

さらに、このCu−Ni−Sn系銅基焼結合金からなる軸受材の摩擦係数を下げて潤滑性を一層向上させるために、二硫化モリブデンなどの固体潤滑剤を添加することも知られており、Cu−Ni−Sn系銅基焼結合金の潤滑性を高めるために含まれる二硫化モリブデンの量は通常1〜5%である。

特開2004−68074号公報 特開2005−314807号公報
Conventionally, a Cu—Ni—Sn based copper-based sintered alloy has been used as a bearing material, and this Cu—Ni—Sn based copper-based sintered alloy is excellent in frictional wear resistance particularly in a high temperature environment. For example, a stainless steel reciprocating shaft bearing for operating a recirculation exhaust gas flow control valve of an EGR internal combustion engine that requires frictional wear resistance in a high-temperature environment (see, for example, Patent Document 1) or an internal gear pump It is used for an inner rotor and an outer rotor (for example, refer to Patent Document 2).

Furthermore, it is also known to add a solid lubricant such as molybdenum disulfide in order to lower the coefficient of friction of the bearing material made of this Cu—Ni—Sn based copper-based sintered alloy and further improve the lubricity. The amount of molybdenum disulfide contained in order to improve the lubricity of the Cu—Ni—Sn based copper-based sintered alloy is usually 1 to 5%.

JP 2004-68074 A JP-A-2005-314807


前述のように、前記Cu−Ni−Sn系銅基焼結合金は比較的Niを多量に含むので優れた強度、耐食性および耐摩擦摩耗性を有し、特に高温環境下において優れた耐摩擦摩耗性を有するが、さらに一層の耐摩擦摩耗が要求されていた。

As described above, the Cu-Ni-Sn based copper-based sintered alloy contains a relatively large amount of Ni and thus has excellent strength, corrosion resistance and friction wear resistance, and particularly excellent friction wear resistance in a high temperature environment. However, there has been a demand for further frictional wear.

そこで、本発明者らは、前記Cu−Ni−Sn系銅基焼結合金の耐摩擦摩耗性を一層向上させるべく研究を行った。その結果、

Cu−Ni−Sn系銅基焼結合金の素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相が分散している組織を生成させることにより耐摩擦摩耗性が一層向上する、という研究結果が得られたのである。
Therefore, the present inventors have studied to further improve the friction and wear resistance of the Cu—Ni—Sn copper-based sintered alloy. as a result,

Cu (4-xy) Ni x Sn y (x: 1.7 to 2.3, y: 0.2 to 1.3) in the base of the Cu—Ni—Sn based copper-based sintered alloy The result of a study that the frictional wear resistance was further improved by generating a structure in which the phase of the component composition consisting of was dispersed was obtained.

この発明は、かかる研究結果に基づいてなされたものであって、

(1)Ni、SnおよびCuを含むCu−Ni−Sn系銅基焼結合金の素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、に特徴を有するものである。
The present invention has been made based on the results of such research,

(1) Cu (4-xy) Ni x Sn y (where x is 1.7 to 2.3, in the base of a Cu—Ni—Sn based copper-based sintered alloy containing Ni, Sn, and Cu, It is characterized by a Cu—Ni—Sn based copper-based sintered alloy excellent in frictional wear resistance having a structure in which the phase of the component composition consisting of y: 0.2 to 1.3) is dispersed. .

前記(1)記載のNi、SnおよびCuを含むCu−Ni−Sn系銅基焼結合金は、質量%で、Ni:10〜40%、Sn:5〜25%を含有し、さらに必要に応じて、P:0.1〜0.9%および/またはC:1〜10%を含有し、残部:Cuおよび不可避不純物からなる成分組成を有するCu−Ni−Sn系銅基焼結合金であっても良い。前記必要に応じてP:0.1〜0.9%および/またはC:1〜10%を含むCu−Ni−Sn系銅基焼結合金の素地にはCu(4−z)(ただし、z:0.7〜1.3)からなる成分組成の相および/または黒鉛相が生成する。したがって、この発明は、
(2)質量%で、Ni:10〜40%、Sn:5〜25%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、

(3)質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相およびCu(4−z)(ただし、z:0.7〜1.3)からなる成分組成の相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。
(4)質量%で、Ni:10〜40%、Sn:5〜25%、C:1〜10%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相および黒鉛相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、

(5)質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、C:1〜10%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)(ただし、z:0.7〜1.3)からなる成分組成の相および黒鉛相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、に特徴を有するものである。
The Cu—Ni—Sn based copper-based sintered alloy containing Ni, Sn and Cu described in (1) above is contained in mass%, Ni: 10 to 40%, Sn: 5 to 25%, and further necessary. Accordingly, a Cu—Ni—Sn based copper-based sintered alloy containing P: 0.1 to 0.9% and / or C: 1 to 10%, and having a component composition composed of the balance: Cu and inevitable impurities. There may be. The base of the Cu—Ni—Sn based copper-based sintered alloy containing P: 0.1 to 0.9% and / or C: 1 to 10% as necessary may be Cu (4-z) P z ( However, a phase having a component composition consisting of z: 0.7 to 1.3) and / or a graphite phase is formed. Therefore, the present invention
(2) By mass%, Ni: 10 to 40%, Sn: 5 to 25%, balance: component composition consisting of Cu and inevitable impurities, and Cu (4-xy) Ni x Sn in the substrate Cu-Ni-Sn excellent in frictional wear resistance having a structure in which a phase of a component composition consisting of y (where x: 1.7 to 2.3, y: 0.2 to 1.3) is dispersed Based copper-based sintered alloy,

(3) In mass%, Ni: 10 to 40%, Sn: 5 to 25%, P: 0.1 to 0.9%, the balance: component composition consisting of Cu and inevitable impurities, and in the substrate A phase of a component composition consisting of Cu (4-xy) Ni x Sn y (x: 1.7 to 2.3, y: 0.2 to 1.3) and Cu (4-z) P z A Cu—Ni—Sn based copper-based sintered alloy having a structure in which a phase of a component composition consisting of (z: 0.7 to 1.3) is dispersed and having excellent frictional wear resistance.
(4) By mass%, Ni: 10 to 40%, Sn: 5 to 25%, C: 1 to 10%, balance: component composition consisting of Cu and inevitable impurities, and Cu (4- x-y) Ni x Sn y (where x: 1.7 to 2.3, y: 0.2 to 1.3) and a structure having a structure in which a graphite phase is dispersed and a friction resistance Cu-Ni-Sn based copper-based sintered alloy with excellent wear properties,

(5) By mass%, Ni: 10 to 40%, Sn: 5 to 25%, P: 0.1 to 0.9%, C: 1 to 10%, balance: Cu and inevitable impurities Ingredient composition and phase of ingredient composition comprising Cu (4-xy) Ni x Sn y (where x: 1.7 to 2.3, y: 0.2 to 1.3) in the substrate, Cu (4-z) Cu-Ni-Sn system having excellent frictional wear resistance having a structure in which a phase of a component composition consisting of Pz (z: 0.7 to 1.3) and a graphite phase are dispersed It is characterized by a copper-based sintered alloy.

また、前記(2)〜(5)記載のNi、SnおよびCuを含むCu−Ni−Sn系銅基焼結合金に、さらに必要に応じて、フッ化カルシウム:0.3〜6%を含有しても良い。このフッ化カルシウムを含むCu−Ni−Sn系銅基焼結合金の素地中にはフッ化カルシウム相が分散している。したがって、この発明は、

(6)質量%で、Ni:10〜40%、Sn:5〜25%、フッ化カルシウム:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相およびフッ化カルシウム相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、
(7)質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、フッ化カルシウム:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)(ただし、z:0.7〜1.3)からなる成分組成の相およびフッ化カルシウム相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、
(8)質量%で、Ni:10〜40%、Sn:5〜25%、C:1〜10%、フッ化カルシウム:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、黒鉛相およびフッ化カルシウム相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、

(9)質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、C:1〜10%、フッ化カルシウム:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)(ただし、z:0.7〜1.3)からなる成分組成の相、黒鉛相およびフッ化カルシウム相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、に特徴を有するものである。
The Cu—Ni—Sn based copper-based sintered alloy containing Ni, Sn and Cu as described in (2) to (5) above further contains calcium fluoride: 0.3 to 6% as necessary. You may do it. The calcium fluoride phase is dispersed in the base of the Cu—Ni—Sn copper-based sintered alloy containing calcium fluoride. Therefore, the present invention

(6) In mass%, Ni: 10 to 40%, Sn: 5 to 25%, Calcium fluoride: 0.3 to 6%, the balance: component composition consisting of Cu and inevitable impurities, and in the substrate A component composition phase composed of Cu (4-xy) Ni x Sn y (x: 1.7 to 2.3, y: 0.2 to 1.3) and a calcium fluoride phase are dispersed. Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance,
(7) In mass%, Ni: 10-40%, Sn: 5-25%, P: 0.1-0.9%, calcium fluoride: 0.3-6%, the balance: Cu and Component composition composed of inevitable impurities, and component composition composed of Cu (4-xy) Ni x Sn y (where x: 1.7 to 2.3, y: 0.2 to 1.3) in the substrate Excellent in frictional wear resistance having a structure in which a phase of a component composed of Cu (4-z) Pz (where z: 0.7 to 1.3) and a calcium fluoride phase are dispersed. Cu-Ni-Sn based copper-based sintered alloy,
(8) By mass%, Ni: 10 to 40%, Sn: 5 to 25%, C: 1 to 10%, Calcium fluoride: 0.3 to 6%, balance: Cu and inevitable impurities Component composition, and phase of component composition comprising Cu (4-xy) Ni x Sn y (where x: 1.7 to 2.3, y: 0.2 to 1.3) in the substrate, graphite Cu—Ni—Sn based copper-based sintered alloy having a structure in which a phase and a calcium fluoride phase are dispersed and having excellent frictional wear resistance,

(9) By mass%, Ni: 10-40%, Sn: 5-25%, P: 0.1-0.9%, C: 1-10%, calcium fluoride: 0.3-6% Containing, balance: component composition consisting of Cu and inevitable impurities, and Cu (4-xy) Ni x Sn y (where x: 1.7 to 2.3, y: 0.2 to 1) .3), a component composition phase consisting of Cu (4-z) P z (where z: 0.7 to 1.3), a graphite phase and a calcium fluoride phase are dispersed. It is characterized by a Cu—Ni—Sn-based copper-based sintered alloy having excellent frictional wear resistance and having a structure.


また、前記(2)〜(5)記載のNi、SnおよびCuを含むCu−Ni−Sn系銅基焼結合金に、さらに必要に応じて、二硫化モリブデン:0.3〜6%を含有しても良い。この二硫化モリブデンを含むCu−Ni−Sn系銅基焼結合金の素地中には、二硫化モリブデン相が分散している。したがって、この発明は、

(10)質量%で、Ni:10〜40%、Sn:5〜25%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相および二硫化モリブデン相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、
(11)質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)(ただし、z:0.7〜1.3)からなる成分組成の相および二硫化モリブデン相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、
(12)質量%で、Ni:10〜40%、Sn:5〜25%、C:1〜10%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、黒鉛相および二硫化モリブデン相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、
(13)質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、C:1〜10%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)(ただし、z:0.7〜1.3)からなる成分組成の相、黒鉛相および二硫化モリブデン相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、に特徴を有するものである。

Further, the Cu—Ni—Sn based copper-based sintered alloy containing Ni, Sn and Cu as described in (2) to (5) above further contains molybdenum disulfide: 0.3 to 6% as necessary. You may do it. The molybdenum disulfide phase is dispersed in the base of the Cu—Ni—Sn copper-based sintered alloy containing molybdenum disulfide. Therefore, the present invention

(10) In mass%, Ni: 10 to 40%, Sn: 5 to 25%, Molybdenum disulfide: 0.3 to 6%, the balance: component composition consisting of Cu and inevitable impurities, and the base material A component composition phase composed of Cu (4-xy) Ni x Sn y (x: 1.7 to 2.3, y: 0.2 to 1.3) and a molybdenum disulfide phase are dispersed. Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance,
(11) By mass%, Ni: 10-40%, Sn: 5-25%, P: 0.1-0.9%, molybdenum disulfide: 0.3-6%, the balance: Cu and Component composition composed of inevitable impurities, and component composition composed of Cu (4-xy) Ni x Sn y (where x: 1.7 to 2.3, y: 0.2 to 1.3) in the substrate Excellent in frictional wear resistance having a structure in which a phase of a component composed of Cu (4-z) P z (where z: 0.7 to 1.3) and a molybdenum disulfide phase are dispersed Cu-Ni-Sn based copper-based sintered alloy,
(12) By mass%, Ni: 10 to 40%, Sn: 5 to 25%, C: 1 to 10%, molybdenum disulfide: 0.3 to 6%, balance: Cu and inevitable impurities Component composition, and phase of component composition comprising Cu (4-xy) Ni x Sn y (where x: 1.7 to 2.3, y: 0.2 to 1.3) in the substrate, graphite Cu-Ni-Sn based copper-based sintered alloy having a structure in which a phase and a molybdenum disulfide phase are dispersed and having excellent frictional wear resistance,
(13) By mass%, Ni: 10-40%, Sn: 5-25%, P: 0.1-0.9%, C: 1-10%, molybdenum disulfide: 0.3-6% Containing, balance: component composition consisting of Cu and inevitable impurities, and Cu (4-xy) Ni x Sn y (where x: 1.7 to 2.3, y: 0.2 to 1) .3), a component composition phase consisting of Cu (4-z) P z (z: 0.7 to 1.3), a graphite phase and a molybdenum disulfide phase are dispersed. It is characterized by a Cu-Ni-Sn copper-based sintered alloy having a structure and excellent frictional wear resistance.


また、前記(2)〜(5)記載のNi、SnおよびCuを含むCu−Ni−Sn系銅基焼結合金に、さらに必要に応じて、フッ化カルシウム:0.3〜6%および二硫化モリブデン:0.3〜6%を含有しても良い。このフッ化カルシウムおよび二硫化モリブデンを含むCu−Ni−Sn系銅基焼結合金の素地中には、フッ化カルシウム相および二硫化モリブデン相が分散している。したがって、この発明は、
(14)質量%で、Ni:10〜40%、Sn:5〜25%、フッ化カルシウム:0.3〜6%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、フッ化カルシウム相および二硫化モリブデン相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、
(15)質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、フッ化カルシウム:0.3〜6%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)(ただし、z:0.7〜1.3)からなる成分組成の相、フッ化カルシウム相および二硫化モリブデン相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、
(16)質量%で、Ni:10〜40%、Sn:5〜25%、C:1〜10%、フッ化カルシウム:0.3〜6%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、黒鉛相、フッ化カルシウム相および二硫化モリブデン相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、

(17)質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、C:1〜10%、フッ化カルシウム:0.3〜6%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)(ただし、z:0.7〜1.3)からなる成分組成の相、黒鉛相、フッ化カルシウム相および二硫化モリブデン相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、に特徴を有するものである。

In addition, the Cu—Ni—Sn-based copper-based sintered alloy containing Ni, Sn and Cu described in the above (2) to (5) may be further added with calcium fluoride: 0.3 to 6% and 2 if necessary. Molybdenum sulfide: 0.3 to 6% may be contained. The calcium fluoride phase and the molybdenum disulfide phase are dispersed in the base of the Cu—Ni—Sn copper-based sintered alloy containing calcium fluoride and molybdenum disulfide. Therefore, the present invention
(14) In mass%, Ni: 10-40%, Sn: 5-25%, calcium fluoride: 0.3-6%, molybdenum disulfide: 0.3-6%, the balance: Cu and Component composition composed of inevitable impurities, and component composition composed of Cu (4-xy) Ni x Sn y (where x: 1.7 to 2.3, y: 0.2 to 1.3) in the substrate A Cu—Ni—Sn based copper-based sintered alloy having a structure in which a phase of calcium fluoride, a phase of calcium fluoride and a molybdenum disulfide phase are dispersed and having excellent frictional wear resistance,
(15) By mass%, Ni: 10-40%, Sn: 5-25%, P: 0.1-0.9%, calcium fluoride: 0.3-6%, molybdenum disulfide: 0.3 Component composition consisting of ˜6%, balance: Cu and inevitable impurities, and Cu (4-xy) Ni x Sn y (where x: 1.7 to 2.3, y: 0) .2 to 1.3), a component composition phase consisting of Cu (4-z) P z (where z: 0.7 to 1.3), a calcium fluoride phase and molybdenum disulfide. A Cu—Ni—Sn based copper-based sintered alloy having a structure in which phases are dispersed and having excellent frictional wear resistance,
(16) By mass%, Ni: 10-40%, Sn: 5-25%, C: 1-10%, calcium fluoride: 0.3-6%, molybdenum disulfide: 0.3-6% Containing, balance: component composition consisting of Cu and inevitable impurities, and Cu (4-xy) Ni x Sn y (where x: 1.7 to 2.3, y: 0.2 to 1) .3), a Cu—Ni—Sn based copper-based sintered alloy having excellent friction and wear resistance, and having a structure in which a phase of a component composition, a graphite phase, a calcium fluoride phase, and a molybdenum disulfide phase are dispersed;

(17) In mass%, Ni: 10 to 40%, Sn: 5 to 25%, P: 0.1 to 0.9%, C: 1 to 10%, calcium fluoride: 0.3 to 6%, Molybdenum disulfide: containing 0.3 to 6%, balance: component composition consisting of Cu and inevitable impurities, and Cu (4-xy) Ni x Sn y (where x: 1.7 to 2.3, phase of component composition consisting of y: 0.2 to 1.3), phase of component composition consisting of Cu (4-z) P z (where z: 0.7 to 1.3), graphite It is characterized by a Cu—Ni—Sn based copper-based sintered alloy excellent in frictional wear resistance having a structure in which a phase, a calcium fluoride phase and a molybdenum disulfide phase are dispersed.


前記(1)〜(17)記載のこの発明の耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金を製造するには、原料粉末として、
Ni:5〜45質量%を含有し、残部がCuおよび不可避不純物からなる成分組成のCu−Ni合金粉末、
Ni:25〜60%、Sn:5〜60%を含有し、残部:Cuおよび不可避不純物からなる成分組成を有するCu−Ni−Sn合金粉末、
Sn粉末、
P:8質量%を含有し、残部がCuおよび不可避不純物からなる成分組成のCu−P合金粉末
黒鉛粉末、
フッ化カルシウム粉末
二硫化モリブデン粉末、

を用意し、これら原料粉末を前記(1)〜(17)記載の成分組成となるように配合し混合して混合粉末を作製し、この混合粉末を圧縮成形して得られた圧粉体を従来の焼結温度:700〜950℃よりも高い温度で焼結し、得られた焼結体をただちに従来の冷却速度(15℃/分以上)よりも緩やかな冷却速度:5〜10℃/分で徐冷することにより得られる。

このようにして得られた耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金は、素地に気孔率:5〜25%の割合で気孔が分散分布している。

In order to produce a Cu—Ni—Sn based copper-based sintered alloy having excellent frictional wear resistance according to the present invention as described in (1) to (17) above,
Ni: Cu-Ni alloy powder having a composition of 5 to 45% by mass, the balance being Cu and inevitable impurities,
Cu: Ni-Sn alloy powder containing Ni: 25-60%, Sn: 5-60%, with the balance: Cu and inevitable impurities component composition,
Sn powder,
P: Cu-P alloy powder graphite powder having a component composition containing 8% by mass and the balance consisting of Cu and inevitable impurities,
Calcium fluoride powder molybdenum disulfide powder,

The raw material powder is blended so as to have the component composition described in the above (1) to (17) and mixed to prepare a mixed powder, and a green compact obtained by compression molding the mixed powder is prepared. Conventional sintering temperature: Sintered at a temperature higher than 700 to 950 ° C, and the obtained sintered body is immediately cooled more slowly than the conventional cooling rate (15 ° C / min or more): 5 to 10 ° C / It is obtained by slow cooling in minutes.

The Cu—Ni—Sn copper-based sintered alloy having excellent friction and wear resistance obtained as described above has pores dispersed and distributed in the base at a porosity of 5 to 25%.

つぎに、この発明の耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金の成分組成およびCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相におけるxおよびyを上記の通りに限定した理由を説明する。
Next, the component composition of the Cu—Ni—Sn-based copper-based sintered alloy having excellent frictional wear resistance according to the present invention and Cu (4-xy) Ni x Sn y (where x is 1.7 to 2). .3, y: 0.2 to 1.3), the reason why x and y in the phase of the component composition are limited as described above will be described.

(A)成分組成の限定理由

(a)Ni
Niは高温環境下における強度、耐摩擦摩耗性を向上させる成分であるが、その含有量が10%未満では所望の効果が得られず、一方、40%を越えて含有すると高温環境下におけるシャフトとの摺動面間の抵抗が大きくなって摩耗が急速に増大するようになることから好ましくない。したがって、この発明のCu−Ni−Sn系銅基焼結合金に含まれるNi含有量を10〜40%と定めた。
(A) Reason for limitation of component composition

(A) Ni
Ni is a component that improves the strength and frictional wear resistance in a high temperature environment, but if its content is less than 10%, the desired effect cannot be obtained, while if it exceeds 40%, the shaft in a high temperature environment is not obtained. Since the resistance between the sliding surfaces increases and the wear increases rapidly, this is not preferable. Therefore, the Ni content contained in the Cu—Ni—Sn copper-based sintered alloy of the present invention is determined to be 10 to 40%.

(b)Sn
Sn成分には、CuおよびNiと素地の固溶体を形成して、軸受の強度を向上させ、もって軸受の耐摩耗性向上に寄与する作用があるが、その含有量が5%未満では所望の強度向上効果が得られず、一方その含有量が25%を越えると相手材であるステンレス鋼・シャフトに対する攻撃性が急激に増大し、ステンレス鋼・シャフトの摩耗が促進されるようになることから、その含有量を5〜25%と定めた。
(B) Sn
The Sn component has the effect of forming a solid solution of Cu and Ni and the base to improve the strength of the bearing, thereby contributing to the improvement of the wear resistance of the bearing. However, if the content is less than 5%, the desired strength Since the improvement effect cannot be obtained, on the other hand, if its content exceeds 25%, the aggressiveness against the stainless steel / shaft which is the counterpart material will increase rapidly, and the wear of the stainless steel / shaft will be promoted. The content was determined to be 5 to 25%.


(c)P

P成分は、焼結時に焼結性を向上させ、もって素地の強度、すなわち軸受けの強度を向上させる作用があるので必要に応じて含有させるが、Pの含有量が0.1%未満では十分な焼結性を発揮させることができないことから十分な強度が得られないので好ましくなく、一方、0.9%を越えて含有させると、粒界部の強度が急激に低下するので焼結合金の強度がかえって低下するようになるので好ましくない。したがって、P成分の含有量を0.1〜0.9%に定めた。

(C) P

P component improves the sinterability at the time of sintering, and thus has the effect of improving the strength of the substrate, that is, the strength of the bearing. Therefore, the P component is included as necessary. Insufficient sinterability cannot be obtained, so that sufficient strength cannot be obtained, which is not preferable. On the other hand, when the content exceeds 0.9%, the strength of the grain boundary portion is drastically reduced, so that the sintered alloy Since the intensity | strength of it will come to fall on the contrary, it is unpreferable. Therefore, the content of the P component is set to 0.1 to 0.9%.


(d)C
C成分は、主体が素地に分散分布する遊離黒鉛として存在し、軸受の潤滑性を向上させ、もって軸受およびステンレス鋼・シャフトの耐摩耗性向上に寄与する作用をもつので必要に応じて添加するが、その含有量が1%未満では遊離黒鉛の分散分布割合が不十分で、所望のすぐれた潤滑性を確保することができず、一方その含有量が10%を越えると、軸受の強度が急激に低下し、摩耗が急激に進行するようになることから、その含有量を1〜10%と定めた。

(D) C
C component exists as free graphite whose main component is dispersed and distributed on the base, and improves the lubricity of the bearing, thereby contributing to the improvement of the wear resistance of the bearing and stainless steel / shaft. However, if the content is less than 1%, the dispersion distribution ratio of free graphite is insufficient, and the desired excellent lubricity cannot be ensured. On the other hand, if the content exceeds 10%, the strength of the bearing is reduced. The content was set to 1 to 10% because it rapidly decreased and the wear progressed rapidly.


(e)フッ化カルシウム

フッ化カルシウムは耐焼付き性を著しく向上させる作用があるので必要に応じて添加するが、その含有量が0.3%未満では所望の効果が得られず、一方、6%を越えて含有すると、強度が低下し、さらに強度、耐摩擦摩耗性が低下するようになるので好ましくない。したがって、フッ化カルシウムの含有量を0.3〜6%に定めた。

(E) Calcium fluoride

Calcium fluoride has the effect of significantly improving the seizure resistance, so it is added as necessary. However, if its content is less than 0.3%, the desired effect cannot be obtained. , The strength is lowered, and further, the strength and the friction and wear resistance are lowered. Therefore, the content of calcium fluoride is set to 0.3 to 6%.


(f)二硫化モリブデン

二硫化モリブデンは耐焼付き性を向上させる作用があるので必要に応じて添加するが、その含有量が0.3%未満では所望の効果が得られず、一方、6%を越えて含有すると、強度が低下し、さらに強度、耐摩擦摩耗性が低下するようになるので好ましくない。したがって、フッ化カルシウムの含有量を0.3〜6%に定めた。

(F) Molybdenum disulfide

Molybdenum disulfide has the effect of improving seizure resistance, so it is added as necessary. However, if its content is less than 0.3%, the desired effect cannot be obtained, while if it exceeds 6%, The strength is lowered, and further, the strength and frictional wear resistance are lowered. Therefore, the content of calcium fluoride is set to 0.3 to 6%.

(B)Cu(4−x−y)NiSnからなる相の限定理由
前記Cu(4−x−y)NiSnからなる相においてxおよびyをそれぞれx:1.7〜2.3、y:0.2〜1.3と定めたのは、通常よりも高い温度:900〜1080℃で焼結し、通常よりも緩やかに冷却することにより素地中に高硬度のCuNiSn相が主として生成するが、すべて完全なCuNiSn相が生成することは少なく、Cu(4−x−y)NiSnとすると、x:1.7〜2.3、y:0.2〜1.3の範囲内にある相となることがあり、かかるxおよびyを有する相であれば耐摩擦摩耗性が向上するからである。
(B) Cu (4-x -y) Ni x Sn reasons for limiting said y consisting phase Cu (4-x-y) Ni x Sn in y of phase x and y, respectively x: 1.7-2 .3, y: 0.2 to 1.3 was determined by sintering at a higher temperature than normal: 900 to 1080 ° C., and by cooling more slowly than usual, CuNi 2 having high hardness in the substrate. The Sn phase is mainly produced, but the complete CuNi 2 Sn phase is rarely produced. When Cu (4-xy) Ni x Sn y is assumed, x: 1.7 to 2.3, y: 0 This is because the phase may be in the range of 2 to 1.3, and the friction and wear resistance of the phase having x and y is improved.

前記(1)〜17記載のこの発明の耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金は、各種電気部品および機械部品の軸受材、特に含油軸受材として一層すぐれた耐摩擦摩耗性を発揮し、特に回転数の多いシャフトの軸受材として使用すると長寿命の軸受が得られるので有効である。   The Cu—Ni—Sn-based copper-based sintered alloy having excellent frictional wear resistance according to the present invention described in the above (1) to 17 is excellent in resistance to bearing materials for various electric parts and mechanical parts, particularly oil-impregnated bearing materials. It is effective when it is used as a bearing material for a shaft that exhibits friction and wear properties and that has a particularly high rotational speed because a long-life bearing can be obtained.

この発明の耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金を実施例により具体的に説明する。原料粉末として、
平均粒径:150μm以下でNi:15〜42.5質量%を含有し、残部がCuおよび不可避不純物からなる成分組成のアトマイズCu−Ni粉末、
平均粒径:150μm以下でNi:25〜60%、Sn:5〜60%を含有し、残部:Cuおよび不可避不純物からなる成分組成を有するCu−Ni−Sn合金粉末、
平均粒径:20μmのアトマイズSn粉末、
平均粒径:150μm以下のCu−P合金(Cu−8.4%P共晶合金)粉末、平均粒径:20μmの黒鉛粉末、平均粒径:60μmのCaF粉末、
平均粒径:150μm以下のMoS粉末を用意した。
The Cu—Ni—Sn based copper-based sintered alloy having excellent frictional wear resistance according to the present invention will be specifically described with reference to examples. As raw material powder,
Average particle size: 150 μm or less, Ni: 15 to 42.5% by mass, the balance of which is an atomized Cu—Ni powder composed of Cu and inevitable impurities,
Cu—Ni—Sn alloy powder having an average particle size of 150 μm or less, Ni: 25 to 60%, Sn: 5 to 60%, and the balance: Cu and an inevitable impurity component composition,
Average particle size: 20 μm atomized Sn powder,
Average particle size: Cu-P alloy (Cu-8.4% P eutectic alloy) powder of 150 μm or less, Average particle size: 20 μm graphite powder, Average particle size: 60 μm CaF 2 powder,
MoS 2 powder having an average particle size of 150 μm or less was prepared.


先に用意したこれら原料粉末を表1〜2に示される最終成分組成となるように配合し、ステアリン酸を1%加えてV型混合機で20分間混合した後、プレス成形して圧粉体を作製し、この圧粉体をアンモニア分解ガス雰囲気中、温度:900〜1080℃の範囲内の所定の温度で焼結することによりいずれも外径:18mm×内径:8mm×高さ:8mmの寸法を有し、表1〜2に示される成分組成および気孔率を有する本発明Cu−Ni−Sn系銅基焼結合金1〜16、比較Cu−Ni−Sn系銅基焼結合金1〜8および従来Cu−Ni−Sn系銅基焼結合金1〜3からなるリング状試験片を作製した。
得られた上記の本発明Cu−Ni−Sn系銅基焼結合金1〜16からなるリング状試験片の内でも代表的なものをEPMAにより観察し、その観察して写生した組織を図1〜5に示した。図1は本発明Cu−Ni−Sn系銅基焼結合金1の組織の写生図であり、図2は本発明Cu−Ni−Sn系銅基焼結合金3の組織の写生図であり、図3は本発明Cu−Ni−Sn系銅基焼結合金4の組織の写生図であり、図4は本発明Cu−Ni−Sn系銅基焼結合金8の写生図であり、さらに図5は本発明Cu−Ni−Sn系銅基焼結合金16の写生図である。

These raw material powders prepared in advance are blended so as to have the final component composition shown in Tables 1 and 2, 1% of stearic acid is added and mixed for 20 minutes with a V-type mixer, then pressed and compacted. And sintering the green compact in an ammonia decomposition gas atmosphere at a predetermined temperature in the range of 900 to 1080 ° C., the outer diameter: 18 mm × inner diameter: 8 mm × height: 8 mm The present invention Cu-Ni-Sn-based copper-based sintered alloys 1-16 having comparative dimensions and porosity shown in Tables 1-2, Comparative Cu-Ni-Sn-based copper-based sintered alloys 1-16 8 and conventional Cu-Ni-Sn copper-based sintered alloys 1 to 3 were produced.
Among the obtained ring-shaped test pieces made of the above-described Cu-Ni-Sn copper-based sintered alloys 1 to 16 of the present invention, typical ones were observed with EPMA, and the observed and copied structures were shown in FIG. -5. FIG. 1 is a copy of the structure of the Cu—Ni—Sn copper-based sintered alloy 1 of the present invention, and FIG. 2 is a copy of the structure of the Cu—Ni—Sn copper-based sintered alloy 3 of the present invention. FIG. 3 is a copy of the structure of the Cu—Ni—Sn copper-based sintered alloy 4 of the present invention, and FIG. 4 is a copy of the Cu—Ni—Sn copper-based sintered alloy 8 of the present invention. 5 is a transcript of the Cu—Ni—Sn copper-based sintered alloy 16 of the present invention.

得られた上記の本発明Cu−Ni−Sn系銅基焼結合金1〜16、比較Cu−Ni−Sn系銅基焼結合金1〜8および従来Cu−Ni−Sn系銅基焼結合金1〜3からなるリング状試験片に合成油を含浸せしめ、この合成油を含浸せしめた本発明Cu−Ni−Sn系銅基焼結合金1〜16、比較Cu−Ni−Sn系銅基焼結合金1〜8および従来Cu−Ni−Sn系銅基焼結合金1〜3からなるリング状試験片を用いて下記の試験を行った。
圧壊試験:
合成油を含浸せしめた本発明Cu−Ni−Sn系銅基焼結合金1〜16、比較Cu−Ni−Sn系銅基焼結合金1〜8および従来Cu−Ni−Sn系銅基焼結合金1〜3からなるリング状試験片を120℃に加熱制御し、この加熱制御されたリング状試験片に半径方向から荷重をかけ、リング状試験片が破壊したときの圧壊荷重を測定し、その結果を表1〜2に示すことにより強度及び靭性を評価した。
The obtained Cu-Ni-Sn-based copper-based sintered alloys 1-16 of the present invention, comparative Cu-Ni-Sn-based copper-based sintered alloys 1-8, and conventional Cu-Ni-Sn-based copper-based sintered alloys 1 to 3 of the present invention were impregnated with a synthetic oil into a ring-shaped test piece consisting of 1 to 3, and the inventive Cu-Ni-Sn-based copper-based sintered alloys 1 to 16 were impregnated with this synthetic oil. The following test was performed using the ring-shaped test piece which consists of the gold | metal | money 1-8 and the conventional Cu-Ni-Sn type copper base sintered alloys 1-3.
Crush test:
Cu-Ni-Sn copper-based sintered alloys 1-16 of the present invention impregnated with synthetic oil, comparative Cu-Ni-Sn copper-based sintered alloys 1-8, and conventional Cu-Ni-Sn copper-based sintered bonds A ring-shaped test piece made of gold 1 to 3 is heated to 120 ° C., a load is applied to the heat-controlled ring-shaped test piece from the radial direction, and the crushing load when the ring-shaped test piece breaks is measured, The strength and toughness were evaluated by showing the results in Tables 1-2.

耐摩耗性試験:
合成油を含浸せしめた本発明Cu−Ni−Sn系銅基焼結合金1〜16、比較Cu−Ni−Sn系銅基焼結合金1〜8および従来Cu−Ni−Sn系銅基焼結合金1〜3からなるリング状試験片にSUS304の6S仕上げのシャフトを挿入し、本発明Cu−Ni−Sn系銅基焼結合金1〜16、比較Cu−Ni−Sn系銅基焼結合金1〜8および従来Cu−Ni−Sn系銅基焼結合金1〜3からなるリング状試験片の半径方向(シャフトの軸方向に対して直角方向)に荷重:0.2MPaを前記リング状試験片の外側からかけながら前記リング状試験片を120℃になるように加熱制御し、前記シャフトを50m/minで30分間回転させる試験を実施し、試験後の試験片の内径の最大摩耗深さを測定し、その結果を表1〜2に示すことにより強度、耐摩擦摩耗性を評価した。
Abrasion resistance test:
Cu-Ni-Sn copper-based sintered alloys 1-16 of the present invention impregnated with synthetic oil, comparative Cu-Ni-Sn copper-based sintered alloys 1-8, and conventional Cu-Ni-Sn copper-based sintered bonds Insert a SUS304 6S-finished shaft into a ring-shaped test piece made of gold 1-3, and the present invention Cu-Ni-Sn copper-based sintered alloy 1-16, comparative Cu-Ni-Sn copper-based sintered alloy 1 to 8 and a ring-shaped test piece made of a conventional Cu—Ni—Sn based copper-based sintered alloy 1 to 3 in the radial direction (perpendicular to the axial direction of the shaft) with a load of 0.2 MPa. The ring-shaped test piece is heated and controlled to reach 120 ° C. while being applied from the outside of the piece, and a test is performed in which the shaft is rotated at 50 m / min for 30 minutes, and the maximum wear depth of the inner diameter of the test piece after the test is performed. And the results are shown in Tables 1-2 It was evaluated more strength, the abrasion wear resistance.

耐焼付き性試験:

合成油を含浸せしめた本発明Cu−Ni−Sn系銅基焼結合金1〜16、比較Cu−Ni−Sn系銅基焼結合金1〜8および従来Cu−Ni−Sn系銅基焼結合金1〜3からなるリング状試験片にSUS304の6S仕上げのシャフトを挿入し、本発明Cu−Ni−Sn系銅基焼結合金1〜16、比較Cu−Ni−Sn系銅基焼結合金1〜8および従来Cu−Ni−Sn系銅基焼結合金1〜3からなるリング状試験片を温度:120℃に保持し、リング状試験片の半径方向(シャフトの軸方向に対して直角方向)に荷重をかけながら前記シャフトを50m/minで30分間回転させ、前記荷重を段階的に増加させ、焼付きが発生したときの荷重を焼付き荷重として測定し、その結果を表1〜2に示すことにより耐焼付き性を評価した。
Seizure resistance test:

Cu-Ni-Sn copper-based sintered alloys 1-16 of the present invention impregnated with synthetic oil, comparative Cu-Ni-Sn copper-based sintered alloys 1-8, and conventional Cu-Ni-Sn copper-based sintered bonds Insert a SUS304 6S-finished shaft into a ring-shaped test piece made of gold 1-3, and the present invention Cu-Ni-Sn copper-based sintered alloy 1-16, comparative Cu-Ni-Sn copper-based sintered alloy A ring-shaped test piece consisting of 1 to 8 and a conventional Cu—Ni—Sn-based copper-based sintered alloy 1 to 3 is held at a temperature of 120 ° C. The shaft is rotated at 50 m / min for 30 minutes while applying a load in the direction), the load is increased stepwise, and the load when seizure occurs is measured as a seizure load. The seizure resistance was evaluated by showing in 2.

Figure 2008007796
Figure 2008007796

Figure 2008007796
Figure 2008007796

表1〜2に示される結果から、本発明Cu−Ni−Sn系銅基焼結合金1〜16からなるリング状試験片はいずれも従来Cu−Ni−Sn系銅基焼結合金1〜3からなるリング状試験片に比べて最大摩耗深さが小さいことから優れた耐摩擦摩耗性を有することが分かる。しかし、この発明の範囲から外れた成分組成を有する比較Cu−Ni−Sn系銅基焼結合金1〜8からなるリング状試験片は高強度、耐摩擦摩耗性、耐焼付き性のうちの少なくともいずれかの特性が劣ることが分かる。
From the results shown in Tables 1-2, all of the ring-shaped test pieces made of the Cu-Ni-Sn-based copper-based sintered alloys 1-16 of the present invention are conventionally Cu-Ni-Sn-based copper-based sintered alloys 1-3. It can be seen that the frictional wear resistance is excellent because the maximum wear depth is smaller than that of the ring-shaped test piece. However, the ring-shaped test piece comprising the comparative Cu—Ni—Sn based copper-based sintered alloys 1 to 8 having a component composition outside the scope of the present invention has at least one of high strength, friction wear resistance, and seizure resistance. It turns out that either characteristic is inferior.

この発明の耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金の組織の写生図である。It is a copy of the structure | tissue of the Cu-Ni-Sn type | system | group copper base sintered alloy excellent in the friction abrasion resistance of this invention. この発明の耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金の組織の写生図である。It is a copy of the structure | tissue of the Cu-Ni-Sn type | system | group copper base sintered alloy excellent in the friction abrasion resistance of this invention. この発明の耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金の組織の写生図である。It is a copy of the structure | tissue of the Cu-Ni-Sn type | system | group copper base sintered alloy excellent in the friction abrasion resistance of this invention. この発明の耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金の組織の写生図である。It is a copy of the structure | tissue of the Cu-Ni-Sn type | system | group copper base sintered alloy excellent in the friction abrasion resistance of this invention. この発明の耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金の組織の写生図である。It is a copy of the structure | tissue of the Cu-Ni-Sn type | system | group copper base sintered alloy excellent in the friction abrasion resistance of this invention.

Claims (18)

Ni、SnおよびCuを含むCu−Ni−Sn系銅基焼結合金の素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。
Cu (4-xy) Ni x Sn y (however, x: 1.7 to 2.3, y: 0 ) in the base of the Cu—Ni—Sn based copper-based sintered alloy containing Ni, Sn and Cu A Cu—Ni—Sn based copper-based sintered alloy having excellent frictional wear resistance, characterized in that it has a structure in which phases of component compositions consisting of .2 to 1.3) are dispersed.
質量%で、Ni:10〜40%、Sn:5〜25%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。
In mass%, Ni: 10 to 40%, Sn: 5 to 25%, balance: component composition consisting of Cu and inevitable impurities, and Cu (4-xy) Ni x Sn y in the substrate (however, , X: 1.7 to 2.3, y: 0.2 to 1.3) having a structure in which the phase of the component composition is dispersed, Cu—Ni excellent in frictional wear resistance -Sn based copper-based sintered alloy.
質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相およびCu(4−z)(ただし、z:0.7〜1.3)からなる成分組成の相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。
In mass%, Ni: 10 to 40%, Sn: 5 to 25%, P: 0.1 to 0.9%, balance: component composition consisting of Cu and inevitable impurities, and Cu (4 -Xy ) Ni x Sn y (where x: 1.7 to 2.3, y: 0.2 to 1.3) and a phase of the component composition and Cu (4-z) P z (where A Cu—Ni—Sn-based copper-based sintered alloy having excellent frictional wear resistance, characterized by having a structure in which phases having a component composition of z: 0.7 to 1.3) are dispersed.
質量%で、Ni:10〜40%、Sn:5〜25%、C:1〜10%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相および黒鉛相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。
In mass%, Ni: 10 to 40%, Sn: 5 to 25%, C: 1 to 10%, balance: component composition consisting of Cu and inevitable impurities, and Cu (4-xy) in the substrate ) Ni x Sn y (x: 1.7 to 2.3, y: 0.2 to 1.3) Cu-Ni-Sn-based copper-based sintered alloy with excellent friction and wear resistance.
質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、C:1〜10%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)(ただし、z:0.7〜1.3)からなる成分組成の相および黒鉛相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。
In a mass%, Ni: 10 to 40%, Sn: 5 to 25%, P: 0.1 to 0.9%, C: 1 to 10%, the balance: a component composition consisting of Cu and inevitable impurities, In addition, Cu (4-xy) Ni x Sn y (where x: 1.7 to 2.3, y: 0.2 to 1.3) is included in the substrate, Cu (4- z) Cu-Ni- having excellent frictional wear resistance, characterized by having a structure in which a phase having a component composition consisting of Pz (where z is 0.7 to 1.3) and a graphite phase are dispersed. Sn-based copper-based sintered alloy.
質量%で、Ni:10〜40%、Sn:5〜25%、フッ化カルシウム:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相およびフッ化カルシウム相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。
In mass%, Ni: 10 to 40%, Sn: 5 to 25%, Calcium fluoride: 0.3 to 6%, balance: component composition consisting of Cu and inevitable impurities, and Cu (4 -x-y) Ni x Sn y ( provided that, x: 1.7~2.3, y: 0.2~1.3 ) tissue phase and calcium fluoride phase component composition is dispersed consisting of A Cu-Ni-Sn-based copper-based sintered alloy having excellent frictional wear resistance, characterized by having
質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、フッ化カルシウム:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)(ただし、z:0.7〜1.3)からなる成分組成の相およびフッ化カルシウム相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。 In mass%, Ni: 10 to 40%, Sn: 5 to 25%, P: 0.1 to 0.9%, calcium fluoride: 0.3 to 6%, balance: Cu and unavoidable impurities A component composition phase comprising Cu (4-xy) Ni x Sn y (where x: 1.7 to 2.3, y: 0.2 to 1.3) in the substrate, For frictional wear resistance characterized by having a structure in which a phase of a component composition consisting of Cu (4-z) P z (where z is 0.7 to 1.3) and a calcium fluoride phase are dispersed. Excellent Cu-Ni-Sn based copper-based sintered alloy. 質量%で、Ni:10〜40%、Sn:5〜25%、C:1〜10%、フッ化カルシウム:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、黒鉛相およびフッ化カルシウム相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。
Ingredients by mass: Ni: 10 to 40%, Sn: 5 to 25%, C: 1 to 10%, calcium fluoride: 0.3 to 6%, the balance: component composition consisting of Cu and inevitable impurities, In addition, in the substrate, a component phase composed of Cu (4-xy) Ni x Sn y (x: 1.7 to 2.3, y: 0.2 to 1.3), a graphite phase, and a fluorine phase. A Cu-Ni-Sn-based copper-based sintered alloy excellent in frictional wear resistance, characterized by having a structure in which a calcium hydroxide phase is dispersed.
質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、C:1〜10%、フッ化カルシウム:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)(ただし、z:0.7〜1.3)からなる成分組成の相、黒鉛相およびフッ化カルシウム相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。
In mass%, Ni: 10-40%, Sn: 5-25%, P: 0.1-0.9%, C: 1-10%, calcium fluoride: 0.3-6%, Remainder: component composition consisting of Cu and inevitable impurities, and Cu (4-xy) Ni x Sn y in the substrate (x: 1.7 to 2.3, y: 0.2 to 1.3) A component composition phase consisting of Cu (4-z) P z (where z is 0.7 to 1.3), a structure in which a graphite phase and a calcium fluoride phase are dispersed. A Cu—Ni—Sn based copper-based sintered alloy having excellent frictional wear resistance.
質量%で、Ni:10〜40%、Sn:5〜25%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相および二硫化モリブデン相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。
In mass%, Ni: 10 to 40%, Sn: 5 to 25%, Molybdenum disulfide: 0.3 to 6%, the balance: component composition consisting of Cu and inevitable impurities, and Cu (4 -x-y) Ni x Sn y ( provided that, x: 1.7~2.3, y: 0.2~1.3 ) tissue phase and molybdenum disulfide phase component composition is dispersed consisting of A Cu-Ni-Sn-based copper-based sintered alloy having excellent frictional wear resistance, characterized by having
質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)(ただし、z:0.7〜1.3)からなる成分組成の相および二硫化モリブデン相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。
In mass%, Ni: 10 to 40%, Sn: 5 to 25%, P: 0.1 to 0.9%, molybdenum disulfide: 0.3 to 6%, balance: Cu and unavoidable impurities A component composition phase comprising Cu (4-xy) Ni x Sn y (where x: 1.7 to 2.3, y: 0.2 to 1.3) in the substrate, A frictional wear resistance characterized by having a structure in which a component composition phase composed of Cu (4-z) P z (z: 0.7 to 1.3) and a molybdenum disulfide phase are dispersed. Excellent Cu-Ni-Sn based copper-based sintered alloy.
質量%で、Ni:10〜40%、Sn:5〜25%、C:1〜10%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、黒鉛相および二硫化モリブデン相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。 In a mass%, Ni: 10 to 40%, Sn: 5 to 25%, C: 1 to 10%, molybdenum disulfide: 0.3 to 6%, the balance: a component composition consisting of Cu and inevitable impurities, In addition, a component phase composed of Cu (4-xy) Ni x Sn y (where x: 1.7 to 2.3, y: 0.2 to 1.3), graphite phase, and two A Cu—Ni—Sn based copper-based sintered alloy having excellent frictional wear resistance, characterized by having a structure in which a molybdenum sulfide phase is dispersed. 質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、C:1〜10%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)(ただし、z:0.7〜1.3)からなる成分組成の相、黒鉛相および二硫化モリブデン相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。 In mass%, Ni: 10-40%, Sn: 5-25%, P: 0.1-0.9%, C: 1-10%, molybdenum disulfide: 0.3-6%, Remainder: component composition consisting of Cu and inevitable impurities, and Cu (4-xy) Ni x Sn y in the substrate (x: 1.7 to 2.3, y: 0.2 to 1.3) A component composition phase consisting of Cu (4-z) P z (where z: 0.7 to 1.3), a structure in which a graphite phase and a molybdenum disulfide phase are dispersed. A Cu—Ni—Sn based copper-based sintered alloy having excellent frictional wear resistance. 質量%で、Ni:10〜40%、Sn:5〜25%、フッ化カルシウム:0.3〜6%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、フッ化カルシウム相および二硫化モリブデン相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。 In mass%, Ni: 10 to 40%, Sn: 5 to 25%, Calcium fluoride: 0.3 to 6%, Molybdenum disulfide: 0.3 to 6%, balance: Cu and unavoidable impurities A component composition phase comprising Cu (4-xy) Ni x Sn y (where x: 1.7 to 2.3, y: 0.2 to 1.3) in the substrate, A Cu-Ni-Sn-based copper-based sintered alloy having excellent frictional wear resistance, characterized by having a structure in which a calcium fluoride phase and a molybdenum disulfide phase are dispersed. 質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、フッ化カルシウム:0.3〜6%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)(ただし、z:0.7〜1.3)からなる成分組成の相、フッ化カルシウム相および二硫化モリブデン相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。 In mass%, Ni: 10 to 40%, Sn: 5 to 25%, P: 0.1 to 0.9%, calcium fluoride: 0.3 to 6%, molybdenum disulfide: 0.3 to 6% And the balance: component composition consisting of Cu and inevitable impurities, and Cu (4-xy) Ni x Sn y in the substrate (x: 1.7 to 2.3, y: 0.2 to 1.3) component phase, Cu (4-z) P z (where z: 0.7 to 1.3), calcium fluoride phase and molybdenum disulfide phase are dispersed. A Cu—Ni—Sn-based copper-based sintered alloy having excellent frictional wear resistance, characterized by having a textured structure. 質量%で、Ni:10〜40%、Sn:5〜25%、C:1〜10%、フッ化カルシウム:0.3〜6%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、黒鉛相、フッ化カルシウム相および二硫化モリブデン相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。
In mass%, Ni: 10-40%, Sn: 5-25%, C: 1-10%, calcium fluoride: 0.3-6%, molybdenum disulfide: 0.3-6%, Remainder: component composition consisting of Cu and inevitable impurities, and Cu (4-xy) Ni x Sn y in the substrate (x: 1.7 to 2.3, y: 0.2 to 1.3) Cu-Ni-Sn based copper-based sintered alloy having excellent frictional wear resistance, characterized in that it has a structure in which a phase of a component composition comprising, a graphite phase, a calcium fluoride phase, and a molybdenum disulfide phase is dispersed .
質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、C:1〜10%、フッ化カルシウム:0.3〜6%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NiSn(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)(ただし、z:0.7〜1.3)からなる成分組成の相、黒鉛相、フッ化カルシウム相および二硫化モリブデン相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。 In mass%, Ni: 10 to 40%, Sn: 5 to 25%, P: 0.1 to 0.9%, C: 1 to 10%, calcium fluoride: 0.3 to 6%, molybdenum disulfide : 0.3 to 6%, balance: component composition consisting of Cu and inevitable impurities, and Cu (4-xy) Ni x Sn y in the substrate (x: 1.7 to 2.3) , Y: 0.2 to 1.3), a component composition phase consisting of Cu (4-z) P z (where z: 0.7 to 1.3), a graphite phase, A Cu-Ni-Sn-based copper-based sintered alloy excellent in frictional wear resistance, characterized by having a structure in which a calcium fluoride phase and a molybdenum disulfide phase are dispersed. 請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16または17記載の耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金からなる軸受材。 Claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17 Cu-Ni-Sn system excellent in frictional wear resistance Bearing material made of copper-based sintered alloy.
JP2006176255A 2006-06-27 2006-06-27 Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance and bearing material made of the alloy Active JP5371182B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006176255A JP5371182B2 (en) 2006-06-27 2006-06-27 Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance and bearing material made of the alloy
CNA2007800314685A CN101517105A (en) 2006-06-27 2007-06-27 Cu-Ni-Sn copper base sintered alloy excellent in wear resistance and bearing member made of the alloy
US12/306,524 US20090311129A1 (en) 2006-06-27 2007-06-27 Abrasion resistant sintered copper base cu-ni-sn alloy and bearing made from the same
DE112007001514.4T DE112007001514B4 (en) 2006-06-27 2007-06-27 Abrasion-resistant Cu-Ni-Sn copper-based sintered alloy and ball bearing made therefrom
PCT/JP2007/062841 WO2008001789A1 (en) 2006-06-27 2007-06-27 Cu-Ni-Sn COPPER BASE SINTERED ALLOY EXCELLENT IN WEAR RESISTANCE AND BEARING MEMBER MADE OF THE ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006176255A JP5371182B2 (en) 2006-06-27 2006-06-27 Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance and bearing material made of the alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013035293A Division JP5496380B2 (en) 2013-02-26 2013-02-26 Cu-Ni-Sn-based copper-based sintered alloy having excellent friction and wear resistance, method for producing the same, and bearing material comprising the alloy

Publications (2)

Publication Number Publication Date
JP2008007796A true JP2008007796A (en) 2008-01-17
JP5371182B2 JP5371182B2 (en) 2013-12-18

Family

ID=38845553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006176255A Active JP5371182B2 (en) 2006-06-27 2006-06-27 Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance and bearing material made of the alloy

Country Status (5)

Country Link
US (1) US20090311129A1 (en)
JP (1) JP5371182B2 (en)
CN (1) CN101517105A (en)
DE (1) DE112007001514B4 (en)
WO (1) WO2008001789A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024941A2 (en) * 2009-08-31 2011-03-03 株式会社ダイヤメット Copper-based sintered sliding member
WO2012063785A1 (en) * 2010-11-10 2012-05-18 株式会社ダイヤメット Sintered bearing for motor-powered fuel injection pumps
JP2013023707A (en) * 2011-07-18 2013-02-04 Fukuda Metal Foil & Powder Co Ltd Mixed powder for powder metallurgy
WO2014061608A1 (en) * 2012-10-15 2014-04-24 日立建機株式会社 Hydraulic rotary machine
JP2014211227A (en) * 2013-04-22 2014-11-13 日立化成株式会社 Oil-impregnated sintered bearing and method of manufacturing the same
JP2016056453A (en) * 2010-11-08 2016-04-21 株式会社ダイヤメット METHOD MANUFACTURING Cu-BASED OIL-IMPREGNATED SINTERED BEARING
WO2019004384A1 (en) * 2017-06-29 2019-01-03 株式会社ダイヤメット Sintered bearing for motor-type fuel pump and production method therefor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2487269A1 (en) * 2011-02-09 2012-08-15 Kugler Bimetal SA Method for preparing an antifriction alloy
US20150064045A1 (en) 2012-03-13 2015-03-05 Ntn Corporation Sintered bearing and manufacturing method for same
CN104060146A (en) * 2013-03-21 2014-09-24 瑞安市华驰机车部件有限公司 Powder alloy brake pad and production method
WO2015025576A1 (en) * 2013-08-20 2015-02-26 日立オートモティブシステムズ株式会社 Electric air flow control device for internal combustion engines
US9631157B2 (en) * 2013-10-18 2017-04-25 Weatherford Technology Holdings, Llc Cu—Ni—Sn alloy overlay for bearing surfaces on oilfield equipment
CN103757464A (en) * 2014-01-02 2014-04-30 江苏大学 Copper-based self-lubricating composite material and preparation method thereof
JP6440297B2 (en) * 2014-09-04 2018-12-19 株式会社ダイヤメット Cu-based sintered bearing
JP6468766B2 (en) * 2014-09-11 2019-02-13 株式会社ダイヤメット Sintered sliding material with excellent corrosion resistance, heat resistance and wear resistance, and method for producing the same
CN108883472B (en) * 2016-03-04 2020-08-18 大冶美有限公司 Cu-based sintered sliding material and method for producing same
JP6817094B2 (en) * 2016-07-29 2021-01-20 株式会社ダイヤメット Iron-copper-based sintered oil-impregnated bearing and its manufacturing method
CN106544542B (en) * 2016-11-10 2018-10-02 合肥工业大学 A kind of unleaded Cu-based sliding bearing material and preparation method thereof
CN108425085B (en) * 2018-03-27 2020-12-01 矿冶科技集团有限公司 Composite CuNiIn powder and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156240A (en) * 1985-12-19 1987-07-11 イーエムエー コーポレーション Powder metallurgical production of copper-nickel-tin spinodal alloy
JPH02125829A (en) * 1988-08-23 1990-05-14 Komatsu Ltd Bronze-type sintering material
JPH08253826A (en) * 1994-10-19 1996-10-01 Sumitomo Electric Ind Ltd Sintered friction material, composite copper alloy powder used therefor and their production
JPH11256206A (en) * 1998-03-06 1999-09-21 Mabuchi Motor Co Ltd Small-sized motor and manufacture of sintered alloy-made oil impregnated bearing thereof
JP2006063398A (en) * 2004-08-27 2006-03-09 Mitsubishi Materials Corp BEARING MADE OF SINTERED Cu ALLOY FOR RECIRCULATION EXHAUST GAS FLOW RATE CONTROL VALVE OF EGR TYPE INTERNAL COMBUSTION ENGINE EXHIBITING HIGH STRENGTH AND EXHIBITING EXCELLENT WEAR RESISTANCE IN HIGH TEMPERATURE ENVIRONMENT

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043903B2 (en) * 1979-06-14 1985-10-01 三菱電機株式会社 Strengthening method of Cu-Ni-Sn alloy
JPS62192549A (en) * 1986-02-19 1987-08-24 Inoue Japax Res Inc Copper alloy for electric conductor
JPH05195117A (en) * 1992-01-17 1993-08-03 Toyota Motor Corp Cu-based sintered alloy
GB2281078B (en) * 1993-08-16 1997-08-13 Smith International Rock bit bearing material
JP2001241445A (en) * 2000-02-28 2001-09-07 Daido Metal Co Ltd Copper based sliding material, its manufacturing method, and slide bearing
JP3932274B2 (en) * 2002-08-06 2007-06-20 三菱マテリアルPmg株式会社 Sintered Cu alloy bearing for recirculation exhaust gas flow control valve of EGR type internal combustion engine showing excellent wear resistance under high temperature environment
JP4385618B2 (en) * 2002-08-28 2009-12-16 オイレス工業株式会社 Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
JP4743589B2 (en) * 2004-03-31 2011-08-10 株式会社ダイヤメット Inner rotor and outer rotor of internal gear pump
JP2006176255A (en) 2004-12-21 2006-07-06 Murata Mach Ltd Conveying system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156240A (en) * 1985-12-19 1987-07-11 イーエムエー コーポレーション Powder metallurgical production of copper-nickel-tin spinodal alloy
JPH02125829A (en) * 1988-08-23 1990-05-14 Komatsu Ltd Bronze-type sintering material
JPH08253826A (en) * 1994-10-19 1996-10-01 Sumitomo Electric Ind Ltd Sintered friction material, composite copper alloy powder used therefor and their production
JPH11256206A (en) * 1998-03-06 1999-09-21 Mabuchi Motor Co Ltd Small-sized motor and manufacture of sintered alloy-made oil impregnated bearing thereof
JP2006063398A (en) * 2004-08-27 2006-03-09 Mitsubishi Materials Corp BEARING MADE OF SINTERED Cu ALLOY FOR RECIRCULATION EXHAUST GAS FLOW RATE CONTROL VALVE OF EGR TYPE INTERNAL COMBUSTION ENGINE EXHIBITING HIGH STRENGTH AND EXHIBITING EXCELLENT WEAR RESISTANCE IN HIGH TEMPERATURE ENVIRONMENT

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052252A (en) * 2009-08-31 2011-03-17 Diamet:Kk Cu-BASED SINTERED SLIDING MEMBER
WO2011024941A3 (en) * 2009-08-31 2011-04-28 株式会社ダイヤメット Copper-based sintered sliding member
WO2011024941A2 (en) * 2009-08-31 2011-03-03 株式会社ダイヤメット Copper-based sintered sliding member
US9849511B2 (en) 2009-08-31 2017-12-26 Diamet Corporation Method of producing a Cu-based sintered sliding member
JP2016056453A (en) * 2010-11-08 2016-04-21 株式会社ダイヤメット METHOD MANUFACTURING Cu-BASED OIL-IMPREGNATED SINTERED BEARING
WO2012063785A1 (en) * 2010-11-10 2012-05-18 株式会社ダイヤメット Sintered bearing for motor-powered fuel injection pumps
US8999232B2 (en) 2010-11-10 2015-04-07 Diamet Corporation Sintered bearing for motor-powered fuel injection pumps
CN103201398A (en) * 2010-11-10 2013-07-10 大冶美有限公司 Sintered bearing for motor-powered fuel injection pumps
JP2013023707A (en) * 2011-07-18 2013-02-04 Fukuda Metal Foil & Powder Co Ltd Mixed powder for powder metallurgy
WO2014061608A1 (en) * 2012-10-15 2014-04-24 日立建機株式会社 Hydraulic rotary machine
JPWO2014061608A1 (en) * 2012-10-15 2016-09-05 日立建機株式会社 Hydraulic rotating machine
JP2014211227A (en) * 2013-04-22 2014-11-13 日立化成株式会社 Oil-impregnated sintered bearing and method of manufacturing the same
WO2019004384A1 (en) * 2017-06-29 2019-01-03 株式会社ダイヤメット Sintered bearing for motor-type fuel pump and production method therefor
US11441608B2 (en) 2017-06-29 2022-09-13 Diamet Corporation Sintered bearing for motor-type fuel pump and production method therefor

Also Published As

Publication number Publication date
US20090311129A1 (en) 2009-12-17
JP5371182B2 (en) 2013-12-18
DE112007001514T8 (en) 2010-04-22
DE112007001514T5 (en) 2009-12-03
DE112007001514B4 (en) 2015-11-12
WO2008001789A1 (en) 2008-01-03
CN101517105A (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP5371182B2 (en) Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance and bearing material made of the alloy
JP6119830B2 (en) Method for producing Cu-based sintered oil-impregnated bearing
EP1808503B1 (en) Sintered cu alloy bearing of recirculation exhaust gas flow rate control valve, or the like, of egr internal combustion engine having high strength and exhibiting excellent abrasion resistance in high-temperature environment
JP5684977B2 (en) Cu-based sintered sliding member
JP5496380B2 (en) Cu-Ni-Sn-based copper-based sintered alloy having excellent friction and wear resistance, method for producing the same, and bearing material comprising the alloy
EP2918693B1 (en) Sintered alloy superior in wear resistance
JP6052336B2 (en) Manufacturing method of sintered bearing for motor type fuel pump excellent in corrosion resistance, wear resistance and conformability
JP5337884B2 (en) Sintered sliding member
JP5386585B2 (en) Sintered sliding material and manufacturing method thereof
JP2009079136A (en) Copper-based, oil-impregnated and sintered sliding member
JP3932274B2 (en) Sintered Cu alloy bearing for recirculation exhaust gas flow control valve of EGR type internal combustion engine showing excellent wear resistance under high temperature environment
KR101717347B1 (en) Copper based sintered alloy with wear resistance
JP2008007795A (en) Cu-Ni-Sn SERIES COPPER BASED SINTERED ALLOY FOR BEARING HAVING EXCELLENT CORROSION RESISTANCE, FRICTION-WEAR RESISTANCE AND SEIZURE RESISTANCE
WO2015037668A1 (en) Sintered bearing for an egr valve and manufacturing method thereof
JP2007270254A (en) Bearing superior in strength, friction and abrasion resistance and seizure resistance for starter of four-wheel vehicle
JP2008007794A (en) BEARING MADE OF Cu-Ni-Sn SERIES COPPER BASED SINTERED ALLOY FOR ELECTRONIC CONTROL TYPE THROTTLE
JP2018146112A (en) Sintered bearing for supercharger
JP5424121B2 (en) Sliding material
JP2697171B2 (en) Copper-based sintered alloy with excellent wear resistance at high temperatures
JP2006249448A (en) Valve seat made of sintered alloy having wear resistance, strength and excellent machinability
WO2020054671A1 (en) Copper-based sintered alloy and production method therefor
JPH0364426A (en) Sintered copper alloy for heavy-load sliding
JP2005179692A (en) Copper alloy sintered sliding material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Ref document number: 5371182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250