JP5386585B2 - Sintered sliding material and manufacturing method thereof - Google Patents

Sintered sliding material and manufacturing method thereof Download PDF

Info

Publication number
JP5386585B2
JP5386585B2 JP2011519808A JP2011519808A JP5386585B2 JP 5386585 B2 JP5386585 B2 JP 5386585B2 JP 2011519808 A JP2011519808 A JP 2011519808A JP 2011519808 A JP2011519808 A JP 2011519808A JP 5386585 B2 JP5386585 B2 JP 5386585B2
Authority
JP
Japan
Prior art keywords
sliding material
sintered sliding
sintered
solid lubricant
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011519808A
Other languages
Japanese (ja)
Other versions
JPWO2010147139A1 (en
Inventor
義成 石井
恒夫 丸山
佳樹 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamet Corp
Original Assignee
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamet Corp filed Critical Diamet Corp
Priority to JP2011519808A priority Critical patent/JP5386585B2/en
Publication of JPWO2010147139A1 publication Critical patent/JPWO2010147139A1/en
Application granted granted Critical
Publication of JP5386585B2 publication Critical patent/JP5386585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0089Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with other, not previously mentioned inorganic compounds as the main non-metallic constituent, e.g. sulfides, glass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1095Construction relative to lubrication with solids as lubricant, e.g. dry coatings, powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/52Alloys based on nickel, e.g. Inconel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/20Shaping by sintering pulverised material, e.g. powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/40Application independent of particular apparatuses related to environment, i.e. operating conditions
    • F16C2300/54Application independent of particular apparatuses related to environment, i.e. operating conditions high-temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)

Description

本発明は、耐熱、耐食及び耐摩耗性に優れた焼結摺動材料及びその製造方法に関する。   The present invention relates to a sintered sliding material excellent in heat resistance, corrosion resistance and wear resistance, and a method for producing the same.

高温の排ガスに曝される焼結摺動材料として、EGR(Exhaust Gas Recirculation:排気再循環)式内燃機関の再循環排ガス流量調整弁に使用される軸受(例えば、特許文献1を参照)がある。そして、EGR式内燃機関の再循環排ガス流量制御弁に使用される軸受としては、黒鉛製のものや、質量%でSn:7〜10%、C:5〜9%を含有する焼結Cu合金製のものが知られている。   As a sintered sliding material exposed to high-temperature exhaust gas, there is a bearing (see, for example, Patent Document 1) used for a recirculation exhaust gas flow rate adjustment valve of an EGR (Exhaust Gas Recirculation) type internal combustion engine. . And as a bearing used for the recirculation exhaust gas flow control valve of an EGR type internal combustion engine, the thing made from graphite, and the sintered Cu alloy containing Sn: 7-10% and C: 5-9% by mass% The ones made are known.

しかし、近年の内燃機関の高出力化及び低燃費化はめざましく、かつ内燃機関の軽量化及びコンパクト化に対する要求も強い。このため、上記の再循環排ガス流量制御弁は、エンジンの燃焼室の近傍に配置されるようになってきている。その結果、高出力化に伴うエンジン発熱量の増大と相俟って、再循環排ガス流量制御弁が450℃近くの高温環境下に置かれることも想定される。   However, the recent increase in output and fuel consumption of internal combustion engines is remarkable, and there is a strong demand for weight reduction and compactness of internal combustion engines. For this reason, the above-mentioned recirculation exhaust gas flow rate control valve has been arranged in the vicinity of the combustion chamber of the engine. As a result, it is assumed that the recirculated exhaust gas flow rate control valve is placed in a high temperature environment near 450 ° C. in combination with an increase in the amount of heat generated by the engine as the output increases.

このような高温環境下でも使用可能な軸受としては、質量%でNi:10〜30%、Sn:5〜12%、C:3〜10%を含有し、残りがCuと不可避不純物からなる組成であって、Cu−Ni−Sn系固溶体の素地に遊離黒鉛が分散分布した組織を有する焼結Cu合金で構成したものが特許文献2に開示されている。   As a bearing that can be used even in such a high temperature environment, the composition contains Ni: 10 to 30%, Sn: 5 to 12%, C: 3 to 10% by mass%, and the remainder consisting of Cu and inevitable impurities. And what was comprised by the sintered Cu alloy which has the structure | tissue in which the free graphite was disperse-distributed in the base of a Cu-Ni-Sn type solid solution is indicated by patent documents 2.

特表2002−521610号公報JP-T-2002-521610 特開2004−68074号公報JP 2004-68074 A

上記特許文献2の焼結合金によれば、高温環境下でも優れた耐摩耗性を発揮せしめることができるが、さらに耐熱性及び耐食性に優れた焼結摺動材料が望まれている。   According to the sintered alloy of the above-mentioned Patent Document 2, although excellent wear resistance can be exhibited even in a high temperature environment, a sintered sliding material having further excellent heat resistance and corrosion resistance is desired.

そこで、本発明は、耐摩耗性に優れ、さらに耐熱性及び耐食性にも優れた新規の焼結摺動材料を提供することを目的とする。   Accordingly, an object of the present invention is to provide a novel sintered sliding material that is excellent in wear resistance and also excellent in heat resistance and corrosion resistance.

本発明の焼結摺動材料は、質量%で、63〜90%のNiと、2〜20%のSnと0.1〜1.2%のPのうちの少なくとも一方を含有し、残部がCu及び不可避不純物からなる。 The sintered sliding material of the present invention contains at least one of 63 to 90% Ni, 2 to 20% Sn and 0.1 to 1.2% P in mass%, with the balance being the balance. It consists of Cu and inevitable impurities.

また、質量%で、63〜90%のNiと、2〜20%のSnと0.1〜1.2%のPのうちの少なくとも一方を含有し、さらに0.3〜10%の固体潤滑剤とを含有し、残部がCu及び不可避不純物からなる。 Moreover, it contains at least one of 63 to 90% Ni, 2 to 20% Sn and 0.1 to 1.2% P in mass%, and further 0.3 to 10% solid lubrication. And the balance consists of Cu and inevitable impurities.

また、Snの濃度が焼結摺動材料全体におけるSnの平均濃度よりも高い合金相が分散して存在する。   Further, there are dispersed alloy phases in which the Sn concentration is higher than the average concentration of Sn in the entire sintered sliding material.

また、Pの濃度が焼結摺動材料全体におけるPの平均濃度よりも高い合金相が分散して存在する。   Further, alloy phases having a P concentration higher than the average concentration of P in the entire sintered sliding material are dispersed.

また、前記固体潤滑剤は、窒化ホウ素、タルク、フッ化カルシウム、黒鉛、二硫化モリブデンのいずれかである。   The solid lubricant is any of boron nitride, talc, calcium fluoride, graphite, and molybdenum disulfide.

本発明の焼結摺動材料の製造方法は、質量%で、63〜90%のNiと、2〜20%のSnと0.1〜1.2%のPのうちの少なくとも一方を含有し、残部がCu及び不可避不純物からなるように原料粉末を混合して成形した後、還元雰囲気中1100℃以下で焼結する。 The manufacturing method of the sintered sliding material of the present invention contains at least one of 63 to 90% Ni, 2 to 20% Sn and 0.1 to 1.2% P in mass%. The raw material powder is mixed and molded so that the balance is made of Cu and inevitable impurities, and then sintered at 1100 ° C. or lower in a reducing atmosphere.

また、質量%で、63〜90%のNiと、2〜20%のSnと0.1〜1.2%のPのうちの少なくとも一方を含有し、さらに0.3〜10%の固体潤滑剤とを含有し、残部がCu及び不可避不純物からなるように原料粉末を混合して成形した後、還元雰囲気中1100℃以下で焼結する。 Moreover, it contains at least one of 63 to 90% Ni, 2 to 20% Sn and 0.1 to 1.2% P in mass%, and further 0.3 to 10% solid lubrication. The raw material powder is mixed and molded so that the balance is made of Cu and inevitable impurities, and then sintered at 1100 ° C. or lower in a reducing atmosphere.

また、前記固体潤滑剤は、窒化ホウ素、タルク、フッ化カルシウム、黒鉛、二硫化モリブデンのいずれかである。   The solid lubricant is any of boron nitride, talc, calcium fluoride, graphite, and molybdenum disulfide.

本発明の焼結摺動材料は、質量%で、63〜90%のNiと、2〜20%のSnと0.1〜1.2%のPのうちの少なくとも一方を含有し、或いはさらに0.3〜10%の固体潤滑剤とを含有し、残部がCu及び不可避不純物からなることにより、耐摩耗性に優れ、さらに耐熱性及び耐食性にも優れたものとなる。 The sintered sliding material of the present invention contains at least one of 63 to 90% Ni, 2 to 20% Sn and 0.1 to 1.2% P by mass%, or further When it contains 0.3 to 10% of a solid lubricant and the balance is made of Cu and inevitable impurities, the wear resistance is excellent, and the heat resistance and corrosion resistance are also excellent.

また、Snの濃度が焼結摺動材料全体におけるSnの平均濃度よりも高い合金相は素地よりも高硬度であり、その硬い相が分散して存在することにより、耐摩耗性に優れたものとなる。   Also, the alloy phase whose Sn concentration is higher than the average concentration of Sn in the entire sintered sliding material has higher hardness than the base material, and the hard phase is dispersed and present, so that it has excellent wear resistance. It becomes.

また、Pの濃度が焼結摺動材料全体におけるPの平均濃度よりも高い合金相は素地よりも高硬度であり、その硬い相が分散して存在することにより、耐摩耗性に優れたものとなる。   In addition, the alloy phase whose P concentration is higher than the average concentration of P in the entire sintered sliding material is harder than the base, and the hard phase is dispersed and present, so that it has excellent wear resistance. It becomes.

また、前記固体潤滑剤は、窒化ホウ素、タルク、フッ化カルシウム、黒鉛、二硫化モリブデンのいずれかであることにより、潤滑性が付与され、耐摩耗性に優れたものとなる。   Further, the solid lubricant is any one of boron nitride, talc, calcium fluoride, graphite, and molybdenum disulfide, so that lubricity is imparted and wear resistance is excellent.

本発明の焼結摺動材料の製造方法は、質量%で、63〜90%のNiと、2〜20%のSnと0.1〜1.2%のPのうちの少なくとも一方を含有し、或いはさらに0.3〜10%の固体潤滑剤とを含有し、残部がCu及び不可避不純物からなるように原料粉末を混合して成形した後、還元雰囲気中1100℃以下で焼結することにより、耐摩耗性に優れ、さらに耐熱性及び耐食性にも優れた焼結摺動材料を製造することができる。 The manufacturing method of the sintered sliding material of the present invention contains at least one of 63 to 90% Ni, 2 to 20% Sn and 0.1 to 1.2% P in mass%. Or further containing 0.3 to 10% of a solid lubricant, mixing and molding the raw material powder so that the balance is made of Cu and inevitable impurities, and then sintering at 1100 ° C. or lower in a reducing atmosphere. Further, it is possible to produce a sintered sliding material that is excellent in wear resistance and also excellent in heat resistance and corrosion resistance.

また、前記固体潤滑剤は、窒化ホウ素、タルク、フッ化カルシウム、黒鉛、二硫化モリブデンのいずれかであることにより、潤滑性が付与され、耐摩耗性に優れた焼結摺動材料を製造することができる。   Further, the solid lubricant is any one of boron nitride, talc, calcium fluoride, graphite, and molybdenum disulfide, so that a lubrication is imparted and a sintered sliding material having excellent wear resistance is manufactured. be able to.

本発明の焼結摺動材料の一実施例における電子顕微鏡写真である。It is an electron micrograph in one Example of the sintering sliding material of this invention.

本発明の焼結摺動材料は、質量%で、63〜90%のNiと、2〜20%のSnと0.1〜1.2%のPのうちの少なくとも一方を含有し、或いはさらに0.3〜10%の固体潤滑剤とを含有し、残部がCu及び不可避不純物からなる。そして、この組成により、本発明の焼結摺動材料は、耐摩耗性に優れ、さらに耐熱性及び耐食性にも優れたものとなる。 The sintered sliding material of the present invention contains at least one of 63 to 90% Ni, 2 to 20% Sn and 0.1 to 1.2% P by mass%, or further It contains 0.3 to 10% of a solid lubricant, and the balance consists of Cu and inevitable impurities. And by this composition, the sintered sliding material of this invention is excellent in abrasion resistance, and also excellent in heat resistance and corrosion resistance.

また、本発明の焼結摺動材料の製造方法は、質量%で、63〜90%のNiと、2〜20%のSnと0.1〜1.2%のPのうちの少なくとも一方を含有し、或いはさらに0.3〜10%の固体潤滑剤とを含有し、残部がCu及び不可避不純物からなるように原料粉末を混合して成形した後、還元雰囲気中1100℃以下で焼結する。より詳細には、はじめに、原料粉末を、上記の含有率になるように混合する。そして、これを所要形状の金型に充填し、圧粉成形して所要の密度の成形体を得る。この成形体を還元雰囲気中で、1100℃以下で焼結して焼結合金を得る。最後に、この焼結合金を金型で、製品の寸法精度を満たすようにサイジングを行うことで、本発明の焼結摺動材料が得られる。 Moreover, the manufacturing method of the sintered sliding material of the present invention is at least one of 63 to 90% Ni, 2 to 20% Sn and 0.1 to 1.2% P in mass%. Containing or further containing 0.3 to 10% of a solid lubricant, mixing and molding the raw material powder so that the balance is made of Cu and inevitable impurities, and then sintering at 1100 ° C. or lower in a reducing atmosphere. . In more detail, first, raw material powder is mixed so that it may become said content rate. Then, this is filled in a mold having a required shape and compacted to obtain a molded body having a required density. This molded body is sintered at 1100 ° C. or lower in a reducing atmosphere to obtain a sintered alloy. Finally, the sintered sliding material of the present invention is obtained by sizing the sintered alloy with a mold so as to satisfy the dimensional accuracy of the product.

以下、本発明の焼結摺動材料の組成について、詳細に説明する。なお、以下で説明される含有量は、すべて質量%である。   Hereinafter, the composition of the sintered sliding material of the present invention will be described in detail. In addition, all content demonstrated below is the mass%.

(a)Niについて
Niは焼結摺動材料の耐熱性及び耐食性を高める効果があり、SnとPのうちの少なくとも一方と、Cuとの組み合わせで固溶体を形成して、焼結摺動材料の強度を向上させるとともに、焼結摺動材料に高温環境下での耐摩耗性を付与する。Niが63%未満では焼結摺動材料の耐熱性及び耐食性が不十分となり、90%を超えると焼結摺動材料の耐摩耗性が著しく低下するため好ましくない。したがって、Niの含有量は、63〜90%とした。
(A) About Ni Ni has the effect of increasing the heat resistance and corrosion resistance of the sintered sliding material, and forms a solid solution by combining at least one of Sn and P with Cu, and the sintered sliding material. In addition to improving the strength, the sintered sliding material is given wear resistance in a high temperature environment. If Ni is less than 63 %, the heat resistance and corrosion resistance of the sintered sliding material will be insufficient, and if it exceeds 90%, the wear resistance of the sintered sliding material will be significantly reduced. Therefore, the content of Ni is set to 63 to 90%.

(b)SnとPについて
Snは合金の融点を下げる効果があり、Ni、Cuとの組み合わせで固溶体を形成して、焼結摺動材料の強度を向上させるとともに、焼結摺動材料に耐摩耗性を付与する。Pも同様に合金の融点を下げる効果があり、Ni、Cuとの組み合わせで固溶体を形成して、焼結摺動材料の強度を向上させるとともに、焼結摺動材料に耐摩耗性を付与する。SnとPのうちの少なくとも一方を含有していればよく、Snを含有してPを含有しない場合、Snを含有せずにPを含有する場合、SnとPの両方を含有する場合のいずれにおいても、SnとPは焼結摺動材料に耐摩耗性を付与する。
(B) About Sn and P Sn has the effect of lowering the melting point of the alloy, and forms a solid solution with a combination of Ni and Cu to improve the strength of the sintered sliding material and to resist the sintered sliding material. Abrasion is imparted. P also has the effect of lowering the melting point of the alloy, and forms a solid solution in combination with Ni and Cu to improve the strength of the sintered sliding material and to impart wear resistance to the sintered sliding material. . It is only necessary to contain at least one of Sn and P. When Sn is contained and P is not contained, when Sn is not contained and P is contained, both of Sn and P are contained. In addition, Sn and P impart wear resistance to the sintered sliding material.

Snのみを含有する場合、Snが2%未満では焼結摺動材料の耐摩耗性が不十分となり、20%を超えると焼結摺動材料が摺動相手材を摩耗させてしまうため好ましくない。したがって、Snの含有量は、2〜20%とした。   When only Sn is contained, if the Sn content is less than 2%, the wear resistance of the sintered sliding material becomes insufficient, and if it exceeds 20%, the sintered sliding material will wear the sliding mating member, which is not preferable. . Therefore, the Sn content is 2 to 20%.

Pのみを含有する場合、Pが0.1%未満では焼結摺動材料の耐摩耗性が不十分となり、1.2%を超えると焼結摺動材料が摺動相手材を摩耗させてしまうため好ましくない。したがって、Pの含有量は、0.1〜1.2%とした。   When only P is contained, if the P content is less than 0.1%, the wear resistance of the sintered sliding material becomes insufficient, and if it exceeds 1.2%, the sintered sliding material wears the sliding counterpart material. Therefore, it is not preferable. Therefore, the content of P is set to 0.1 to 1.2%.

なお、SnとPの両方を含有する場合であっても、SnとPの含有量を上記の範囲とするのが望ましい。   Even when both Sn and P are contained, it is desirable that the contents of Sn and P be within the above range.

(c)合金相について
Snの含有量を2〜20%とし、1100℃以下の温度で焼結することにより、Snの濃度が焼結摺動材料全体におけるSnの平均濃度よりも高い合金相が分散して存在する焼結摺動材料が得られる。また、Pの含有量を0.1〜1.2%とし、1100℃以下の温度で焼結することにより、Pの濃度が焼結摺動材料全体におけるPの平均濃度よりも高い合金相が分散して存在する焼結摺動材料が得られる。さらに、Snの含有量を2〜20%とし、Pの含有量を0.1〜1.2%とし、1100℃以下の温度で焼結することにより、SnとPの濃度が焼結摺動材料全体におけるSnとPの平均濃度よりもそれぞれ高い合金相が分散して存在する焼結摺動材料が得られる。これらの合金相は、Sn、Pの濃度が高くない部分よりも硬度が高く、焼結摺動材料の耐摩耗性に寄与する。なお、Niが63〜90%という高い含有率であるため、Niの含有率が低い場合よりも焼結温度を高くする必要があるが、焼結温度が1100℃を超えると、Sn、Pの拡散が進み合金相が消失してしまう。このため、合金相が分散して存在する焼結摺動材料を製造する際には、焼結温度を1100℃以下にする必要がある。また、合金相を存在させるために、焼結時間は10〜20分とするのが好ましい。
(C) Alloy phase By making the Sn content 2 to 20% and sintering at a temperature of 1100 ° C. or lower, the alloy phase has a higher Sn concentration than the average Sn concentration in the entire sintered sliding material. A sintered sliding material present in a dispersed state is obtained. Further, by making the P content 0.1 to 1.2% and sintering at a temperature of 1100 ° C. or less, an alloy phase in which the concentration of P is higher than the average concentration of P in the entire sintered sliding material is obtained. A sintered sliding material present in a dispersed state is obtained. Further, the Sn content is set to 2 to 20%, the P content is set to 0.1 to 1.2%, and sintering is performed at a temperature of 1100 ° C. or less, whereby the Sn and P concentrations are sintered and slid. A sintered sliding material in which alloy phases higher than the average concentrations of Sn and P in the entire material are dispersed is obtained. These alloy phases have higher hardness than the portion where the concentration of Sn and P is not high, and contribute to the wear resistance of the sintered sliding material. In addition, since Ni is a high content of 63 to 90%, it is necessary to increase the sintering temperature as compared with the case where the content of Ni is low, but when the sintering temperature exceeds 1100 ° C., Sn and P The diffusion proceeds and the alloy phase disappears. For this reason, when manufacturing the sintered sliding material in which the alloy phase is dispersed, the sintering temperature needs to be 1100 ° C. or lower. Moreover, in order to make an alloy phase exist, it is preferable that sintering time shall be 10 to 20 minutes.

(d)固体潤滑剤について
固体潤滑剤は、焼結摺動材料に優れた潤滑性を付与し、焼結摺動材料の耐摩耗性の向上に寄与する。固体潤滑剤として、窒化ホウ素、タルク(MgSi10(OH))、フッ化カルシウム、黒鉛、二硫化モリブデンのいずれかを含有する。
(D) Solid lubricant The solid lubricant imparts excellent lubricity to the sintered sliding material and contributes to the improvement of the wear resistance of the sintered sliding material. As a solid lubricant, boron nitride, talc (Mg 3 Si 4 O 10 (OH) 2 ), calcium fluoride, graphite, or molybdenum disulfide is contained.

固体潤滑剤は、必要に応じて含有させればよいが、固体潤滑剤を含有させる場合は、固体潤滑剤が0.3%未満では効果が得られず、10%を超えると焼結摺動材料の強度と耐摩耗性が著しく低下するので好ましくない。したがって、固体潤滑剤の含有量は、0.3〜10%とした。なお、タルクは焼結後にエンスタタイト(MgSiO)となる。 The solid lubricant may be included as necessary. However, when the solid lubricant is included, the effect is not obtained when the solid lubricant is less than 0.3%, and when the solid lubricant exceeds 10%, the sintered sliding is performed. This is not preferable because the strength and abrasion resistance of the material are significantly reduced. Therefore, the content of the solid lubricant is set to 0.3 to 10%. Talc becomes enstatite (MgSiO 3 ) after sintering.

固体潤滑剤は、焼結摺動材料が使用される温度によって使い分けることが望ましい。500℃以下で焼結摺動材料が使用される場合は、窒化ホウ素、フッ化カルシウム、タルク、黒鉛、二硫化モリブデンが有効であり、500℃を超える場合は、窒化ホウ素、フッ化カルシウム、タルクが有効である。このほか、500℃以下の場合に、フッ化黒鉛、二硫化タングステン、珪酸マグネシウム鉱物粉末、500℃を超える場合に、珪酸マグネシウム鉱物粉末などを用いることができる。なお、固体潤滑剤は2種類以上を添加してもよい。   It is desirable to use a solid lubricant properly depending on the temperature at which the sintered sliding material is used. Boron nitride, calcium fluoride, talc, graphite, and molybdenum disulfide are effective when the sintered sliding material is used at 500 ° C. or lower, and boron nitride, calcium fluoride, talc is exceeded when it exceeds 500 ° C. Is effective. In addition, when it is 500 ° C. or lower, fluorinated graphite, tungsten disulfide, magnesium silicate mineral powder, and when it exceeds 500 ° C., magnesium silicate mineral powder can be used. Two or more solid lubricants may be added.

以下、本発明の焼結摺動材料の具体的な実施例について説明する。なお、本発明は、以下の実施例に限定されるものではなく、種々の変形実施が可能である。例えば、以下の実施例では、内周に摺動面を有する軸受について説明するが、これに限らず、種々の焼結摺動材材料において実施することができる。   Hereinafter, specific examples of the sintered sliding material of the present invention will be described. In addition, this invention is not limited to a following example, A various deformation | transformation implementation is possible. For example, in the following embodiments, a bearing having a sliding surface on the inner periphery will be described.

原料粉末として、粒径−100メッシュのNi−30%Cuアトマイズ粉末、Ni−45%Cuアトマイズ粉末及びNi−1%Cuアトマイズ粉末、粒径−250メッシュのSnアトマイズ粉末、粒径−200メッシュのCu−8%Pアトマイズ粉末、平均粒経75μmのBN粉末、平均粒経4μmのMoS粉末、粒経−200メッシュのタルク粉末、粒経−150メッシュの黒鉛粉末、粒経−200メッシュのCaF粉末を用意した。これらの原料粉末を表1に示した最終成分組成となるように配合し、ステアリン酸亜鉛を0.5%加えてV型混合機で20分間混合した後、プレス成形して圧粉体を製作した。この圧粉体を、天然ガスと空気を加熱した触媒に通すことで天然ガスを分解変成させて得たエンドサーミックガス(吸熱型ガス)雰囲気中で、所定の温度に設定された焼結炉内を所定の炉内通過時間条件で焼結し、続いてサイジングを行った。 As raw material powder, Ni-30% Cu atomized powder with particle size of -100 mesh, Ni-45% Cu atomized powder and Ni-1% Cu atomized powder, Sn atomized powder with particle size of -250 mesh, particle size of -200 mesh Cu-8% P atomized powder, BN powder with an average particle size of 75 μm, MoS 2 powder with an average particle size of 4 μm, talc powder with a particle size of −200 mesh, graphite powder with a particle size of −150 mesh, CaF with a particle size of −200 mesh Two powders were prepared. These raw material powders are blended so as to have the final component composition shown in Table 1, 0.5% zinc stearate is added and mixed for 20 minutes with a V-type mixer, and then pressed to produce a green compact. did. In a sintering furnace set at a predetermined temperature in an endothermic gas (endothermic gas) atmosphere obtained by decomposing and transforming natural gas by passing this green compact through a catalyst heated with natural gas and air Was sintered under predetermined furnace passage time conditions, followed by sizing.

以上の工程により、軸受として、種々の組成成分を有し、いずれも外径18mm×内径8.020±0.005mm×高さ8mmの寸法を有するリング状試験片(参考例1、実施例2〜35、比較例1〜10)を製作し、以下の試験を行った。   Through the above-described steps, a ring-shaped test piece having various composition components as a bearing and having dimensions of an outer diameter of 18 mm, an inner diameter of 8.020 ± 0.005 mm, and a height of 8 mm (Reference Example 1, Example 2). -35, Comparative Examples 1-10) were produced and tested as follows.

[耐摩耗試験]
参考例1、実施例2〜35と比較例1〜10のリング状試験片に、それぞれ10μm厚の硬質クロムメッキ処理を施した外径7.994〜8.000mmのSUS304製のステンレスシャフトを挿入した。リング状試験片の外側から、リング状試験片の半径方向(ステンレスシャフトの軸方向に対して直角方向)に向けて29Nの荷重をかけ、リング状試験片が120℃に保たれるように加熱制御し、潤滑油を使用しないドライ条件で、ステンレスシャフトをリング状試験片の中心角90°の円弧の範囲で往復させる摺動試験を実施した。25万回往復摺動試験後の軸受内径とステンレスシャフトの最大摩耗深さを測定し、耐摩耗性を評価した。また、一部の実施例のリング状試験片について、450℃に保たれるように加熱制御したほかは上記と同様にして、耐摩耗性を評価した。その結果を表1に軸受最大摩耗深さ、ステンレスシャフトの最大摩耗深さとして記載した。
[Abrasion resistance test]
A stainless steel shaft made of SUS304 having an outer diameter of 7.994 to 8.000 mm and subjected to hard chrome plating treatment with a thickness of 10 μm is inserted into each of the ring-shaped test pieces of Reference Example 1, Examples 2-35 and Comparative Examples 1-10. did. A load of 29 N is applied from the outside of the ring-shaped specimen toward the radial direction of the ring-shaped specimen (perpendicular to the axial direction of the stainless steel shaft), and heated so that the ring-shaped specimen is maintained at 120 ° C. A sliding test was performed in which the stainless steel shaft was reciprocated in the range of an arc having a central angle of 90 ° of the ring-shaped test piece under controlled dry conditions where no lubricant was used. The bearing inner diameter and the maximum wear depth of the stainless steel shaft after 250,000 reciprocating sliding tests were measured to evaluate the wear resistance. Further, the wear resistance of the ring-shaped test pieces of some examples was evaluated in the same manner as described above except that the heating was controlled to be maintained at 450 ° C. The results are shown in Table 1 as the maximum wear depth of the bearing and the maximum wear depth of the stainless steel shaft.

[塩水噴霧試験]
参考例1、実施例2〜35と比較例1〜10のリング状試験片で中性塩水噴霧試験を行い、錆の発生有無による耐食性を評価した。塩水噴霧試験方法はJIS Z 2371に準じて行い、48時間までの錆の発生を評価した。その結果を表1に塩水噴霧による腐食の有無として記載した。
[Salt spray test]
A neutral salt spray test was performed on the ring-shaped test pieces of Reference Example 1, Examples 2-35 and Comparative Examples 1-10, and corrosion resistance due to the presence or absence of rust was evaluated. The salt spray test method was performed according to JIS Z 2371, and the occurrence of rust up to 48 hours was evaluated. The results are shown in Table 1 as the presence or absence of corrosion due to salt spray.

Figure 0005386585
Figure 0005386585

表1に示すように、参考例1、実施例2〜35はいずれも、Snの濃度が焼結摺動材料全体におけるSnの平均濃度よりも高い合金相(Snリッチ相;Sn、Ni、Cuを含む)と、Pの濃度が焼結摺動材料全体におけるPの平均濃度よりも高い合金相(Pリッチ相;P、Ni、Cuを含む)のうちの少なくとも一方が分散した金属組織を有していた。なお、Snリッチ相、Pリッチ相の有無については、電子顕微鏡と電子線マイクロアナライザーを用いて分析した。   As shown in Table 1, in each of Reference Example 1 and Examples 2 to 35, the alloy phase (Sn rich phase; Sn, Ni, Cu) in which the Sn concentration is higher than the average concentration of Sn in the entire sintered sliding material. And a metal structure in which at least one of the alloy phases (P-rich phase; including P, Ni, and Cu) having a P concentration higher than the average concentration of P in the entire sintered sliding material is dispersed. Was. The presence or absence of Sn-rich phase and P-rich phase was analyzed using an electron microscope and an electron beam microanalyzer.

参考例1、実施例2〜35における軸受最大摩耗深さは0.067mm以下、ステンレスシャフトの最大摩耗深さは0.060以下であり、塩水噴霧による腐食は見られず、耐摩耗性と耐食性を備えたものとなった。また、実施例13、14、19、20、28、29、31、32では、450℃における耐摩耗性が高く、耐熱性にも優れることが確認された。   In Reference Example 1 and Examples 2-35, the maximum wear depth of the bearing is 0.067 mm or less, the maximum wear depth of the stainless steel shaft is 0.060 or less, corrosion due to salt spray is not seen, and wear resistance and corrosion resistance. It became a thing with. In Examples 13, 14, 19, 20, 28, 29, 31, and 32, it was confirmed that the abrasion resistance at 450 ° C. was high and the heat resistance was also excellent.

一方、SnリッチとPリッチ相のいずれもが存在しない比較例1〜3、Niの含有率が95%の実施例5、Snの含有量が1%の実施例6、固体潤滑剤としての窒化ホウ素の含有量が12%の比較例10では、軸受最大摩耗深さが大きくなった。また、Niの含有率が35%の比較例4では、塩水噴霧による腐食があった。Snの含有量が22%の比較例7、Pの含有量が1.5%の比較例8、9では、ステンレスシャフトの最大摩耗深さが大きくなった。   On the other hand, Comparative Examples 1 to 3 in which neither Sn-rich nor P-rich phases exist, Example 5 with a Ni content of 95%, Example 6 with a Sn content of 1%, and nitriding as a solid lubricant In Comparative Example 10 in which the boron content was 12%, the maximum bearing wear depth was increased. Further, in Comparative Example 4 where the Ni content was 35%, there was corrosion due to salt spray. In Comparative Example 7 in which the Sn content was 22% and Comparative Examples 8 and 9 in which the P content was 1.5%, the maximum wear depth of the stainless steel shaft was increased.

以上の結果より、本発明の焼結摺動材料は、耐摩耗性、耐熱性、耐食性に優れていることが確認された。   From the above results, it was confirmed that the sintered sliding material of the present invention was excellent in wear resistance, heat resistance, and corrosion resistance.

[電子線マイクロアナライザー分析]
一例として、参考例1のリング状試験片の分析結果について説明する。
[Electron beam microanalyzer analysis]
As an example, the analysis result of the ring-shaped test piece of Reference Example 1 will be described.

参考例1のリング状試験片中に存在する結晶組織について、電子線マイクロアナライザー(EPMA)を用いてSn、Cu、Niの分析を行った。分析条件は、加速電圧15kV、ビーム径φ1μmに設定し、図1の電子顕微鏡写真(COMPO像)に示すように、最小幅が20μm以上の結晶組織の中央部分について分析を行い、5つの結晶組織の測定値の平均値を求めた。その結果を表2に示す。Snの濃度が焼結摺動材料全体におけるSnの平均濃度よりも高い合金相が存在することが確認された。   The crystal structure present in the ring-shaped test piece of Reference Example 1 was analyzed for Sn, Cu, and Ni using an electron beam microanalyzer (EPMA). The analysis conditions were set at an acceleration voltage of 15 kV and a beam diameter of 1 μm, and as shown in the electron micrograph (COMPO image) in FIG. The average value of the measured values was obtained. The results are shown in Table 2. It was confirmed that there was an alloy phase in which the Sn concentration was higher than the average concentration of Sn in the entire sintered sliding material.

Figure 0005386585
Figure 0005386585

Claims (8)

質量%で、63〜90%のNiと、2〜20%のSnと0.1〜1.2%のPのうちの少なくとも一方を含有し、残部がCu及び不可避不純物からなることを特徴とする焼結摺動材料。 It contains at least one of 63 to 90% Ni, 2 to 20% Sn and 0.1 to 1.2% P, and the balance is made of Cu and inevitable impurities. Sintered sliding material. 質量%で、63〜90%のNiと、2〜20%のSnと0.1〜1.2%のPのうちの少なくとも一方を含有し、さらに0.3〜10%の固体潤滑剤とを含有し、残部がCu及び不可避不純物からなることを特徴とする焼結摺動材料。 And containing at least one of 63 to 90% Ni, 2 to 20% Sn and 0.1 to 1.2% P, and further 0.3 to 10% solid lubricant, A sintered sliding material characterized in that the balance is made of Cu and inevitable impurities. Snの濃度が焼結摺動材料全体におけるSnの平均濃度よりも高い合金相が分散して存在することを特徴とする請求項1又は2に記載の焼結摺動材料。 The sintered sliding material according to claim 1 or 2, wherein an alloy phase having a Sn concentration higher than the average concentration of Sn in the entire sintered sliding material is dispersed. Pの濃度が焼結摺動材料全体におけるPの平均濃度よりも高い合金相が分散して存在することを特徴とする請求項1又は2に記載の焼結摺動材料。 The sintered sliding material according to claim 1 or 2, wherein an alloy phase having a P concentration higher than the average concentration of P in the entire sintered sliding material is dispersed. 前記固体潤滑剤は、窒化ホウ素、タルク、フッ化カルシウム、黒鉛、二硫化モリブデンのいずれかであることを特徴とする請求項2に記載の焼結摺動材料。 The sintered sliding material according to claim 2, wherein the solid lubricant is any one of boron nitride, talc, calcium fluoride, graphite, and molybdenum disulfide. 質量%で、63〜90%のNiと、2〜20%のSnと0.1〜1.2%のPのうちの少なくとも一方を含有し、残部がCu及び不可避不純物からなるように原料粉末を混合して成形した後、還元雰囲気中1100℃以下で焼結することを特徴とする焼結摺動材料の製造方法。 Raw material powder containing at least one of 63 to 90% Ni, 2 to 20% Sn and 0.1 to 1.2% P, with the balance being Cu and inevitable impurities. A method for producing a sintered sliding material, which is formed by mixing and sintering at 1100 ° C. or lower in a reducing atmosphere. 質量%で、63〜90%のNiと、2〜20%のSnと0.1〜1.2%のPのうちの少なくとも一方を含有し、さらに0.3〜10%の固体潤滑剤とを含有し、残部がCu及び不可避不純物からなるように原料粉末を混合して成形した後、還元雰囲気中1100℃以下で焼結することを特徴とする焼結摺動材料の製造方法。 And containing at least one of 63 to 90% Ni, 2 to 20% Sn and 0.1 to 1.2% P, and further 0.3 to 10% solid lubricant, A raw material powder is mixed and molded so that the balance is made of Cu and inevitable impurities, and then sintered in a reducing atmosphere at 1100 ° C. or lower, and a method for producing a sintered sliding material is provided. 前記固体潤滑剤は、窒化ホウ素、タルク、フッ化カルシウム、黒鉛、二硫化モリブデンのいずれかであることを特徴とする請求項7に記載の焼結摺動材料の製造方法。 The method for manufacturing a sintered sliding material according to claim 7, wherein the solid lubricant is any one of boron nitride, talc, calcium fluoride, graphite, and molybdenum disulfide.
JP2011519808A 2009-06-18 2010-06-16 Sintered sliding material and manufacturing method thereof Active JP5386585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011519808A JP5386585B2 (en) 2009-06-18 2010-06-16 Sintered sliding material and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009145860 2009-06-18
JP2009145860 2009-06-18
PCT/JP2010/060188 WO2010147139A1 (en) 2009-06-18 2010-06-16 Sintered slider material and process for manufacture thereof
JP2011519808A JP5386585B2 (en) 2009-06-18 2010-06-16 Sintered sliding material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPWO2010147139A1 JPWO2010147139A1 (en) 2012-12-06
JP5386585B2 true JP5386585B2 (en) 2014-01-15

Family

ID=43356455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011519808A Active JP5386585B2 (en) 2009-06-18 2010-06-16 Sintered sliding material and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5386585B2 (en)
WO (1) WO2010147139A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10532406B2 (en) 2014-09-11 2020-01-14 Diamet Corporation Sintered sliding member having exceptional corrosion resistance, heat resistance, and wear resistance; and method for producing said member
US10745780B2 (en) 2014-09-04 2020-08-18 Diamet Corporation Cu-based sintered bearing and production method for Cu-based sintered bearing
US10941465B2 (en) 2016-03-04 2021-03-09 Diamet Corporation Cu-based sintered sliding material, and production method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9663844B2 (en) 2012-02-29 2017-05-30 Diamet Corporation Sintered alloy superior in wear resistance
JP6779600B2 (en) * 2015-07-16 2020-11-04 オイレス工業株式会社 Multi-layer sliding member
JP6940801B1 (en) * 2020-12-25 2021-09-29 千住金属工業株式会社 Sliding member, bearing, manufacturing method of sliding member, manufacturing method of bearing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314807A (en) * 2004-03-31 2005-11-10 Mitsubishi Materials Corp Inner rotor and outer rotor of internal gear pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173862A (en) * 1986-01-23 1986-08-05 Mitsui Mining & Smelting Co Ltd Metal-bonded sintered diamond
JP2009079136A (en) * 2007-09-26 2009-04-16 Oiles Ind Co Ltd Copper-based, oil-impregnated and sintered sliding member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314807A (en) * 2004-03-31 2005-11-10 Mitsubishi Materials Corp Inner rotor and outer rotor of internal gear pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10745780B2 (en) 2014-09-04 2020-08-18 Diamet Corporation Cu-based sintered bearing and production method for Cu-based sintered bearing
US10532406B2 (en) 2014-09-11 2020-01-14 Diamet Corporation Sintered sliding member having exceptional corrosion resistance, heat resistance, and wear resistance; and method for producing said member
US10941465B2 (en) 2016-03-04 2021-03-09 Diamet Corporation Cu-based sintered sliding material, and production method therefor

Also Published As

Publication number Publication date
JPWO2010147139A1 (en) 2012-12-06
WO2010147139A1 (en) 2010-12-23

Similar Documents

Publication Publication Date Title
JP6119830B2 (en) Method for producing Cu-based sintered oil-impregnated bearing
JP5371182B2 (en) Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance and bearing material made of the alloy
JP4584158B2 (en) Valve seat material made of iron-based sintered alloy for internal combustion engines
JP5684977B2 (en) Cu-based sintered sliding member
US8092091B2 (en) Bearing made of sintered copper alloy for a recirculation exhaust gas flow rate control valve
JP5386585B2 (en) Sintered sliding material and manufacturing method thereof
JP6305811B2 (en) Ferrous sintered alloy material for valve seat and method for producing the same
JP5337884B2 (en) Sintered sliding member
JP2010111937A (en) High-strength composition iron powder and sintered component using the same
JP2016060922A (en) Cu-BASED SINTERED ALLOY AND MANUFACTURING METHOD THEREFOR
WO2017057464A1 (en) Sintered valve seat
JP3932274B2 (en) Sintered Cu alloy bearing for recirculation exhaust gas flow control valve of EGR type internal combustion engine showing excellent wear resistance under high temperature environment
JP2013144849A (en) Cu-Ni-Sn-BASED COPPER SINTERED ALLOY WITH EXCELLENT FRICTION-WEAR RESISTANCE, METHOD OF MANUFACTURING THE SAME, AND BEARING MATERIAL MADE OF THE ALLOY
WO2020050211A1 (en) Heat-resistant sintered alloy material
KR101717347B1 (en) Copper based sintered alloy with wear resistance
JP7546377B2 (en) Sintered sliding member and method for producing same
CN110914009B (en) Valve guide tube made of iron-based sintered alloy and method for producing same
WO2020218479A1 (en) Sintered sliding member and method for producing same
JPH0953421A (en) Fe radical sintered alloy valve guide member with excellent wear resistance and low counter-attackability
JP2013163854A (en) Sintered member

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Ref document number: 5386585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250