JP2013012551A - 固体撮像装置、固体撮像装置の製造方法、及び電子機器 - Google Patents

固体撮像装置、固体撮像装置の製造方法、及び電子機器 Download PDF

Info

Publication number
JP2013012551A
JP2013012551A JP2011143458A JP2011143458A JP2013012551A JP 2013012551 A JP2013012551 A JP 2013012551A JP 2011143458 A JP2011143458 A JP 2011143458A JP 2011143458 A JP2011143458 A JP 2011143458A JP 2013012551 A JP2013012551 A JP 2013012551A
Authority
JP
Japan
Prior art keywords
region
dark current
gate electrode
transfer
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011143458A
Other languages
English (en)
Inventor
Mikiko Kobayashi
実希子 小林
Sokun Kawa
相勲 河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2011143458A priority Critical patent/JP2013012551A/ja
Priority to CN201210208338.7A priority patent/CN102856334B/zh
Priority to US13/527,685 priority patent/US8710559B2/en
Publication of JP2013012551A publication Critical patent/JP2013012551A/ja
Priority to US14/188,052 priority patent/US9299867B2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14616Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor characterised by the channel of the transistor, e.g. channel having a doping gradient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】暗電流の発生を抑制しながらも、転送効率の向上が図られた固体撮像装置を提供する。また、その固体撮像装置を用いた電子機器を提供する。
【解決手段】光電変換部(PD)を構成する第1暗電流抑制領域21を、転送ゲート電極26と一部重なるように形成する。また、その下層に、第1暗電流抑制領域21と同導電型で構成され、第1暗電流抑制領域21よりも低濃度の不純物領域からなる転送補助領域22を形成する。また、この第1暗電流抑制領域21と転送補助領域22との転送ゲート電極26下の端部は同一位置となるように位置あわせして形成されている。第1暗電流抑制領域21により暗電流の抑制が図られ、また、転送補助領域22により、転送効率の向上が図られる。
【選択図】図2

Description

本開示は、固体撮像装置とその製造方法、及び電子機器に関する。
従来、デジタルカメラやビデオカメラに用いられる固体撮像装置として、CCD型の固体撮像装置やCMOS型の固体撮像装置が知られている。これらの固体撮像装置では、二次元マトリクス状に複数個形成された画素毎に受光部が形成されており、この受光部では、受光量に応じて信号電荷が生成される。そして、受光部で生成された信号電荷が転送され増幅されることにより画像信号が得られる。
固体撮像装置では、フォトダイオードの形成時におけるプロセスばらつきや、そのプロセスばらつきに起因する転送効率を低減するため、フォトダイオードをセルフアラインで形成する方式が採用されている。さらに、転送効率を改善するために、特許文献1〜3に記載の発明では、フォトダイオードを構成する電荷蓄積領域を、転送ゲート電極下までオーバーラップさせるように形成する方法が提案されている。
また、フォトダイオードでは、暗電流抑制の為に、半導体基板の表面に電荷蓄積層とは反対導電型の半導体領域を形成することが一般的に行われている。この暗電流抑制の為の半導体領域においてピニング効果を高めるため、特許文献3に記載の発明では、転送ゲート電極下にまでピニング用の半導体領域(例えばp型半導体領域)を形成する構成が提案されている。
電荷蓄積層や暗電流抑制の為の半導体領域を転送ゲート電極までオーバーラップさせて形成する構成には一長一短があり、場合によってはフォトダイオード形成と転送ゲート電極下のピニング確保及び転送マージン確保を全て満足する構成が困難な場合が生じる。例えば、ピニング確保のために注入するドーパントは信号電荷の転送を妨げる方向に働き、転送マージン確保のためにイオン注入するドーパントは転送ゲート電極下のピニングを弱めさせる方向に働く。
このように、従来の固体撮像装置の構成では、暗電流抑制のためのピニング確保と転送マージン確保とはトレードオフの関係にあり、転送ゲート電極周りの設計が困難である。
特開平11−126893号公報 特開2008−66480号公報 特表2009−518850号公報
上述の点に鑑み、本開示は、暗電流の発生を抑制しながらも、転送効率の向上が図られた固体撮像装置を提供する。また、その固体撮像装置を用いた電子機器を提供する。
本開示の固体撮像装置は、転送ゲート電極と、電荷蓄積領域と転送補助領域と第1暗電流抑制領域とからなる光電変換部と、を有して構成されている。転送ゲート電極は、半導体基板の上部に形成されている。電荷蓄積領域は、半導体基板の表面側から深さ方向に形成され、転送ゲート電極と一部重なるように形成されている。また、電荷蓄積領域は、第1導電型の不純物領域から構成される。転送補助領域は、電荷蓄積領域の上層に形成され、転送ゲート電極と一部重なるように形成されている。また、転送補助領域は、第2導電型の不純物領域から構成される。第1暗電流抑制領域は転送補助領域の上層に形成され、転送ゲート電極側の端部が転送補助領域の端部と同一位置となるように位置あわせして形成されている。また、第1暗電流抑制領域は、転送補助領域と同導電型の不純物領域で形成され、転送補助領域よりも高濃度の不純物領域で構成されている。
本開示の固体撮像装置では、第1暗電流抑制領域が半導体基板の界面で発生する暗電流を抑制するように働く。また、第1暗電流抑制領域の不純物濃度よりも低い濃度で形成され、第1暗電流抑制領域の下層に形成された転送補助領域が、電荷蓄積領域に蓄積された信号電荷の転送効率を向上させるように働く。
本開示の固体撮像装置の製造方法は、半導体基板の表面側から深さ方向に第1導電型の不純物をイオン注入することにより電荷蓄積領域を形成する工程を有する。また、電荷蓄積領域の上層に第2導電型の不純物をイオン注入することにより転送補助領域を形成する工程を有する。また、転送補助領域の形成時に用いたマスクを介して、転送補助領域の上層に第2導電型の不純物を転送補助領域よりも高濃度にイオン注入することにより、第1暗電流抑制領域を形成する工程を有する。これらの工程では、光電変換部が形成される。そして、半導体基板上部の、電荷蓄積領域、転送補助領域、及び第1暗電流抑制領域に一部重なる領域に転送ゲート電極を形成する工程を有する。
本開示の固体撮像装置の製造方法では、第1暗電流抑制領域と転送補助領域とが同じマスクを用いて形成されるので、転送ゲート電極下の領域において両者の端部が位置合わせされる。これにより、第1暗電流抑制領域と転送補助領域との形成におけるプロセスばらつきが低減される。
本開示の電子機器は、光学レンズと、上述の固体撮像装置と、信号処理回路を有する。固体撮像装置では、光学レンズに集光された光が入射される。信号処理回路は、固体撮像装置から出力される出力信号を処理する。
本開示の電子機器では、固体撮像装置において、第1暗電流抑制領域が半導体基板の界面で発生する暗電流を抑制するように働く。また、第1暗電流抑制領域の不純物濃度よりも低い濃度で形成され、第1暗電流抑制領域の下層に形成された転送補助領域が、電荷蓄積領域に蓄積された信号電荷の転送効率を向上させるように働く。これにより、固体撮像装置において、転送効率の向上と暗電流抑制の効果を得ることができるため、画質の向上が図られる。
本開示によれば、固体撮像装置において、暗電流の発生を抑制しながらも、転送効率の向上が図られる。また、この固体撮像装置を用いることにより、画質の向上が図られた電子機器が得られる。
本開示の第1の実施形態に係る固体撮像装置の全体構成を示す図である。 本開示の第1の実施形態に係る固体撮像装置の要部の断面構成を示す図である。 A〜C 本開示の第1の実施形態に係る固体撮像装置の製造方法を示した工程図(その1)である。 D〜F 本開示の第1の実施形態に係る固体撮像装置の製造方法を示した工程図(その2)である。 G,H 本開示の第1の実施形態に係る固体撮像装置の製造方法を示した工程図(その3)である。 A,B 本開示の第1の実施形態に係る固体撮像装置において、転送トランジスタTrをオフした状態、及びオンした状態のフォトダイオードPDからフローティングディフュージョン領域FDにかけてのポテンシャル図を示したものである。 本開示の第2の実施形態に係る固体撮像装置の要部の断面構成を示す図である。 A〜C 本開示の第2の実施形態に係る固体撮像装置の製造方法を示した工程図である。 本開示の第3の実施形態に係る固体撮像装置の要部の断面構成を示す図である。 A〜C 本開示の第3の実施形態に係る固体撮像装置の製造方法を示した工程図である。 本開示の第4の実施形態に係る固体撮像装置の要部の断面構成を示す図である。 A〜C 本開示の第4の実施形態に係る固体撮像装置の製造方法を示した工程図である。 本開示の第5の実施形態に係る固体撮像装置の要部の断面構成を示す図である。 本開示の第6の実施形態に係る電子機器の概略構成図である。 比較例1に係る固体撮像装置の要部の断面構成図である。 比較例2に係る固体撮像装置の要部の断面構成図である。 A,B 比較例2の固体撮像装置において、転送トランジスタTrをオフした状態、及びオンした状態のフォトダイオードPDからフローティングディフュージョン領域FDにかけてのポテンシャル図を示したものである。 比較例3に係る固体撮像装置の要部の断面構成図である。
以下に、本開示の実施形態に係る固体撮像装置とその製造方法、及び電子機器の一例を、図1〜図18を参照しながら説明する。本開示の実施形態は以下の順で説明する。なお、本開示は以下の例に限定されるものではない。
1.第1の実施形態:固体撮像装置
1−1 固体撮像装置全体の構成
1−2 要部の構成
1−3 製造方法
2.第2の実施形態:固体撮像装置
2−1 要部の構成
2−2 製造方法
3.第3の実施形態:固体撮像装置
3−1 要部の構成
3−2 製造方法
4.第4の実施形態:固体撮像装置
4−1 要部の構成
4−2 製造方法
5.第5の実施形態:裏面照射型の固体撮像装置
6.第6の実施形態:電子機器
〈1.第1の実施形態:固体撮像装置〉
[1−1 固体撮像装置全体の構成]
図1は、本開示の第1の実施形態に係るCMOS型の固体撮像装置の全体を示す概略構成図である。
本実施形態例の固体撮像装置1は、シリコンからなる基板11上に配列された複数の画素2から構成される画素領域3と、垂直駆動回路4と、カラム信号処理回路5と、水平駆動回路6と、出力回路7と、制御回路8等を有して構成される。
画素2は、フォトダイオードからなる光電変換部と、複数の画素トランジスタとから構成され、基板11上に、2次元アレイ状に規則的に複数配列される。画素2を構成する画素トランジスタは、転送トランジスタ、リセットトランジスタ、選択トランジスタ、アンプトランジスタで構成される4つのMOSトランジスタであってもよく、また、選択トランジスタを除いた3つのトランジスタであってもよい。
画素領域3は、2次元アレイ状に規則的に複数配列された画素2から構成される。画素領域3は、実際に光を受光し光電変換によって生成された信号電荷を増幅してカラム信号処理回路5に読み出す有効画素領域と、黒レベルの基準になる光学的黒を出力するための黒基準画素領域(図示せず)とから構成されている。黒基準画素領域は、通常は、有効画素領域の外周部に形成されるものである。
制御回路8は、垂直同期信号、水平同期信号及びマスタクロックに基づいて、垂直駆動回路4、カラム信号処理回路5、及び水平駆動回路6等の動作の基準となるクロック信号や制御信号などを生成する。そして、制御回路8で生成されたクロック信号や制御信号などは、垂直駆動回路4、カラム信号処理回路5及び水平駆動回路6等に入力される。
垂直駆動回路4は、例えばシフトレジスタによって構成され、画素領域3の各画素2を行単位で順次垂直方向に選択走査する。そして、各画素2のフォトダイオードにおいて受光量に応じて生成した信号電荷に基づく画素信号を、垂直信号線を通してカラム信号処理回路5に供給する。
カラム信号処理回路5は、例えば、画素2の列毎に配置されており、1行分の画素2から出力される信号を画素列毎に黒基準画素領域(図示しないが、有効画素領域の周囲に形成される)からの信号によって、ノイズ除去や信号増幅等の信号処理を行う。カラム信号処理回路5の出力段には、水平選択スイッチ(図示せず)が水平信号線10とのあいだに設けられている。
水平駆動回路6は、例えばシフトレジスタによって構成され、水平走査パルスを順次出力することによって、カラム信号処理回路5の各々を順番に選択し、カラム信号処理回路5の各々から画素信号を水平信号線10に出力させる。
出力回路7は、カラム信号処理回路5の各々から水平信号線10を通して、順次に供給される信号に対し信号処理を行い出力する。
[1−2 要部の構成]
図2に、本実施形態例の固体撮像装置1の要部の断面構成を示す。図2では、画素領域における1画素分の断面構成を示している。
本実施形態例の固体撮像装置1は、光電変換部であるフォトダイオードPDからなる画素が形成された基板12と、基板12上部に順に形成された配線層14、カラーフィルタ層17、オンチップレンズ19とを含んで構成される。
基板12は、第1導電型、例えばn型の半導体基板で構成され、画素が形成される領域は、図2に示すように、第2導電型、例えばp型の不純物領域からなる半導体ウェル層13とされている。このp型の半導体ウェル層13は、例えばイオン注入によって形成される。基板12の表面側には、光電変換部を構成するフォトダイオードPDと、フォトダイオードPDで生成された信号電荷を読み出すための読み出し部となる転送トランジスタTrとを含む画素が二次元マトリクス状に形成されている。
フォトダイオードPDは、基板12の表目側に形成され、後述する転送ゲート電極26下にオーバーラップして形成された暗電流抑制領域(以下、第1暗電流抑制領域21)と、最表面暗電流抑制領域(以下、第2暗電流抑制領域23)とを有する。また、第1暗電流抑制領域21及び第2暗電流抑制領域23の下層に形成された転送補助領域22と、転送補助領域22の下層に形成された電荷蓄積領域20とを有する。
第1暗電流抑制領域21は、フォトダイオードPDが形成される領域の基板12表面側に形成され、端部が、後述する転送ゲート電極26下にオーバーラップするように形成されている。また、第1暗電流抑制領域は、p型半導体領域(p+)で形成され、第1暗電流抑制領域21の不純物濃度は例えば、1×1016〜1×1017〔atoms/cm〕とされる。
第2暗電流抑制領域23は、第1暗電流抑制領域21よりも上層であって、転送ゲート電極26下に位置する第1暗電流抑制領域21上層を除く基板12の最表面に形成され、転送ゲート電極26下にオーバーラップしない位置に形成されている。また、第2暗電流抑制領域23は、第1暗電流抑制領域21を構成するp型半導体領域(p+)よりも高い濃度のp型半導体領域(p++)で構成され、第2暗電流抑制領域23の不純物濃度は、例えば1×1018〜1×1019〔atoms/cm〕とされる。
後述するが、第1暗電流抑制領域21は、第2暗電流抑制領域23よりも先のイオン注入によって形成され、第2暗電流抑制領域23は、転送ゲート電極26を形成した後にイオン注入で形成される。このため、転送ゲート電極26下の最表面は、第1暗電流抑制領域21とされ、それ以外のフォトダイオードPDの最表面は、第2暗電流抑制領域23とされている。
本実施形態例では、第1暗電流抑制領域21及び第2暗電流抑制領域23が形成されることにより、基板12の受光面の界面準位に起因する電子等、暗電流の原因となる電子がp型半導体領域の多数キャリアである正孔によりピニングされる。これにより、暗電流が抑制される。また、第1暗電流抑制領域21は、転送ゲート電極26下にオーバーラップして形成されるため、転送ゲート電極26下においても暗電流の抑制が図られる。さらに、本実施形態例では、高濃度のp型半導体領域(p++)からなる第2暗電流抑制領域23により基板12の最表面におけるピニングが強化され、暗電流をより抑制することができる。
転送補助領域22は、第1暗電流抑制領域21を構成するp型半導体領域(p+)よりも低い濃度のp型半導体領域(p−)で構成されており、その不純物濃度は1×1016〜1×1017〔atoms/cm〕とされている。この転送補助領域22も、後述する転送ゲート電極26下に一部がオーバーラップするように形成されている。
電荷蓄積領域20は、転送補助領域22に接して基板12の所望の深さにまで形成されたn型半導体領域で構成されており、その不純物濃度は1×1017〜1×1018〔atoms/cm〕とされている。この電荷蓄積領域20も、後述する転送ゲート電極26下にオーバーラップするように形成されている。
ところで、第2暗電流抑制領域23は、第1暗電流抑制領域21が形成される深さよりも浅い位置に不純物をイオン注入することによって形成されるものである。このため、高濃度のp型半導体領域(p++)からなる第2暗電流抑制領域23と低濃度のp型半導体領域(p−)の転送補助領域22との間に、その中間の濃度のp型半導体領域(p+)からなる第1暗電流抑制領域21が存在する構成とされている。このように、フォトダイオードPDは、基板12の表面側から順に形成されたp++、p+、p−、nによって構成される。
また、本実施形態例では、第1暗電流抑制領域21と転送補助領域22との転送ゲート電極26下の端部は同じ位置とされ、転送ゲート電極26下におけるオーバーラップ量、すなわち、転送ゲート電極26との重なり量は同じとされる。また、第1暗電流抑制領域21と転送補助領域22とのオーバーラップ量は、電荷蓄積領域20の転送ゲート電極26下におけるオーバーラップ量よりも後述するフローティングディフュージョン領域FD側に大きい構成とされている。
このフォトダイオードPDでは、受光面側から入射した光の光量に応じた信号電荷が生成され、n型半導体領域からなる電荷蓄積領域20に蓄積される。
転送トランジスタTrは、基板12上に形成された転送ゲート電極26と、フォトダイオードPDから転送された信号電荷が読み出される読み出し領域(以下、フローティングディフュージョン領域FD)とを含んで構成されている。
転送ゲート電極26は、基板12上に例えばシリコン酸化膜からなるゲート絶縁膜24を介して形成されており、前述したように、その一部がフォトダイオードPDの端部の第1暗電流抑制領域21上部に重なるように形成されている。転送ゲート電極26は例えばポリシリコンで構成され、転送ゲート電極26の側面には例えばシリコン窒化膜からなるサイドウォール25が形成されている。ここで、第2暗電流抑制領域23は、転送ゲート電極26のフォトダイオードPD側の側面に形成されたサイドウォール25下に重なるように形成されており、転送ゲート電極26の端部に相当する位置まで形成されている。
フローティングディフュージョン領域FDは、転送ゲート電極26を介してフォトダイオードPDと隣接する基板12の表面に形成され、例えば電荷蓄積領域20を構成するn型半導体領域(n)よりも不純物濃度の高いn型半導体領域(n+)で構成されている。また、本実施形態例では、フローティングディフュージョン領域FDは、後述するように、サイドウォール25形成後のイオン注入によりセルフアラインで形成されている。
転送トランジスタTrでは、転送ゲート電極26に所望の転送電圧を印加することにより、フォトダイオードPDの電荷蓄積領域20に蓄積された信号電荷が転送ゲート電極26下のチャネル部を通り、フローティングディフュージョン領域FDに転送される。
基板12の表面側には、転送トランジスタTrの他、リセットトランジスタ、増幅トランジスタ、選択トランジスタ等、所望の画素トランジスタが画素毎に形成されるが図2では図示を省略する。また、フォトダイオードPDと、転送トランジスタTrを含む複数の画素トランジスタで構成される各画素は、基板12の表面側に形成されたp型の半導体ウェル層13によって電気的に分離される構成とされている。なお、図2では図示を省略するが、各画素を区画するように半導体ウェル層13の不純物濃度よりも高い不純物濃度のp型半導体領域からなる画素分離領域を形成し、各画素を分離する構成としてもよい。
配線層14は、基板12の表面側に層間絶縁膜15を介して複数層(図2では2層)に積層された配線16を有して構成されている。層間絶縁膜15は、例えばシリコン酸化膜で構成され、各配線16は、例えば、アルミニウム、銅などで構成されている。本実施形態例は、基板12の受光面側に形成される表面照射型の固体撮像装置とされるため、配線層14の配線は、フォトダイオードPDを開口するように形成されている。配線層14の配線16は、例えば画素を構成する画素トランジスタにコンタクト部(図示せず)介して接続されている。
カラーフィルタ層17は、配線層14上部に形成され、画素毎に、例えば、緑、赤、青、シアン、黄色、黒色などの光を選択的に透過するような材料で構成されている。又は白色のような全ての光を透過し、赤外領域を透過させないように構成することもできる。画素毎に、異なる色を透過するカラーフィルタ層17を用いてもよく、また、全ての画素において同じ色を透過するカラーフィルタ層17を用いてもよい。カラーフィルタ層17において透過させる色の組み合わせは、その仕様により種々の選択が可能である。
オンチップレンズ19は、例えば所望の屈折率を有する有機材料で構成され、カラーフィルタ層17上部に平坦化膜18を介して形成されている。固体撮像装置1に入射する光は、オンチップレンズ19により集光され、各画素のフォトダイオードPDに効率良く入射される。
[1−3 製造方法]
次に、本実施形態例の固体撮像装置1の製造方法について説明する。図3〜図5は、本実施形態例の固体撮像装置1の製造方法を示した工程図である。
まず、図3Aに示すように、基板12の画素形成領域となる表面側にp型の不純物をイオン注入することにより、p型の半導体ウェル層13を形成する。
次に、図3Bに示すように、各画素のフォトダイオードPDが形成される領域が開口されたフォトレジストマスク27を基板12上に形成する。その後、フォトレジストマスク27を介してn型の不純物をイオン注入することにより、基板12の表面側から所望の深さまで形成されたn型半導体領域からなる電荷蓄積領域20を形成する。
次に、電荷蓄積領域20の形成に用いたフォトレジストマスク27を除去し、図3Cに示すように、新たなフォトレジストマスク28を形成する。ここでフォトレジストマスク28では、電荷蓄積領域20が形成された部分を開口すると共に、転送ゲート電極26が形成される側に開口を拡大するように形成する。すなわち、電荷蓄積領域20が形成された領域よりも転送ゲート電極26側に大きい開口を有するフォトレジストマスク28を形成する。
次に、図4Dに示すように、そのフォトレジストマスク28を介してp型の不純物をイオン注入することにより、基板12の表面から所望の距離だけ離れた深さにp型半導体領域(p−)からなる転送補助領域22を形成する。この転送補助領域22は、基板12の表面から例えば20nmから40nmの範囲内に形成する。
次に、図4Eに示すように、転送補助領域22の形成時に用いたフォトレジストマスク28を介して、更にp型の不純物をイオン注入することにより、基板12の表面から転送補助領域22に接する深さまで、p型半導体領域(p+)からなる第1暗電流抑制領域21を形成する。ここでは、転送補助領域22のドーズ量よりも高いドーズ量で形成することにより、転送補助領域22よりも不純物濃度の高い第1暗電流抑制領域21が形成される。
本実施形態例では、転送補助領域22と第1暗電流抑制領域21との形成時に、図3C〜図4Eに示すように、電荷蓄積領域20の形成時のフォトレジストマスク27よりも開口の大きいフォトレジストマスク28を用いる。これにより、電荷蓄積領域20よりも転送ゲート電極26が形成される側に張り出した第1暗電流抑制領域21及び転送補助領域22を形成することができる。
次に、フォトレジストマスク28を除去し、図4Fに示すように、ゲート絶縁膜24を介して転送ゲート電極26を形成する。転送ゲート電極26は、基板12全面にポリシリコンからなる電極層を形成した後、パターニングすることにより所望の領域に形成することができる。本実施形態例ではフォトダイオードPDの端部であって、電荷蓄積領域20と、電荷蓄積領域20よりも張り出して形成された第1暗電流抑制領域21、及び転送補助領域22に一部オーバーラップする位置に転送ゲート電極26を形成する。
次に、図5Gに示すように、フォトダイオードPDが形成される領域が開口されたフォトレジストマスク29を基板12上に形成する。ここで形成されるフォトレジストマスク29は、フォトダイオードPDが形成される側の転送ゲート電極26端部を露出させる開口を有する。そして、そのフォトレジストマスク29を介してp型の不純物をイオン注入することにより、基板12の表面から転送補助領域22に達しない深さまでにp型半導体領域(p++)からなる第2暗電流抑制領域23を形成する。この第2暗電流抑制領域23は、第1暗電流抑制領域21のドーズ量よりも高いドーズ量で形成することにより第1暗電流抑制領域21よりも不純物濃度を高く構成する。そして、この第2暗電流抑制領域23は、転送ゲート電極26側において、転送ゲート電極26をマスクにセルフアラインで形成される。
次に、フォトレジストマスク29を除去した後、図5Hに示すように、転送ゲート電極26の側面にサイドウォール25を形成し、転送ゲート電極26及びサイドウォール25下以外のゲート絶縁膜24を除去する。その後、フローティングディフュージョン領域FDを形成する。フローティングディフュージョン領域FDは、図示を省略するが、フローティングディフュージョン領域FDが形成される領域が開口されたフォトレジストマスクを介してn型の不純物をイオン注入することによって形成する。この場合にも、フローティングディフュージョン領域FDは、転送ゲート電極26側において、サイドウォール25をマスクにセルフアラインで形成される。
なお、本実施形態例においては、フローティングディフュージョン領域FDをサイドウォール25形成後に、サイドウォール25をマスクとしたセルフアラインで形成する例としたが、サイドウォール25形成前に形成してもよいものである。フローティングディフュージョン領域FDの構成について一般的な固体撮像装置におけるフローティングディフュージョン領域の構成を採用することができ、本実施形態例に限定されるものではない。
その後、一般的な固体撮像装置1の製造方法と同様にして図2に示す配線層14、カラーフィルタ層17、平坦化膜18、オンチップレンズ19を形成することにより本実施形態例の固体撮像装置1が完成する。
本実施形態例の固体撮像装置1では、基板12の界面準位に起因する暗電流は、第2暗電流抑制領域23と第1暗電流抑制領域21により低減される。また、本実施形態例の固体撮像装置1では、転送ゲート電極26に転送パルスを供給した場合、基板12内のポテンシャルの変調量は転送補助領域22の不純物濃度で決まる。本実施形態例では、転送補助領域22を形成することにより、第1暗電流抑制領域21と第2暗電流抑制領域23の形成により基板12の表面側のp型半導体領域の不純物濃度が高くなった場合にも、転送不良を防ぐことができ、転送効率の向上が図られる。
本実施形態例の固体撮像装置1における暗電流抑制の効果と、転送効率の改善の効果について、以下に、比較例を用いて説明する。
図15は、比較例1に係る固体撮像装置100の要部の断面構成図である。図15において、図2に対応する部分には同一符号を付し重複説明を省略する。
比較例1に係る固体撮像装置100では、フォトダイオードPDが、基板12の表面に形成されたp型半導体領域からなる暗電流抑制領域102と、その下層に形成されたn型半導体領域からなる電荷蓄積領域101とで構成されている。そして、電荷蓄積領域101は、転送ゲート電極26形成後に、転送ゲート電極26をマスクとしたセルフアラインで形成されており、暗電流抑制領域102は、サイドウォール25形成後に、サイドウォール25をマスクとしたセルフアラインで形成されている。
比較例1に係る固体撮像装置100では、フォトダイオードPDを構成する暗電流抑制領域102と電荷蓄積領域101との両方が、転送ゲート電極26側においてセルフアラインで形成されており、プロセスばらつきに強い構成とされている。しかしながら、比較例1に係る固体撮像装置100では、電荷蓄積領域101が転送ゲート電極26下にオーバーラップして形成されていないため、転送ゲート電極26で変調される部分が、サイドウォール25下のみとなる。このため、フォトダイオードPD内のポテンシャルを深くした場合には、転送不良が発生してしまい、微細画素においての飽和電荷量(Qs)の確保という観点では問題がある。
次に、図16に、比較例2に係る固体撮像装置106の要部の断面構成図を示す。図16において、図2に対応する部分には同一符号を付し重複説明を省略する。
比較例2に係る固体撮像装置106では、フォトダイオードPDが、暗電流抑制領域104とその下層に形成された電荷蓄積領域103とで構成され、電荷蓄積領域103は、本実施形態例と同様、転送ゲート電極26下にオーバーラップして形成されている。すなわち、比較例2に係る固体撮像装置106では、転送ゲート電極26形成前にイオン注入によって電荷蓄積領域103が形成され、暗電流抑制領域104は、サイドウォール25形成前に転送ゲート電極26をマスクとしたセルフアラインで形成されている。
比較例2に係る固体撮像装置106では、電荷蓄積領域103が転送ゲート電極26下にオーバーラップして形成されるため、転送ゲート電極26に印加される電圧による変調具合が比較例1に比較して大きくなる。このため、フォトダイオードPD内部のポテンシャルが深くなった場合でも転送不良が起きにくい構造となっている。また、暗電流抑制領域104は、サイドウォール25形成前に形成されるため、サイドウォール25下においても暗電流の原因となる電子がピニングされる。
ところで、比較例2では、信号電荷の転送不良を防止するため、転送ゲート電極26側における電荷蓄積領域103の端部を、暗電流抑制領域104との端部の距離を確保する必要がある。すなわち、電荷蓄積領域103の端部を、暗電流抑制領域104の端部よりもフローティングディフュージョン領域FD側に延長して形成する必要がある。電荷蓄積領域103の端部と暗電流抑制領域104との端部の距離が短くなった場合、暗電流抑制領域104の影響で転送不良が生じてしまう。
しかしながら、比較例2の固体撮像装置106では電荷蓄積領域103は転送ゲート電極26の形成前に形成されるため、セルフアラインで形成されず、プロセスばらつきに弱い構造となる。このため、電荷蓄積領域103の端部と暗電流抑制領域104との端部の距離が短くなり、転送不良が発生するおそれがある。また、電荷蓄積領域103が転送ゲート電極26下にオーバーラップするため、転送ゲート電極26下のピニング効果が弱くなるという問題がある。
また、転送ゲート電極26下に電荷蓄積領域103がオーバーラップして形成された場合、転送時における転送ゲート電極26下でポテンシャルの過変調が起こり、転送不良が発生するおそれがある。この転送不良について、図17A、Bを用いて説明する。
図17Aは、比較例2の固体撮像装置106において、転送トランジスタTrをオフした状態のフォトダイオードPDからフローティングディフュージョン領域FDにかけてのポテンシャル図を示したものである。また、図17Bは、比較例2の固体撮像装置106において、転送トランジスタTrをオンした状態のフォトダイオードPDからフローティングディフュージョン領域FDにかけてのポテンシャル図を示した図である。
図17Aに示すように、転送トランジスタTrをオフした状態では、フォトダイオードPDの電荷蓄積領域103に信号電荷が蓄積されている。
そして、図17Bに示すように、転送時に転送トランジスタTrをオンすると、転送ゲート電極26下のポテンシャルが深くなり、フォトダイオードPDに蓄積されていた信号電荷がフローティングディフュージョン領域FDに転送される。
このとき、転送ゲート電極26下に、n型半導体領域からなる電荷蓄積領域103がオーバーラップして形成されていると、その部分が、ポテンシャルが深くなる方向に部分的に過変調され、図17Bに示すように、ポテンシャルディップaが発生する。ポテンシャルディップaが発生すると、その部分に信号電荷が溜まってしまい、フローティングディフュージョン領域FDに転送されなくなる。このように、転送ゲート電極26下の電荷蓄積領域103のオーバーラップ量が大きい場合には、転送不良が生じてしまう可能性がある。したがって、比較例2の固体撮像装置106ではプロセスばらつきによる転送不良が生じやすい。
次に、図18に、比較例3に係る固体撮像装置107の要部の断面構成図を示す。図18において、図2に対応する部分には同一符号を付し重複説明を省略する。
比較例3に係る固体撮像装置107では、フォトダイオードPDの暗電流抑制領域が、転送ゲート電極26下にオーバーラップして形成された第1暗電流抑制領域105と、サイドウォール25下まで形成された第2暗電流抑制領域108を有して構成されている。比較例3では、電荷蓄積領域103と第1暗電流抑制領域105は本実施形態例と同様、転送ゲート電極26形成前に形成され、第2暗電流抑制領域108は、転送ゲート電極26形成後、転送ゲート電極26をマスクとしてセルフアラインで形成されている。
比較例3では、転送ゲート電極26下にオーバーラップして形成された電荷蓄積領域103上部に第1暗電流抑制領域105が形成されるため、転送ゲート電極26下の電荷蓄積領域103におけるポテンシャルの過変調が防止される。このため、図17Bに示すようなポテンシャルディップaが改善される。また、転送ゲート電極26下において、暗電流の抑制が図られる。
しかしながら、比較例3の構成では、第1暗電流抑制領域105の不純物濃度が高くなると、転送ゲート電極26下のポテンシャルの変調量が減り、転送不良が起きる可能性がある。また、第1暗電流抑制領域105だけでは、フォトダイオードPD全域における基板12表面のピニングを十分に確保できない問題がある。
また、高濃度のp型半導体領域(p++)で構成される第2暗電流抑制領域108と、それよりも低濃度のp型半導体領域(p+)で構成される第1暗電流抑制領域105との重なりの影響で、転送ゲート電極26の際部分で不純物濃度が濃くなる。そうすると、基板12表面でのピニングの効果は良くなるが、転送時におけるポテンシャルの変調量が減り、転送不良が起こる可能性がある。また、第1暗電流抑制領域105と、電荷蓄積領域103との合わせずれがあると、比較例2と同様に、ポテンシャルディップaが発生する可能性がある。
したがって、第2暗電流抑制領域108と第1暗電流抑制領域105のドーズ量の最適化が必要となる。
以上のように、転送ゲート電極26周りの不純物濃度プロファイルは、転送効率、飽和電荷量、暗電流の抑制に影響するため、比較例1〜3の構成では、それら全てを満たすことが困難である。
一方、本実施形態例の固体撮像装置1では、転送ゲート電極26下の暗電流の原因となる電子のピニングは、ドーズ量を多くし、注入エネルギーを浅くすることで形成したp型半導体領域(p+)からなる第1暗電流抑制領域21で確保することができる。
また、転送ゲート電極26下のポテンシャルディップaの改善は、p型半導体領域(p−)からなる転送補助領域22で担うことができる。
図6Aは、本実施形態例の固体撮像装置1において、転送トランジスタTrをオフした状態のフォトダイオードPDからフローティングディフュージョン領域FDにかけてのポテンシャル図を示したものである。また、図6Bは、本実施形態例の固体撮像装置1において、転送トランジスタTrをオンした状態のフォトダイオードPDからフローティングディフュージョン領域FDにかけてのポテンシャル図を示した図である。
図6Aに示すように、転送トランジスタTrをオフした状態では、フォトダイオードPDの電荷蓄積領域20に信号電荷が蓄積されている。
そして、図6Bに示すように、転送時に転送トランジスタTrをオンすると、転送ゲート電極26下のポテンシャルが深くなり、フォトダイオードPDに蓄積されていた信号電荷がフローティングディフュージョン領域FDに転送される。
本実施形態例では、高濃度のp型半導体領域(p+)からなる第1暗電流抑制領域21と、電荷蓄積領域20との間に、低濃度のp型半導体領域(p−)からなる転送補助領域22が形成されている。これにより、転送ゲート電極26下のポテンシャルの変調量は、転送補助領域22の不純物濃度で決まるため、転送ゲート電極26下のポテンシャルはフォトダイオードPDからフローティングディフュージョン領域FDにかけて緩やかに深くなり、ポテンシャルディップが改善される。また、転送効率が改善されるため、飽和電荷量(Qs)の低下も抑制される。
また、比較例3では、第2暗電流抑制領域108と第1暗電流抑制領域105との重なりの影響で転送ゲート電極26の際において、ポテンシャルの変調量が減り、転送不良が発生するおそれがあった。しかしながら、本実施形態例では、転送時におけるフォトダイオードPD内の変調量は、電荷蓄積領域20と接して形成された低濃度のp型半導体領域(p−)からなる転送補助領域22で決まるため、転送不良の発生を抑制することができる。
また、本実施形態例では、第2暗電流抑制領域23と電荷蓄積領域20の間に、先に形成した第1暗電流抑制領域21が薄く形成されている。このため、フォトダイオードPDでは、前述したようにポテンシャルディップを改善できるという効果がある。
〈2.第2の実施形態:固体撮像装置〉
[2−1 要部の構成]
次に、本発明の第2の実施形態に係る固体撮像装置について説明する。本実施形態における固体撮像装置の全体構成は図1と同様であるから、説明を省略する。図7は、本実施形態例の固体撮像装置30の要部の断面構成図である。図7において、図2に対応する部分には同一符号を付し、重複説明を省略する。
図7に示すように、本実施形態例の固体撮像装置30では、電荷蓄積領域31の転送ゲート電極26側の端部が、第1暗電流抑制領域21と転送補助領域22の端部に合わせて形成されている。
[2−2 製造方法]
以下に、本実施形態例の固体撮像装置30の製造方法について説明する。図8は、本実施形態例の固体撮像装置30の製造方法を示した工程図である。
まず、図8Aに示すように、第1の実施形態と同様にしてn型半導体領域からなる電荷蓄積領域31を形成する。その後、図8Bに示すように、電荷蓄積領域31の形成時に用いたフォトレジストマスク27を用いて、基板12の所望の深さにp型の不純物をイオン注入することにより、転送補助領域22を形成する。
続けて、図8Cに示すように、フォトレジストマスク27を用い、転送補助領域22を構成する不純物濃度よりも濃い濃度でp型の不純物をイオン注入することにより、基板12の表面から転送補助領域22に達する深さに第1暗電流抑制領域21を形成する。
その後、第1の実施形態における図4F〜図5Hと同様の工程で、本実施形態例の固体撮像装置30を形成することができる。
本実施形態例では、電荷蓄積領域31、転送補助領域22、第1暗電流抑制領域21を全て同じフォトレジストマスク27を用いて形成することができる。これにより、工程数の削減が図られる。また、電荷蓄積領域31、転送補助領域22、第1暗電流抑制領域21の形成位置の合わせずれがなくなるため、合わせずれが大きいことに起因して転送ゲート電極26下のピニングが弱くなってしまうのを防ぐことができる。
その他、第1の実施形態と同様の効果を得ることができる。
〈3.第3の実施形態:固体撮像装置〉
[3−1 要部の構成]
次に、本発明の第3の実施形態に係る固体撮像装置について説明する。本実施形態における固体撮像装置の全体構成は図1と同様であるから、説明を省略する。図9は、本実施形態例の固体撮像装置34の要部の断面構成図である。図9において、図2に対応する部分には同一符号を付し、重複説明を省略する。
図9に示すように、本実施形態例の固体撮像装置34は、第2暗電流抑制領域35の形成領域が、第1の実施形態に係る固体撮像装置1とは異なる構成とされ、第2暗電流抑制領域35は、サイドウォール25下にオーバーラップしないで形成されている。
[3−2 製造方法]
以下に、本実施形態例の固体撮像装置34の製造方法について説明する。図10A〜Cは、本実施形態例の固体撮像装置34の製造方法を示した工程図である。転送ゲート電極26を形成するまでの工程は、第1の実施形態の図3A〜図4Fの工程と同様であるから、図示を省略し、重複説明を省略する。
転送ゲート電極26を形成した後、図10Aに示すように転送ゲート電極26の側面にサイドウォール25を形成する。その後、転送ゲート電極26及びサイドウォール25下以外のゲート絶縁膜24を除去する。
次に、図10Bに示すように、フォトダイオードPDが形成される領域が開口されたフォトレジストマスク32を形成する。ここで、フォトレジストマスク32は、フォトダイオードPDが形成される側のサイドウォール25端部を被覆しない開口を有するように形成されている。そして、そのフォトレジストマスク32を介してp型の不純物をイオン注入することにより、基板12の表面から転送補助領域22に達しない深さに、p型半導体領域(p++)からなる第2暗電流抑制領域35を形成する。この第2暗電流抑制領域35は、第1暗電流抑制領域21のドーズ量よりも高いドーズ量で形成することにより第1暗電流抑制領域21よりも不純物濃度を高く構成する。そして、この第2暗電流抑制領域35は、転送ゲート電極26側において、サイドウォール25をマスクにセルフアラインで形成される。
次に、フォトレジストマスク32を除去し、図10Cに示すように、フローティングディフュージョン領域FDを形成する。フローティングディフュージョン領域FDは、図示を省略するが、フローティングディフュージョン領域FDが形成される領域が開口されたフォトレジストマスクを介してn型の不純物をイオン注入することによって形成する。この場合にも、フローティングディフュージョン領域FDは、転送ゲート電極26側において、サイドウォール25をマスクにセルフアラインで形成される。
その後、一般的な固体撮像装置の製造方法と同様にして、図2に示す配線層14、カラーフィルタ層17、平坦化膜18、オンチップレンズ19を形成することにより本実施形態例の固体撮像装置34が完成する。
本実施形態例の固体撮像装置34では、転送ゲート電極26の際まで高濃度のp型半導体領域からなる第2暗電流抑制領域35が形成されないため、転送不良が改善される。また、転送ゲート電極26の下には、第2暗電流抑制領域35の不純物濃度よりも低い濃度ではあるものの、p型半導体領域からなる第1暗電流抑制領域21が形成されている。このため、サイドウォール25、及び転送ゲート電極26下におけるピニングの効果も得ることができる。
その他、第1の実施形態と同様の効果を得ることができる。
〈4.第4の実施形態:固体撮像装置〉
[4−1 要部の構成]
次に、本発明の第4の実施形態に係る固体撮像装置について説明する。本実施形態における固体撮像装置の全体構成は図1と同様であるから、説明を省略する。図11は、本実施形態例の固体撮像装置37の要部の断面構成図である。図11において、図2に対応する部分には同一符号を付し、重複説明を省略する。
図11に示すように、本実施形態例の固体撮像装置37は、第2暗電流抑制領域35の形成領域が第2の実施形態に係る固体撮像装置30と異なり、第2暗電流抑制領域35は、サイドウォール25下にオーバーラップしないで形成されている。
[4−2 製造方法]
以下に、本実施形態例の固体撮像装置37の製造方法について説明する。図12A〜図12Cは、本実施形態例の固体撮像装置37の製造方法を示した工程図である。転送ゲート電極26を形成するまでの工程は、第2の実施形態と同様であるから、図示を省略し、重複説明を省略する。
転送ゲート電極26を形成した後、図12Aに示すように転送ゲート電極26の側面にサイドウォール25を形成する。その後、転送ゲート電極26及びサイドウォール25下以外のゲート絶縁膜24を除去する。
次に、図12Bに示すように、フォトダイオードPDが形成される領域が開口されたフォトレジストマスク38を形成する。ここで、フォトレジストマスク38は、フォトダイオードPDが形成される側のサイドウォール25端部を被覆しない開口を有するように形成されている。そして、そのフォトレジストマスク38を介してp型の不純物をイオン注入することにより、基板12の表面から転送補助領域22に達しない深さにp型半導体領域(p++)からなる第2暗電流抑制領域35を形成する。この第2暗電流抑制領域35は、第1暗電流抑制領域21のドーズ量よりも高いドーズ量で形成することにより第1暗電流抑制領域21よりも不純物濃度を高く構成する。そして、この第2暗電流抑制領域35は、転送ゲート電極26側において、サイドウォール25をマスクにセルフアラインで形成される。
次に、フォトレジストマスク38を除去し、図12Cに示すように、フローティングディフュージョン領域FDを形成する。フローティングディフュージョン領域FDは、図示を省略するが、フローティングディフュージョン領域FDが形成される領域が開口されたフォトレジストマスクを介してn型の不純物をイオン注入することによって形成する。この場合にも、フローティングディフュージョン領域FDは、転送ゲート電極26側において、サイドウォール25をマスクにセルフアラインで形成される。
その後、一般的な固体撮像装置の製造方法と同様にして、図2に示す配線層14、カラーフィルタ層17、平坦化膜18、オンチップレンズ19を形成することにより本実施形態例の固体撮像装置37が完成する。
その後、一般的な固体撮像装置の製造方法と同様にして配線層、カラーフィルタ層、平坦化膜、オンチップレンズを形成することにより本実施形態例の固体撮像装置が完成する。
本実施形態例においても第2及び第3の実施形態と同様の効果を得ることができる。
〈5.第5の実施形態:裏面照射型の固体撮像装置〉
次に、本発明の第5の実施形態に係る固体撮像装置について説明する。本実施形態例では、裏面照射型の固体撮像装置に本開示の構成を適用した場合について説明する。図13は、本実施形態例の固体撮像装置41の要部の断面構成である。図13において、図2に対応する部分には同一符号を付し重複説明を省略する。
図13に示すように、本実施形態例の固体撮像装置41では、基板12の裏面側に、酸化膜39を介してカラーフィルタ層17、平坦化膜18、オンチップレンズ19が形成される。また、基板12の表面側に形成された配線層14上部に支持基板40が貼り合わされている。そして、本実施形態例の固体撮像装置41では、基板12の裏面側から光が入射される構成とされている。
以上のように、裏面照射型の固体撮像装置41においても、本開示の構成を適用することができる。本実施形態例では、裏面照射型の固体撮像装置41に、第1の実施形態に係る画素構成を適用した例としたが、第2〜第4の実施形態に係る画素構成を適用すること可能である。
そして、本実施形態例においても、第1の実施形態と同様の効果を得ることができる。
以上の第1〜第5の実施形態に係る固体撮像装置では、負の電荷(電子)を信号電荷として用いる場合の構成を示したが、正の電荷(ホール)を信号電荷として用いる場合にも本開示は適用できる。ホールを信号電荷として用いる場合には、第1〜第5の実施形態に係る固体撮像装置において、第1導電型と第2導電型の構成を逆にし、p−チャネル型の画素トランジスタを構成すればよい。また、第1〜第5の実施形態では、CMOS型の固体撮像装置を例に説明したが、CCD型の固体撮像装置にも適用できる。
また、本開示では、可視光の入射光量の分布を検知して画像として撮像する固体撮像装置への適用に限らず、赤外線やX線、あるいは粒子等の入射量の分布を画像として撮像する固体撮像装置にも適用可能である。広義の意味として、圧力や静電容量など、他の物理量の分布を検知して画像として撮像する指紋検出センサ等の固体撮像装置(物理量分布検知装置)全般に対して適用可能である。
さらに、本開示は、画素領域の各単位画素を行単位で順に走査して各単位画素から画素信号を読み出す固体撮像装置に限られるものではない。画素単位で任意の画素を選択して、当該選択画素から画素単位で信号を読み出すX−Yアドレス型の固体撮像装置に対しても適用可能である。
なお、固体撮像装置はワンチップとして形成された形態であってもよいし、画素領域と、信号処理部または光学系とがまとめてパッケージングされた撮像機能を有するモジュール状の形態であってもよい。
また、本開示は、固体撮像装置への適用に限られるものではなく、撮像装置にも適用可能である。ここで、撮像装置とは、デジタルスチルカメラやビデオカメラ等のカメラシステムや、携帯電話機などの撮像機能を有する電子機器のことを言う。なお、電子機器に搭載される上記モジュール状の形態、即ちカメラモジュールを撮像装置とする場合もある。
〈6.第6の実施形態:電子機器〉
次に、本開示の第6の実施形態に係る電子機器について説明する。図14は、本開示の第6の実施形態に係る電子機器200の概略構成図である。
本実施形態に係る電子機器200は、固体撮像装置1と、光学レンズ210と、シャッタ装置211と、駆動回路212と、信号処理回路213とを有する。本実施形態例の電子機器200は、固体撮像装置1として上述した本開示の第1の実施形態における固体撮像装置1を電子機器(カメラ)に用いた場合の実施形態を示す。
光学レンズ210は、被写体からの像光(入射光)を固体撮像装置1の撮像面上に結像させる。これにより固体撮像装置1内に一定期間当該信号電荷が蓄積される。シャッタ装置211は、固体撮像装置1への光照射期間および遮光期間を制御する。駆動回路212は、固体撮像装置1の転送動作およびシャッタ装置211のシャッタ動作を制御する駆動信号を供給する。駆動回路212から供給される駆動信号(タイミング信号)により、固体撮像装置1の信号転送を行なう。信号処理回路213は、各種の信号処理を行う。信号処理が行われた映像信号は、メモリなどの記憶媒体に記憶され、あるいはモニタに出力される。
本実施形態例の電子機器200では、固体撮像装置1において暗電流の抑制と転送効率の確保が図られるため、画質の向上が図られる。
固体撮像装置1を適用できる電子機器200としては、カメラに限られるものではなく、デジタルスチルカメラ、さらには携帯電話機等のモバイル機器向けカメラモジュールなどの撮像装置に適用可能である。
本実施形態例においては、固体撮像装置1として、第1の実施形態における固体撮像装置1を電子機器に用いる構成としたが、前述した第2〜第5の実施形態で製造した固体撮像装置を用いることもできる。
なお、本開示は、以下のような構成を取ることもできる。
(1)
半導体基板の上部に形成された転送ゲート電極と、
前記半導体基板の表面側から深さ方向に形成され、前記転送ゲート電極と一部重なるように形成された第1導電型の不純物領域からなる電荷蓄積領域と、前記電荷蓄積領域の上層に形成され、前記転送ゲート電極と一部重なるように形成された第2導電型の不純物領域からなる転送補助領域と、前記転送補助領域の上層に形成され、前記転送ゲート電極側の端部が前記転送補助領域の端部と同一位置となるように位置あわせして形成された第1暗電流抑制領域であって、前記転送補助領域と同導電型の不純物領域で形成され、前記転送補助領域よりも高濃度の不純物領域で構成された暗電流抑制領域と、を有して構成される光電変換部と、
を含む固体撮像装置。
(2)
前記光電変換部は、前記転送補助領域上層の前記半導体基板の最表面に形成され、前記転送ゲート電極の下に達しない領域に形成された最表面暗電流抑制領域であって、前記暗電流抑制領域と同導電型の不純物領域で形成され、前記暗電流抑制領域よりも高濃度の不純物領域で構成された最表面暗電流抑制領域を含む
(1)に記載の固体撮像装置。
(3)
前記半導体基板の表面側に、前記光電変換部から転送されてくる信号電荷が読み出される読み出し領域を備え、
前記暗電流抑制領域及び前記転送補助領域と転送ゲート電極との重なり量は、前記電荷蓄積領域と転送ゲート電極との重なり量よりも前記読み出し領域側に大きく形成されている
(2)に記載の固体撮像装置。
(4)
前記転送ゲート電極は、側面にサイドウォールを備え、
前記最表面暗電流抑制領域は、前記サイドウォール下に重なるように形成されている
(3)に記載の固体撮像装置。
(5)
前記電荷蓄積領域の転送ゲート電極側の端部は、前記暗電流抑制領域及び前記転送補助領域の転送ゲート電極側の端部とほぼ同じ位置とされている
(1)に記載の固体撮像装置。
(6)
半導体基板の表面側から深さ方向に第1導電型の不純物をイオン注入することにより電荷蓄積領域を形成する工程と、前記電荷蓄積領域の上層に第2導電型の不純物をイオン注入することにより転送補助領域を形成する工程と、前記転送補助領域の形成時に用いたマスクを介して、前記転送補助領域の上層に第2導電型の不純物を前記転送補助領域よりも高濃度にイオン注入することにより、暗電流抑制領域を形成する工程とからなる光電変換部を形成する工程と、
前記半導体基板上部の、前記電荷蓄積領域、前記転送補助領域、及び前記暗電流抑制領域に一部重なる領域に転送ゲート電極を形成する工程と、
を含む固体撮像装置の製造方法。
(7)
前記転送ゲート電極を形成した後、前記暗電流抑制領域より上層の前記半導体基板最表面に、第2導電型の不純物を前記暗電流抑制領域よりも高濃度にイオン注入することにより最表面暗電流抑制領域を形成する工程を有する
(6)に記載の固体撮像装置の製造方法。
(8)
前記転送ゲート電極を形成した後、前記半導体基板の表面側に前記光電変換部から転送されてくる信号電荷がよみだされる読み出し領域を形成する工程を有する
(7)に記載の固体撮像装置の製造方法。
(9)
前記暗電流抑制領域及び前記転送補助領域と前記転送ゲート電極との重なり量は、前記電荷蓄積領域と前記転送ゲート電極との重なり量よりも前記読み出し電極側に大きく形成されている
(8)に記載の固体撮像装置。
(10)
前記最表面暗電流抑制領域は、前記転送ゲート電極をマスクとしたセルフアラインで形成する
(9)に記載の固体撮像装置の製造方法。
(11)
前記転送ゲート電極の形成後、前記転送ゲート電極の側面にサイドウォールを形成する工程を有し、
前記最表面暗電流抑制領域は、前記サイドウォールをマスクとしたセルフアラインで形成する
(10)に記載の固体撮像装置の製造方法。
(12)
前記電荷蓄積領域と、前記転送補助領域及び前記暗電流抑制領域とは同じマスクを用いたイオン注入で形成する
(6)に記載の固体撮像装置の製造方法。
(13)
光学レンズと、
半導体基板の上部に形成された転送ゲート電極と、前記半導体基板の表面側から深さ方向に形成され、前記転送ゲート電極と一部重なるように形成された第1導電型の不純物領域からなる電荷蓄積領域と、前記電荷蓄積領域の上層に形成され、前記転送ゲート電極と一部重なるように形成された第2導電型の不純物領域からなる転送補助領域と、前記転送補助領域の上層に形成され、前記転送ゲート電極側の端部が前記転送補助領域の端部と同一位置となるように位置あわせして形成された暗電流抑制領域であって、前記転送補助領域と同導電型の不純物領域で形成され、前記転送補助領域よりも高濃度の不純物領域で構成された暗電流抑制領域と、を有して構成される光電変換部と、を備える固体撮像装置であって、前記光学レンズに集光された光が入射される固体撮像装置と、
前記固体撮像装置から出力される出力信号を処理する信号処理回路と、
を含む電子機器。
1,30,34,37,41,100,106,107・・・固体撮像装置、2・・・画素、3・・・画素領域、4・・・垂直駆動回路、5・・・カラム信号処理回路、6・・・水平駆動回路、7・・・出力回路、8・・・制御回路、10・・・水平信号線、11,12・・・基板、13・・・半導体ウェル層、14・・・配線層、15・・・層間絶縁膜、16・・・配線、17・・・カラーフィルタ層、18・・・平坦化膜、19・・・オンチップレンズ、20,31,101,103・・・電荷蓄積領域、21,105・・・第1暗電流抑制領域、22・・・転送補助領域、23,35,108・・・第2暗電流抑制領域、24・・・ゲート絶縁膜、25・・・サイドウォール、26・・・転送ゲート電極、27,28,29,32,38・・・フォトレジストマスク、39・・・酸化膜、40・・・支持基板、102,104・・・暗電流抑制領域、200・・・電子機器、210・・・光学レンズ、211・・・シャッタ装置、212・・・駆動回路、213・・・信号処理回路



Claims (13)

  1. 半導体基板の上部に形成された転送ゲート電極と、
    前記半導体基板の表面側から深さ方向に形成され、前記転送ゲート電極と一部重なるように形成された第1導電型の不純物領域からなる電荷蓄積領域と、前記電荷蓄積領域の上層に形成され、前記転送ゲート電極と一部重なるように形成された第2導電型の不純物領域からなる転送補助領域と、前記転送補助領域の上層に形成され、前記転送ゲート電極側の端部が前記転送補助領域の端部と同一位置となるように位置あわせして形成された第1暗電流抑制領域であって、前記転送補助領域と同導電型の不純物領域で形成され、前記転送補助領域よりも高濃度の不純物領域で構成された暗電流抑制領域と、を有して構成される光電変換部と、
    を含む固体撮像装置。
  2. 前記光電変換部は、前記転送補助領域上層の前記半導体基板の最表面に形成され、前記転送ゲート電極の下に達しない領域に形成された最表面暗電流抑制領域であって、前記暗電流抑制領域と同導電型の不純物領域で形成され、前記暗電流抑制領域よりも高濃度の不純物領域で構成された最表面暗電流抑制領域を含む
    請求項1に記載の固体撮像装置。
  3. 前記半導体基板の表面側に、前記光電変換部から転送されてくる信号電荷が読み出される読み出し領域を備え、
    前記暗電流抑制領域及び前記転送補助領域と転送ゲート電極との重なり量は、前記電荷蓄積領域と転送ゲート電極との重なり量よりも前記読み出し領域側に大きく形成されている
    請求項2に記載の固体撮像装置。
  4. 前記転送ゲート電極は、側面にサイドウォールを備え、
    前記最表面暗電流抑制領域は、前記サイドウォール下に重なるように形成されている
    請求項3に記載の固体撮像装置。
  5. 前記電荷蓄積領域の転送ゲート電極側の端部は、前記暗電流抑制領域及び前記転送補助領域の転送ゲート電極側の端部とほぼ同じ位置とされている
    請求項1に記載の固体撮像装置。
  6. 半導体基板の表面側から深さ方向に第1導電型の不純物をイオン注入することにより電荷蓄積領域を形成する工程と、前記電荷蓄積領域の上層に第2導電型の不純物をイオン注入することにより転送補助領域を形成する工程と、前記転送補助領域の形成時に用いたマスクを介して、前記転送補助領域の上層に第2導電型の不純物を前記転送補助領域よりも高濃度にイオン注入することにより、暗電流抑制領域を形成する工程とからなる光電変換部を形成する工程と、
    前記半導体基板上部の、前記電荷蓄積領域、前記転送補助領域、及び前記暗電流抑制領域に一部重なる領域に転送ゲート電極を形成する工程と、
    を含む固体撮像装置の製造方法。
  7. 前記転送ゲート電極を形成した後、前記暗電流抑制領域より上層の前記半導体基板最表面に、第2導電型の不純物を前記暗電流抑制領域よりも高濃度にイオン注入することにより最表面暗電流抑制領域を形成する工程を有する
    請求項6に記載の固体撮像装置の製造方法。
  8. 前記転送ゲート電極を形成した後、前記半導体基板の表面側に前記光電変換部から転送されてくる信号電荷がよみだされる読み出し領域を形成する工程を有する
    請求項7に記載の固体撮像装置の製造方法。
  9. 前記暗電流抑制領域及び前記転送補助領域と前記転送ゲート電極との重なり量は、前記電荷蓄積領域と前記転送ゲート電極との重なり量よりも前記読み出し電極側に大きく形成されている
    請求項8に記載の固体撮像装置。
  10. 前記最表面暗電流抑制領域は、前記転送ゲート電極をマスクとしたセルフアラインで形成する
    請求項9に記載の固体撮像装置の製造方法。
  11. 前記転送ゲート電極の形成後、前記転送ゲート電極の側面にサイドウォールを形成する工程を有し、
    前記最表面暗電流抑制領域は、前記サイドウォールをマスクとしたセルフアラインで形成する
    請求項10に記載の固体撮像装置の製造方法。
  12. 前記電荷蓄積領域と、前記転送補助領域及び前記暗電流抑制領域とは同じマスクを用いたイオン注入で形成する
    請求項6に記載の固体撮像装置の製造方法。
  13. 光学レンズと、
    半導体基板の上部に形成された転送ゲート電極と、前記半導体基板の表面側から深さ方向に形成され、前記転送ゲート電極と一部重なるように形成された第1導電型の不純物領域からなる電荷蓄積領域と、前記電荷蓄積領域の上層に形成され、前記転送ゲート電極と一部重なるように形成された第2導電型の不純物領域からなる転送補助領域と、前記転送補助領域の上層に形成され、前記転送ゲート電極側の端部が前記転送補助領域の端部と同一位置となるように位置あわせして形成された暗電流抑制領域であって、前記転送補助領域と同導電型の不純物領域で形成され、前記転送補助領域よりも高濃度の不純物領域で構成された暗電流抑制領域と、を有して構成される光電変換部と、を備える固体撮像装置であって、前記光学レンズに集光された光が入射される固体撮像装置と、
    前記固体撮像装置から出力される出力信号を処理する信号処理回路と、
    を含む電子機器。

JP2011143458A 2011-06-28 2011-06-28 固体撮像装置、固体撮像装置の製造方法、及び電子機器 Withdrawn JP2013012551A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011143458A JP2013012551A (ja) 2011-06-28 2011-06-28 固体撮像装置、固体撮像装置の製造方法、及び電子機器
CN201210208338.7A CN102856334B (zh) 2011-06-28 2012-06-19 固体摄像装置、固体摄像装置的制造方法和电子设备
US13/527,685 US8710559B2 (en) 2011-06-28 2012-06-20 Solid-state imaging apparatus, method of manufacturing solid-state imaging apparatus, and electronic apparatus
US14/188,052 US9299867B2 (en) 2011-06-28 2014-02-24 Method of manufacturing solid-state imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011143458A JP2013012551A (ja) 2011-06-28 2011-06-28 固体撮像装置、固体撮像装置の製造方法、及び電子機器

Publications (1)

Publication Number Publication Date
JP2013012551A true JP2013012551A (ja) 2013-01-17

Family

ID=47390288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011143458A Withdrawn JP2013012551A (ja) 2011-06-28 2011-06-28 固体撮像装置、固体撮像装置の製造方法、及び電子機器

Country Status (3)

Country Link
US (2) US8710559B2 (ja)
JP (1) JP2013012551A (ja)
CN (1) CN102856334B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015188049A (ja) * 2014-03-14 2015-10-29 キヤノン株式会社 固体撮像装置及び撮像システム
JP2016178143A (ja) * 2015-03-19 2016-10-06 セイコーエプソン株式会社 固体撮像素子及びその製造方法
JP2018513570A (ja) * 2015-03-31 2018-05-24 ダートマス カレッジ Jfetソースフォロアを有するイメージセンサ及びイメージセンサ画素

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011253A (ja) * 2012-06-28 2014-01-20 Sony Corp 固体撮像装置および電子機器
US8816462B2 (en) * 2012-10-25 2014-08-26 Omnivision Technologies, Inc. Negatively charged layer to reduce image memory effect
CN107359172B (zh) * 2013-01-16 2021-01-19 索尼半导体解决方案公司 摄像装置
US9369648B2 (en) * 2013-06-18 2016-06-14 Alexander Krymski Image sensors, methods, and pixels with tri-level biased transfer gates
JP2015119018A (ja) * 2013-12-18 2015-06-25 ソニー株式会社 固体撮像素子および電子機器
JP6609948B2 (ja) * 2015-03-19 2019-11-27 セイコーエプソン株式会社 固体撮像素子及びその製造方法
JP2016178145A (ja) * 2015-03-19 2016-10-06 セイコーエプソン株式会社 固体撮像素子及びその製造方法
EP3365916B1 (en) * 2015-10-21 2020-12-09 Heptagon Micro Optics Pte. Ltd. Demodulation pixel devices, arrays of pixel devices and optoelectronic devices incorporating the same
JP6949563B2 (ja) * 2017-06-02 2021-10-13 キヤノン株式会社 固体撮像装置、撮像システム及び移動体
JP2020021775A (ja) * 2018-07-30 2020-02-06 キヤノン株式会社 固体撮像装置及び撮像システム
US11100586B1 (en) 2019-07-09 2021-08-24 Wells Fargo Bank, N.A. Systems and methods for callable options values determination using deep machine learning
KR20210064687A (ko) * 2019-11-26 2021-06-03 에스케이하이닉스 주식회사 이미지 센서

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126893A (ja) 1997-10-23 1999-05-11 Nikon Corp 固体撮像素子とその製造方法
US7115924B1 (en) * 2005-06-03 2006-10-03 Avago Technologies Sensor Ip Pte. Ltd. Pixel with asymmetric transfer gate channel doping
KR100877691B1 (ko) 2005-12-08 2009-01-09 한국전자통신연구원 이미지 센서 및 이미지 센서의 트랜스퍼 트랜지스터 구동방법
JP4859045B2 (ja) 2006-09-06 2012-01-18 シャープ株式会社 固体撮像素子および電子情報機器
US7485965B2 (en) * 2007-05-25 2009-02-03 International Business Machines Corporation Through via in ultra high resistivity wafer and related methods
KR100997326B1 (ko) * 2007-12-27 2010-11-29 주식회사 동부하이텍 이미지 센서 및 그 제조방법
US20110032405A1 (en) * 2009-08-07 2011-02-10 Omnivision Technologies, Inc. Image sensor with transfer gate having multiple channel sub-regions
JP2011253963A (ja) * 2010-06-02 2011-12-15 Sony Corp 固体撮像素子の製造方法、固体撮像素子、撮像装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015188049A (ja) * 2014-03-14 2015-10-29 キヤノン株式会社 固体撮像装置及び撮像システム
US10057519B2 (en) 2014-03-14 2018-08-21 Canon Kabushiki Kaisha Solid-state imaging device and imaging system
US10462400B2 (en) 2014-03-14 2019-10-29 Canon Kabushiki Kaisha Solid-state imaging device and imaging system
US11019291B2 (en) 2014-03-14 2021-05-25 Canon Kabushiki Kaisha Solid-state imaging device and imaging system
JP2016178143A (ja) * 2015-03-19 2016-10-06 セイコーエプソン株式会社 固体撮像素子及びその製造方法
JP2018513570A (ja) * 2015-03-31 2018-05-24 ダートマス カレッジ Jfetソースフォロアを有するイメージセンサ及びイメージセンサ画素

Also Published As

Publication number Publication date
US20130002918A1 (en) 2013-01-03
US8710559B2 (en) 2014-04-29
US9299867B2 (en) 2016-03-29
US20140167124A1 (en) 2014-06-19
CN102856334B (zh) 2016-08-24
CN102856334A (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
US11710753B2 (en) Solid-state imaging device and method of manufacturing the same, and imaging apparatus
JP2013012551A (ja) 固体撮像装置、固体撮像装置の製造方法、及び電子機器
JP4224036B2 (ja) フォトダイオード領域を埋め込んだイメージセンサ及びその製造方法
JP5564909B2 (ja) 固体撮像装置とその製造方法、及び電子機器
JP5564847B2 (ja) 固体撮像装置とその製造方法、及び電子機器
JP5552768B2 (ja) 固体撮像装置とその製造方法、及び電子機器
JP5365144B2 (ja) 固体撮像装置とその製造方法、及び電子機器
JP3584196B2 (ja) 受光素子及びそれを有する光電変換装置
JP2012199489A (ja) 固体撮像装置、固体撮像装置の製造方法、及び電子機器
WO2013054663A1 (ja) 固体撮像装置、撮像装置
JP2013012556A (ja) 固体撮像装置とその製造方法、および電子機器
US9966399B2 (en) Pixel having a plurality of pinned photodiodes
JP2011159757A (ja) 固体撮像装置とその製造方法、固体撮像装置の駆動方法、及び電子機器
JP2011204992A (ja) 固体撮像素子およびその製造方法、並びに電子機器
US20120104523A1 (en) Solid-state imaging device manufacturing method of solid-state imaging device, and electronic apparatus
JP2011035154A (ja) 固体撮像装置、および、その製造方法、電子機器
KR101476035B1 (ko) 고체 촬상 장치의 제조 방법 및 고체 촬상 장치
JP2006108497A (ja) 固体撮像装置
JP5453968B2 (ja) 固体撮像装置とその製造方法、及び電子機器
JP2009188380A (ja) イメージセンサ及びその製造方法
EP3082165B1 (en) A pixel having a plurality of pinned photodiodes
WO2021241062A1 (ja) 固体撮像装置、電子機器、及び固体撮像装置の製造方法
JP6682674B2 (ja) 固体撮像装置および固体撮像装置の製造方法
JP5035452B2 (ja) 固体撮像装置
JP2010135653A (ja) 固体撮像素子及びその製造方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902