JP2012503773A - 液滴ベースの分析システム - Google Patents

液滴ベースの分析システム Download PDF

Info

Publication number
JP2012503773A
JP2012503773A JP2011529019A JP2011529019A JP2012503773A JP 2012503773 A JP2012503773 A JP 2012503773A JP 2011529019 A JP2011529019 A JP 2011529019A JP 2011529019 A JP2011529019 A JP 2011529019A JP 2012503773 A JP2012503773 A JP 2012503773A
Authority
JP
Japan
Prior art keywords
droplet
sample
droplets
emulsion
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011529019A
Other languages
English (en)
Other versions
JP2012503773A5 (ja
Inventor
ビリー・ウェイン・コルストン・ジュニア
ベンジャミン・ジョセフ・ハインドソン
ケヴィン・ディーン・ネス
ドナルド・アーサー・マスケリエ
フレッド・ポール・ミラノヴィッチ
ダグラス・エヌ・モドリン
ヴィンセント・リオット
サミュエル・バード
アンソニー・ジョセフ・マカレヴィッチ
フィリップ・ベルグレイダー
Original Assignee
クァンタライフ・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クァンタライフ・インコーポレーテッド filed Critical クァンタライフ・インコーポレーテッド
Publication of JP2012503773A publication Critical patent/JP2012503773A/ja
Publication of JP2012503773A5 publication Critical patent/JP2012503773A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3011Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions using a sheathing stream of a fluid surrounding a central stream of a different fluid, e.g. for reducing the cross-section of the central stream or to produce droplets from the central stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/10Maintenance of mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • B29C45/006Joining parts moulded in separate cavities
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/18Devices for withdrawing samples in the liquid or fluent state with provision for splitting samples into portions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/23Mixing of laboratory samples e.g. in preparation of analysing or testing properties of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/414Emulsifying characterised by the internal structure of the emulsion
    • B01F23/4143Microemulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/414Emulsifying characterised by the internal structure of the emulsion
    • B01F23/4145Emulsions of oils, e.g. fuel, and water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/04Exchange or ejection of cartridges, containers or reservoirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0822Slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0858Side walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0478Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • B01L2400/049Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0622Valves, specific forms thereof distribution valves, valves having multiple inlets and/or outlets, e.g. metering valves, multi-way valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • B01L7/525Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • B29C2045/0079Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping applying a coating or covering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/752Measuring equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

装置および方法を含む、分析を実行するシステム。これらシステムは、特に、試料成分を液滴もしくは他の分割物に分割することにより、試料成分を分割すること、液滴内の成分を増幅もしくは他の様式で反応させること、増幅された成分もしくは成分の特徴を検出すること、および/またはその結果生成されたデータを解析することを含み得る。

Description

[優先権出願の相互参照]
本願は、米国特許法第119条(e)、パリ条約による優先権、およびすべての他の適用法に基づき、それらの下で以下の米国仮特許出願の利益を主張する。
・2008年9月23日に出願された米国仮特許出願第61/194043号明細書
・2009年2月5日に出願された米国仮特許出願第61/206975号明細書
・2009年7月21日に出願された米国仮特許出願第61/271538号明細書
・2009年9月1日に出願された米国仮特許出願第61/275731号明細書
・発明者としてKevin Dean Ness、Samuel Burd、Benjamin J.Hindson、Donald A.Masquelier、およびBilly W.Colston,Jr.の名前が挙げられている、「CARTRIDGE WITH LYSIS CHAMBER AND DROPLET CHAMBER」と題する2009年9月21日に出願された米国仮特許出願第61/277249号明細書
・発明者としてKevin Dean Ness、Benjamin J.Hindson、Billy W.Colston,Jr.、およびDonald A.Masquelierの名前が挙げられている、「DROPLET GENERATOR FOR DROPLET−BASED ASSAYS」と題する2009年9月21日に出願された米国仮特許出願第61/277204号明細書
・発明者としてKevin Dean Ness、Donald A.Masquelier、Billy W.Colston,Jr.、およびBenjamin J.Hindsonの名前が挙げられている、「CONTINUOUS FLOW THERMOCYCLER」と題する2009年9月21日に出願された米国仮特許出願第61/277200号明細書
・発明者としてDonald A.Masquelier、Kevin Dean Ness、Benjamin J.Hindson、およびBilly W.Colston, Jr.の名前が挙げられている、「DETECTION SYSTEMS FOR DROPLET−BASED ASSAYS」と題する2009年9月21日に出願された米国仮特許出願第61/277203号明細書
・発明者としてVincent Riot、Devin Dean Ness、Billy W.Colston,Jr.、Benjamin J.Hindson、Douglas N.Modlin、およびAnthony J.Makarewicz,Jr.の名前が挙げられている、「QUANTIFICATION OF DROPLET−BASED ASSAYS」と題する2009年9月21日に出願された米国仮特許出願第61/277216号明細書
・発明者としてBenjamin J. Hindson、Kevin Dean Ness、Billy W.Colston,Jr.、Fred P.Milanovich、Donald A.Modlin、およびAnthony J.Makarewicz,Jr.の名前が挙げられている、「DROPLET−BASED ASSAY SYSTEM」と題する2009年9月22日に出願された米国仮特許出願第61/277270号明細書
これら優先権出願は、あらゆる目的のためその全体が参照により本明細書に援用されている。
[他の資料の相互参照]
本願は、以下の資料をあらゆる目的のためその全体を参照により本明細書に援用する:2006年5月9日に出願された米国特許第7041481号明細書(特許文献1)およびJoseph R.Lakowicz、Principles of Fluorescence Spectroscopy(第2版、1999年)(非特許文献1)。
[初めに]
分析とは、試料内の成分の有無、量、活性、および/または他の性質もしくは特徴を特定するための手順である。多くの場合、分析される試料は複雑であり、試料内の興味のある成分−核酸、酵素、ウイルス、細菌等−は、試料のごく微量の成分であり、分析の結果は迅速に求められ、かつ/または多くの試料に対する分析の結果が求められる。不都合なことに、デオキシリボ核酸(DNA)等の核酸のポリメラーゼ連鎖反応(PCR)等の現在の分析システムは、数ある欠点の中でも特に、遅く、試料の複雑性の影響を受けやすく、かつ/または誤検出を報告しがちである。したがって、改良された分析システムが必要である。
米国特許第7041481号明細書
Joseph R.Lakowicz、Principles of Fluorescence Spectroscopy(第2版、1999年)。
本開示は、装置および方法を含め、分析を実行するシステムを提供する。これらシステムは、特に、試料を液滴もしくは他の分割物(partition)に分割することにより、試料の成分を分離すること、液滴内の成分を増幅もしくは他の様式で反応させること、増幅された成分もしくは増幅された成分の特徴を検出すること、および/またはその結果生成されたデータを解析することを含み得る。
本開示の態様による液滴ベースの分析を使用する試料解析方法で実行し得る例示的なステップを列挙したフローチャートである。 機器と、機器に接続して、試料準備を提供するカートリッジであって、機器により作動し制御されるカートリッジとを備える、本開示の態様による液滴ベースの分析を実行するシステムの例示的な実施形態の斜視図である。 図2のシステムにより実行される例示的なプロセスシーケンスの概略図である。 図2の機器の概略図である。 事前準備された試料を利用するように設計された、本開示の態様による液滴ベースの分析を実行する機器の別の例示的な実施形態の斜視図である。 本開示の態様による液滴ベースの分析を使用する試料分析方法で実行し得る例示的なステップを列挙したフローチャートである。 本開示の態様による液滴ベースの分析を実行する例示的なシステムのうちの選択された部分の概略図である。 フローに基づいて増幅され、液滴が生成され、互いに分離された液滴を装填する本開示の態様による例示的なシステムの概略図である。 液滴が液滴生成器および/または液滴格納場所から反応場所に輸送される、本開示の態様による液滴ベースの分析を使用する試料分析方法で実行し得る例示的なステップを列挙したフローチャートである。 本開示の態様による図8の方法での液滴輸送ステップに含め得る例示的なステップを列挙したフローチャートである。 液滴が液滴生成器および/または液滴格納場所から反応場所に輸送される、本開示の態様による液滴に基づいて分析を実行する例示的なシステムのうちの選択された部分の概略図であり、水平矢印は、システムの構造部品間の液滴の移動を示す。 液滴格納場所を反応場所に繋ぐ、本開示の態様による例示的な液滴輸送器の概略図である。 液滴生成および反応場所への液滴輸送が、液滴が格納されずに連続フローにより結び付けられた、本開示の態様による図10のシステムの一例の概略図である。 液滴生成および反応場所への液滴輸送が切断され、液滴が生成されてから、調整可能かつ選択可能な時間期間にわたって液滴を格納し、それから、液滴処理のために反応場所に装填することができる、本開示の態様による図10のシステムの一例の概略図である。 システムが複数の別個の液滴パケットを並行して輸送し、反応させ、かつ/または検出可能なように、選択された要素が複製された、一般に図13のシステムに関する本開示の態様によるシステムの一例の概略図である。 液滴生成と反応場所への液滴輸送と切り離され、システムが選択された液滴パケットを乳濁液アレイから反応場所に輸送するオートサンプラを利用する、本開示の態様による図10のシステムの別の例の概略図である。 オートサンプラが液滴パケットを乳濁液アレイから逐次取り出し、少なくとも1つのスペーサ流体で互いに隔てる、本開示の態様による図15のシステムのうちの選択された部分の断片図である。 液滴生成と反応場所への液滴装填との多段階切り離しが可能であり、システムが、(a)乳濁液アレイの部分として液滴パケットの格納を提供し、次に、(b)中間格納場所への格納を提供してから、パケットを反応場所に導入する、本開示の態様による図10のシステム一例の概略断片図である。 液滴生成と反応場所への液滴装填との多段階切り離しが可能であり、システムが図17のシステムに関連するが、任意の順序にアクセス可能な複数の分離された中間格納場所を含む、本開示の態様による図10のシステムの別の例の概略断面図である。 静止流体内に配置されている間に増幅の条件が付与される液滴を使用する、本開示の態様による試料分析方法で実行し得る例示的なステップを列挙したフローチャートである。 乳濁液アレイの並行(バッチ)増幅を使用する、本開示の態様による試料分析方法で実行し得る例示的なステップを列挙したフローチャートである。 本開示の態様による図20の方法を実行する例示的なシステムのうちの選択された部分の概略図である。 本開示の態様による、液滴生成器アレイが備えられた例示的な装置の図である。 液滴生成器のサブセットを示す、概して図22の「23」で示される領域の図22の装置の断片図である。 圧力を加えることにより、液滴がどのようにして生成され液滴槽に移されるかを示す、図23の液滴生成器のうちの1つの概略図である。 圧力を液滴生成器に加えて、液滴生成を促進する例示的な圧力マニフォルドが装置に組み付けられた、概して図23の線25−25に沿って切り取られた本開示の態様による図22の装置の断面図である。 図25と同様に切り取られているが、圧力マニフォルドが、装置のウェルを封止して、熱循環を可能にする例示的な封止部材で置換された、本開示の態様による図22の装置の断面図である。 本開示の態様による、液滴生成器アレイを組み込んだ別の例示的な装置の断片図である。 液滴生成後の図27の装置の液滴生成器の底面図である。 液滴を装置の下からどのように撮像し得るかを示す、概して図28の線29−29に沿って切り取られた図28の液滴生成器の断面図である。 本開示の態様による、液滴生成器アレイを組み込んださらに別の例示的な装置の断片図である。 液滴生成後の図30の装置の液滴生成器の底面図である。 液滴を装置の下からどのように撮像し得るかを示す、概して図31の線32−32に沿って切り取られた図31の液滴生成器の概略図である。 本開示の態様による、プレートにより保持された乳濁液アレイをバッチで検出する例示的な撮像システムの図である。 概して図33の線34−34に沿い、プレートのウェルに沿って切り取られた図33のプレートの断面図である。 本開示の態様による、スライドにより保持された乳濁液の画像を検出する例示的な撮像システムの図である。 概して図35の線36−36に沿って切り取られた図35の撮像システムのスライドを通る断面図である。 液滴撮像のため、検出前に液滴が装填されるバイアルを含む、本開示の態様による例示的な撮像システムの分解組立図である。 乳濁液を保持したプレートからのフローで乳濁液の液滴を検出チャンバに輸送することにより、増幅された乳濁液を撮像する、本開示の態様による例示的なシステムの概略図である。 乳濁液を保持したプレートからのフローで乳濁液の液滴を複数の検出チャンバに輸送することにより、増幅された乳濁液を撮像する、本開示の態様による例示的なシステムの概略図である。 乳濁液アレイから検出チャネルに液滴を輸送する、本開示の態様による例示的なシステムの概略図である。 DNA増幅システムの使い捨てカートリッジ内またはその使い捨てカートリッジと併せて実行し得る、本開示の態様によるDNA増幅方法のステップを示すフローチャートである。 本開示の態様による使い捨て試料準備カートリッジおよびカートリッジの様々な構成要素間の適した流体接続を示す概略図である。 図41の試料準備ステップのうちのいくつかまたはすべての実行に適した例示的な使い捨てカートリッジの内部の等角投影図である。 図41の試料準備ステップのうちのいくつかまたはすべての実行に適した例示的な使い捨てカートリッジの内部の側面図である。 図41の試料準備ステップのうちのいくつかまたはすべての実行に適した例示的な使い捨てカートリッジの内部の上面図である。 使い捨てカートリッジの様々なチャンバ間での流体の移動を制御するのに適した、本開示の態様による2チャンバ液圧機構の概略図である。 図46の2チャンバ機構と同様であり、使い捨てカートリッジの様々なチャンバ間での流体の移動を制御するのに適した、本開示の態様による3チャンバ液圧機構の概略図である。 使い捨てカートリッジの様々なチャンバ間での流体の移動を制御するのに適した例示的な様々な液滴生成器の上面図である。 使い捨てカートリッジの様々なチャンバ間での流体の移動を制御するのに適した例示的な様々な液滴生成器の上面図である。 使い捨てカートリッジの様々なチャンバ間での流体の移動を制御するのに適した例示的な様々な液滴生成器の上面図である。 使い捨てカートリッジの様々なチャンバ間での流体の移動を制御するのに適した例示的な様々な液滴生成器の上面図である。 使い捨てカートリッジの様々なチャンバ間での流体の移動を制御するのに適した例示的な様々な液滴生成器の上面図である。 使い捨てカートリッジの様々なチャンバ間での流体の移動を制御するのに適した例示的な様々な液滴生成器の上面図である。 本開示の態様による、別の使い捨て試料準備カートリッジおよびカートリッジの様々な構成要素間の適した流体接続を示す概略図である。 本開示の態様による、さらに別の使い捨て試料準備カートリッジ(左)、相補的なPCR機器(右)、およびカートリッジおよび機器の様々な構成要素間での適した流体接続を示す概略図である。 本開示の態様による、さらに別の使い捨て試料準備カートリッジ(左)、相補的なPCR機器の部分(右)、およびカートリッジおよび機器の様々な構成要素間の適した流体接続を示す概略図である。 本開示の態様によるさらに別の使い捨て試料準備カートリッジの等角投影図である。 図52のカートリッジの底面図である。 本開示の態様による例示的な液滴生成システムの概略図である。 本開示の態様による例示的な液滴生成器の一部分の等角投影図である。 本開示の態様による別の例示的な液滴生成器の一部分の等角投影図である。 本開示の態様による別の液滴生成器の内部を示す側面断面図である。 本開示の態様による別の例示的な液滴生成器の内部を示す側面断面図である。 液滴出力部から分解された試料包含部を示す、本開示の態様による別の例示的な液滴生成器の内部を示す側面断面図である。 一緒に組み立てられた図59の試料包含部および液滴出力部を示す側面断面図である。 本開示の態様による、液滴生成器および流体槽を含む液滴生成システムの側面断面図である。 図61の液滴生成システムの遠位部の拡大側面断面図である。 本開示の態様による別の液滴生成システムの遠位部の側面断面図である。 本開示の態様によるさらに別の液滴生成システムの遠位部の側面断面図である。 本開示の態様によるさらに別の液滴生成システムの側面断面図である。 本開示の態様によるさらに別の液滴生成システムの側面断面図である。 本開示の態様によるさらに別の液滴生成システムの側面断面図である。 本開示の態様によるさらに別の液滴生成システムの側面断面図である。 本開示の態様による様々なクロス型液滴生成器間の関係を示す4つの異なる液滴生成器の等角投影図である。 本開示の態様による別の液滴生成システムの側面断面図である。 本開示の態様によるさらに別の液滴生成システムの側面断面図である。 試料/試薬流体混合物を熱循環させてPCRを促進する方法を示すフローチャートである。 本開示の態様による例示的な熱循環機の分解組立等角投影図である。 図73の熱循環機の中央部の分解されていない等角投影図である。 本開示の態様による、比較的小さな外径の流体管に適する、図73の組み立てられた熱循環機の拡大部分を示す等角投影図である。 本開示の態様による、比較的大きな外径の流体管に適する、組み立てられた熱循環機の代替の実施形態の拡大部分を示す等角投影図である。 外部が取り付けられていない図73の熱循環機の上面図である。 線Cが熱循環機の中心を中心として時計回りに1回転して掃引した際の、概して図77の線Cに沿って切り取られた、コアおよび他の構成要素の相対的な配置を示す、図73の熱循環機の概略断面図である。 図75の熱循環機の中心部分の拡大等角投影図である。 図73の熱循環機の2つの内部間の界面付近の平均流体速度の関数として測定された温度と弧の長さとの関係のグラフである。 本開示の態様による、任意の「ホットスタート」領域を有する熱循環機の中心部分の等角投影図である。 本開示の態様による、熱循環機の代替の実施形態の概略断面図である。 本開示の態様による、熱循環機の代替の実施形態の概略断面図である。 本開示の態様による、熱循環機の代替の実施形態の概略断面図である。 本開示の態様による、熱循環機の代替の実施形態の概略断面図である。 本開示の態様による、熱循環機の代替の実施形態の概略断面図である。 本開示の態様による、熱循環機の代替の実施形態の概略断面図である。 本開示の態様による、熱循環機の代替の実施形態の概略断面図である。 本開示の態様による、熱循環機の代替の実施形態の概略断面図である。 本開示の態様による、関連付けられた加熱要素、冷却要素、および筐体要素を有する熱循環機の分解組立等角投影図である。 本開示の態様による、長さに沿ってサイズが変化する温度領域を有する例示的な熱循環機の側面図である。 本開示の態様による、長さに沿って数が変化する温度領域を有する例示的な熱循環機の側面図である。 試料を含有する液滴を照射し、続けて液滴が発する蛍光を検出する、本開示の態様による光学検出システムの概略図である。 標的を含有する液滴が発する蛍光と標的を含有しない液滴が発する蛍光との区別を示す、図93のシステム等の光学検出システムにより検出される蛍光の強度と時間との関係のグラフである。 刺激照射が光ファイバを通して試料含有液滴に向けて伝播する、本開示の態様による光学検出システムの概略図である。 散乱照射および蛍光照射が光ファイバを通して液滴含有試料から離れて伝播する、本開示の態様による光学検出システムの概略図である。 刺激照射が光ファイバを通して試料含有液滴に向けて伝播し、蛍光照射が光ファイバを通して液滴から離れて伝播する、本開示の態様による光学検出システムの概略図である。 光ファイバが流体管の部分とどのように統合し得るかを示す、入射照射が流体チャネルを通って移動中の試料含有液滴と交差する交差領域を示す。 1本の光ファイバをどのように使用して、入射照射および刺激蛍光の両方を伝送し得るかを示す、入射照射が流体チャネルを通って移動中の試料含有液滴と交差する別の交差領域を示す。 1本の光ファイバを通して入射照射および刺激蛍光の両方を伝送するように構成されると共に、照射を1度に実質的に1つの液滴に/から伝播するようにも構成される別の交差領域を示す。 入射照射が複数の別個の光線に分離する、本開示の態様による光学検出システムの概略図である。 入射照射が、調整可能なミラーにより比較的広い交差領域に拡散する、本開示の態様による光学検出システムの概略図である。 試料含有液滴を所望の距離だけ互いから隔てる、本開示の態様によるフロー収束機構を示す。 試料含有液滴を所望の距離だけ互いから隔てる、本開示の態様による別のフロー収束機構を示す。 流体チャネル直径を適宜選択することが、液滴の適切な離間にどのように役立ち得るかを示す、本開示の態様による流体管の部分を示す。 本開示の態様によるバッチ蛍光検出システムを示す。 本開示の態様による、試料含有液滴から蛍光を検出する方法を示すフローチャートである。 本開示の態様による、複数の試料含有液滴内の標的分子濃度を特定する方法を示すフローチャートである。 検出された液滴の数が、蛍光強度の測定の関数としてグラフ化された例示的な実験データを示すヒストグラムである。 図108での実験データ(実線)を、様々な近似次数を使用して数値的に再現された蛍光分布(一点短鎖線)と比較するヒストグラムである。 様々な近似次数を使用して数値的に再現された図108の蛍光分布の最小二乗平均誤差の値を示すヒストグラムである。 本開示の態様による、試料内の標的分子濃度を数値的に推定する方法を示すフローチャートである。 液滴信号を表す一続きのピークを示すと共に、正増幅液滴および付増幅液滴に対応して液滴信号を割り当てるための信号閾値を示す、本開示の態様による、液滴の流れから時間に関して測定し得る蛍光信号の例示的なグラフである。 各範囲が発生する相対頻度が棒の高さで示される、本開示の態様により図112の流れから測定し得る液滴信号強度の範囲の例示的なヒストグラムである。 制御装置および/または較正器を利用して核酸増幅の液滴ベースのテストを実行する、本開示の態様による例示的なシステムの概略図である。 第1の染料を使用して核酸標的の増幅を検出し、第2の染料を使用するテスト中、システムのばらつきを制御する例示的な構成の、本開示の態様による図114のシステムの選択された態様の概略図である。 第1の検出器チャネル内で増幅信号を検出し、第2の検出器チャネル内で受動制御信号を検出できるようにするために、本開示の態様による図115のシステム構成に含み得る例示的な試薬の概略図である。 図115のシステム構成を使用してシステムのばらつきを補正する、本開示の態様による例示的な手法のフローチャートである。 第1の染料を使用して液滴セット内の核酸標的の増幅を検出し、かつ(a)テスト前、テスト中、および/またはテスト後にシステムを較正するか、または(b)別の液滴セット内に第1の染料もしくは第2の染料を使用するテスト中にシステム態様のばらつきを制御する例示的な構成での、本開示の態様による図114のシステムの選択された態様の概略図である。 本開示の態様により、システム較正中および続けて実行される試料テスト中に、図118のシステム較正のフローから時間の経過に伴って検出し得る蛍光信号の例示的なグラフである。 図118のシステム構成を使用してテスト中に生じるシステムのばらつきを補正する、本開示の態様による例示的な方法のフローチャートである。 同じ液滴内の一対の核酸標的の増幅をテストする例示的な構成での、本開示の態様による図114のシステムの選択された態様の概略図である。 同じ液滴内の一対の核酸標的の増幅をテストする別の例示的な構成での、本開示の態様による図114のシステムの選択された態様の概略図である。 核酸標的毎に異なる検出器チャネル(すなわち、異なる検出波長または波長範囲)で増幅信号を検出できるようにするために、本開示の態様による図121および図122のシステム構成に含め得る例示的な標的に固有の試薬の概略図である。 1つのチャネルが制御標的の振幅成功を検出し、それにより、増幅の阻害がないことを示す、異なる検出器チャネルを使用して、本開示の態様による図121および図122のシステム構成のフローから時間の経過に伴って検出し得る蛍光信号の例示的な一対のグラフである。 本開示の態様により、概して図124でのように検出される蛍光信号を有するが、制御信号が、増幅が阻害されることを示す一対の例示的なグラフである。 標的毎に異なる液滴セットを使用して一対の核酸標的の増幅をテストする例示的な構成での、本開示の態様による図114のシステムの選択された態様の概略図である。 各チャネルが別個の核酸標的の増幅を関しする、本開示の態様による図126のシステム構成のフローから時間の経過に伴って検出し得る蛍光信号の一対の例示的なグラフである。 本開示の態様による図114のシステムでの使用に適し得る蛍光染料の例示的な吸収スペクトルおよび発光スペクトルを示す一対のグラフである。 本開示の態様による図114のシステムの例示的な実施形態での図128の蛍光染料の例示的な使用を示す概略図である。 液滴テスト信号セットを処理して、より均一な信号強度にすることにより、テスト内でシステムのばらつきを補正する、本開示の態様による例示的な手法のフローチャートである。 液滴信号を提供する各信号ピークの幅に基づいて液滴信号を変換する、本開示の態様による例示的な手法のフローチャートである。
本開示は、装置および方法を含め、分析を実行するシステムを提供する。これらシステムは、特に、(A)臨床試料または環境試料等の分析する試料を準備すること、(B)試料を、約1つのみの成分(単一配列の核酸標的(DNAもしくはRNA)または関心のある他の検体)をそれぞれ含む液滴または他の分割物に分割することにより、試料の成分を分離すること、(C)液滴内の成分を増幅または他の様式で反応させること、(D)増幅または反応した成分またはその特徴を検出すること、ならびに/あるいは(E)その結果生成されたデータを解析することを含み得る。このようにして、複雑な試料を複数のより単純でより解析し易い試料に変えることができ、それに付随して背景時間および分析時間が短縮される。
図1は、そのような液滴または分割物に基づく分析を実行する例示的なシステム500を示す。簡潔に言えば、このシステムは、試料準備502、液滴生成504、反応(例えば、増幅)506、検出508、およびデータ解析510を含み得る。システムは、デジタルPCR(ポリメラーゼ連鎖反応)解析の実行に利用し得る。より詳細には、試料準備502は、臨床試料または環境試料等の試料を集めること、試料を処理して、関連した核酸を遊離させること、および核酸を含む反応混合物(例えば、標的核酸を増幅するための)を形成することを含み得る。液滴生成504は、例えば、液滴毎に各標的核酸の約1配列を有するように、液滴内の核酸を被包することであって、液滴は油等の非混和性のキャリア流体内に懸濁されて、乳濁液を形成する、被包することを含み得る。反応506は、液滴内に標的核酸が存在する場合、標的核酸が増幅されて追加の配列が形成されるように、液滴に熱循環等の適した反応を施して、PCR増幅を誘導することを含み得る。検出508は、増幅があったか否かを示す何らかの信号を液滴から検出することを含み得る。最後に、データ解析510は、増幅が発生した液滴の割合に基づいて試料内の標的核酸の濃度を推定することを含み得る。
このシステムのこれらおよび他の態様について、以下の項:(I)定義、(II)システム概説/構造、(III)試料準備/カートリッジ、(IV)液滴生成器、(V)連続フロー熱循環機、(VI)検出、(VII)定量化/解析、(VIII)制御および較正、(IX)臨床用途、ならびに(X)多重分析において後述する。
[I.定義]
本開示において使用される技術用語は、当業者により一般に認識される意味を有する。しかし、以下の用語は、後述するように追加の意味を有し得る。
乳濁液−液体である非混和性のキャリア流体内に配置された液滴を含む組成物。キャリア流体は、背景流体(background fluid)とも呼ばれ、キャリア相、キャリア、および/または背景相とも呼ばれ得る連続相を形成する。液滴(例えば、水滴)は、前景流体とも呼ばれる少なくとも1つの液滴流体により形成され、前景流体は液体であり、液滴相(分散相または不連続相とも呼ばれ得る)を形成する。液滴相は連続相と混合せず、これは、液滴相(すなわち、液滴)と連続相(すなわち、キャリア流体)とが混合して均質性を有することがないことを意味する。液滴は、連続相により互いに分離され、連続相により被包(すなわち、囲まれる/囲繞される)。
乳濁液の液滴は、連続相内で任意の均一分布または不均一分布を有し得る。不均一の場合、液滴の濃度は様々であり、液滴濃度の高い1つまたは複数の領域および液滴濃度の低い1つまたは複数の領域を連続相内に提供し得る。例えば、液滴は、連続相内に沈んでもよく、もしくは浮かんでもよく、チャネルに沿って1つまたは複数のパケットに凝集してもよく、またはフローの中心もしくは周界に向かって収束等してもよい。
本明細書において開示されるいずれの乳濁液も、単分散性を有してもよく、すなわち、少なくともおおよそ均一なサイズの液滴で構成されてもよく、または多分散性を有してもよく、すなわち、様々なサイズの液滴で構成されてもよい。単分散性の場合、例えば、乳濁液の液滴の容積は、平均液滴量の±約100%、50%、20%、10%、5%、2%、または1%未満の標準偏差で変化し得る。オリフィスから生成される液滴は、単分散性の場合もあれば、多分散性の場合もある。
乳濁液は、任意の適した組成を有し得る。乳濁液は、主要な液体化合物または各相の液体化合物の種類により特徴付け得る。乳濁液の主要な液体化合物は水および油であり得る。「油」は、水と混合せず、高い炭素含有量を有する任意の液体化合物または液体化合物の混合物である。いくつかの例では、油は、特に、高い水素、フッ素、ケイ素、酸素、またはこれらの任意の組み合わせの含有量も有し得る。例えば、本明細書において開示されるいかなる乳濁液も、油中水形(W/O)乳濁液(すなわち、連続油相内に水滴がある)であり得る。油は、例えば特に、少なくとも1つのシリコーン油、鉱物油、フルオロカーボン油、植物油、またはこれらの組み合わせであってもよく、またはこれ(ら)を含んでもよい。少なくとも1つの界面活性剤、試薬、試料(すなわち、その分割物)、他の添加剤、標識、粒子、またはこれらの任意の組み合わせ等の他の任意の適した構成要素が、任意のエマルジョン相に存在し得る。
標準の乳濁液は、熱は一般に界面張力を低減させ、液滴の合体を生じさせ得るため、密な状態にある(例えば、各液滴が隣の液滴に近い)場合、加熱されたとき(例えば、60℃を超える温度まで)不安定になる。したがって、標準の密な乳濁液は、乳濁液の液滴が互いに接触しないように保たれない限り、または添加剤(例えば、他の油性基剤または界面活性剤等)を使用して、安定性条件(例えば、界面張力、粘度、立体障害等)を変更しない限り、PCR等の高温の反応中に保全性を保たない。例えば、液滴を1本の縦列内に配置し、チャネルに沿って互いに離間させて、PCRを実行するための熱循環を可能にし得る。しかし、標準の乳濁液を使用したこの手法の後では、高濃度の液滴が不可能であり、それにより、液滴ベースの分析のスループットが実質的に制限される。
本明細書において開示されるいかなる乳濁液も、熱安定性乳濁液であり得る。熱安定性乳濁液は、少なくとも50℃まで加熱された場合に合体に耐える任意の乳濁液である。熱安定性乳濁液は、PCRの熱循環全体を通して合体に耐える(すなわち、デジタルPCRの実行が可能な)乳濁液であるPCR安定性乳濁液であり得る。したがって、PCR安定性乳濁液は、特に、少なくとも80℃または90℃まで加熱された場合に合体に耐え得る。熱安定性により、PCR安定性乳濁液では、標準乳濁液とは対照的に、熱循環全体を通して実質的に単分散性を保つ液滴内でPCR分析を行うことが可能である。したがって、PCR安定性乳濁液を使用するデジタルPCR分析は、標準の乳濁液を使用する場合よりもはるかに定量的であり得る。乳濁液は、例えば特に、キャリア流体および界面活性剤を適宜選択することによりPCR安定性として配合される。フロー式分析用のPCR安定性乳濁液を生成するための例示的な油調合物は以下である:(1)Dow Corning 5225C Formulation Aid(デカメチルシクロペンタシロキサンに有効成分10%)−20%w/w、有効成分終濃度2%w/w、(2)Dow Corning 749 Fluid(デカメチルシクロペンタシロキサンに有効成分50%)−5%w/w、有効成分2.5%w/w、および(3)ポリ(ジメチルシロキサン)Dow Corning 200(登録商標)流体、粘度5.0cSt(25℃)−75%w/w。バッチ分析でのPCR安定性乳濁液を生成するための例示的な油調合物は以下である:(1)Dow Corning 5225C Formulation Aid(デカメチルシクロペンタシロキサンに有効成分10%)−20%w/w、有効成分終濃度2%、(2)Dow Corning 749 Fluid(デカメチルシクロペンタシロキサンに有効成分50%)−60%w/w、有効成分30%w/w、および(3)ポリ(ジメチルシロキサン)Dow Corning 200(登録商標)流体、粘度5.0cSt(25℃)−20%w/w。
分割物−バルク容量の分離した部分。分割物は、バルク容量をなす、準備された試料等の試料から生成される試料分割物であり得る。バルク容量から生成される分割物は、実質的に均一のサイズを有してもよく、または別個のサイズを有してもよい(例えば、2つ以上の離散した均一サイズの複数セットの分割物)。例示的な分割物は液滴である。分割物のサイズは、所定のサイズ分布で、またはランダムなサイズ分布で連続して変化してもよい。
液滴−乳濁液の連続相等の非混和性流体により被包された、通常は球形を有する小量の液体。液滴の容量および乳濁液中の液滴の平均容量は、例えば特に、約1マイクロリットル未満(すなわち、「微液滴」)(または、約1マイクロリットル〜1ナノリットルまたは約1マイクロリットル〜1ピコリットル)、約1ナノリットル未満(または約1ナノリットル〜1ピコリットル)、あるいは約1ピコリットル未満(または約1ピコリットル〜1フェムトリットル)であり得る。液滴(または乳濁液の液滴)は、特に、約1000マイクロメートル未満、約100マイクロメートル未満、約10マイクロメートル未満、または約10〜1000マイクロメートルの直径(または平均直径)を有し得る。液滴は球形または非球形であり得る。液滴は、単純な液滴であってもよく、または複合的な液滴、すなわち、少なくとも1つの液滴が少なくとも1つの他の液滴を被包する液滴であってもよい。
界面活性剤−界面活性剤が熔解した液体の表面張力または別の相を有する界面張力を低減することが可能な界面活性剤。界面活性剤は、追加または代替として洗剤および/または湿潤剤として説明される場合もあり、親水部分および疎水部分の両方を組み込み、集合的に、界面活性剤に親水−疎水の両面性を与える。界面活性剤は、界面活性剤の親油性と比較した親水性の尺度である親水親油バランス(HLB)値に従って特徴付けることができる。HLB値の範囲は0〜60であり、界面活性剤の水および油への相対的な親和性を定義する。非イオン性界面活性剤は一般に、0〜20の範囲のHLB値を有し、イオン性界面活性剤は最高で60のHLB値を有し得る。親水性界面活性剤は、約10よりも大きなHLB値を有し、油よりも水に対する親和性が高い。親油性界面活性剤は約10未満のHLB値を有し、水よりも油に対する親和性が高い。本明細書において開示される乳濁液および/またはその任意の相は、少なくとも1つの親水性界面活性剤、少なくとも1つの親油性界面活性剤、またはこれらの組み合わせを含み得る。代替または追加として、本明細書において開示される乳濁液および/またはその任意の相は、少なくとも1つの非イオン性(および/またはイオン性)洗剤を含み得る。さらに、本明細書において開示される乳濁液および/またはその任意の相は、特に、ポリエチレングリコール、ポリプロピレングリコール、またはTween 20を含む界面活性剤を含み得る。
パケット−連続相の同じ連続量または容量範囲内にある液滴または他の分離された分割物のセット。したがって、パケットは、例えば、乳濁液のすべての液滴を構成してもよく、またはチャネルに沿ったある位置でのそのような液滴の分離部分を構成してもよい。通常、パケットは、部分的または全体的に解析する際に、液滴の初期パケットが作られた全体の開始試料の性質に関して定量的に予測するために統計的に妥当なサンプリングを与える液滴の集まりを指す。液滴のパケットは、チャネル内のパケットの最初の液滴と最後の液滴との空間的な近接度も示す。
情報技術と同様に、各液滴は、開始試料内の標的検体からの配列固有情報を含み得る情報の「ビット」として機能する。すると、液滴パケットは、開始試料から、関心のある検体についての統計的に妥当な情報を一緒になって提供する情報のすべてのこれら「ビット」の和である。バイナリコンピュータと同様に、液滴パケットは、意味ある計算を適用可能な二進データの最小単位を含むビットの連続シーケンスに類似する。液滴パケットは、連続相(フロー内等)内に配置された他のパケットに対して時間的および/または空間的に、かつ/または他のパケットからそのパケットを一意に識別する他の符号化情報(光学的、磁気的等)を追加して、符号化することができる。
テスト−試料を特徴付けるために使用される手順および/または反応ならびに手順および/または反応から得られる任意の信号、値、データ、および/または結果。テストは、分析とも記され得る。例示的な液滴ベースの分析は、水性分析混合物を使用する生化学分析である。より詳細には、液滴ベースの分析は特に、酵素分析および/または結合分析であり得る。酵素分析は、例えば、個々の液滴が、酵素の基質分子(例えば、核酸標的)のコピーおよび/または酵素分子のコピーを含むか否かを判断し得る。これら分析結果に基づいて、試料内の基質および/または酵素の濃度および/またはコピー数を推定し得る。
反応−一般に、反応の発生および/または反応の発生の程度を示す検出可能な信号(例えば、蛍光信号)を提供する化学反応、結合相互作用、表現型の変化、またはこれらの組み合わせ。例示的な反応は、酵素触媒による基質の生成物への変換を含む酵素反応である。
任意の適した酵素反応を、本明細書において開示する液滴ベースの分析で実行し得る。例えば、キナーゼ、ヌクレアーゼ、ヌクレオチドシクラーゼ、ヌクレオチドリガーゼ、ヌクレオチドホスホジエステラーゼ、ポリメラーゼ(DNAまたはRNA)、プレニルトランスフェラーゼ、ピロホスファターゼ、レポータ酵素(例えば、アルカリ性ホスファターゼ、ベータ−ガラクトシダーゼ、クロラムフェニコールアセチル転移酵素、グルクロニダーゼ、西洋ワサビペルオキシダーゼ、ルシフェラーゼ等)、逆転写酵素、トポイソメラーゼ等により反応を触媒し得る。
試料−任意の適したソースからの関心のある化合物、組成物、および/または混合物。試料は、試料内に存在し得る少なくとも1つの検体に関連する側面等の試料の側面を解析するテストにとっての全般関心対象である。試料は、収集される自然な状態で解析してもよく、かつ/または変更された状態で、例えば特に、格納、保存、抽出、溶解、希釈、濃縮、精製、濾過、1つもしくは複数の試薬との混合、事前増幅(例えば、PCR前に試料に対して制限された循環(例えば、<15)のPCRを実行することにより標的富化を達成するために)、アンプリコンの除去(例えば、PCR前にウラシル−d−グリコシラーゼ(UDG)を使用して処理して、前に生成されたアンプリコンによるいかなるキャリーオーバー汚染をなくす(すなわち、アンプリコンは、dTTPに代えてdUTPを使用して生成されるため、UDGを使用して消化可能である))、分割、またはこれらの任意の組み合わせの後に解析してもよい。臨床試料は、特に、鼻咽頭洗浄液、血液、血漿、無細胞血漿、軟膜、唾液、尿、痰、粘液、傷スワブ、組織生検、乳、吸引液、スワブ(例えば、鼻咽頭スワブ)、および/または組織を含み得る。環境試料は、特に、水、土、エアロゾル、および/または空気を含み得る。研究試料は、培養細胞、初代細胞、細菌、胞子、ウイルス、小さな有機体、または上記列挙した任意の臨床試料等を含み得る。さらなる試料は、食物、兵器成分、生物学的脅威因子についてテストすべき生物兵器防衛試料、および疑われる汚染等を含み得る。
試料は、診断目的(例えば、感染因子等の臨床検体の定量的測定)またはモニタリング目的(例えば、生物学的脅威因子等の関心のある環境検体が所定の閾値を超えたことを判断する)で収集し得る。
検体−テストで解析される試料の構成要素または潜在的な構成要素。検体は、試料が全般関心対象であるテストでの特定の関心対象である。検体は、例えば特に、核酸、タンパク質、ペプチド、酵素、細胞、細菌、胞子、ウイルス、小器官、高分子複合体、薬剤候補、脂質、炭水化物、代謝産物、またはこれらの任意の組み合わせであり得る。検体は、試料および/または試料の分割物内でのその存在、活性、および/または他の特徴についてテストし得る。検体の存在は、試料または試料の1つもしくは複数の分割物内での検体の絶対的または相対的な数、濃度、二元評価(例えば、有無)に関連し得る。いくつかの例では、試料は、検体のコピーが分割物のすべてには存在しないように、例えば、分割物毎のコピー数が約0.0001〜10000、0.001〜1000、0.01〜100、0.1〜10、または1という平均濃度で分割物内に存在するように分割し得る。
試薬−試料に対して特定のテストを実行するために試料と組み合わせられる化合物、化合物セット、および/または組成物。試薬は、テストで特定の標的または検体の検出に対して特異性を付与する任意の試薬組成物である、標的固有の試薬であり得る。試薬は場合により、テストの化学反応体および/または結合相手を含み得る。試薬は、例えば、少なくとも1つの核酸、タンパク質(例えば、酵素)、細胞、ウイルス、小器官、高分子複合体、潜在的な薬剤、脂質、炭水化物、無機物、またはこれらの任意の組み合わせを含み得、特に水性組成物であり得る。例示的な実施形態では、試薬は増幅試薬であり得、増幅試薬は、特に、核酸標的を増幅させる少なくとも1つのプライマまたは少なくとも一対のプライマ、増幅を検出できるようにする少なくとも1つのプローブおよび/または染料、ポリメラーゼ、ヌクレオチド(dNTPおよび/またはNTP)、二価マグネシウムイオン、塩化カリウム、緩衝液、またはこれらの任意の組み合わせを含み得る。
核酸−ヌクレオチド単量体の鎖を含む化合物。核酸は、特に、1本鎖または2重鎖(すなわち、別の核酸との塩基対)であり得る。核酸の鎖は、特に、少なくとも約10または100等の任意の適した単量体で構成し得る。一般に、核酸鎖の長さはソースに対応し、合成核酸(例えば、プライマおよびプローブ)は通常、より短く、生物学的に/酵素により生成される核酸(例えば、核酸検体)は通常、より長い。
核酸は、自然の構造、人工的な構造、またはこれらの組み合わせを有し得る。自然の構造を有する核酸、すなわち、デオキシリボ核酸(DNA)およびリボ核酸(RNA)は一般に、五炭糖基およびリン酸基が交互になったバックボーンを有する。各五炭糖基は、核酸塩基(例えば、プリン(アデニン(A)またはグアニン(T)等)あるいはピリミジン(シトシン(C)、チミン(T)、またはウラシル(U))等)にリンクされる。人工的な構造を有する核酸は、自然の核酸と同様であり、例えば、自然なバックボーンの五炭糖基および/またはリン酸基に変更を加えることにより作成し得る。例示的な人工核酸としては、グリコール核酸(GNA)、ペプチド核酸(PNA)、ロックド核酸(LNA)、およびトレオース核酸(TNA)等が挙げられる。
核酸の配列は、核酸塩基がバックボーンに沿って配置される順序により定義される。この配列は一般に、水素結合により特に相手鎖と結合する(または分子内2重鎖を形成する)核酸の能力を決める。特に、アデニンはチミン(またはウラシル)と対になり、グアニンはシトシンと対になる。他の核酸とそのような塩基対の連続鎖を形成することにより、逆平行に別の核酸に結合することができる核酸は、「相補的」であると言われる。
複製−核酸またはそのセグメントのコピー(すなわち、直接コピーおよび/または相補的コピー)を形成するプロセス。複製には一般に、特にポリメラーゼおよび/またはリガーゼ等の酵素が伴われる。複製された核酸および/またはセグメントは、複製のための鋳型(および/または標的)である。
増幅−複製が時間に伴って繰り返し行われて、鋳型分子の少なくとも1つのセグメントの複数のコピーが形成される反応。増幅は、増幅が進むにつれてコピー数の指数的または線形的な増大を生成し得る。典型的な増幅は、コピー数および/または信号を1000倍以上に増大させる。本明細書において開示される液滴ベースの分析の例示的な増幅反応は、それぞれが熱循環により促進されるポリメラーゼ連鎖反応(PCR)またはリガーゼ連鎖反応を含み得る。液滴ベースの分析は、追加または代替として、分岐プローブDNA分析、カスケードRCA、ヘリカーゼ依存増幅、ループ媒介等温増幅(LAMP)、核酸ベース増幅(NASBA)、切断酵素増幅反応(NEAR)、PAN−AC、Qベータレプリカーゼ増幅、ローリングサークル複製(RCA)、自律配列複製、および鎖置換増幅等の等温で実行し得る他の増幅反応を使用してもよい。増幅は、線形鋳型または円形鋳型を利用し得る。
増幅は、任意の適した試薬を使用して実行し得る。増幅は、組成物内に核酸標的分子が存在する場合、核酸標的分子の複数のコピーを生成可能な任意の組成物である増幅混合物内で実行し得、またはその発生をテストし得る。増幅混合物は、特に、少なくとも1つのプライマもしくはプライマ対、少なくとも1つのプローブ、少なくとも1つの複製酵素(例えば、少なくとも1つのDNAポリメラーゼおよび/またはRNAポリメラーゼ等の少なくとも1つのポリメラーゼ)およびデオキシヌクレオチド(および/またはヌクレオチド)三リン酸塩(dNTPおよび/またはNTP)の任意の組み合わせを含み得る。同じ液滴内で2つ以上の標的種の多重化された増幅および検出を可能にする分析混合物および検出戦略のさらなる態様は、本明細書の他の箇所、特に項X等において説明する。
PCR−加熱と冷却の交互になった循環(すなわち、熱循環)に頼り、連続した複製ラウンドを達成する核酸増幅。PCRは、特に、高い溶解(変性)温度および低い結合/伸長温度等の2つ以上の温度設定ポイント間、または特に、高い溶解温度、低い結合温度、および中間の伸長温度3つ以上の温度設定ポイント間の熱循環により実行し得る。PCRは、特に、Taq DNAポリメラーゼ(例えば、野生型酵素、Stoffelフラグメント、FastStartポリメラーゼ等)、Pfu DNAポリメラーゼ、S−Tbrポリメラーゼ、Tthポリメラーゼ、Ventポリメラーゼ、またはこれらの組み合わせ等の熱安定性ポリメラーゼを使用して実行し得る。PCRは一般に、連続した循環にわたって生成物アンプリコンの量を指数的に増大させる。
特に、アレル特異的PCR、アセンブリPCR、非対称PCR、デジタルPCR、エンドポイントPCR、ホットスタートPCR、in situ PCR、配列間特定PCR(intersequence−specific PCR)、逆PCR、線形後指数的PCR(linear after exponential PCR)、連結反応媒介PCR(ligation−mediated PCR)、メチル化特異的PCR、ミニプライマPCR(miniprimer PCR)、多重連結反応依存プローブ増幅、多重PCR、入れ子PCR、オーバーラップエクステンションPCR、ポリメラーゼサイクルアセンブリ、定性PCR、定量PCR、リアルタイムPCR、RT−PCR、単細胞PCR、固相PCR、熱非対称インタレースPCR(thermal asymmetric interlaced PCR)、タッチダウンPCR、またはユニバーサルファストウォーキングPCR(universal fast walking)等の任意の適したPCR方法または方法の組み合わせを、本明細書において開示される液滴ベースの分析に利用し得る。
デジタルPCR−試料部分のいくつが標的の増幅をサポートするかに基づいて、試料内の核酸標的の有/無、濃度、および/またはコピー数を特定するために試料の部分に対して実行されるPCR。デジタルPCRは、エンドポイントPCRとして実行してもよい(またはしなくてもよい)。デジタルPCRは、分割物毎にリアルタイムPCRとして実行してもよい(またはしなくてもよい)。
PCRは理論的に、試料からの核酸配列(検体)を指数的に増幅させる。閾値増幅レベル(リアルタイムPCRでのように)を達成するために必要な増幅サイクル数を測定することにより、理論的に核酸の開始濃度を計算することができる。しかし、実際には、増幅効率のばらつき、開始核酸のコピー数が少ない、および背景汚染核酸との競合等の、PCRを非指数的にする多くの要因がある。デジタルPCRは一般に、PCRプロセスが指数的であるという仮定に頼らないため、これら要因による影響を受けにくい。デジタルPCRでは、個々の核酸分子は初期試料から分割物に分離され、それから検出可能なレベルまで増幅される。次に、各分割物は、各分割物内の個々の核酸分子のそれぞれの有無についてのデジタル情報を提供する。十分な分割物がこの技法を使用して測定された場合、デジタル情報を集計して、試料内の核酸標的(検体)の開始濃度の統計的な相対測定が行われる。
デジタルPCRの概念は、核酸の他の種類の検体にも拡張し得る。特に、信号増幅反応を利用して、個々の液滴内の検体分子の単一コピーを検出し、項VIIに記載のように他の検体の液滴信号をデータ解析することができ得る(例えば、ポアッソン統計に基づくアルゴリズムを使用して)。液滴内の他の種類の検体の単一コピーを検出できる例示的な信号増幅反応としては、酵素反応が挙げられる。
定性PCR−一般に標的存在のいかなる実質的な定量なしで、試料内に標的が存在するか否かを特定するPCRベースの解析。例示的な実施形態では、定性的なデジタルPCRは、液滴パケットが、少なくとも事前定義される割合の陽性液滴(陽性試料)を含むか否か(陰性試料)を判断することにより実行し得る。
定量PCR−試料内の標的の濃度および/またはコピー数を特定するPCRベースの解析。
RT−PCR(逆転写PCR)−RNAの逆転写により生成される相補的DNA鋳型を利用するPCR。RT−PCRでは、(1)逆転写酵素等を使用してRNAの相補的DNAコピーを形成し、(2)鋳型として相補的DNAを使用してPCR増幅することにより、RNAの解析が可能である。いくつかの実施形態では、Tthポリメラーゼ等の同じ酵素を逆転写およびPCRに使用し得る。
リアルタイムPCR−増幅の形成が、1つまたは複数の熱循環の完了後かつ反応の最後の熱循環前等の反応中に測定されるPCRベースの解析。リアルタイムPCRは一般に、標的増幅のキネティックスに基づいて標的の定量を提供する。
エンドポイントPCR−アンプリコンの形成が、熱循環完了後に測定されるPCRベースの解析。
アンプリコン−増幅反応の産物。アンプリコンは、1本鎖、2重鎖、またはこれらの組み合わせであり得る。アンプリコンは、核酸標的の任意の適したセグメントまたは全長に対応する。
プライマ−核酸鋳型の複製を始動可能であり、かつ/または始動に使用される核酸。したがって、プライマは、より長い鋳型に相補的なより短い核酸である。複製中、プライマは、鋳型配列に基づいて伸長し、鋳型の相補的コピーであるより長い核酸を生成する。プライマは、DNA、RNA、それらの類似体(すなわち、人工核酸)、またはこれらの任意の組み合わせであり得る。プライマは、少なくとも約10、15、20、または30ヌクレオチド等の任意の適した長さを有し得る。例示的なプライマは化学的に合成される。プライマは、少なくとも1つの核酸標的を増幅させる少なくとも一対のプライマとして供給し得る。一対のプライマは、集合的に、結果として生成されるアンプリコンの両端部(ひいては長さ)を定義するセンスプライマおよびアンチセンスプライマであり得る。
プローブ−少なくとも1つの染料等の少なくとも1つの標識に接続される核酸。プローブは、標的核酸および/またはアンプリコンの配列特異的結合相手であり得る。プローブは、蛍光共鳴エネルギー移動(FRET)に基づいて標的増幅を検出できるようにするように設計し得る。本明細書において開示する核酸分析の例示的なプローブとしては、互いに近傍にある場合、集合的に蛍光共鳴エネルギー移動(FRET)を示す一対の染料に接続された1つまたは複数の核酸が挙げられる。一対の染料は、特に、第1および第2のエミッタ、またはエミッタおよびクエンチャを提供し得る。一対の染料からの蛍光放出は、プライマ伸長中にプローブが切断される等により互いに離れる場合(例えば、TAQMANプローブ等を使用する5’ヌクレアーゼ分析)、またはプローブがアンプリコンにハイブリダイズされる場合(例えば、分子ビーコンプローブ)、変化する。プローブの核酸部分は、任意の適した構造または出所を有し得、例えば、核酸部分は、ロックド核酸、またはユニバーサルプローブライブラリのメンバ等であり得る。他の場合、プローブおよびプライマ対のうちの一方のプライマを組み合わせて同じ分子にし得る(例えば、AMPLIFLUORプライマおよびSCORPIONプライマ)。一例として、プライマ−プローブ分子は、3’末端にプライマ配列を含み、5’末端に分子ビーコン型プローブを含み得る。この構成では、異なる染料で標識された関連するプライマ−プローブ分子を、同じ逆プライマを使用する多重分析で使用して、1つのヌクレオチドだけ異なる標的配列(単一ヌクレオチド多型(SNP))を定量化することができる。液滴ベースの核酸分析の別の例示的なプローブは、Plexorプライマである。
標識−化合物、生物学的粒子(例えば、細胞、細菌、胞子、ウイルス、または小器官)、または液滴等の任意の実体に接続されるか、または組み込まれる識別および/または区別マーカあるいは識別子。標識は、例えば、実体を光学的に検出可能かつ/または光学的に区別可能にする染料であり得る。標識に使用される例示的な染料は、蛍光染料(蛍光体)および蛍光消光剤である。
レポータ−反応の程度等の状況を報告する化合物または化合物セット。例示的なレポータは、蛍光染料もしくはエネルギー移動対等の少なくとも1つの染料および/または少なくとも1つのオリゴヌクレオチドを含む。核酸増幅分析の例示的なレポータとしては、プローブおよび/または挿入染料(例えば、SYBRグリーン、エチジウムブロマイド等)を挙げることができる。
コード−セット内の別個のメンバを区別するメカニズム。異なる種類の液滴を区別する例示的なコードは、特に、異なる液滴サイズ、染料、染料の組み合わせ、1つもしくは複数の染料の量、コード封入粒子、またはこれらの任意の組み合わせを含み得る。コードは、例えば特に、異なる液滴パケットまたはパケット内の異なる種類の液滴を区別するために使用し得る。
結合相手−互いに結合する一対のメンバのうちのメンバ。各メンバは、特に、化合物または生物学的粒子(例えば、細胞、細菌、胞子、ウイルス、小器官等)であり得る。結合相手は、特異的に互いに結合し得る。特異的な結合は、約10−4、10−6、10−8、または10−10M未満の解離定数を特徴とし得る。例示的な特異的結合相手としては、ビオチンおよびアビジン/ストレプトアビジン、センス核酸および相補的なアンチセンス核酸(例えば、プローブおよびアンプリコン)、プライマおよびその標的、抗体および対応する抗原、受容体およびそのリガンド等が挙げられる。
チャネル−流体が移動する細長い通路。チャネルは一般に、流体がチャネルに入る少なくとも1つの流入口と、流体がチャネルから出る少なくとも1つの流出口とを含む。流入口および流出口の機能は交換可能であり得る。すなわち、流体は一方向のみにチャネルを通って流れてもよく、または一般にそれぞれ異なる時間に、対向する双方向にチャネルを通って流れてもよい。チャネルは、流入口と流出口との間に通路を画定し囲む壁を含み得る。チャネルは、例えば特に、管(例えば、毛管)により、平坦構造(例えば、チップ)内に、平坦構造(例えば、チップ)上に、またはこれらの組み合わせで形成し得る。チャネルは分岐してもよく、またはしなくてもよい。チャネルは線形であってもよく、または非線形であってもよい。例示的な非線形チャネルとしては、平坦な流路(例えば、蛇行するチャネル)、非平坦流路(例えば、螺旋状流路を提供する螺旋状チャネル)に沿って延びるチャネルが挙げられる。本明細書において開示される任意のチャネルは、約1mm未満の横断寸法(例えば、チャネルの平均直径)という特徴を有するチャネルである微小流体チャネルであり得る。チャネルは、流出口を開く必要なく流体を流入/流出させる1つまたは複数の通気機構も含み得る。通気機構の例としては、疎水性通気開口部またはチャネルの部分の構成または流出口が存在する場合には流出口をブロックする多孔性材料の使用が挙げられるが、これらに限定されない。
フルイディクス網−一般に流体を組立体のコンパートメント間で移送させることにより、かつ/または組立体により画定される1つもしくは複数の流路に沿い、かつ/またはそのような流路を通って流体フローを促進することにより、流体を操作する組立体。フルイディクス網は、特に、1つまたは複数のチャネル、チャンバ、槽、弁、ポンプ、熱制御装置(例えば、ヒータ/冷却器)、センサ(例えば、温度、圧力、流れ等を測定する)、またはこれらの任意の組み合わせ等の任意の適した構造を含み得る。
[II.システム概説/構造]
この項は、液滴ベースの分析の方法および装置を含む、液滴ベースの分析の例示的なシステムの構造について説明する。この項において開示されるシステムの特徴および態様は、互いに組み合わせることが可能であり、かつ/または本開示の他の箇所に図示され、かつ/または説明される方法および装置の任意の適した態様および特徴と組み合わせることが可能である。追加の関連する開示を、相互参照の下に上述し、参照により本明細書に援用される米国仮特許出願、特に発明者としてBenjamin J.Hindson、Kevin Dean Ness、Billy W.Colston,Jr.、Fred P.Milanovich、Donald A.Modlin、およびAnthony J.Makarewicz,Jr.の名前が挙げられている、「DROPLET−BASED ASSAY SYSTEM」と題する2009年9月22日に出願された米国仮特許出願第61/277270号明細書に見出し得る。
[A.試料準備および解析のための例示的な機器−カートリッジシステム]
図2および図3Aのそれぞれは、液滴ベースの分析を実行する例示的なシステム600の斜視図および概略図を示す。システム610は、機器612と、機器に接続されて、機器により発動され制御される試料準備を提供する1つまたは複数の試料カートリッジ614とを備え得る。試料準備は、特に、抽出、精製、溶解、濃縮、希釈、試薬混合、および/または液滴生成等の項IIIにおいて開示されるプロセスまたは本開示の他の箇所で開示されるプロセスの任意の組み合わせを含み得る。機器612は、特に、液滴内の核酸の増幅、液滴からの信号の検出、およびデータ解析を実行し得る。
機器612に、特に、試料装填領域616、試薬フルイディクス組立体618、熱循環機620、検出器622、制御電子回路624(すなわち、コントローラ)、およびユーザインタフェース626を備え得る。機器は筐体628も含み得、筐体628は、互いの機器構成要素の支持、位置決め、固定、封入、絶縁、および/または機器構成要素へのアクセスの許可/制限を行い得る。
試料装填領域616は、一般に試料が各カートリッジのポートに導入された後、試料カートリッジ614を機器内に配置できるようにし得る。試料装填領域は、試料カートリッジを受け取るための開構成ならびにカートリッジの導入および取り出しを制限する(例えば、装填された試料カートリッジに対して機器が動作している間)閉構成を有し得る。例えば、試料装填領域は、拡張可能かつ退避可能であり、試料カートリッジを受け取り、機器612と動作が噛み合うようにカートリッジを位置決めするトレイ630を含み得る。トレイは、手動で引き出して、試料カートリッジをトレイ内に装填し、カートリッジ操作のために手動で押し込んでもよく、または試料装填領域の開閉を駆動する駆動機構に結合してもよい。
試料カートリッジ614は、図2の様々な位置に示される。カートリッジのいくつかは、拡張されたトレイ630に装填されているものもあれば、機器との併用前後で機器612の外部に配置されている(例えば、632に示されるように積み重ねられている)ものもある。試料カートリッジには、カートリッジが機器に接続される前(例えば、カートリッジ製造中)、1つまたは複数の流体試薬を注入/装填してもよく、かつ/または試料カートリッジに、機器により供給される1つまたは複数の流体試薬を注入してもよい。機器612との併用に適し得る試料カートリッジのさらなる態様は、本開示の他の箇所、特に項IIIにおいて説明される。
図3Bは、システム610のうちの選択された態様の概略図を示す。システム構成要素の境界間に延びる矢印は一般に、システム内の流体またはデータが流れる方向を示す。境界間に延びる線は、電気接続および/または信号通信を示す。
試料カートリッジ614は、試料準備のために、試薬フルイディクス組立体618から流体を受け取り得る。フルイディクス組立体618は、使い捨てであってもよく、かつ/または再利用可能(すなわち、再充填可能)であってもよいカートリッジまたは容器634(図2も参照)を含み得る。フルイディクス組立体618は、フルイディクスコントローラおよびインジェクタ638と併せて、流体フローを制御できるようにする試料カートリッジフルイディクス636も含み得る。例えば、流体は、試薬カートリッジから試料カートリッジに流れ、各試料カートリッジ内を流れ、かつ/または各試料カートリッジから熱循環機620に、非混和性キャリア流体内に配置された液滴として流れ得る。
熱循環機620は、検出器622による液滴信号の検出に備えて、液滴に、増幅を促進する熱循環を受けさせ得る。熱循環機および検出器のさらなる態様が、項Vおよび項VI等の本明細書の他の箇所で説明される。検出後、液滴およびキャリア流体は廃棄物容器640に流れ得る。
検出器622からのデータは、制御電子回路624に通信し得る。制御電子回路は、特に、データを解析し(例えば、項VIIで説明するように)、データをユーザインタフェース626に通信し得る。制御電子回路は、プリファレンス、命令、および/またはコマンド等の入力データをユーザインタフェースから受信もする。制御電子回路は、システム600の他の任意の態様と通信し、かつ/またはそれらを制御し得る。例えば、制御電子回路は、カートリッジ614と通信し得る。いくつかの実施形態では、各カートリッジは、メモリ装置627を携帯する「スマートカートリッジ」であり得る。メモリ装置は、コントローラにより読み取り可能であってもよく、場合により、書き込み可能でもあってもよい。メモリ装置は、特に、カートリッジに事前に装填された試薬、装填された試料についての情報カートリッジにより実行された試料処理の態様、またはこれらの任意の組み合わせ等のカートリッジについての情報を所持し得る。制御電子回路は、データ入力/出力を提供し得る外部通信ポート642に接続してもよい。電源644(例えば、電線または電池による電源)が、電力を制御電子回路に提供し得る。電力は、電源と制御回路との間にある任意の適した要素(例えば、整流器)により調整し得る。
[B.事前準備された試料を解析する例示的な機器]
図4は、液滴ベースの分析を実行する機器650として構築された別の例示的なシステムを示す。機器650は、概してシステム610に関して上述したように、核酸増幅の液滴ベースの分析を実行可能であり得る。しかし、機器650は、事前形成された乳濁液または準備された試料(例えば、まだ乳濁形態ではない精製された核酸)として供給される試料を処理し解析するように設計し得る。
機器650には、特に、試料装填領域652、試薬フルイディクス組立体654、熱循環機656、検出器658、検出器658、制御電子回路660(すなわち、コントローラ)、ユーザインタフェース662、および筐体664を備え得、これらはそれぞれ、概してシステム610に関連して上述したように機能し得る。しかし、試料装填領域652および試薬フルイディクス組立体654は、機器612内の同様の構造と異なり得る。特に、システム610(図2参照)の試料カートリッジ内で実行される試料準備手順が、試料装填前に機器650の外部で実行される。
試料装填領域652は、トレイ666と、ウェル等のコンパートメントまたは槽668のアレイ668とを含み得る。槽668は、トレイにより受け、かつ/または支持し得る、マイクロプレート等のプレート670により提供し得る。プレート670は、プレートが機器から離れている間に試料を槽668内に配置できるように、取り外し可能であり得る。代替または追加として、槽がトレイ/機器により支持されている間に、試料を槽668内に配置してもよい。いくつかの例では、プレート670は、液滴生成器プレートであり得る(例えば、本項内の後述、項III、および項IVを参照のこと)。液滴生成器プレートとして構成される場合、プレートは、機器650に装填される前後で液滴を生成し得る。
各槽は、事前準備された試料を受け取り得る。事前準備された試料は、乳濁形態であってもよく、または乳濁形態でなくてもよい。乳濁形態ではない場合、槽内に装填する前に、液滴精製に向けて試料を準備するために、試料を処理(例えば、抽出、精製、溶解、濃縮、希釈、試薬混合、またはこれらの任意の組み合わせにより処理)し得る。あるいは、試料は、非混和性キャリア流体内の液滴という事前形成された乳濁液であり得る。乳濁液は、試料を槽に装填する前に、試料および少なくとも1つの試薬を含む分析混合物を液滴に分割することにより形成し得る。したがって、各液滴は、試料の分割物を含み得る。乳濁液からの液滴パケットは、槽668から機器の少なくとも1つの熱循環機656に逐次または並行して輸送し得る。
機器650のユーザインタフェース662の構成は、システム610のユーザインタフェース626の構成と異なってもよい(または同じであってもよい)(図2と図4とを比較)。例えば、ユーザインタフェース662は、機器650の本体から離間(例えば、筐体664の外部に離間して配置)し得る。ユーザインタフェース662は、機器の制御電子回路660と有線または無線で通信し得る。
[C.液滴ベースの分析システムの概説]
図5は、液滴ベースの分析を使用する試料分析方法で実行し得る例示的なステップを列挙したフローチャート680を示す。列挙されたステップは、任意の適した組み合わせで、任意の適した順に実行することができ、本開示の他の任意のステップと組み合わせることができる。
682に示されるように、少なくとも1つの試料を装填し得る。試料は、本明細書において開示される任意のシステム構成要素により確定されるポート(例えば、ウェル、チャンバ、チャネル等)内に配置されることにより装填し得る。試料は、非溶解状態または溶解状態、精製状態または未精製状態、試薬が事前に混合された状態または事前に混合されていない状態、希釈された状態または濃縮された状態、液滴に分割された状態または分割されていない状態等の任意の適した形態で装填し得る。いくつかの場合では、複数の試料を各ポートおよび/または槽アレイ内に装填し得る。
684において示されるように、試料を処理し得る。試料装填後(かつ/または試料装填前)に、液滴精製に向けて試料を準備するために、試料処理ステップの任意の適した組み合わせを実行し得る。例示的な処理ステップを項IIIにおいて説明する。
686に示されるように、試料から液滴を生成し得る。例えば、液適生成は、試料に1つまたは複数の試薬を混合して、バルク分析混合物を形成することにより試料を変更した後に実行し得る。液滴生成は、バルク分析混合物を、介在する非混和性キャリア流体により各液滴内で互いに分離された複数の分割された分析混合物(ひいては試料分割物)に分割し得る。液滴は、1つのオリフィスから、かつ/または1つの液滴生成器(乳濁液生成器と呼ばれ得る)等から逐次、試料から生成し得る。あるいは、液滴は、同じ試料に連通した(かつ/または同じ試料により供給される)2つ以上のオリフィスおよび/または2つ以上の液滴生成器等から、並行して試料から生成し得る。別の例として、液滴は、オリフィスアレイを画定する有孔プレートから並行して生成し得る。いくつかの例では、液滴は、特に、攪拌または音波処理等によりバルクで生成し得る。いくつかの例では、複数の試料から複数の乳濁液を逐次または並行して生成し得る。
688において示されるように、液滴を反応場所(リアクタとも呼ばれる)に装填し得る。液滴は、連続してもよく、または1回もしくは複数回停止してもよい流れによる輸送により装填し得る。したがって、690に示されるように、液滴を生成した後かつ反応場所に装填する前に、液滴を1つまたは複数の離散した格納場所に格納してもよい(またはしなくてもよい)。あるいは、液滴は、実質的に流れずに、例えば、液滴を容器内に収容し、容器を反応場所に移すことで反応場所に装填してもよい。他の例では、液滴を反応場所で生成し得る(例えば、熱循環機内部)。いずれの場合でも、液滴生成後、液滴がバイアル(または他の容器)、反応チャネル(例えば、管)、高いアスペクト比を有する撮像チャンバ/フローセル等内に配置された状態で、液滴を反応場所に配置し得る。輸送/装填、輸送、格納、配送、事前処理(例えば、加熱)、および濃縮の選択等の液滴処理のさらなる態様について、本項において後述する。
「反応場所」とは、液滴が、核酸増幅等の関心のある1つまたは複数の反応の促進させる状態になる領域である。したがって、反応場所は、液滴内での特定の反応の実施および/または促進に適した一定温度または可変温度(および/または他の物理的条件)の1つまたは複数の温度制御ゾーンを提供し得る。反応場所は、液滴が少なくとも1つのチャネルを流れている間に固定または可変の反応条件下に置かれる流水場所であってもよく、または液滴が静止流体量内にある(すなわち、流れていない)間に静止場所であってもよい。例示的な反応場所、すなわち、流れに基づく熱循環機は、本項の例示的なシステムの多くに含まれ、項Vにおいてより詳細に説明する。
692に示されるように、液滴を「反応」させ得る。より具体的には、液滴の成分または液滴自体が所望の反応(または状態変化)を経るように、液滴に含まれる分析混合物の種類に従い、液滴を1つまたは複数の適した反応条件下に置き得る。例えば、液滴は、特に項Iにおいて説明した任意の分析等の増幅分析のために熱循環を受け得る(または等温処理し得る)。
液滴の反応では一般に、液滴は、液滴内での関心のある少なくとも1つの結合および/または化学反応を促進する1つまたは複数の条件下に置かれる。液滴の反応では一般に、液滴は、一定または可変であり得、繰り返され得る所定の時間期間(または複数の時間期間)にわたって各条件下にも置かれ得る。液滴は、1回または複数回、例えば、周期的に、2つ以上の条件に逐次または並行して置かれ得る。例示的な条件としては、温度条件(すなわち、液滴温度の維持、液滴の加熱、および/または液滴の冷却)、露光、圧力変化等が挙げられる。
液滴は、「フロー反応」において反応場所を流れることにより反応し得る。液滴は、反応場所を通る流路に沿って均一または空間的に変化する少なくとも1つの条件下に置かれ得る。例えば、流路に沿った温度が空間的に変化して、液滴が流路を通る際に液滴に対して加熱および冷却を行い得る。換言すれば、反応場所は、液滴が通る、少なくとも実質的に一定温度の1つ、2つ、または3つ以上の温度制御ゾーンを含み得る。一定温度ゾーンおよび熱循環を使用する流水反応場所のさらなる態様について、特に項V等の本発明の他の箇所で説明する。
あるいは、液滴は、「静的反応」において、静止流体量内にある間に、すなわち実質的な流体フローなしで反応してもよい。例えば、液滴は、特に、ウェルまたはチャンバ内にある間に反応し得る。この場合、液滴は、反応中に一定の条件(例えば、等熱反応のために一定温度)下に置かれてもよく、または反応中(液滴を動かす必要なく)、時間的に(すなわち、時間に関して)変化する可変条件下に置かれてもよい。例えば、PCRを実行するために、周期的等、時間に伴って温度が変化する温度制御ゾーンに液滴を保持し得る。いずれの場合でも、静的反応では、乳濁液のバッチ増幅等、乳濁液アレイを並行してバッチ反応させることが可能であり得る。
694に示されるように、液滴を検出し得る。検出は、液滴が流れている間に逐次実行し得る(すなわち、フローベースの検出または動的検出)。あるいは、検出は、液滴が静止流体量内にある状態で実行し得る(すなわち、流れが止まった状態等の静的検出(すなわち、フロー停止検出))。いくつかの例では、静的検出(または動的検出)は、一般には線形または平面に配置され得る実質的に静止した(または流れている)液滴セットを撮像して、液滴の画像を得ることを含み得る。フローベースの検出およびフロー停止検出を含め、検出のさらなる態様について、特に項VI等の本明細書の他の箇所において説明する。
反応および検出の動的/静的モードは、任意の適した様式で組み合わせることができる。例えば、液滴のフローベースの反応を、液滴のフローベースの検出またはフロー停止検出(例えば、撮像)と組み合わせてもよい。あるいは、乳濁液のバッチ増幅等の液滴の静的反応を、液滴のフローベースの検出または静的検出(例えば、撮像)と組み合わせてもよい。
696に示されるように、液滴から検出されたデータを解析し得る。データ解析は、例えば、核酸標的(または多重反応での2つ以上の標的)の増幅に関して正または負として液滴信号を割り当て、増幅に関して正の液滴の数および/または割合を特定し、試料内の核酸標的の合計存在数(例えば、分子の濃度および/または数)を推定し得る等である。データ解析のさらなる態様について、特に項VIIおよび項VIII等の本明細書の他の箇所において説明する。
図6は、液滴ベースの分析を実行する例示的なシステム700のうちの選択された部分を示す。図示のシステム構成要素の任意の1つまたは組み合わせをシステムから省いてもよく、本明細書の他の箇所で開示される任意の追加の構成要素をこのシステムに追加してもよい。矢印は、試料、液滴、および/またはデータがシステムの実際の構成要素間で移動し得る例示的な順序を示す。しかし、各構造的構成要素を同じ液滴に2回以上使用してもよく、かつ/またはここに示される順序とは異なる順序で利用してもよい。
システム700は、以下の構成要素のうちの任意またはそれぞれの1つまたは複数を含み得る:特に、試料処理器702(試料処理ステーションとも呼ばれる)、液滴生成器704、液滴輸送器706、反応場所(またはリアクタ)708(反応ステーション(例えば、加熱または加熱および冷却を行い得る加熱ステーション)とも呼ばれる)、検出器710(検出ステーションとも呼ばれる)、ならびにコントローラ712。これら構成要素の任意の組み合わせを互いに、特に物理的に、流体的に、電気的に、かつ/信号を転送するために接続し得る。
構成要素は、方法680(図5)のステップを参照して以下のように動作し得る。試料処理器702は、ステップ682において装填された試料等の解析すべき試料を受け取り得、ステップ684に関して上述したように試料を処理し得る。液滴生成器704は、ステップ686に関して上述したように液滴を生成し得る。液滴輸送器706は、ステップ688に関して説明したように生成された液滴を装填し得、したがって、特に、生成された液滴の選択可能な輸送/装填、輸送、格納(ステップ690)、配送、事前処理(例えば、加熱)、および濃縮を提供し得る。反応場所708では、装填された液滴のフロー反応または静的反応が可能であり、検出器710は、ステップ694に関して説明されたように、液滴の動的または静的な検出を提供し得る。コントローラ712は、ステップ696に関して説明されたように、検出器710から受信したデータを解析し得る。コントローラ712はまた、コントローラから他の各システム構成要素に延びる破線で示されるように、システム構成要素の任意の適した組み合わせと通信し得、かつ/またはそれらを制御するようにプログラムされ得る。コントローラはまた、本明細書において開示される任意の方法を実行する命令を含むコンピュータ可読媒体(例えば、ハードドライブ、CD−ROM、DVD−ROM、フロッピー(登録商標)ディスク、フラッシュメモリ装置等の記憶装置)も含み得る。
[D.フローベースの増幅を使用する例示的なシステム]
図7は、フローベースの増幅および液滴生成から切り離された液滴装填を使用する例示的なシステム720の概略図を示す。図示のシステム構成要素の任意の構成要素または組み合わせをシステムから省いてもよく、本明細書の他の箇所に開示される任意の追加の構成要素をシステムに追加してもよい。実線の矢印は、試料722、試薬724、および液滴726がシステムの構造的構成要素間で移動し得る例示的な順序を示す。様々なシステム構成要素の上下にある破線の垂直矢印は、それら構成要素に対する非混和性キャリア流体(例えば、油)および/または廃棄物の任意の追加(例えば、流入)および/または除去(例えば、流出)を示す。
システム720は、ミキサ728および液滴生成器730を含み得る。ミキサ728は、試料722および少なくとも1つの試薬724を受け取って組み合わせて、分析混合物を形成し得る。ミキサは、自動化された装置であってもよく、または分析混合物を液滴生成器に装填する前に、使用者がバルク混合等により手動で混合を実行してもよい。液滴生成器730は、ミキサから分析混合物を受け取り、736において示されるように、分析混合物と同時に、液滴生成器内に導入された油等の非混和性キャリア流体734内に液滴726の乳濁液732を生成し得る。液滴の形成726は、738に示されるように、圧力および/またはポンピングにより促進され得る。いくつかの例では、液滴生成器は、試料および試薬が合流したものから液滴を生成することにより、ミキサとして機能し得る。740で示されるように、廃棄流体も液滴生成器から流出し得る。
システム720は、任意の適した数の液滴生成器を有し得る。液滴生成器を使用して、1つの試料または複数の試料から、および1つの試薬または複数の試薬から(例えば、異なる種の核酸標的に対する試薬)任意の適した数の別個の異なる乳濁液を生成し得る。例示的なミキサおよび液滴生成器について、項IIIおよび項IVにおいて説明する。
乳濁液732または別個の乳濁液セットは、乳濁液の液滴を反応させる前に、少なくとも1つの格納場所742または複数のそのような場所に格納してもよい。その結果、液滴生成を液滴の反応から切り離すことができる。格納場所は、例えば、ウェル、チャンバ、管、またはプレートにより形成されるようなそれらのアレイ(例えば、マイクロプレート)であり得る。
システムは、直列に配置された液滴輸送部744(液滴輸送器とも呼ばれる)と熱循環機746も含み得る。輸送部744は、液滴726を格納場所742から輸送部内に移される流入口を形成する液滴ピックアップまたは取り入れ領域748を含み得る。輸送部744は、液滴を熱循環機746に送る液滴装填器750も備え得る。輸送部は、輸送部744内に移された後の液滴を格納する1つまたは複数の格納場所752も含み得る。
いくつかの例では、輸送部は、液滴をまず熱循環機に送らずに検出器により直接的に装填可能でもあり得る。特に、システム720は、熱循環機を通らずに輸送部744を検出器に接続するバイパスチャネル753またはバイパス路を含み得る。システムは、液滴をバイパスチャネル753または熱循環機746のいずれか一方に送るように動作可能な1つまたは複数の弁を含み得る。バイパスチャネル753の使用により、例えば、熱循環が省かれる場合、キャリブレーション液滴が検出器までより高速で移動可能なため、システム構成要素のより高速な較正が可能であり得る。項VIIIにおいて、バイパスチャネルおよびキャリブレーション液滴の使用のさらなる態様について説明する。
キャリア流体および/または廃棄流体は、場合により、それぞれ754〜758に示されるように、格納場所742、液滴ピックアップ領域748、および/または液滴装填器750から除去されてもよい。代替または追加として、液滴を熱循環機746に送り込むのを容易にするため、かつ/またはピックアップ領域および/または液滴装填器から液滴を流し出す等のために、759で示されるように、キャリア流体を液滴ピックアップ領域に追加し、かつ/または760で示されるように、液滴装填器に追加してもよい。
液滴を含む乳濁液726は、(a)熱循環機746、(b)検出器764に関連して動作的に配置された少なくとも1つの検出窓762に隣接する少なくとも1つの検出場所(例えば、検出チャネル/チャンバ)、および(c)油回収領域766を通って流れ、次に、廃棄物容器に流れ得る。少なくとも1つの検出チャネル/チャンバに関して、1つまたは複数の弁770を一般に熱循環機と検出器との間に配置し、熱循環機の下流での乳濁液の流れの制御を提供し得る。例えば、弁770は、検出窓に隣接する液滴の流れを停止させ、かつ/または2つ以上の検出窓(例えば、項VI参照)間での乳濁液の流れを切り替えるように動作し得る。キャリア流体は、772、774で示されるように、熱循環機746および/または検出器764内または近傍で乳濁液から除去してもよく、かつ/または乳濁液に導入してもよい。キャリア流体の除去は、例えば、検出のためにより濃縮した乳濁液を提供し得る。キャリア流体の導入は、例えば、検出器チャネル内および/または検出窓に関して液滴のフロー収束を提供し得る(例えば、項VI参照)。代替または追加として、775に示されるように、検出ステーションを通さずに熱循環機から液滴を集めるために、液滴を廃棄物容器に送ってもよい。
キャリア流体は、776に示されるように、油回収領域766によりフローから除去し得る。除去は、ピラー、少なくとも1枚の膜、1つまたは複数の油選択性サイドチャネル、重力分離等の任意の適した機構により行われ得る。
[E.液滴処理の概説]
図8〜図10は、液滴の輸送および輸送に関連して実行し得る液滴処理の例示的なタイプ(例えば、格納、濃縮、選択等)を強調しながら、方法および装置を含めた液滴の処理についての概説を提供する。
図8は、液滴が液滴生成器および/または液滴槽から反応場所に輸送される、液滴ベースの分析を使用する例示的な試料分析方法で実行し得る例示的なステップを列挙したフローチャート810を示す。列挙されたステップは、任意の適した組み合わせで、任意の適した順に実行してよく、本開示の他の任意の適したステップと組み合わせることができる。
812において、液滴を生成し得る。液滴は、逐次、並行して、またはバルクで生成し得る。液滴生成のさらなる態様について、特に項IIIおよび項VI等の本明細書の他の箇所に開示される。
場合により、液滴を814に示されるように格納してもよい。液滴(例えば、乳濁液)セットを液滴槽内に格納し得る。いくつかの例では、2つ以上の別個のセットを、乳濁液アレイ等で2つ以上の各槽に格納し得る。いくつかの例では、液滴の格納を省いてもよい。
場合により、液滴を816に示されるように濃縮してもよい。液滴の濃縮(乳濁液の濃縮とも呼ばれる)により、乳濁液の単位容積当たりの液滴数が増大すると共に、乳濁液内で液滴が占める容積の割合が増大する。乳濁液の濃縮は、液滴の格納前、格納中、および/または格納後に行い得る。
818に示されるように、液滴のうちの1つまたは複数(1つまたは複数の液滴パケットを含む)を反応場所に輸送し得る。輸送は、液滴生成および/または初期液滴格納後に、連続フローまたは1つもしくは複数の離散した段階で選択可能に開始されるフローにより達成し得る。820に示されるように、反応場所で液滴を反応させ得る。
822に示されるように、信号をパケットの液滴から検出し得る。例えば、液滴の反応中および/または反応後に、1つまたは複数の測定を1つまたは複数の液滴に対して実行し得る。液滴検出のさらなる態様について、特に項VI等の本明細書の他の箇所で開示する。
図9は、図8の方法での液滴を輸送するステップ(すなわち、ステップ818)に含まれ得る例示的なステップを列挙したフローチャート830を示す。
832に示されるように、液滴槽(乳濁液槽とも呼ばれる)を選択し得る。液滴槽は、別個の乳濁液および/または別個の分析混合物を保持する液滴槽アレイから選択し得る。選択は、コントローラ、使用者、またはこれらの組み合わせにより実行し得る。
834において示されるように、選択された槽からの液滴を液滴輸送器に移し得る。輸送された液滴をパケットと呼び得る。いくつかの例では、複数の槽を選択し、選択された各槽からの複数の液滴パケットを液滴輸送器に逐次(または並行して)輸送し得る。
場合により、836に示されるように液滴のパケットを液滴輸送器に保持してもよい。液滴輸送器は、反応場所に移動する流れから液滴を分離するなど、液滴の流れを止めることにより液滴を格納し得る。したがって、液滴を静止(流れていない)流体内に保持し得る(すなわち、連続相の正味の流れが実質的にない状態で)。
838に示されるように、液滴のパケットまたはその少なくとも部分を反応場所(例えば、熱循環機)に装填し得、これについては、液滴が反応場所に送られつつあるか、または導入されつつあるものとして説明し得る。液滴のパケットは逐次装填され得る。あるいは、液滴のパケットは、別個の熱循環機内または同じ熱循環機を通る別個の流路内に装填されるなど、並行して装填され得る。いくつかの例では、槽からの液滴のパケットの移動およびパケットの反応場所への装填が連続フローにより行われるように、液滴を保持するステップを省き得る。
図10は、図8の方法を実行可能な例示的なシステム850のうちの選択された部分を示す。矢印は、液滴をシステムの構造的構成要素間で移動し得る例示的な順序を示す。しかし、各構造的構成要素は任意選択的であり得、同じ液滴パケットに2回以上使用してもよく、かつ/またはここに示される順序とは異なる順序で利用してもよい。
システム850は、少なくとも1つの液滴生成器852、少なくとも1つの液滴槽854、少なくとも1つの液滴輸送器856、少なくとも1つの反応場所858(反応領域または液滴処理組立体とも呼ばれる)および少なくとも1つの検出器860を組み込み得る。これら構造的構成要素のうちのすべてまたは任意のサブセットを、任意の適した相対空間関係で互いに接続して、機器または機器−カートリッジ組立体(例えば、図2〜図4参照)を形成し得る。いくつかの例では、液滴を形成する液滴生成器(および/または液滴を格納する液滴槽)等のシステム構成要素のうちの1つまたは複数は、遠隔から利用し得るが、その場合、液滴生成器は輸送器、反応場所、および/または検出器に接続されない。システム850は少なくとも1つのコントローラ862も備えることができ、コントローラ862は、コントローラと他の各システム構成要素との間に延びる破線で示されるように、システム構成要素の任意の適した組み合わせと通信し、かつ/またはそのような組み合わせを制御するようにプログラムされ得る。
液滴生成器852により形成された液滴は、液滴形成後、液滴輸送器856により、1つまたは複数の反応を促進するために反応場所858に輸送し、そして液滴信号の検出を提供するために検出器860に輸送し得る。液滴の輸送前および/または輸送中、液滴を少なくとも1つの液滴槽854で、または2つ以上の液滴槽で逐次(もしくは並行して)受けてから、調整可能(かつ選択可能)な時間期間にわたって格納し得る。液滴の格納は、システムの任意の部分であるため、液滴槽を省いてもよい。
本明細書に開示される任意の液滴生成器および/または検出器(例えば、項III、項IV、および項VI参照)等の任意の適した液滴生成器852および検出器860をシステム内に組み込み得る。
「液滴槽」は、「格納場所」または「乳濁液槽」とも呼ばれ、液滴を一般に静止流体量で格納でき、選択可能なときに液滴にアクセスできる任意のコンパートメントである。液滴槽は、ウェル、チャンバ等であり得る。例示的な液滴槽は、特に、ウェルまたはチャンバのアレイ等の分離された、または分離可能な格納場所のアレイとして提供し得る。格納場所アレイをプレートにより提供し得る。
液滴輸送器856は、少なくとも1つの液滴生成器および/または少なくとも1つの液滴槽から反応場所への液滴の選択可能な輸送を提供する1つもしくは複数の構造および/または1つもしくは複数の装置で構成し得る。選択可能な輸送により、反応場所に送る異なる液滴パケット、液滴パケットを送る順序、各液滴パケットを送る時間等を選択し得る。異なる液滴パケットは、異なる試料−試薬組み合わせ、異なる液滴サイズ、異なる試料および/または試薬希釈液等を有し得る。いずれの場合でも、選択は、コントローラ、使用者、またはこれらの組み合わせにより実行し得る。例えば、選択は、特に、使用者により選択され、かつ/またはコントローラにプログラムされた順序、コントローラにより選択された任意の順序、システムが得た1つまたは複数の分析結果に基づいてコントローラによりリアルタイムで決定される動的な順序、あるいはこれらの組み合わせに基づき得る。
[F.例示的な液滴輸送器]
図11は、液滴輸送器856(図10)の例868の選択された態様を示す。輸送器868は、特に、少なくとも1つの取り入れ管870、少なくとも1つの流出管872、少なくとも1つの格納場所874、876、1つまたは複数のポンプ878および/または圧力源/シンク、ならびに/あるいは1つまたは複数の弁880(例えば、二方弁、三方弁、四方弁、および/または多位置弁、および/または注入ループ)の任意の組み合わせを組み込み得る。輸送器は、特に、1つもしくは複数のユニオン、ティー、クロス、気泡除去器、またはこれらの任意の組み合わせを含み得る。
取り入れ管870は、液滴槽882から(または液滴生成器から連続して)液滴をピックアップし、かつ/または取り込むことにより、液滴881を受け取るように構成し得る。したがって、取り込み管は、液滴槽に当接し、かつ/または液滴槽内に延長して、流体が乳濁液から取り入れ管に流入できるように、液滴を含む乳濁液884との接触を提供する。取り入れ管は、特に、ニードル、先端、管、またはそれらの組み合わせとして説明することができ、取り入れ管の断面は、1本または複数の縦列(並べて)で液滴を受け取るようなサイズであり得る。
流出管872を取り入れ管に直結してもよく、または流出管872は、1つまたは複数の弁880、格納場所874、876等により取り入れ管から隔てられてもよい。例えば、図11では、取り入れ管および流出管は、3個の弁880および2つの反応場所(874、876)により隔てられる。
各ポンプ878(および/または正/負圧源/シンク)が、流体を取り入れ管および/または流出管に通して流し、かつ/または保持場所に/から流体を流し得る。ポンプも、流体を反応場所885を通して流し得、または別個のポンプをこのために使用してもよい。いくつかの例では、液滴輸送器868は、液滴を輸送器に移動させるために少なくとも1つのポンプ(または圧力源/シンク)と、液滴を輸送器から出して、反応場所885に装填する少なくとも1つの他のポンプ(または圧力源/シンク)とを含み得る。
各格納場所874、876を取り入れ管870および流出管872に接続して、これら構造間で流体を流せるようにし得る。例えば、弁880が、取り入れ管870、流出管872、および格納場所の間に選択可能かつ調整可能な連通を提供し得る。弁により、886に示されるように、流体を格納場所874、876のうちのいずれか一方から廃棄口に送ることも可能であり得る。
液滴輸送器868は、他の任意の適した要素を含み得る。例えば、輸送器は、一次元、二次元、または三次元で液滴槽882に対する取り入れ管870の相対移動を駆動する駆動組立体887をさらに備え得る。例えば、液滴槽アレイ888(例えば、ウェルを有するプレート)を、x、y、およびzの方向に駆動されるステージもしくは他の支持部材890に接続し、かつ/またはそれにより支持して、任意の順序でアレイ/プレートの各槽内に取り入れ管を選択可能に配置できるようにし得る。他の例では、取り入れ管が選択された槽の内容物に接触するように駆動される間、液滴槽は静止したままであり得る。液滴輸送器868は、追加または代替として、特に、液滴槽882、取り入れ管870、1つもしくは複数の格納場所874、876、流出管872、またはそれらの任意の組み合わせ等の液滴輸送器の任意の適した部分(またはすべて)に熱を加えるように位置決めし得る少なくとも1つのヒータ892を組み込み得る。加熱により、反応場所に液滴を装填する前に、酵素の反応(例えば、逆転写)の促進、試薬の活性化(例えば、増幅反応前のホットスタート等での酵素:項V参照)等のために、液滴を事前処理し得る。
液滴輸送器(および/またはシステム850の他の任意の部分)は、液滴の濃度を上げるために、少なくとも1つのパッキング特徴894をさらに含み得る。パッキング特徴は、乳濁液のうちの液滴が占める容積割合を増大させ得、これは、例えば特に、キャリア流体の加熱に費やされるエネルギー量を低減するため、フローベース(逐次)の検出器が液滴を検出できる速度を増大させるため、かつ/または撮像検出器により同時に検出可能な液滴数を増大させるために望ましい場合がある。液滴の適した濃縮(すなわち、「パッキング濃度」)は、液滴生成中に達成してもよく、または液滴生成後にパッキング濃度を増大させてもよい。パッキング濃度の増大は、特に、乳濁液が静止している(例えば、格納中)か、または流れている間にキャリア流体を乳濁液から除去することにより、かつ/または格納されている乳濁液から液滴を選択的に取り出すことにより達成し得る。液滴は、(1)遠心分離、(2)液滴とキャリア流体との濃度差および重力(すなわち、キャリア流体内で液滴が浮くか、または沈む)、(3)液滴の界面動電濃縮、(4)液滴の磁気濃縮等により、格納されている乳濁液内で局所的に濃縮し得る。パッキング濃度は、キャリア流体の側方フロー(および除去)を選択的に可能にするより小さな直径の1つもしくは複数の側部通気管路(または1つもしくは複数の膜)を使用することにより、フロー中に増大させ得る。代替または追加として、液滴の慣性を利用することにより、流体が流れている間にパッキング濃度を増大し得る。
[G.液滴の生成と輸送が結び付いた例示的なシステム]
図12は、液滴生成と反応場所への液滴輸送とが、液滴が格納されないように連続フローで結び付けられたシステム850(図10参照)の連続フロー例910を示す。システム910は、直列に配置された液滴生成器912、液滴輸送領域914、熱循環機916、検出器918、および廃棄物/収集槽920を備え得る。液滴生成器912には、油922等のキャリア流体ならびに試料および試薬の非分割状態の分析混合物924を供給し得る。油および分析混合物のそれぞれは、各ポンプまたは圧力源926、928により液滴生成器912に移動させ得る。ここで、液滴生成器はクロスとして構成されるが、他の任意の構成も適し得る(例えば、項IIIおよび項IV参照)。液滴生成器により形成される液滴930は、ポンプ926、928により促進される連続流体フローにより、液滴輸送領域914を通って熱循環機916に連続して流れ得る。他の例では、1つまたは複数の追加のポンプまたは圧力源/シンクを使用して、熱循環機を通る流れを促進し得る。
[H.液滴の生成と輸送とが切り離された例示的なシステム]
図13および図14は、液滴の生成と輸送とが切り離された例示的なシステムを示す。
図13は、液滴生成と反応場所への液滴輸送とが切り離されたシステム850の一例940を示す。システム940は、キャリア流体948内に事前形成された液滴946がある乳濁液944を保持する液滴槽942を含み得る。液滴946は、システム940の下流部分からオフラインで形成し得る。液滴が少なくとも1つの液滴生成器により形成された場合、液滴は液滴槽942に連続して流れ得る。あるいは、液滴は、液滴生成後の選択可能なときに、流体輸送装置(例えば、ピペットまたはシリンジ)を使用して別の格納場所から液滴槽内に移され得る。いずれの場合でも、液滴形成後(または前)に液滴槽942をシステム940の下流構成要素に接続して配置し得、それにより、液滴槽が下流のシステム構成要素に接続された後(および任意にその前)、調整可能で選択可能な時間期間にわたって液滴946を格納し得る。
システム940は、直列に配置された液滴輸送領域950、熱循環機952、検出器954、および下流圧力シンク(例えば、シリンジポンプ956)、上流圧力源958、またはこれら両方等の少なくとも1つの圧力源/シンクを組み込み得る。液滴輸送領域950は、液滴槽942内に延び、乳濁液944に接触して連通する取り入れ管960を含み得る。液滴946は、特に、下流真空源(または圧力シンク)956(例えば、シリンジポンプ)によりかけられる負圧および上流圧力源960(例えば、別のポンプ)により乳濁液944に対してかけられる正圧の結果、取り入れ管内に引き込み得る。ここに示されるように、液滴は、例えば、重力、遠心力、磁力、および/または界面動電移動等により乳濁液の上または下に向けて選択的に濃縮されて、乳濁液内に非均一的に分散し得、それにより、乳濁液内の平均パッキング濃度よりも高いパッキング濃度の液滴を除去し得る。代替または追加として、液滴パッキング濃度が平均よりも低い場合、キャリア流体を選択的に除去(例えば、除去または破棄)し得る。いずれの場合でも、液滴946を連続フローにより乳濁液から輸送領域950、熱循環機952、検出器954、そしてシリンジポンプ956により提供される槽962内に移動させ得る。
図14は、システム970が複数の液滴パケットを並行して輸送し、反応させ、かつ/または検出可能なように、選択された構成要素が複製された、一般に図13のシステム940に関連するシステム850の一例970を示す。システム970は、直列に配置された乳濁液アレイ972、液滴輸送器974、熱循環機976、1つまたは複数の検出器978、ならびにシリンジポンプ980等の1つまたは複数のポンプまたは圧力源/シンクを含み得る。
乳濁液アレイ972は、プレート986により形成された液滴槽アレイ984内に保持された乳濁液982を含み得る。乳濁液は、プレートとは別個に形成し、次に、プレートに移し得る。あるいは、プレートは、液滴槽984内に含まれる乳濁液を形成する、液滴生成器アレイ988を組み込んだ液滴生成器プレートであり得る。液滴生成器プレートのさらなる態様については、本項、項III、および項IVにおいて後述する。
液滴輸送器974は、プレート986の1行の液滴槽984から並行して液滴を取り入れるための1ラインになった取り入れ管またはニードル990を含み得る。取り入れ管990の先端は、プレートの各行内の液滴槽984の間隔に合うように離間させ得る。液滴輸送器974は、少なくとも2つの次元または三次元でプレート986と取り入れ管990との相対移動を駆動する駆動組立体992も含み得る。特に、駆動組立体の動作により、事前に定義された順序または選択可能な順序で、取り入れ管を各行の乳濁液と逐次連通させ得る。他の例では、液滴輸送器は、プレート986により形成される液滴槽の行および列に対応して配置し得る取り入れ管三次元アレイを含み得、それにより、液滴槽のうちの2行以上(例えば、平行した液滴槽のすべて)から液滴の並行取り出しを可能にする。任意の構成の取り入れ管を使用して、各取り入れ管を各弁に接続し得る。弁の動作により、取り入れ管が液滴の取り入れに関してアクティブであるか、それとも非アクティブであるかを決定し得る。あるいは、取り入れ管を、液滴を取り入れるための取り入れ管を一度に1つのみ選択するように動作し得る同じ多位置弁に接続し得、それにより、液滴槽からの液滴の逐次取り入れが提供される。
液滴の取り入れは、1つまたは複数のポンプにより促進され得る。例えば、シリンジポンプ980によりかけられる負圧により、液滴を取り入れ管990内に引き込み得る。代替または追加として、液滴輸送器974のポンプ994等の正圧源によりかけられる正圧により、図13のシステム940について説明したように、液滴を取り入れ管内に押し込み得る。特に、マニフォルド996を介してポンプ994を液滴輸送器974に接続し得る。各取り入れ管は、マニフォルドに対して封止された関係でマニフォルドを通って延び得る。マニフォルドは、駆動組立体992の動作により液滴槽の各行と封止関係になるように移動可能であり、それにより、各行上に逐次、封止チャンバ998を形成し得る。したがって、ポンプ994はチャンバを加圧して、液滴を行内の槽から並行して取り入れ管内にせきたてる。
熱循環機976は、異なる取り入れ管990との別個の各接続をそれぞれ形成するコイル管1000〜1014により提供される複数の反応チャネルを含み得る。コイル管は概して、互いに差し込まれた螺旋形路を辿り得る。例えば、管を一緒により合わせ、かつ/またはまとめて包み得る。いずれの場合でも、液滴輸送器974は、液滴パケットをコイル管内に並行して装填し得、別個の流路を辿りながら、パケットを並行して熱的に循環させ得る。1016において示されるように、各コイル管からの液滴も検出器978により並行して検出し得る。他の例では、各取り入れ管990を別個の各熱循環機に接続してもよく、または取り入れ管990が、同じコイル管もしくは他の反応チャネル内に液滴を供給してもよい。
[I.オートサンプラを利用する例示的な切り離しシステム]
図15および図16は、液滴の生成と輸送との切り離しをオートサンプリングと組み合わせた例示的なシステムを示す。
図15は、液滴生成と反応場所への液滴輸送とが切り離された、図10のシステム850の別の例1030を示す。システム1030は、直列に配置された槽アレイ1032、オートサンプラ1036を備えた液滴輸送器1034、反応場所1038(例えば、熱循環機1040)、検出器1042、および廃棄物/収集槽1044を組み込み得る。液滴は、オートサンプラ1036の動作を通してアレイ1032から反応場書1038に移動し、反応中または反応後に検出器1042により検出され、次に、検出後に槽1044により収集し得る。
槽アレイ1032は、液滴1050をそれぞれ含む、ウェル1048等の液滴槽のアレイを提供するプレート1046として構成し得る。したがって、プレート1046は、本明細書の他の箇所で説明される特徴の任意の組み合わせを有する液滴生成器プレートとして構成し得る。あるいは、プレート1046は、プレートとは別個に生成され、次に、プレートのウェルに移された液滴を保持し得る。
オートサンプラ1036は一般に、槽アレイから管(例えば、取り入れ管)への流体の逐次取り入れを提供する任意の装置または装置組立体を含む。オートサンプラは一般に、アレイの任意の槽または一続きの槽から液滴を取り出すことが可能であり、各槽から可変量の流体を取り入れるように制御可能であり得る。オートサンプラは、特に、取り入れ管として働くニードル1052、1つまたは複数のポンプまたは圧力源/シンク1054、1つまたは複数の弁1056、またはこれらの任意の組み合わせを含み得る。オートサンプラは、3つの直交する軸等に沿って三次元でニードル1052の移動を制御可能に駆動する駆動組立体1058を含み得る。例えば、駆動組立体は、ニードルを、任意の選択された槽1048上にx−y平面において位置決めし、次に、z軸に沿って移動させ、ニードルを選択された槽内の流体に接触させるように動作させて液体を取り入れ、次に、流体からの接触を断って別の槽に移動させる(または空気を取り入れる)ことができ得る。他の例では、駆動組立体は、ニードルが静止したままである間に槽アレイを移動させ得る。他の例では、ニードルのz軸移動を駆動するz軸駆動組立体および槽アレイのx−y移動を駆動するx−y軸駆動組立体があり得、またはこの逆も同様である。
図16は、オートサンプラ1036のニードル1052が液滴パケット1060〜1064をプレート1046の対応するそれぞれ一続きのウェル1066〜1070から取り入れている状態での、図15のシステム1030のうちの選択された部分を示す。隣接する液滴パケットは、オートサンプラ1036内で互いに任意の適したスペーサ領域1072により隔て得る。スペーサ領域は、1つまたは複数のスペーサ流体の1つまたは複数のセグメント1074を含み得る。例えば、スペーサ液1076を、アレイのウェル1078内または別のアクセス可能な槽内に配置し得る。各液滴パケットを問い入れた後、ニードル1052をウェル1078に移動させて、スペーサ液1076を取り入れ得る。代替または追加として、ニードル1052は、液体に接触していない間、パケット間にある容量の、空気1080等のスペーサガスを取り入れ得る。スペーサガスの使用は任意である。スペーサ流体は、液滴パケットと同じ非混和性キャリア流体を含んでもよく、または異なる非混和性キャリア流体を含んでもよい。いくつかの実施形態では、スペーサ流体は、染料等を使用して標識して、液滴パケットのキャリア流体と区別可能にし、かつ/または液滴パケットの境界(すなわち、先端または後端)に印を付け得る。代替または追加として、スペーサ流体および/またはスペーサガスは、液滴パケット間の液滴濃度を低減させる(すなわち、実質的に液滴をなくす)ことにより、液滴パケットから区別可能であり得る。
[J.多段階切り離しを使用する例示的なシステム]
図17および図18は、液滴生成と反応場所への液滴装填との多段階切り離しを組み合わせた例示的なシステムを示すと共に、オートサンプラを使用した輸送も示す。
図17は、液滴生成と反応場所への液滴装填との多段階切り離しが可能な図10のシステム850の一例1090を示す。より具体的には、システム1090は、まず、乳濁液アレイ内への液滴パケットの格納を提供し、次に、パケットを取り入れた後、かつパケットを下流の反応場所に装填する前に、別個の格納場所への格納を提供する。システム1090は、駆動組立体1093に結合された乳濁液アレイ1092を備え得る。乳濁液アレイは、プレート1094(例えば、マイクロプレートまたは液滴生成器プレート)により保持し得る。システム1090は、選択可能な取り入れ、保持、加熱、および装填を提供する液滴輸送器1096も備え得る。
液滴輸送器1096は、オートサンプラ1098、少なくとも1つの格納場所1100、および流出領域1102を組み込み得る。オートサンプラ1098は、図15および図16に関して概して説明したように、液滴パケット1104〜1108をプレート1094の選択されたウェルから輸送器1096に移し得る。
1つまたは複数の弁1110、1112が、1つまたは複数のポンプ1114と協働して、各パケットの流路および滞留時間を決定するように動作し得る。例えば、弁1110は、各パケットが輸送器1096に移された後、液滴を下流の反応場所に連続して流すように動作し得る。代替または追加として、1116に示されるように、弁1110は、1つの液滴パケット(または複数のパケット、図16参照)を流入路に沿って格納場所1100(例えば、保持チャネルまたは保持チャンバ)に移動させるように動作し得る。格納場所への流体の移動を促進するために、ポンプ1114を利用し得る。
液滴パケット1106は、任意の適した時間期間にわたって格納場所1100を占有し得る。いくつかの例では、パケット1106は、格納場所に配置されている間、ヒータ1118により加熱し得る。代替または追加として、パケット1106は、特に、パケットがプレート1094に収容されている間、保持場所に流れている間、および/または流出領域1102内に配置されている間等、保持場所1100の上流で加熱し得る。いずれの場合でも、1120に示されるように、流出路を開く弁1110の動作により、液滴パケット1106を保持場所から流出領域1102に出し得る。ポンプ1114は、接続された槽1124から得られたキャリア流体1122を利用して、液滴パケット1106の流れも後押しし得る。キャリア流体は、液滴を保持場所から流し出して、実質的な相互汚染なしで異なる液滴パケットでその保持場所を再び使用可能にするようにも機能し得る。いずれの場合でも、ポンプ1114は、流出領域1102を通るようにパケット1106を後押ししてもよく、次に、別のポンプ1126が、接続された槽1130から得られるキャリア流体1128を利用して、下流の反応場所にパケットを後押しし得る。下流ポンプ1126の使用により、流出路1120を閉じ、流入路1116を開くように弁1110を再び位置決めし得、それにより、ポンプ1114は、別のパケット(例えば、パケット1104)を保持場所1100内に移動させ得る。
図18は、液滴生成と反応場所への液滴装填との多段階切り離しが可能なシステム850(図10)の別の例1140を示す。システム1140は概して、図17のシステム1090に関連するが、選択可能な順序にアクセスし、その順序に従って格納場所から反応場所への液滴パケットの装填を提供することができる複数の分離可能な格納場所1142〜1154を含む。システム1140は、駆動組立体1157に結合された直列に配置された乳濁液アレイ1156備え得る。乳濁液アレイは、プレート1158(例えば、液滴生成器プレート)により保持し得る。システム1140は液滴輸送器1160も備え得る。輸送器は、選択的なプレート1158からの液滴パケットの取り入れ、調整可能な時間期間にわたっての各パケットの保持、および反応場所への手法の選択可能な装填を可能にし得る。
輸送器1160は、特に、オートサンプラ1162、一時的な保持ステーション1164、少なくとも1つのポンプ1166、および1つまたは複数の弁1168〜1172を備え得る。ポンプ1166は、オートサンプラ1162の取り入れ管1174内への液滴の取り込みを後押しし得る。液滴は、1つのパケットまたは複数の離間されたパケットを表し得る。いずれの場合でも、ポンプ1166は、保持ステーション1164へのパケットの流れを後押しし得る。次に、多位置弁1170を動作させて、保持ステーション1164から格納場所1142〜1154のうちの1つへの流路を開くことができ、ポンプ1166は、パケットをステーションから格納場所へと後押しし得る。このプロセスを一回または複数回繰り返して、他のパケットを他の格納場所1142〜1154内に配置し得る。ヒータ1176は、格納場所内に配置された液滴パケットに熱を加え得る。
格納場所内の液滴パケットは、選択可能な順序で下流の反応場所に逐次装填し得る。特に、選択された格納場所とステーション1164との間の流路を開くように、弁1170を位置決めし得る。次に、ポンプ1166は、液滴パケットを選択された格納場所からステーション1164内に移動させ得る。次に、ステーション1164から流出管1178への流路を開くように、弁1170を再び位置決めし得る。次に、ポンプ1166が、パケットの背後で移動するキャリア流体1180を利用して、液滴パケットをステーション1164から流出管1178に後押しし得る。パケットを流出管1178から下流の反応場所に後押しするために、ポンプ1166を利用してもよく、または別のポンプを利用してもよい(例えば、図17参照)。いくつかの例では、格納場所内の液滴パケットは、ステーション1164に移される代わりに、廃棄物槽1182へと追いやられてもよい。
[K.静止流体内での増幅の概説]
図19〜図21は、乳濁液が静止した状態で、かつ/または乳濁液アレイのバッチ増幅により増幅が実行される、液滴ベースの分析を使用して試料を分析する例示的なシステムに関連する。
図19は、静止流体内に配置されている間に増幅の条件下に置かれた液滴を使用する試料分析方法で実行し得る例示的なステップを列挙したフローチャート1190を示す。列挙されたステップは、任意の適した順序かつ任意の適した組み合わせで実行してよく、本明細書の他の箇所で開示される任意の他のステップと組み合わせてもよい。
1192に示されるように、試料および少なくとも1つの試薬を混合して、増幅用の分析混合物を生成し得る。いくつかの実施形態では、1つまたは複数の試料および1つまたは複数の試薬を混合して、複数のそれぞれ別個の分析混合物を生成し得る。
1194に示されるように、少なくとも1つの乳濁液を少なくとも1つの分析混合物から生成し得る。乳濁液は、逐次、並行、またはバルク液滴生成(例えば、項IIIおよび項IV参照)により生成し得る。2つ以上の乳濁液が生成される場合、乳濁液は互いに関して並行して、または逐次生成し得る。
1196に示されるように、少なくとも1つの乳濁液を、静止したまま熱循環させ得る。特に、乳濁液を、熱循環される際に乳濁液の方向性フローを制限する容器内に配置し得る。
1198に示されるように、乳濁液の液滴から信号を検出し得る。この信号は、乳濁液が流れている間、または流れていない間に検出し得(例えば、項VI参照)、特に、逐次液滴検出または撮像を含み得る。
図20は、乳濁液アレイの並行増幅を使用する試料分析方法で実行し得る例示的なステップを列挙したフローチャート1200を示す。列挙されたステップは、任意の適した順序かつ任意の適した組み合わせで実行してよく、本明細書の他の箇所で開示される任意の他のステップと組み合わせてもよい。
1202に示されるように、複数の分析混合物を生成し得る。各分析混合物は、増幅混合物内に少なくとも1つの種(または2つ以上の種)の核酸標的が存在する場合、それを増幅可能な増幅混合物であり得る。分析混合物は、それぞれ別個の試料、別個の試薬(例えば、異なる種の核酸標的を増幅する)、またはこれらの任意の組み合わせを含み得る。いくつかの実施形態では、分析混合物は、プレートにより形成される平面アレイ等のアレイ内で生成してもよく、またはアレイ内に配置してもよい。
1204に示されるように、乳濁液を各分析混合物から生成し得る。乳濁液は、互いに関して並行して、または逐次生成し得、各乳濁液の液滴は逐次、並行して、またはバルクで生成し得る。
1206に示されるように、乳濁液をアレイ内で熱的に循環させ得る。アレイは、線形アレイ、平面(二次元)アレイ、または三次元アレイであり得る。
1208に示されるように、液滴信号を、各乳濁液の1つまたは複数の液滴から検出し得る。検出は、乳濁液がアレイ内およびアレイ内に乳濁液を保持する装置(例えば、プレート)内に配置されたままである間に行い得る。あるいは、液滴をアレイから取り出した後、検出を行ってもよい。より具体的には、検出は、液滴を保持する容器/入れ物(例えば、プレート、ウェル、またはバイアル)から液滴を移した後に行ってもよい。例えば、液滴は、容器/入れ物から検出窓に隣接する検出場所(例えば、検出チャネル、チャンバ、溝)に移され得る。移送は、任意の適した手動または自動化された流体移送装置を使用して達成し得る。さらに、検出は、特に、フローベースの検出(例えば、逐次液滴検出)であってもよく、または静的/フロー停止検出(例えば、撮像)であってもよい。
図21は、図20の方法を実行する例示的なシステム1210のうちの選択された部分の概略図を示す。図示のシステム構成要素の任意の1つの構成要素または組み合わせをシステムから省いてもよく、本明細書の他の箇所で開示される任意の追加の構造的構成要素をこのシステムに追加してもよい。矢印は、試料および乳濁液がシステムの構造的構成要素間で移動し得る例示的な順序を示す。しかし、構造的構成要素を、ここに示される順序とは異なる順序で利用してもよい。
システム1210は、液滴生成器アレイ1212、乳濁液ホルダ1214、バッチ熱循環機1216、および検出器1218を含み得る。液滴生成器アレイ1212は、線形、平面、または三次元アレイで互いに接続された液滴生成器セットを含み得る。あるいは、システム1210は、アレイに保持されない複数の液滴生成器を利用し得る。いずれの場合でも、複数の乳濁液を液滴生成器により生成し、少なくとも1つの乳濁液ホルダ(例えば特に、複数のバイアルまたはウェルもしくはチャンバのアレイを有するプレート)内に配置し得る。乳濁液は、各液滴生成器から、液滴生成器に接続し得る乳濁液ホルダまで連続して流れ得る。あるいは、乳濁液は、手動または自動化された流体移送装置等を使用して、選択可能な時間にホルダに移され得る。いずれの場合でも、乳濁液ホルダおよび乳濁液ホルダ内に保持される乳濁液は、乳濁液をアレイ内に保持した状態でバッチ熱循環機1216により熱循環させ得る。アレイの各サイトは、特に、乳濁液ホルダ、熱循環機の収容構造、またはこれら両方により画定し得る。熱循環後、検出器1218を使用して、液滴のフローベースまたは静的/フロー停止での検出を実行し得る。いくつかの例では、検出器は、乳濁液が乳濁液ホルダ内にまだ配置されている間、かつ場合により、乳濁液ホルダが熱循環機に動作的に結合されている間、乳濁液の液滴を撮像し得る。
[L.バッチ増幅システムの例示的な液滴生成器アレイ]
図22〜図32は、バッチ増幅等の並行して反応し得る(またはしなくてもよい)乳濁液アレイを生成する例示的な装置に関する。
図22および図23は、液滴生成器アレイが備えられた例示的な装置1220を示す。装置1220は、液滴生成器アレイ1222を組み込んだプレートとして構成し得る。各液滴生成器は、項IIIおよび項IVに説明される任意に構造等の任意の適した液滴生成器構造を有し得る。各液滴生成器は、プレートの上からアクセス可能な(例えば、流体装填し、かつ/または取り出し可能な)セル1224、1226、1228等の複数の槽を含み得る。槽はポートと呼ぶこともでき、槽の底部付近に形成されたチャネル1230により連通し得る。チャネルの交点は、液滴がフロー収束等の任意の適したメカニズムにより形成される液滴生成の場所または交点1232を形成し得る。
図24は、4ポート構成を有する液滴生成器1222のうちの1つの概略図を示す。生成器から液滴を生成するために、1つまたは複数のウェル1224にキャリア流体(例えば、油)を装填し得る。試料ウェル1226に、試料(例えば、試料と増幅等の反応を実行するための試薬とを含むPCR混合物等の分析混合物)を装填し得る。1234における垂直矢印で示されるように、圧力を油ウェル1224および試料ウェル1226に加えて、流体フロー、液滴生成、およびその結果乳濁液1236として生成される液滴の乳濁液ウェル1228へのフローを促進し得る。流体フローは、チャネル1230に平行して延びる矢印で示される。他の例では、各液滴生成器は、1つのみの油ウェルおよび1つのみの試料ウェルを含み、3ポート構成(以下参照)を提供してもよく、または1つもしくは複数の油槽をプレートの複数の液滴生成器で共有してもよい。
図25は、圧力を液滴生成器1222(図22〜図24参照)に加えて液滴生成(および乳濁液形成)を促進する例示的な圧力マニフォルド1238が組み付けられたプレート1220の断面図を示す。この図では、提示を簡略化するために、ウェルは流体なしで示されている。また、この図に見られる4つのウェルのすべてが同じ液滴生成器に属するわけではないが、簡略化のために、これらウェルについて、あたかも4つのウェルのすべてが同じ液滴生成器に属するかごとく、これらウェルについて説明する。
プレート1220は、上部部材1240および下部部材1242を含み得る。上部部材1240はウェル1224〜1228を画定し得、ウェル1224〜1228は、例えば、上部部材の基部から上方に突出し、各ウェルの側方を囲む側壁を形成するリッジ1244(例えば、管状リッジ、図23も参照)により作成し得る。上部部材は、チャネル1230の上壁および側壁も画定し得る。これらチャネルは、液滴生成器のウェル1224、1226からおよびウェル1228への流体移動のための連通を提供し得、上部部材の底面に形成し得る(図23に示されるクロスパターン等で)。下部部材1242は、カバー層と呼ぶこともでき、上部部材1240の下に配置され、上部部材の底面を介して上部部材1240に取り付け得る。下部部材は、下から上部部材の底面の少なくとも部分に重なり、上部部材1240の底面に形成されたチャネル1230等の開口を覆って封止し得る。したがって、下部部材1242は、チャネルが囲まれ、流体がウェルまたはチャネルを介してプレートの底から漏れ得ないようにチャネル1230の底壁を形成し得る。いくつかの実施形態では、上部部材1240は、射出成形等によりポリマーで形成し得る。
圧力マニフォルド1238は、1つまたは複数の圧力源1248、1250に接続されるか、または接続可能なマニフォルド本体または配送部材1246を含み得る。マニフォルド本体1246は、上からプレート1220と嵌り合い、弾性Oリング等の封止要素またはガスケット1252を介して液滴生成器のウェル1224〜1228との封止を形成し得る。マニフォルド本体は、ウェル1224〜1228と連通するチャネル1254も画定し得る。
液滴生成器のすべてまたはサブセットから平行して、または逐次液滴を生成できるように、マニフォルド本体のチャネル1254の任意の適した組み合わせを1つまたは複数の圧力源に接続し得、または接続可能であり得る。したがって、圧力マニフォルドにより、1度に1つのみの液滴生成器を加圧することができ、または2つ以上の液滴生成器に並行して加圧して、バッチプロセスでプレートの2つ以上の液滴生成器からの並行した乳濁液形成を促進することができる。例えば、圧力源1250を使用して、液滴生成器のうちのサブセットまたはすべての油ウェル1224を加圧し、別の圧力源1248を使用して試料ウェル1226を加圧して、油ウェルおよび試料ウェル内の流体にかけられる圧力を独立して調整することが可能であり得る。したがって、いくつかの例では、マニフォルドにより、ある圧力を油ウェルに対して並行してかけ、それとは独立して、別の圧力を試料ウェルに対して並行してかけることが可能であり得る。あるいは、同じ圧力源が、圧力を油ウェルおよび試料ウェルにかけてもよい。マニフォルドにより、その他のウェルから独立して乳濁液ウェル1228を加圧することがさらに可能になり得(例えば、流体を乳濁液ウェル内に引き込む圧力シンクを形成するため)、1256に示されるように、乳濁液生成中に乳濁液ウェルに通気して、加圧された油ウェル、試料ウェル、またはこれらの組み合わせと比較して圧力を降下させることが可能になり得る。
図26は、圧力マニフォルドが乳濁液形成後の例示的なカバーまたは封止部材1258で置換されたプレート1220を示す。(乳濁液は乳濁液ウェル1228内に存在し、油および分析混合物流体は実質的にウェル1224および1226から使い果たされている)。カバー1258はウェル1224〜1228を封止して、例えば、蒸発による流体の損失を回避し得る。カバーは、リッジ1244に係合して各ウェルを封止する弾性部材1260を含み得る。いくつかの例では、弾性部材は、ウェルの少なくとも部分に相補的であり、それにより、個々のウェルのキャップおよび/またはプラグ等を形成し得る。いくつかの例では、カバー1258は乳濁液ウェル1228のみを覆って封止し得る。いくつかの例では、複数のカバーを使用し得る。いずれの場合でも、プレート1220にカバー1258を組み付けた後、プレートに熱循環を施して、プレートの乳濁液ウェル内での増幅を誘導させ得る。例えば、プレートおよびカバーを熱循環チャンバ内に配置し得る。あるいは、熱循環のために、各乳濁液をプレート1220から封止可能な管(例えば、Cepheid SmartCyclerと併用するため)、プレート(例えば、96ウェルPCRプレート)の封止可能なウェル/チャンバ等の別の容器に移してもよい。他の例では、キャリア流体が、液滴の蒸発に対して十分な液体バリアを形成可能な場合、蒸発を低減するための容器内の乳濁液の封止が必要ないことがある。
乳濁液からの液滴信号は、熱循環中または熱循環後に、乳濁液を乳濁液ウェル1228から検出場所に移した状態で検出してもよく、または移さない状態で検出してもよい。いくつかの例では、プレート1220により、プレートの下からの撮像が可能であり得る。いくつかの実施形態では、乳濁液ウェル1228は、特にテープまたは薄いシート等の光学的品質の(例えば、透明な)カバー層で封止し得る。次に、プレートを反転させ、カバー層を通して液滴を撮像し得る。この場合、キャリア流体および分析混合物組成物は、液滴が乳濁液内で沈み、カバー層上に単分子層を形成するように封止し得る。いくつかの例では、検出器は、単分子層内に配置されない液滴からの画像データを集められるようにする共焦点光学系を備え得る。
プレート1220は、任意の適した数の行および列に配置された任意の適した数の液滴生成器1222(図22〜図24参照)を有し得る。いくつかの実施形態では、液滴生成器および/または液滴生成器のウェルの間隔、数、および/または行/列構成は、標準マイクロプレートのウェルに対応し得る。例えば、液滴生成器(および/またはウェル)の中心間距離、数、および/または構成は、特に、6個、24個、96個、384個、1536個等のウェルを有するマイクロプレートに対応し得る。したがって、プレートは、6個、24個、96個、384個、1536個の液滴生成器および/またはウェルを有し得る(特に、約18mm、9mm、4.5mm、2.25mm、または1.125mmの間隔を有し得るすべてのウェルまたは所与のタイプのウェル(例えば、乳濁液ウェル)。標準マイクロプレートに対応するポート構成で、プレート1220を使用して、標準マイクロプレートへの/からの並行した流体移送を利用し得る。
図27は、液滴生成器アレイ1272を組み込んだ別の例示的な装置1270を示す。装置1270は、プレートとして構成し得、プレート1220(図22〜図26参照)に関して上述した任意の特徴を有し得る。
各液滴生成器1272は、ウェル1274〜1278として構成し得る複数のポートを含み得る。特に、液滴生成器1272は、キャリア流体を受ける油ウェル1274、試料(例えば、増幅混合物等の分析混合物である準備された試料)を受ける試料ウェル1276、および液滴生成器により生成された乳濁液のあふれ部分を受ける乳濁液ウェル1278という3ポート構成を有し得る。
図28は、液滴1280を生成して乳濁液1282を生成した後の液滴生成器1272の底面図を示す。液滴生成器は、流体を油ウェル1274および試料ウェル1276から液滴生成の場所または交点1286に搬送するチャネル網1284を含み得る。一対のチャネル1284が、油ウェル1274から場所1286まで延び得、別のチャネル1284が試料ウェルから場所1286まで延びて、試料ウェルからの流体ストリームの両側に配置されたキャリア流体により試料ウェルからの流体のフロー収束により、液滴が形成されるクロス構造を形成し得る。
液滴1280は、液滴生成場所1286から流出チャネル1288を介して乳濁液ウェル1278に流れ得る。流出チャネルは、場所1286から延びてチャンバ1290を形成するため、広げ得る。チャンバは高いアスペクト比を有し得、チャンバ内での液滴の単分子層1292の形成を促進するために、高さ/厚さは一般に液滴の直径に対応する。液滴は、チャンバ1290を過ぎて乳濁液ウェル1278にも流れ得る。しかし、乳濁液ウェル1278は、過度の乳濁液を収集するあふれ場所として主に機能し得る。他の実施形態では、乳濁液ウェル1278を省いてもよい。いずれの場合でも、チャンバ1290を通気口1294に接続し得、通気口1294は、チャンバの一般に下流に配置されて、乳濁液がチャンバ内に流入する際に空気を逃がし得る。
図29は、液滴生成器1272の断面図を示すと共に、液滴をどのようにして生成し、次に、プレート1270の下から撮像装置1296を使用して撮像し得るかを示す。液滴を生成するために、油ウェル1274にキャリア流体1298を装填し、試料ウェル1276に試料(例えば、分析混合物1300)を装填し得る。1302での圧力矢印で示されるように、圧力を油ウェルおよび試料ウェルに加えて、液滴生成を促進する。例えば、図25に関して上述したように、圧力マニフォルドを使用して圧力を加え得る。他の例では、流体フローおよび液滴生成は、特に、真空を乳濁液ウェル1278に加えることにより、またはプレート1270を遠心機内で回転させて、プレートにより画定される平面に垂直に遠心力をかけることにより、促進され得る。いくつかの例では、プレート1270に、2つ以上の液滴生成器1272にキャリア流体を供給する油槽を設計し得る。特に、チャネルが油槽から2つ以上の液滴生成場所1286に延び得る。他の例では、ウェル内で受けられるピストンを使用して、液滴生成を促進し得る(例えば、項III参照)。
液滴は、チャンバ1290内で反応し得る。例えば、プレート1270を熱循環機等の加熱ステーション内に配置して、液滴内の1つまたは複数の核酸標的の増幅を誘導し得る。プレートを加熱する前に、図26に関して上述したように、ウェル1274〜1278を少なくとも1つの封止部材で上から封止して、蒸発を低減してもよい。あるいは、チャンバ内の流体が蒸発に対する耐性を有し得るため、ウェルを封止せずにプレートを加熱してもよい。
プレート1270は、チャンバ内で液滴を撮像できるように設計し得る。例えば、プレートは、プレート1220(図25および図26参照)に関して上述したように、下部部材1306に取り付けられた上部部材1304を含み得、これら部材のうちの少なくとも一方が、液滴を撮像できるようにし得る表示窓または光学窓1308を形成する。したがって、上部部材および/または下部部材は、プレートの上および/または下から撮像できるように透明であり得る。プレート1270は、液滴の反応後、いずれのポートの封止も破ることなく(例えば、プレートカバーを取り外すことによりポートを開くことなく)所定場所の液滴を撮像する能力を提供し得る。プレート1270は、他の後続反応を汚染する恐れがある反応中にプレート内に形成される単位複製配列が漏れるリスクを低減し得る。その理由は、反応中および撮像中に、単位複製配列を実質的に囲まれた同じコンパートメント(例えば、チャンバ1290)内に保持できるためである。いくつかの例では、撮像装置は、液滴が反応しているとき、例えば、液滴が熱循環されている間に液滴から画像データを収集するように構成し得る。
チャンバ1290は任意の適した面積を有し得る。例えば、チャンバは、ポート面積の少なくとも約2倍、5倍、または10倍等、ポートよりもはるかに大きなフットプリントを有し得る。
図30は、液滴生成器アレイ1312を組み込んださらに別の例示的な装置1310を示す。装置1310はプレートとして構成し得、各液滴生成器1312は、液滴生成器1222(図22〜図26参照)に関して概して上述したように構成し、動作し得る。特に、各液滴生成器は、一対の油ウェル1314、試料ウェル1316、および乳濁液ウェル1318を含み得る。
図31は、液滴生成後のプレート1310の液滴生成器1312の底面図を示す。液滴生成器は、キャリア流体および分析混合物のそれぞれを油ウェル1314および試料ウェル1316から液滴生成場所1322に流すチャネル網1320を含み得る。形成された液滴1324は、チャンバ1290(図27〜図29参照)に関して上述したように、チャンバ1326に流入して、液滴の実質的な単分子層1328を形成し得る。
図32は、液滴生成器1312の断面図を示すと共に、液滴をどのようにして生成し、装置の下(および/または上)から撮像し得るかを示す。特に、プレート1310は、チャンバ1326の上方および/または下方に表示窓を形成し得る。
[M.バッチ増幅システムの場合での例示的な検出]
図33〜図40は、バッチ増幅システムの場合での例示的な検出モードを示す。
図33は、ウェルアレイ1366内にプレート1364により保持された乳濁液アレイ1362をバッチ検出する例示的な撮像システム1360を示す。特に、乳濁液をプレート1364内で反応(例えば、熱循環により増幅)させてもよく、または反応後に、流体移送装置を使用してプレートに移送してもよい。プレート1364は、用途に応じて使い捨て(例えば、プラスチック製)であってもよく、または再使用可能(例えば、石英製)であってもよい。
撮像システム1360は、コンピュータ等のコントローラ1370に接続された撮像装置またはイメージャ1368を含み得る。撮像システム1360の任意の適した態様を、本開示の他の撮像システムに使用してもよい。撮像システム1360は、本開示の他の撮像システムに関して開示された他の任意の特徴を組み込んでもよい。イメージャ1368は、蛍光イメージャであってもよい(またはそうでなくてもよい)。イメージャは、例えば特に、CCDカメラまたはラインスキャンCCDを使用してウェル1366内に配置された液滴の画像を収集し得る。視野がより大きい場合、プレート1364および/またはカメラを並進移動ステージ上に配置し、かつ/またはそのような並進移動ステージに他の様式で接続して、x方向、y方向、および場合によりz方向に移動できるようにし得る。いくつかの例では、イメージャ1368は、例えば、マイクロアレイの検出に使用されるように、レーザ/PMT装置を含み得る。撮像装置および適し得る方法のさらなる態様について、項VIにおいて説明する。
図34は、ウェル1366が撮像すべき乳濁液1362を保持した状態のプレート1364の断片図を示す。ウェルは、平坦、透明、実質的に非蛍光性、またはこれらの任意の組み合わせであり、ウェルを、プレート1364の下からの撮像に適したものにし得る底壁1372を含み得る。ウェル1366は疎水性の内面を有し得、これにより、水性液滴がウェル表面を濡らすことを回避し得る。
ウェル1366は、液滴1376の実質的な単分子層1374を含み得る。単分子層は、底壁1372に隣接して配置され得る。単分子層1374は、ウェルの適した直径、ウェル内の液滴数、および各液滴のサイズを選択することにより得ることができる。単分子膜の形成は、液滴がウェルの底に沈むように、液滴の流体相よりも濃度が低いキャリア流体の組成を選択することによっても促進し得る。単分子膜の形成は、プレート1364を遠心機内で回転させることによっても促進し得る。
図35および図36は、1つまたは複数の検出チャンバ内に保持された液滴の画像を検出して、液滴の並行検出を提供する例示的な撮像システム1380を示す。システム1380は、イメージャ1382と、イメージャに相対して動作可能に配置された少なくとも1つの撮像スライド1384とを含み得、スライドにより保持された液滴1386の画像を収集できるようにする。
スライド1384は、撮像チャンバ1388および撮像チャンバに隣接した表示窓1390を画定し得る。撮像チャンバは高いアスペクト比を有し得、長さおよび幅はチャンバの高さ/厚さの何倍かである。したがって、撮像チャンバ1388は、スライドの底壁1392(図36参照)により形成し得る表示窓1390に隣接して液滴1386の単分子相を形成するようなサイズであり得る。いくつかの例では、チャンバ1388の高さは、特に、液滴に直径とおおよそ同じまたは液滴直径の約2倍以下等、液滴の直径に対応し得る。液滴は、増幅(例えば、熱循環)が液滴内で実行された後、撮像スライドに装填してもよい(乳濁液1394の部分として)。あるいは、反応前に乳濁液を乳濁液チャンバ1388に装填し、スライドを場合により封止し、次に、乳濁液を反応させ(例えば、熱循環させ)、同スライド内で撮像してもよい。
撮像チャンバ1388を一対のポート1396、1398に接続し得、それにより、チャンバ内に乳濁液を導入可能になると共に、チャンバから乳濁液を取り出し可能になり得る(図35参照)。ポートのうちの一方または両方は、フローベースの流体移送装置1402と封止係合できるようにするフィッティング1400を含み得る。流体移送装置は、いずれかのポートを介して、流体(例えば、乳濁液または洗浄流体)をチャンバ内に導入し得、チャンバから流体を取り出し、かつ/または流し出し得る(例えば、スライドを再使用できるようにするため、および/または乳濁液を集めるため)。スライド1384は、図35および図36に示されるような水平、垂直等の任意の適した向きで撮像し得る。撮像スライドへの液滴の装填は、手動またはコントローラ(例えば、コンピュータ)を使用して制御し得る(例えば、位置決めされ、流体の流出入を作動させ得る)任意の適した流体移送装置(例えば、ピペット、シリンジ、オートサンプラ等)を使用して実行し得る。
他の実施形態では、液滴の撮像は、チャンバのないスライドを使用して実行し得る。例えば、カバースリップをスライドと共に利用して、スライドとカバースリップとの間に液滴の単分子層を形成し得る。この場合、スライドは、例えば、標準の顕微鏡スライド、片面に浅いウェルが形成されたスライド、カバースリップをスライドの平面から離間させる突起を有するスライド等であり得る。
撮像システム1380は、2枚以上のスライド1384を逐次または並行して撮像するように構成し得る。したがって、イメージャ1382は、同時に2枚以上のスライドの表示窓を含むために十分な撮像エリアを有し得る。代替または追加として、イメージャ1382は、撮像のために各スライドを撮像エリアに追加し、次に、撮像後にスライドを撮像エリアから取り出すことにより、スライドセットをイメージャの撮像エリアに逐次位置決めすることができるスライド交換器に動作的に結合し得る。
図37は、イメージャ1412と、イメージャにより撮像すべき液滴1416を保持したバイアル1414とを含む例示的な撮像システム1410の分解組立図を示す。バイアル1414は、流体移送装置1420から液滴を受け取るための流入領域または流入口1418および撮像中に液滴を保持する撮像チャンバ1422を画定し得る。乳濁液がチャンバ内に装填される際、流入領域を通して通気してもよく、またはバイアルはこのために別個の通気口を画定してもよい。チャンバ1422は、液滴の単分子層の形成を促進するために高いアスペクト比を有してもよい(または有さなくてもよい)。バイアルは、バイアルの1つまたは複数の壁により形成し得る少なくとも1つの表示窓1424を含んでもよく、表示窓を通して光を伝達し得る。バイアルは、使い捨て(例えば、ポリマー製)であってもよく、または再使用可能(例えば、石英製)であってもよい。バイアルを装填した後、かつ撮像前に、バイアルを遠心分離機内で回転させ得る。回転により、例えば、チャンバ1422内で液滴を濃縮させ、かつ/または気泡を検出チャンバから除去し得る。バイアル1414は、バイアルを封止するカップ1426も含み得る。液滴を装填した後、かつ撮像前に、液滴をバイアル内で反応(例えば、熱循環により増幅)させてもよく、または反応後に装填してもよい。他の実施形態では、バイアルは、平坦面を含むチャンバ等のチャンバを画定すると共に、平坦面に隣接する表示窓等の表示窓を形成する他の任意の適した形状を有し得る。
図38は、アレイから輸送された反応後の乳濁液1432をフロー停止して撮像する例示的なシステム1430の概略図を示す。乳濁液1432は、プレート1434によりアレイ内に保持し、アレイ内で反応させてもよく、または反応後にアレイに移送されてもよい。乳濁液(またはその少なくとも部分)は、注入弁1440に接続されたオートサンプラ1438を使用して少なくとも1つの撮像チャンバ1436に逐次輸送し得る。適し得る例示的な撮像チャンバを本項の図35および図36および項VIに示す。注入弁を使用して、撮像チャンバの充填、保持、中身出し、および場合により流し出しを制御してもよい。イメージャ1442は、撮像チャンバに隣接する表示窓1444に対して動作的に配置して、撮像チャンバ内に配置された液滴の画像収集を提供し得る。各乳濁液は、撮像後、廃棄物/収集槽1446に流れることにより撮像チャンバから除去し得る。オートサンプラのさらなる態様については、図15〜図18に関連して上述した。
図39は、アレイから輸送された反応後の乳濁液をフロー停止して撮像する別の例示的なシステム1450の概略図を示す。システム1450は、図38のシステム1430に関連するが、複数の撮像チャンバ1452を含む。1つまたは複数の流入弁1454および/または流出弁1456を動作させて、特に撮像、中身出し、および/または流し出しのための流体フローから離れて、撮像チャンバに乳濁液が充填される順序を決定し得る。
図40は、逐次液滴検出の場合、反応後の乳濁液1462をアレイから検出チャネル1464に輸送する例示的なシステム1460の概略図を示す。システムは、検出器1470に関して動作的に配置される表示窓1470を通過して流れるように、乳濁液1462を検出チャネル1464に逐次装填するオートサンプラ1466および注入弁1468を含み得る。フロー収束組立体1472は、液滴が検出チャネル1464に達する前にフロー内で液滴を収束し得る。検出チャネルのフロー収束上流のさらなる態様について、項VIにおいて説明する。
[N.追加の実施形態]
この例では、限定せずに、一続きの番号が付された文章として提示される、本開示の態様によるシステム構造の追加の態様について説明する。
[(i)フローシステム]
1.試料を分析するシステムであって、(A)分析すべき試料の部分を含む液滴を生成するように構成される液滴生成器であって、液滴は試料乳濁液を形成する非混和性流体内に配置される、液滴生成器と、(B)流入口および流出口を有する加熱・冷却ステーションと、(C)加熱・冷却ステーションから下流にある検出ステーションと、(D)加熱・冷却ステーションの流入口から流出口まで単一パスの連続流体経路を形成するチャネルと、(E)チャネルを通して試料乳濁液を移動させるポンプと、(F)チャネルを通して流体を輸送するようようにプログラムされたコントローラと、(G)検出ステーションにおいて収集されたデータを処理するように構成された解析器とを備える、システム。
2.検出システムは、加熱・冷却システムを通過した後、試料乳濁液内の標的の有無を検出するように配置される、段落1に記載のシステム。
3.液滴槽と、液滴生成器を槽に接続する第1の流体管と、槽を加熱・冷却ステーションの流入口に接続する第2の流体管とをさらに備える、段落1に記載のシステム。
4.液滴生成器は、加熱・冷却ステーションを試料乳濁液内に含まれる試料からの汚染に曝さずに、加熱・冷却ステーションに1回使い切りで着脱可能に接続するように構成される、段落1に記載のシステム。
5.液滴生成器は、加熱・冷却システムの外部で試料乳濁液を生成するように構成される、段落1に記載のシステム。
6.加熱・冷却ステーションは、流体経路に沿って、液滴内に含まれる核酸標的に対してポリメラーゼ連鎖反応を行わせるように構成された複数の加熱ゾーンを含む、段落1に記載のシステム。
7.加熱・冷却ステーションは少なくとも1つの熱電冷却器を含む、段落1に記載のシステム。
8.コントローラは、検出ステーションから受信されるデータに基づいて液滴サイズを変更するように液滴生成器を調整するようにプログラムされる、段落1に記載のシステム。
9.コントローラは、検出ステーションから受信されるデータに基づいて、液滴生成前に試料の濃度を変更するようにプログラムされる、段落1に記載のシステム。
10.コントローラは、検出ステーションから受信されるデータに基づいて、液滴生成器内での液滴生成前に試料の準備手順を変更するようにプログラムされる、段落1に記載のシステム。
11.解析器は、少なくとも部分的に、試料部分を含む液滴の母集団からの標的を含む液滴の頻度に基づいて、試料内の標的分子の濃度を特定するようにプログラムされる、段落1に記載のシステム。
12.液滴生成器は、試料槽、油源、油/試料交点、および乳濁液流出口を含み、乳濁液流出口は、加熱・冷却ステーションの受け取りポートと着脱可能に封止係合するように構成された遠位端部を有する、段落1に記載のシステム。
13.液滴生成器は、乳濁化を促進する少なくとも1つのピストンを有するカートリッジ内に含まれる、段落1に記載のシステム。
14.液滴生成器は、チャネル網を通して試料乳濁液をポンピングする少なくとも1つのピストンを有するカートリッジ内に含まれる、段落1に記載のシステム。
15.チャネルは、加熱・冷却ステーションを通る螺旋状毛管部分を含む、段落1に記載のシステム。
16.毛管部分は、液滴生成器により生成される液滴の直径におおよそ等しい直径を有する、段落15に記載のシステム。
17.毛管部分は、加熱・冷却ステーション内の変性ゾーン前のホットスタートゾーンを通るホットスタートセグメントを含む、段落1に記載のシステム。
18.加熱・冷却ステーションは、熱を熱コアと加熱ゾーンおよび冷却ゾーンとの間で伝達することにより、加熱ゾーンおよび冷却ゾーン内の温度を制御するように構成された熱電冷却器を含む、段落1に記載のシステム。
19.螺旋状毛管部分は、連続した循環にわたって長さが減少する螺旋経路を画定する、段落15に記載のシステム。
20.加熱・冷却ステーションは、(a)中心縦軸を画定するコアと、(b)コアに取り付けられ、複数の温度領域を画定する得複数のセグメントと、(c)各温度領域をおおよそ所望の温度に維持するように構成された複数の加熱要素であって、チャネルの部分は、温度領域に試料乳濁液を循環して輸送するように構成される、複数の加熱要素とを含む、段落1に記載のシステム。
21.複数のセグメントは、複数の温度領域を画定する複数の内部セグメントと、内部セグメントに取り付けられた複数の外部領域とを含み、チャネルの部分は、内部セグメントと外部セグメントとの間に配置される、段落20に記載のシステム。
22.チャネルの部分は、内部セグメントの周囲に巻かれた流体管を含む、段落21に記載のシステム。
23.流体管は、内部セグメントの周囲に略螺旋状に巻かれた内部セグメントの溝内に配置される、段落21に記載のシステム。
24.液滴生成器は使い捨てカートリッジ内に含まれる、段落1に記載のシステム。
25.カートリッジは、核酸を試料から抽出し、液滴を熱安定性試料乳濁液にするために、細胞溶解領域、分離領域、試薬混合領域、および液滴生成領域を含む、段落24に記載のシステム。
26.チャネルは、試料乳濁液を連続して流せる開口端部を有する、段落1に記載のシステム。
27.液滴生成器は、熱安定性試料乳濁液を生成可能である、段落1に記載のシステム。
[(ii)液滴生成器プレート]
1.乳濁液アレイを生成する装置であって、1つまたは複数の油槽を含み、乳濁液生成器ユニットアレイを形成するプレートを備え、各ユニットは、試料ポートと、液滴収集場所と、試料ポートから試料を受け取ると共に、少なくとも1つの油槽からキャリア流体を受け取り、液滴収集場所に流れるキャリア流体内の試料液滴の乳濁液を生成するチャネル交点とを含む、装置。
2.試料ポートは、プレートの上から試料を装填できるウェルである、段落1に記載の装置。
3.各乳濁液生成器ユニットは少なくとも1つの油槽を含む、段落1に記載の装置。
4.少なくとも1つの油槽は、プレートの上からキャリア流体を装填できるウェルである、段落3の装置。
5.試料ポートは集合的にポートアレイを形成し、ポートアレイは標準マイクプレートのウェルに対応して配置される、段落1に記載の装置。
6.前記プレートは96個の試料ポートを有する、段落5に記載の装置。
7.チャネル交点は、一対の油流入口を含み、一対の油流入口は1つまたは複数の油槽に接続する、段落1に記載の装置。
8.チャネル交点は、試料ポートから試料を受け取る試料流入口を含み、前記一対の油流入口は、試料流入口の両側に配置される、段落7に記載の装置。
9.液滴収集場所はウェルを含む、段落1に記載の装置。
10.液滴収集場所は、上下に配置されたプレートの壁により境界を定められるキャビティを画定する、段落1に記載の装置。
11.キャビティは、乳濁液がキャビティ内に流入した場合、液滴の実質的な単分子膜がキャビティ内に形成されるように、液滴のサイズに対応する高さを有する、段落10に記載の装置。
12.キャビティは幅および厚さを有し、幅は厚さの少なくとも約10倍である、段落10に記載の装置。
13.流出チャネルがチャネル交点から液滴収集場所まで延び、プレートは平面を画定し、キャビティおよび流出チャネルのそれぞれは、平面に平行して測定される幅を有し、キャビティの幅は流出チャネルの幅よりもはるかに大きい、段落10に記載の装置。
14.キャビティはチャンバであり、チャンバは、乳濁液がチャンバ内に流入する際にチャンバからガスを逃す通気口に接続される、段落10に記載の装置。
15.液滴収集場所はキャビティを画定し、キャビティに隣接するプレートの透明窓により形成される窓を含み、窓は、透明壁を通して、キャビティ内の液滴の光学検出を可能にする、段落1に記載の装置。
16.窓はキャビティの下に形成される、段落15に記載の装置。
17.プレートは、下部部材に取り付けられる上部部材を含み、上部部材は試料ポートを画定し、チャネル交点の上部領域は、上部部材の底面に形成され、下部部材は上部部材の底面に取り付けられて、チャネル交点の底壁を形成する、段落1に記載の装置。
18.プレートに組み付けられて、試料ポートを封止するカバーをさらに備える、段落1に記載の装置。
19.乳濁液生成器ユニットは行列に配置され、行毎および列毎に2つ以上のユニットがある、段落1に記載の装置。
[(iii)バッチアレイ方法]
1.試料分析方法であって、(A)液滴内に配置された各試料の粒子をそれぞれ含む乳濁液のアレイを形成すること、(B)乳濁液がアレイ内に配置されている間に乳濁液を加熱して、乳濁液の液滴内の核酸増幅を誘導すること、(C)各乳濁液の液滴から信号を検出すること、および(D)検出された信号に基づいて、各試料内に核酸標的が存在する場合、その存在を推定することを含む、方法。
2.形成するステップは、乳濁液生成器ユニットアレイを含むプレートを使用して乳濁液を生成するステップを含む、段落1に記載の方法。
3.プレートは、各試料を保持する複数の槽を含み、生成するステップは、各試料を槽内に配置した後、複数の槽に圧力を加えるステップを含む、段落2に記載の方法。
4.生成するステップは、遠心分離機内でプレートを回転させるステップを含む、段落2に記載の方法。
5.形成するステップは、プレートから各乳濁液を取り出して、そのような乳濁液をアレイ内の位置に配置するステップを含む、段落2に記載の方法。
6.プレートは、上方に開く試料ポートのアレイを画定し、生成するステップは、試料ポート内に各試料を配置するステップを含む、段落2に記載の方法。
7.加熱するステップは、乳濁液がプレートによりアレイ内に保持された状態で実行される、段落2に記載の方法。
8.加熱するステップは、乳濁液がキャビティ内に配置された状態で実行され、キャビティは幅および厚さを有し、幅は厚さの多数倍である、段落1に記載の方法。
9.幅は厚さの少なくとも約10倍である、段落8に記載の方法。
10.加熱するステップは、液滴内の核酸二重構造を溶解させるのに十分な温度まで乳濁液を加熱するステップを含む、段落1に記載の方法。
11.加熱するステップは、乳濁液アレイを熱循環させて、PCRによる増幅を誘導するステップを含む、段落1に記載の方法。
12.信号を検出するステップは、各乳濁液の液滴を撮像するステップを含む、段落1に記載の方法。
13.液滴を撮像するステップは、乳濁液がまだアレイ内に配置されている間に実行される、段落12に記載の方法。
14.形成するステップは、(a)プレートを使用して各乳濁液の液滴を形成するステップと、(b)プレートにより画定されるチャンバアレイ内に乳濁液を収集するステップとを含み、加熱するステップは、乳濁液がチャンバアレイ内に配置されている間に実行され、撮像するステップは、各チャンバに隣接するプレートの壁により形成される透明窓を通して実行される、段落13に記載の方法。
15.熱循環させるステップは、乳濁液をチャンバアレイ内に配置した後、上からプレートを封止せずに実行される、段落11に記載の方法。
16.加熱するステップの後、各乳濁液の少なくとも部分をアレイから検出ステーションに移送するステップをさらに含む、段落1に記載の方法。
17.移送するステップは、乳濁液に対して逐次実行される、段落16に記載の方法。
18.移送するステップはオートサンプラを使用して実行される、段落16に記載の方法。
19.信号を検出するステップは、液滴が検出窓を通過して流れる際に液滴信号を逐次検出するステップを含む、段落16に記載の方法。
20.検出するステップは、液滴を撮像するステップを含む、段落16に記載の方法。
21.存在を推定するステップは、核酸標的が各試料内に存在するのか、それとも存在しないのかの定性的な決定を提供する、段落1に記載の方法。
22.存在を推定するステップは、各試料内の核酸標的の濃度および/またはコピー数を推定するステップを含む、段落1に記載の方法。
23.存在を推定するステップは、1つまたは複数の検出信号に基づいて、核酸標的の2つ以上の分子の開始コピー数を液滴のうちの少なくとも1つに割り当てるステップを含む、段落22に記載の方法。
24.推定するステップは、ポアッソン統計に基づくアルゴリズムを利用するステップを含む、段落1に記載の方法。
25.加熱するステップは、少なくとも2つの乳濁液内の異なる種の核酸標的のそれぞれの核酸を増幅することを含む、段落1に記載の方法。
26.加熱するステップは、少なくとも1つの乳濁液内の2つ以上の別個の種の核酸標的の核酸を増幅することを含み、推定するステップは、別個の種のそれぞれの核酸標的の存在を推定するステップを含む、段落1に記載の方法。
[(iv)単一乳濁液−バッチ増幅]
1.試料を分析する方法であって、(A)キャリア流体内に配置された液滴を含む乳濁液を形成することであって、各液滴は、核酸標的を増幅する反応混合物として準備された試料の分割物を含む、形成すること、(B)液滴の平均直径よりも多数倍広いチャンバ内に乳濁液の少なくとも部分を配置すること、(C)チャンバ内に配置された乳濁液の少なくとも部分を加熱して、液滴内の核酸増幅を誘導すること、(D)乳濁液の液滴から信号を検出すること、および(E)検出された信号に基づいて、試料内に核酸標的がある場合、その存在を推定することを含む、方法。
2.乳濁液は、液滴生成場所からチャンバ内に連続して流れる、段落1に記載の方法。
3.加熱するステップは、乳濁液の少なくとも部分を熱循環させて、核酸標的のPCR増幅を誘導することを含む、段落1に記載の方法。
4.チャンバは少なくとも、液滴の平均直径よりも約10倍広い、段落1に記載の方法。
5.信号を検出するステップは、複数の液滴の画像を収集するステップを含む、段落1に記載の方法。
6.信号を検出するステップは、液滴が検出ステーションを通って移動する際にそのような液滴から信号を逐次検出するステップを含む、段落1に記載の方法。
7.液滴はチャンバ内に実質的な単分子層を形成する、段落1に記載の方法。
8.チャンバ内で隣接する液滴対の平均間隔は液滴の平均直径未満である、段落7に記載の方法。
[(v)バッチ増幅システム]
1.試料を分析するシステムであって、(A)核酸標的を増幅させる反応混合物として準備された試料の分割物をそれぞれ含む液滴を含む乳濁液を形成する液滴生成器と、(B)乳濁液の少なくとも部分を含むようにキャビティを画定した乳濁液ホルダであって、キャビティは液滴の平均直径よりも多数倍広い、乳濁液ホルダと、(C)キャビティ内に配置された乳濁液の少なくとも部分を加熱して、液滴内での核酸増幅を誘導する加熱ステーションと、(D)乳濁液の液滴から信号を検出する検出ステーションと、(E)検出ステーションと通信し、検出された信号に基づいて、試料内に核酸標的が存在する場合、その存在を推定するようにプログラムされたコントローラとを備える、システム。
2.上記液滴生成器および複数の他の液滴生成器を含むプレートをさらに備える、段落1に記載のシステム。
3.乳濁液ホルダは、生成された液滴がキャビティ内に連続して流れるように液滴生成器に接続される、段落1に記載のシステム。
4.検出ステーションは、少なくとも1つの検出チャンバと、検出チャンバ内に配置された液滴の画像を収集する少なくとも1つの撮像装置とを含む、段落1に記載のシステム。
5.液滴をキャビティから検出ステーションに移送する流体移送装置をさらに備える、段落1に記載のシステム。
6.流体移送装置は手動で制御されるピペットである、段落1に記載のシステム。
7.流体移送装置はオートサンプラである、段落1に記載のシステム。
8.キャビティは、液滴がキャビティ内に実質的な単分子層を形成するように、液滴の平均直径に対応する厚さを有する、段落1に記載のシステム。
9.キャビティはチャンバである、段落1に記載のシステム。
10.キャビティは、液滴の平均直径よりも少なくとも10倍広い、段落1に記載のシステム。
[(vi)高スループットシステム]
1.液滴に基づいて試料を分析するシステムであって、(A)液滴内に配置された各試料の分割物をそれぞれ含む複数の乳濁液を保持する試料入力ステーションと、(B)液滴を加熱して、個々の液滴内に核酸標的が存在する場合、核酸標的の増幅を誘導する加熱ステーションと、(C)加熱ステーションにより加熱された液滴から信号を検出する検出ステーションと、(D)試料入力ステーション、加熱ステーション、および加熱ステーションを接続して、試料入力ステーションから加熱ステーションそして検出ステーションへの流体流を提供するフルイディクス網と、(E)乳濁液からの液滴パケットが試料入力ステーションから加熱ステーションに移送される順序を制御し、検出ステーションからの信号に基づいて、パケットに対応する試料内の核酸標的の存在を推定するするようにプログラムされたコントローラとを備える、システム。
2.フルイディクス網は、加熱ステーションから上流に液滴パケットを格納する保持ステーションを含む、段落1に記載のシステム。
3.コントローラは、パケットが試料入力ステーションから保持ステーションに移送される順序を制御すると共に、そのようなパケットが保持ステーションから加熱ステーションに装填される順序も制御するようにプログラムされる、段落2に記載のシステム。
4.順序のうちの少なくとも一方の少なくとも部分は、検出ステーションにより検出される信号に基づいてコントローラにより選択される、段落3に記載のシステム。
5.保持ステーションは複数の離散した格納場所を含み、コントローラは、格納場所内へのパケットの装填および格納場所からのパケットの取り出しを制御するようにプログラムされる、段落2に記載のシステム。
6.保持ステーションは、任意の順序での格納場所へのパケットの取り入れおよび任意の順序での格納場所からのパケットの取り出しを可能にするように設計される、段落5に記載のシステム。
7.保持ステーションは、保持ステーション内に配置されたパケットを加熱するように構成された少なくとも1つのヒータを含む、段落2に記載のシステム。
8.コントローラは、隣接するパケットが試料入力ステーションからフルイディクス網内に導入される際、フルイディクス網内での隣接する液滴パケット間での流体のスペーサセグメントの形成を制御するようにプログラムされる、段落1に記載のシステム。
9.フルイディクス網は、試料入力領域から液滴パケットをピックアップし、そのようなパケットを加熱ステーションに装填するオートサンプラを含む、段落1に記載のシステム。
10.コントローラは、順序を選択する入力を使用者から受信し、その順序に従って加熱ステーションへのパケットの移送を制御するようにプログラムされる、段落1に記載のシステム。
11.検出ステーションは、フロー内に配置された液滴から信号を検出する、段落1に記載のシステム。
11.検出ステーションは液滴の画像を収集する、段落1に記載のシステム。
12.検出ステーションは液滴から蛍光信号を検出する、段落1に記載のシステム。
[(vii)バッチシステムI]
1.試料を分析するシステムであって、(A)核酸標的を増幅する反応混合物として準備された試料をそれぞれ含む液滴を含む複数の乳濁液を形成する少なくとも1つの液滴生成器と、(B)乳濁液を保持するキャビティアレイを画定するプレートと、(C)キャビティ内に配置された乳濁液を加熱して、液滴内での核酸増幅を誘導する加熱・冷却装置と、(D)乳濁液の無傷の液滴から信号を検出する検出組立体と、(E)検出組立体と通信し、無傷の液滴から検出された信号に基づいて、試料内に核酸標的がある場合、その存在を推定するようにプログラムされたコントローラとを備える、システム。
2.液滴生成器はプレートと一体化される、段落1に記載のシステム。
3.各キャビティは別個の液滴生成器から供給される、段落2に記載のシステム。
4.各キャビティは同じ液滴生成器から供給される、段落2に記載のシステム。
5.液滴生成器はプレートの部分ではない、段落1に記載のシステム。
6.液滴生成器は、少なくとも1つの油槽、試料槽、および各槽から少なくとも1つのキャビティへの流路を含む、段落1に記載のシステム。
7.液滴生成を促進する圧力源をさらに備える、段落1に記載のシステム。
8.検出組立体は、液滴がキャビティ内に配置されている間に液滴から信号を検出するように構成される、段落1に記載のシステム。
9.液滴をキャビティから検出組立体の検出場所に移送するように構成された流体移送装置をさらに備える、段落1に記載のシステム。
10.検出場所はプレートとは別個である、段落9に記載のシステム。
11.検出組立体は液滴を逐次検出するように構成される、段落9に記載のシステム。
12.検出組立体は液滴バッチを撮像するように構成される、段落9に記載のシステム。
13.検出組立体は、液滴バッチで撮像するように構成され、各液滴バッチは異なる乳濁液に対応する、段落12に記載のシステム。
14.検出組立体は共焦点光学系を含む、段落1に記載のシステム。
15.各キャビティの上下はプレートの壁で境界を区切られる、段落1に記載のシステム。
16.各キャビティは、透明壁を通してそのようなキャビティ内の液滴を検出できるプレートの透明壁により境界を区切られる、段落1に記載のシステム。
17.液滴生成器は、上方に向かって開き、試料をプレートの上から装填できる試料槽を含む、段落1に記載のシステム。
18.キャビティはウェルであり、ウェルを封止する封止部材をさらに備える、段落1に記載のシステム。
19.液滴生成器は、液滴が逐次生成される1つまたは複数のオリフィスを含む、段落1に記載のシステム。
20.液滴生成器は、単分散性の液滴を形成するように構成される、段落1に記載のシステム。
21.コントローラは、核酸標的の増幅が実際に生じたと特定された液滴の割合に基づいて、核酸標的の存在を推定するように構成される、段落1に記載のシステム。
[(viii)バッチシステムII]
1.試料を分析するシステムであって、(A)油槽、試料槽、キャビティ、および試料槽から試料を受け取り、油槽からキャリア流体を受け取り、乳濁液としてキャビティに流れる液滴を生成するチャネル交点を含む液滴生成器と、(B)液滴生成器を加熱して、キャビティ内の乳濁液の液滴内の核酸増幅を誘導する加熱装置とを備える、システム。
2.上記液滴生成器および複数の他の液滴生成器を含むプレートをさらに備える、段落1に記載のシステム。
3.液滴生成を促進する圧力源をさらに備える、段落1に記載のシステム。
4.圧力源は、液滴生成器と封止された関係をなすマニフォルドを含む、段落3に記載のシステム。
5.乳濁液の液滴から信号を検出する検出組立体をさらに備える、段落1に記載のシステム。
6.検出組立体は、液滴がキャビティ内に配置されている間に液滴から信号を検出するように構成される、段落5に記載のシステム。
7.検出組立体は、液滴生成器が加熱装置に熱的に結合されている間に液滴から信号を検出するように構成される、段落5に記載のシステム。
8.検出組立体は液滴のバッチを撮像するように構成される、段落5に記載のシステム。
9.検出組立体は共焦点光学系を含む、段落8に記載のシステム。
10.検出組立体と通信し、検出された信号に基づいて試料内に核酸標的がある場合、その存在を推定するようにプログラムされたコントローラをさらに備える、段落5に記載のシステム。
11.加熱装置は、液滴生成器を受ける温度制御チャンバを含む、段落1に記載のシステム。
12.加熱装置は、液滴生成器を熱循環させて、キャビティ内の乳濁液の液滴内にPCR増幅を誘導する加熱・冷却装置である、段落1に記載のシステム。
13.キャビティの上下は液滴生成器の壁により境界を区切られる、段落1に記載のシステム。
14.キャビティは、透明壁を通してキャビティ内の液滴を検出できる液滴生成器の透明壁により境界を区切られる、段落1に記載のシステム。
15.キャビティはウェルであり、ウェルを封止する封止部材をさらに備える、段落1に記載のシステム。
[(ix)その他1]
1.試料を分析する方法であって、(A)反応の発生をテストするための混合物をそれぞれ含む複数の液滴を試料から生成すること、(B)選択可能な時間期間にわたって液滴パケットを格納すること、(C)格納するステップの後、パケットの少なくとも部分をチャネルに導入すること、(D)チャネルに沿ってパケットの少なくとも部分を移動させることにより、パケットの部分を、反応の発生を促進するもう1つの条件下に置くこと、および(E)条件下に置くステップの後、パケットの少なくとも部分の複数の液滴のそれぞれに対して、反応の発生に関連する少なくとも1つの測定を実行することを含む、方法。
2.生成するステップは、少なくとも1つのオリフィスからの流体流により複数の液体を生成するステップを含む、段落1に記載の方法。
3.生成するステップは、液滴内に核酸標的が存在する場合、核酸標的を増幅することがそれぞれ可能な液滴を生成するステップを含み、条件下に置くステップは、パケットの少なくとも部分を、パケットの少なくとも部分の液滴内の核酸標的の増幅を促進する条件下に置くステップを含み、実行するステップは、少なくとも1つの測定を実行して、核酸標的の増幅が個々の液滴内で発生したか否かを特定できるようにするステップを含む、段落1に記載の方法。
4.格納するステップは、チャネルと連通しないコンパートメント内に液滴パケットを格納するステップを含み、導入するステップは、コンパートメントとチャネルとを互いに連通させるステップを含む、段落1に記載の方法。
5.液滴パケットは、キャリア流体容量内に配置され、格納するステップは、キャリア流体容量の流れを停止させるステップを含み、導入するステップは、キャリア流体容量のうちの少なくとも部分の流れを開始するステップを含む、段落1に記載の方法。
6.条件下に置くステップは、パケットのうちの少なくとも部分を熱的に循環させるステップを含む、段落1に記載の方法。
7.(1)実行するステップから得られたデータに基づいて、核酸標的の増幅が発生した液滴の数を特定するステップと、(2)液滴数に基づいて、試料内の核酸標的の全体の存在を推定するステップとをさらに含む、段落1に記載の方法。
8.格納するステップ、導入するステップ、条件下に置くステップ、および実行するステップは、複数の異なるパケットを使用して実行され、パケットはチャネル内に逐次導入される、段落1に記載の方法。
9.少なくとも2つの異なるパケットがチャネル内に導入される相対的な順序を選択するステップ、段落8に記載の方法。
10.選択するステップは、別のパケットの液滴を使用して実行するステップに基づいて得られた結果に基づく、段落9に記載の方法。
11.核酸標的に関して試料を分析する方法であって、(A)液滴内に核酸標的が存在する場合、核酸標的を増幅させることがそれぞれ可能な複数の液滴を試料から生成すること、(B)選択可能な時間期間にわたって液滴のパケットを格納すること、(C)格納されているパケットのうちの少なくとも部分をチャネル内に導入すること、(D)液滴内の核酸標的の増幅を促進する条件下に置かれるように、チャネルに沿ってパケットの部分を移動させること、および(E)移動させるステップの後、複数の液滴のそれぞれに対して、核酸標的の増幅に関連する少なくとも1つの測定を実行することを含む、方法。
12.試料を分析する方法であって、(A)チャネル、試料アレイ、試薬アレイ、ならびに試料および試薬のすべてをチャネルに接続して、アレイから試料および試薬の任意の組み合わせを選択できるようにする、事前に画定された流路を提供すること、(B)試料アレイからの試料と試薬アレイからの試薬との組み合わせを選択すること、(C)上記組み合わせをそれぞれ含み、選択された試料および試薬が関わる反応の発生についてテストすべき分析混合物を含む液滴を生成すること、(D)複数の液滴をチャネル内に導入すること、(E)チャネルに沿って複数の液滴を移動させながら、複数の液滴を、反応の発生を促進する1つまたは複数の条件下に置くこと、ならびに(F)条件下に置くステップの後、複数の液滴のうちの1つまたは複数に対して、反応の発生に関連する少なくとも1つの測定を実行することを含む、方法。
14.上記組み合わせは第1の組み合わせであり、方法は、アレイから試料と試薬との第2の組み合わせを選択するステップをさらに含み、生成するステップ、導入するステップ、条件下に置くステップ、および実行するステップは、第2の組み合わせを使用して繰り返される、段落12に記載の方法。
15.第2の組み合わせは、第1の組み合わせに対して少なくとも測定を実行するステップからのデータを使用して得られる結果に基づいて選択される、段落14に記載の方法。
16.少なくとも1つの試料を追加または低減するように、試料アレイを変更するステップ、少なくとも1つの試薬を追加または低減するように、試薬アレイを変更するステップ、またはこれら両方をさらに含み、第2の組み合わせを選択するステップは、変更するステップの後に組み合わせを選択する、段落14に記載の方法。
17.変更するステップは、条件下に置くステップが第1の組み合わせを使用して実行されている間に実行される、段落16に記載の方法。
18.試料と試薬との第2の組み合わせを選択するステップは、第1の組み合わせを選択するステップの後に受信する使用者コマンドに基づいて実行される、段落14に記載の方法。
19.使用者コマンドは、第1の組み合わせを条件下に置くステップ中に受信される、段落18に記載の方法。
20.第1の組み合わせに関する導入するステップは、使用者コマンドが受信されない場合、事前定義された条件が満たされるまで実行され、導入するステップは、事前定義された条件が満たされる前に、使用者コマンドにより中断される、段落19に記載の方法。
21.事前定義される条件は、所定数の液滴の導入、液滴が導入される事前定義された時間間隔、またはこれら両方である、段落20に記載の方法。
22.試薬アレイは、異なる核酸標的を増幅するための異なるプライマ対を含む、段落14に記載の方法。
23.試料を分析する方法であって、(A)チャネル、試料アレイ、試薬アレイ、ならびに試料および試薬のすべてチャネルに接続する事前定義された流路を提供すること、(B)アレイから試料および試薬の第1および第2の組み合わせを選択すること、(C)第1の組み合わせをそれぞれ含む第1の液滴パケットおよび第2の組み合わせをそれぞれ含む第2の液滴パケットを生成すること、(D)第1のパケットの複数の液滴および第2のパケットの複数の液滴をチャネル内に逐次導入すること、(E)複数の液滴のそれぞれがチャネルを沿って移動している間に、各パケットの複数の液滴を、第1の組み合わせまたは第2の組み合わせに関わる反応の発生を促進する1つまたは複数の条件下に置くこと、(F)条件下に置くステップの後、複数の液滴のうちの1つまたは複数に対して反応の発生に関連する少なくとも1つの測定を実行することを含む、方法。
24.試料を分析する装置であって、(A)試料を受け取る調整可能な数のポートと、(B)試薬を保持する調整可能な数の場所と、(C)1つまたは複数の温度制御ゾーンを通って延び、事前定義された流路によりポートおよびサイトを接続するチャネルと、(D)試料と試薬との選択された組み合わせの液滴を生成して、チャネルに導入する液滴生成器と、(E)液滴が少なくとも1つの温度制御ゾーン内に配置された後、選択された組み合わせの液滴に対して1つまたは複数の測定を提供するように位置決めされた検出器と、(F)試料と試薬との組み合わせを制御するコントローラとを備える、装置。
[(x)その他2]
1.微液滴を生成するシステムであって、(A)試料格納チャンバならびに流入端部および流出端部を有する第1の微小流体チャネルを備える試料格納装置であって、第1の微小流体チャネルの流入端部は試料格納チャンバに接続される、試料格納装置と、(B)第1の微小流体チャネルの流出端部、流入端部を有する第2の微小流体チャネル、および非混和性流体が充填されるスペーサ領域を備える微液滴生成装置とを備え、第1の微小流体チャネルの流出端部は、微液滴生成装置の1つの壁を形成し、第2の微小流体チャネルの流入端部は、微液滴生成領域の別の壁を形成し、スペーサ領域は、第1の微小流体チャネルの流出端部のみが非混和性流体に接触するように、第1の微小流体チャネルの流出端部を第2の微小流体チャネル流入端部から隔てる、システム。
2.試料格納装置は取り外し可能である、段落1に記載のシステム。
3.非混和性流体は油である、段落1に記載のシステム。
4.核酸を増幅させる方法であって、(A)複数の核酸標的および核酸増幅を実行する成分を含む試料を希釈または濃縮すること、(B)毛管内の非混和性流体内に微液滴を生成することであって、複数の核酸標的からの単一の核酸鋳型を含む複数の微液滴が形成され、管は、流体流入用の第1の開口端部および流体流出用の第2の開口端部を有して、連続して流すことができる、生成すること、(C)微液滴内の複数の単一核酸鋳型が増幅されるように加熱し冷却することにより、微液滴内の単一核酸鋳型を増幅させることを含む、方法。
5.微液滴は少なくとも2つの異なるサイズの微液滴を含む、段落4に記載の方法。
6.第1の微液滴サイズは20μm〜100μmであり、第2の微液滴サイズは100μm〜250μmである、段落4に記載の方法。
7.試料の核酸を増幅する方法であって、(A)生物学的試料を提供すること、(B)毛管内の非混和性流体内に微液滴を生成することであって、微液滴は、核酸および核酸増幅を実行する成分を含み、管は、流体流入用の第1の開口端部および流体流出用の第2の開口端部を有して、連続して流すことができ、管は、少なくとも2つの中実加熱ブロックに接触し、加熱ブロックは異なる温度に維持され、少なくとも1つの加熱ブロックの温度は熱電コントローラにより制御される、生成すること、(C)管を通して微液滴を移動させること、ならびに(D)管内の微液滴を熱循環させて、核酸を増幅させることを含む、方法。
8.(A)毛管内の非混和性流体内に微液滴を生成することであって、複数の核酸標的からの単一核酸鋳型を含む複数の微液滴が形成される、生成すること、(B)微液滴内の複数の単一核酸鋳型が増幅されるように加熱し冷却することにより、微液滴内の単一核酸鋳型を増幅すること、および(C)酵素核酸増幅または連結反応の方法を通して核酸突然変異の有無を検出することであって、単一核酸突然変異の検出が、リアルタイムPCRと比較して信号弁別が10%を超えて良好である、検出することの方法を使用して、単一核酸の突然変異を検出可能な配列検出システム。
9.(A)毛管内の非混和性流体内に微液滴を生成することであって、複数の核酸標的からの単一核酸鋳型を含む複数の微液滴が形成される、生成すること、(B)微液滴内の複数の単一核酸鋳型が増幅されるように加熱し冷却することにより、微液滴内の単一核酸鋳型を増幅すること、ならびに(C)無傷の液滴内の酵素核酸増幅または連結反応により生成される信号を蛍光的に検出する方法を通して、標的核酸の有無を検出することであって、標的核酸の絶対濃度の検出の定量的分解能が、リアルタイムPCRもしくは定量的PCRおよび/または合計液滴数および処理された標的核酸分子に基づく調整可能な定量的分解能と比較して10%を超えて良好である、検出することの方法を使用して、標的核酸の絶対濃度を正確に検出可能な配列検出システム。
10.(A)毛管内の非混和性流体内に微液滴を生成することであって、複数の核酸標的からの単一核酸鋳型を含む複数の微液滴が形成される、生成すること、(B)微液滴内の複数の単一核酸鋳型が増幅されるように加熱し冷却することにより、微液滴内の単一核酸鋳型を増幅すること、および(C)無傷の液滴内の酵素核酸増幅または連結反応により生成される信号を蛍光的に検出する方法を通して、標的核酸の有無を検出することであって、試料内または試料間の標的核酸の絶対濃度の小さな変化(<40%)の検出、検出することの方法を使用して、標的核酸の濃度を正確に検出可能な配列検出システム。
11.(A)非混和性流体内に微液滴を生成することであって、複数の核酸標的からの単一核酸鋳型を含む複数の微液滴が形成される、生成すること、(B)微液滴内の複数の単一核酸鋳型が増幅されるように加熱し冷却することにより、微液滴内の単一核酸鋳型を増幅すること、および(C)ゲノム毎に既知の数の遺伝子コピーを有する基準遺伝子のPCR単位複製配列の数に相対して標的遺伝子のPCR単位複製配列の数を計数する方法を通してゲノム内の遺伝子挿入または遺伝子欠損の数を検出することであって、ゲノム毎の標的遺伝子コピー数の検出が、標的遺伝子のコピー数が2よりも大きいが、20未満である単一コピー差を弁別する能力に関して、リアルタイムPCRによる相対的な定量化(デルタサイクル閾値またはデルタデルタサイクル閾値)と比較して良好な信号の弁別を有する、検出することの方法を使用して、遺伝子コピー数の変動を検出可能な配列検出システム。
12.(A)非混和性流体内に微液滴を生成することであって、複数の核酸標的からの単一核酸鋳型を含む複数の微液滴が形成される、生成すること、(B)非混和性流体内に微液滴を生成することであって、複数の核酸標的からの単一核酸鋳型を含む複数の微液滴が形成され、試料の分割により、競合する背景核酸に対する標的核酸の比率が低くなる、生成すること、(C)微液滴内の複数の単一核酸鋳型が増幅されるように加熱し冷却することにより、微液滴内の単一核酸鋳型を増幅すること、および(D)遺伝子配列内の単一ヌクレオチド突然変異を検出することであって、単一ヌクレオチド突然変異の検出の信号弁別が、突然変異遺伝子配列の相対濃度が野生型ゲノムの0.1%以下である単一点突然変異を有する突然変異ゲノムを検出する能力に関して、リアルタイムPCRと比較して少なくとも10倍良好である、検出することの方法を使用して低頻度単一ヌクレオチド突然変異を検出可能な配列検出システム。
[(xi)その他3]
1.非同期順次高スループットPCRを実行する方法であって、(A)1つまたは複数の生物学的試料を提供すること、(B)1つまたは複数の液滴生成器を使用して、1つまたは複数の試料のそれぞれを1つまたは複数の液滴に分割すること、(C)1つまたは複数の試料のそれぞれから1つまたは複数の液滴を分離して格納し、それにより、各試料から液滴パケットを形成すること、および(D)各パケットの少なくとも部分を順次選択し、その部分を熱循環装置に通すことを含む、方法。
2.(A)ランダムアクセス、(B)結果により決まるオンデマンドの選別格付け/診断、(C)非同期装填、(D)統計モード、(E)柔軟な数の試料、(F)柔軟な数の試薬、および(G)デジタルPCRのうちの少なくとも1つをさらに含む、段落1に記載の方法。
3.(A)少なくとも、生物学的試料を輸送するチャネルおよび液滴キャリア流体を受け鶏、試料を1つまたは複数の試料液滴に分割し、液滴を流出口に向ける第2のチャネルを備える射出成形部分と、(B)流出口から液滴を受け取る流入口、熱循環機、および検出器を備える機器部分とを備え、射出成形部分および機器部分が一緒になって、1つまたは複数の核酸分析を実行する、装置。
4.液滴生成器、ビードブレンダ、低コスト使い捨て、および流出口での槽または保持コイルのうちの少なくとも1つをさらに備える、段落3に記載の装置。
[III.試料準備/カートリッジ]
本項では、試料溶解および液滴生成のためのカートリッジを含む試料を準備する例示的なシステムについて説明する。
例えば、非使い捨てPCR機器または他のリーダに対して試料を準備して提示する使い捨てカートリッジまたは他の使い捨て容器を作ることにより、PCRに基づくDNA増幅システム等の酵素増幅システムを使い捨て構成要素および非使い捨て構成要素に分けることが望ましい場合がある。そのような分離は、高速で低コストのDNAテストおよび解析に役立ち得る。使い捨てカートリッジは、試料間の相互汚染の危険性を回避するために、1回使い切りのカートリッジとして設計し得る。用語「カートリッジ」または「使い捨てカートリッジ」が、DNA増幅システムの使い捨て部分を参照するために使用されるが、使い捨て部分は一般に様々な形態をとり得、いかなる特定の様式または寸法でも矩形または対称である必要はない。
適した使い捨てカートリッジは、PCR熱循環および増幅前に、試料を受け取り、増幅および解析に対して試料を準備(または少なくとも部分的に準備)するように構成される。カートリッジは、準備された試料を、続くPCR増幅および解析ステップのために、一般に「機器」と呼ばれるシステムの非使い捨て部分に渡すように構成された界面を含み得る。場合よっては、カートリッジと機器との界面は、油および/または水性流体等の様々な流体を機器からカートリッジに移して、試料準備に対してカートリッジを「準備」または部分的に「準備」するように構成してもよく、または機器からの流体の移送が必要ないように、カートリッジに流体を部分的または全体的に事前準備してもよい。
本開示による使い捨てカートリッジは、試料と試薬との混合物をそれぞれ含む液滴または液滴パケットを生成するように構成し得、液滴または液滴パケットは、使い捨てカートリッジから関連する機器に輸送して、連続フロー熱循環機内に高速で逐次注入し得る。カートリッジまたは他の使い捨て容器を次に、システムから取り外し、破棄し得る。カートリッジは、カートリッジからPCR機器への試料流量により測定されるように、試料生成ステップを比較的高速で実行するように構成し得る。例えば、本開示によるカートリッジは、試料毎に5分短い時間以内に試料準備を実行して、1時間当たり少なくとも10個の試料というスループットを達成するように構成し得る。カートリッジは、環境への影響を最低限に抑えるために、非危険物から構造でき、かつ非危険物と併せて機能し得る。
図41は、本開示によるDNA増幅システムの使い捨てカートリッジ内で、またはそのような使い捨てカートリッジと併せて実行し得る、全体が1600で示されるDNA増幅方法のステップを示すフローチャートである。使い捨てカートリッジが実行するように構成された主機能は、精製、溶解、試薬混合、および試料の液滴への分離である。しかし、より一般には、図41に示されるステップのサブセットまたは組み合わせをカートリッジ内で実行し得る。あるいは、試料収集および抽出等の図示のステップのうちの1つまたは複数は、標的含有材料をカートリッジに移す前に実行し得る一方で、他のステップはカートリッジ内で実行される。同様に、液滴生成等の図示のステップのうちの1つまたは複数は、標的含有材料をカートリッジから移した後に実行し得る。さらに、図41に示されるステップは様々な異なる順序で実行してもよく、そのうちのいくつかのみについて後述する。
方法1600のステップ1602において、続く解析のために試料が収集される。これは通常、医療従事者、法執行機関、科学者、または核酸解析のために試料を収集する理由を有する他の何らかの人物により行われる。試料は、例えば、スワッブ、試料カード、試料引き込み針、ピペット、シリンジ等の試料収集器を使用して、かつ/または他の任意の適した方法により収集し得る。さらに、事前収集された試料を、単一のウェルまたはプレート内のウェルアレイ等のウェル内に格納してもよく、乾燥させてもよく、かつ/または乾燥させてもよく、エアロゾル形態にしてもよく、またはスライド上に準備された培養または組織試料の形態をとってもよい。次に、そのような事前準備された試料を得て、使い捨てカートリッジ内での液滴ベースの処理に対して準備し得る。収集された試料は通常、1つまたは複数の細胞、細菌、ウイルス、またはPCR増幅に適した標的ヌクレオチド配列を潜在的または実際に含む他の材料を含む。
ステップ1604において、収集された試料が試料収集器から抽出される。これは、例えば、ピペット、シリンジ等を使用して試料を試料収集機から移すことにより、あるいは特に、消化緩衝液、溶解緩衝液、または適した結合材含有液等の1つまたは複数の適した溶液内に試料収集器を浸し、かつ/または洗浄することにより達成し得る。抽出は、PCRシステムの使い捨て部分のチャンバ内部で行い得、その場合、方法1600のステップ1606において示されるように、抽出前に、試料はカートリッジに移される。あるいは、抽出はカートリッジ外部で行ってもよく、その結果生成される試料または試料含有液を次に、カートリッジに移し得る。いずれの場合でも、カートリッジは、後述するように、様々な追加の試料準備ステップを実行するように構成し得る。
ステップ1608および1610において、ここではカートリッジ内部の試料チャンバ内に配置された、抽出された試料は、精製され溶解する。これらステップは、別のときに、同時に、またはおおよそ同時に実行し得る。さらに、精製は、溶解の前に行ってもよく、または後に行ってもよく、場合によっては、2つ以上の別懇の精製ステップを、一方は溶解前に、他方は溶解後に実行してもよい。精製は一般に、所望の標的成分が比較的影響されない状態にしながら、不要な成分を試料から除去する何らかの形態のフィルタリングを含み、溶解は一般に、試料成分を破壊して(例えば、細胞膜を破ることにより)、増幅する標的DNAを露出させることを含み、通常、試料含有混合物の何らかの形態の物理的な混合または攪拌を含む。例えば、溶解は、攪拌、磁気攪拌、および/または吸引等のバルク混合を通して、あるいは試料を蛇行路に強制的に通す、電磁ボンバードメント、音波処理、および/または対流等の様々なタイプの微小流体混合を通して進められ得る。溶解した試料の成分を含む流体は溶解産物と呼ぶことができる。
特定の精製ステップが溶解の前に実行されるか、それとも後に実行されるかに応じて、精製方法を変更し得る。例えば、溶解前の精製は、細菌または他の細胞等の比較的大きな標的含有材料を捕捉するように構成し得る。この段階での精製は、標的含有細胞の固有サイズよりも小さな固有開口サイズを有する開口に基づくフィルタを通して試料含有液をフィルタリングして、他のより小さな廃棄材料を除去しながら試料チャンバ内に細胞または他の標的材料を残すことを含み得る。他方、溶解後の精製は、DNAまたは部分的な核酸配列等の比較的小さな標的材料を捕捉するように構成し得る。したがって、溶解後の精製は、より小さなフィルタを通しての濾過および/またはDNAもしくは他の標的の親和性捕捉を行い、他のより大きな廃棄材料を除去しながら試料内の標的材料を残すことを含み得る。精製ステップが溶解前および溶解後の両方で実行されるなど、場合によっては、開口に基づくフィルタおよび/または親和性に基づくフィルタを含め、2つ以上の異なるタイプのフィルタを使用し得る。
1612において、特に処理された試料(すなわち、溶解産物)が濃縮される。このステップは一般に、例えば特に、濾過、エタノール沈殿、ブタノール抽出、または親和性捕捉により標的DNAまたはDNA含有材料から溶解産物内の過度の流体を分離することにより達成される。いずれの場合でも、濃縮ステップの結果として、流体単位容量当たりの標的材料の濃度が高くなる。この段階で試料を濃縮した場合、検出可能な増幅標的を得るために必要なPCR増幅サイクル数は、濃縮しない場合よりも相対的に少なくなり得る。
ステップ1614において、適切な酵素およびDNAプライマを含むPCR試薬混合物が試料と混合される。これら試薬成分は、循環的な温度変化(すなわち、熱循環)と併せて特定の標的のDNA増幅に役立つように選択される。試薬混合物を流体形態で試料と組み合わせてもよく、または凍結乾燥(フリーズドライ)して、粉体、ペレット、もしくは他の任意の都合のよい形態にしてもよい。凍結乾燥した試薬を形成するために、適した安定剤および/または沈殿剤をPCR酵素およびDNAプライマと組み合わせ得る。
ステップ1614において、2つ以上の試薬を試料と混合して、複数の試薬を含む単一の試料/試薬混合物または単一の試薬をそれぞれ含む複数の混合物を形成し得る。複数の試薬を含む単一の混合物では、例えば、複数の標的を同時にスクリーニングすることが可能であり得る一方で、単一の試薬をそれぞれ含む複数の混合物では、いくつかの異なるDNA標的をPCR増幅するように構成し、または(混合物のうちの2つ以上が同じ試薬を含む場合)例えば、複数のPCR増幅および/または検出技法を同じ試料/試薬混合物に対して行うことにより、対照実験を提供するように構成し得る。複数の試料/試薬混合物が使用される場合、異なる混合物を別個に準備し、かつ/またはシステムを通して別個の経路を辿り得る。
ステップ1616において、試料および試薬を含む液滴が、通常、油性乳濁液内に水性形態で生成される。生成された液滴は、活性化された、または活性化されていない(すなわち、PCR増幅開始前に追加の活性化ステップを必要とするか、または必要としない)試料と試薬との混合物を含み得、または各液滴は、例えば、油膜等の薄膜により互いに分離した試料および試薬を含み得る。2つ以上の試料/試薬混合物が存在する場合、様々な混合物のそれぞれを含む液滴を別個に生成し別個の経路に通し得る。共通モードの液滴生成は、フロー収束、噴射、および剪断を含む。これら技法を使用して、15ピコリットル(pL)〜5ナノリットル(nL)の範囲で調整可能な容量で10〜1000Hzというスループットで安定した液滴を生成し得る。液滴を生成する様々な技法が既知である。
ステップ1618において、ステップ1616において生成された液滴は、使い捨てカートリッジからシステムの非使い捨て機器部分に移される。上述したように、液滴は、油性乳濁液等の乳濁液内に含まれ得、その場合、液滴の移送は、乳濁液の部分または全体を移送することを含む。2つ以上の試料/試薬混合物を作成した場合、別個の各液滴タイプシステムの機器部分により別個に処理できるように、各タイプの混合物を含む液滴を別個に、連続的または半連続的に移送し得る。連続的または半連続的な液滴の移送により、複数の標的DNAセグメントを比較的高速にスクリーニングすることが可能になり得る。代替または追加として、様々な試料/試薬混合物を含む液滴を、バーコードまたは他の何らかの検出可能な構成要素を使用するなど何らかの様式で「タグ付け」し得、その場合、場合によっては、異なるタイプの液滴を一緒にシステムの非使い捨て部分に移送し、次に、個々の経路を辿り、または個々に検出し得る。
PCRシステムの使い捨ての試料準備カートリッジ部分から非使い捨て機器部分への移送後、熱循環および解析が行われる。以下の例において、カートリッジ等の使い捨て容器内に試料を受け取り、PCR増幅に対して試料を準備し、準備された試料をPCR増幅システムの再使用可能な機器部分に渡す例示的で特別な方法および装置を説明する。関連するさらなる開示が、相互参照において上に列挙され、参照により本明細書に援用される米国仮特許出願、特に発明者としてKevin Dean Ness, Samuel Burd, Benjamin J. Hindson, Donald A. Masquelier, およびBilly W. Colston, Jr.の名前が挙げられている、「CARTRIDGE WITH LYSIS CHAMBER AND DROPLET CHAMBER」と題する2009年9月21日に出願された米国仮特許出願第61/277249号明細書に見られ得る。
[A.実施例1:使い捨て試料カートリッジ1]
この実施例では、使い捨て試料準備カートリッジおよびカートリッジの様々な構成要素間の適した流体接続を示す:図42参照。
図42は、1700で全体が示されるカートリッジおよびカートリッジの様々な構成要素間の適した流体接続の概略図である。カートリッジ1700は、標的含有試料を受け取り、PCR熱循環および増幅に向けて標的含有試料を準備するように構成される。試料の準備は、以下のステップのうちのいくつかまたはすべてを含み得る(この順序である必要はない):精製、溶解、濃縮、1つもしくは複数の試薬との組み合わせ、および/またはPCRに適した液滴の生成。試料および試薬を含む液滴は、カートリッジから、全体が1700’で示される機器に移送し得、機器は、液滴を循環的に加熱して、PCR増幅を促進させるように構成される。図42中の破線Lは、使い捨てカートリッジ1700と機器1700’との界面を表す。この界面は、大きな漏れまたは汚染なくカートリッジと機器との確実な流体接続を提供するために適した流体コネクタ、受容器等を含み得る。
カートリッジ1700の試料チャンバ1702は、試料を受け取るように構成される。チャンバ1702に入る試料は、1つまたは複数の細菌、ウイルス、DNA分子、および/または核酸配列を含む他の材料等のPCR増幅の標的を含むか、または少なくとも潜在的に含む。例えば、試料は、試料収集スワッブから準備された溶璃液の形態で装填し得る。場合によっては、チャンバ1702に移送される試料は、例えば、洗浄、濃縮、および/または溶解によりすでにある程度まで準備されていることもあれば、チャンバ1702に到達した際に実質的に準備されていない、すなわち「未処理」であることもある。いずれの場合でも、試料チャンバ1702は、後述するように試料を受け取り準備するように構成し得る。
廃棄物チャンバ1704が試料チャンバ1702に連通し、カートリッジ1700は、流体を試料チャンバ1702からフィルタ1706を通して廃棄物チャンバ内に移送するように構成される。フィルタ1706は、PCR標的材料を試料チャンバ内に残しながら、破棄物を通過させて廃棄物チャンバに渡すように構成される。例えば、フィルタ1706は、既知の固有のサイズ遮断を有する膜または他の同様の開口型のフィルタであり得る。代替または追加として、フィルタは、例えば、試料チャンバの部分に適切な結合化合物をコーティングすることにより、適した形態の親和性捕捉を通してPCR標的を試料チャンバ内に残すように構成し得る。フィルタを使用して、試料を洗浄する前に標的を捕捉し、事前濃縮させ得、かつ/またはフィルタを使用して、試料を洗浄した後に試料を保持しさらに濃縮し、かつ/または精製し得る。
槽チャンバ1708は、試料チャンバ1702に連通し、再構成流体、洗浄液、および/または濾過された試料との組み合わせに適した他の任意の流体を試料チャンバに移送するように構成される。例えば、槽チャンバから移送される流体は、下流でのPCR増幅を阻害する恐れのある基質成分を除去し得る水またはTE緩衝(すなわち、トリス(ヒドロキシメチル)アミノメタン、塩酸、およびEDTAの組み合わせ)等の緩衝液であり得る。槽チャンバから移送される流体は一般に、試料に元々付着していた可能性があるか、またはフィルタ1706が親和性捕捉を通して働いた際に標的を捕捉するために使用された可能性がある望ましくない成分から標的を分離するように構成された任意の薬剤を含み得る。
試料チャンバ1702は、試料を溶解するようにも構成し得る。溶解は、通常ではあるが必ずしもそうである必要はなく、標的が、槽チャンバ1708から移送された流体で洗浄され、かつ/または再構成された後に実行される。溶解は、チャンバ内部での試料の混合、振動、振とう、および/または攪拌等の機械的攪拌を通して試料チャンバ内部で実行して、核酸を試料から解放し得る。いくつかの場合では、溶解を促進するために、ディスク、ロッド、および/または小型ビード等の攪拌要素が試料チャンバ内に存在し得る。試料および/または攪拌要素は、手作業、音波付与(すなわち、音波処理)、および/または磁気力もしくは電磁力の使用等の任意の適した方法で攪拌し得る。
試料チャンバ1702は、標的含有流体試料を濃縮するようにも構成し得る。これは、元の試料含有流体のうちのいくらかを試料チャンバからフィルタを通して廃棄物チャンバ内に移送することにより、洗浄前に達成することができる。代替または追加として、濃縮は、試料が洗浄された後、標的核酸を試料チャンバ内に完全または実質的に残しながら、試料含有流体のうちのいくらかを破棄物チャンバ内に移送することにより達成することができる。このようにして流体試料を濃縮させると、流体単位容積当たりの標的核酸数が多くなり、続く処理ステップでのPCR増幅をより効率的かつより高速にすることができる。
カートリッジ1700は1つまたは複数の試薬チャンバを含む。2つの試薬チャンバ1710a、1710bが図42に示されるが、より一般的には、5つ以上等の任意の所望の数の試薬チャンバが利用され得る。各試薬チャンバは、特定の標的核酸配列と反応し、標的が試料内に存在する場合にPCR増幅が生じるように構成された、プライマ、ポリメラーゼ、および適切な酵素等の試薬を含む。通常、試薬は、カートリッジ製造中に各試薬チャンバ内に事前装填されるが、いくつかの実施形態では、試薬は使用者により、または関連するPCR機器から移送し得る。
試薬は、任意の適した様式で試薬チャンバ内に格納するか、または格納チャンバ内に導入し得る。例えば、試薬は、図42に示される凍結乾燥されたペレット1711a、1711bの形態をとってもよく、各試薬チャンバの内壁の部分に塗布されるコーティング(図示せず)の形態をとってもよい。あるいは、試薬コーティングを、試薬チャンバ内に配置された攪拌要素および/または試薬チャンバに対する流量を変更するために使用されるプランジャに塗布し得る。図42の試薬チャンバは、各試薬チャンバが、相互汚染なしで濾過され、溶解した試料含有液の部分を別個に受け取ることができるように、試料チャンバと平行して流通する。1つまたは複数の攪拌要素(図示せず)を各試薬チャンバ内に含めて、試料と事前装填された試薬との混合を促進し得る。攪拌要素が試薬チャンバ内に含まれる場合、攪拌要素は、試料チャンバ内で溶解に使用される攪拌要素の動作と同様にして、手作業で、音波処理を通して、または磁気力もしくは電磁力を使用して動作し得る。
試薬チャンバ1710aおよび1710bはそれぞれ、全体が1712で示される液滴生成器に流体接続する。液滴生成器1712は、PCRを介する続く核酸増幅のための成分のすべてをそれぞれ含む離散した微容量液滴を生成するように構成される。一般に、液滴生成器1712は、1つまたは複数の油中水形乳濁液を生成するように構成されるが、水中油形、水中油中水形等の他のタイプの乳濁液も可能である。
平行した流体接続が、試薬チャンバ1710aおよび1710bから液滴生成器1712に繋がる。共通の油槽1714が、油が2つの別個の方向から各交点1716aおよび1716bに到達するように、示される流路に沿って油を移動するように構成される。試料含有液は各試薬チャンバから交点に到来し、油槽からの油と混合して、油中水形液滴を形成する。次に、生成された液滴は、界面Lを通って機器1700’内に移送される。各試料/試薬混合物は、逐次または並行して液滴生成器1712に移送し得る。後述するように、他の液滴生成器構成も適し得る。
液滴が生成された後、システム1700は、界面Lを通る機器1700’への液滴の移送を促進するように構成される。この移送は、それぞれが特定の試薬を含む液滴を含む並行流または別個の(逐次)バッチとして液滴を機器に移動するように構成し得る適した流体管、毛管、ポンプ、および/または弁等の使用を通して達成し得る。次に、マルチポート弁を通して液滴を移送させ、PCR増幅のために熱循環機内に導入し得る。
[B.実施例2:使い捨て試料カートリッジ2]
この実施例では、上述した試料準備ステップのうちのいくつかまたはすべてを実行するのに適した例示的な使い捨てカートリッジを説明する:図43〜図45参照。
図43は、全体が1720で示される例示的なカートリッジの内部の等角投影図である。カートリッジは、PCR増幅および解析のために、準備された試料を機器に、一般には油中水形乳濁液の形態で移送できるように、機器(図示せず)との界面を有するように構成される。図43に示される内部に加えて、カートリッジ1720は、内部のいくらかまたは全体の周囲に配置された適した外部筐体(図示せず)も含み得る。外部筐体は内部を保護するように構成し得、複数のカートリッジの格納および/または輸送に役立つ形状であり得る。
カートリッジ1720は、一緒に嵌ってカートリッジの内部を形成するように構成された上部1722および下部1724を含む。明確にするために、図面中、上部および下部はわずかなギャップにより隔てられる。これら部分は、熱可塑性材料を射出成形するなどの任意の適した方法により製造し得る。上部および下部は、任意の適した手法で、例えば、接続ピン(または同様のコネクタ)、接着剤、および/または熱硬化を使用して一緒に接合して、組み立てられたカートリッジの構造的保全性を維持し得る。
図44および図45は、カートリッジ1720の内部の側面図および上面図のそれぞれである。これら図は、図43と一緒に、カートリッジがある数の離散したチャンバを含むことを示す。これらチャンバは、図45では全体が1726で示された流路により流体接続される。流路1726は、両部分が一緒に合わせられたときに閉じられた流路になるように、各部分1722および1724内に形成された相補的な溝を合わせることにより生成し得る。各部分の溝は、カートリッジの上部と下部とが組み立てられた場合に溝が実質的に円筒形の流路を形成するように、例えば、おおよそ球形の断面を有し得る。他の実施形態では、溝は、矩形等の他の形状を有し得、上部と下部との総断面の割り振りは可変である。
カートリッジ1720の試料チャンバ1728は、標的核酸配列を含む(または潜在的に含む)試料を受け取るように構成される。試料は、流体として試料チャンバに移送してもよく、または試料は、スワッブまたは他の何らかの適した試料収集手段に取り付けられたチャンバ内に配置し得る。試料チャンバは、図43および図44に示される円筒形等の任意の所望の形状および200マイクロリットル(μL)〜2ミリリットル(mL)の範囲の容量等の任意の所望の形状を有するように構築することができる。試料チャンバの容量は、部分的に、後述するように、カートリッジがテストするように構成される別個の核酸標的の数に依存し得る。
試料チャンバ1728はフィルタ1730を含み得る。フィルタは通常、試料チャンバの底面の近傍または底面の下に配置される。フィルタ1730は、特定の事前選択されたサイズよりも大きな材料の通過を阻止するように構成されたサイズ除外フィルタであり得る。例えば、固有サイズ600ナノメートル(nm)を有する細菌の通過を阻止するために、フィルタは、固有の遮断サイズ200〜400nmを有する膜であり得る。他の材料の通過を阻止するには、フィルタは、濾過する材料に基づいて選択される異なる固有の遮断サイズを有するように選択し得る。サイズ分画に基づく膜濾過は単純であるが、標的細胞を捕捉する効率的な方法である。捕捉されると、細胞を洗浄して、可溶性または膜のサイズ遮断未満の潜在的なPCR阻害物を除去することができる。
あるいは、フィルタ1730は、親和性捕捉を通して(すなわち、1つまたは複数の標的分子を引きつけ、かつ/または化学的に結合することにより)、あるいは化学的沈殿等の固相抽出により動作し得る。しかし、膜濾過は、後述するように、処理ステップ数が少ないこと、危険な試薬がないこと、処理時間が高速であること、および標的有機体の濃縮と精製とを同時に行う潜在性を含め、固相抽出よりも優れた特定の利点を有し得る。
試料チャンバは、攪拌ディスク1732および/または溶解ビード1734等の1つまたは複数の溶解要素も含み得る:図43および図44参照。これら要素は一般に、試料を攪拌して、周囲の材料(細胞材料等)を破壊することにより核酸の解放させることを通して、試料チャンバ内の流体の溶解を促進するように構成される。溶解ディスク1732または他の同様の攪拌要素は通常、試料チャンバの底に向かってであるが、試料チャンバ内部に配置される。溶解ビード1734は、70μm〜700μmの範囲の直径のガラスビード等の任意の所望の材料および直径のビードの形態をとることができ、試料チャンバの攪拌される流体内の材料に衝突して破壊することにより、溶解をさらに促進するように構成される。
攪拌ディスク1732の攪拌は、ロッドまたは他の任意の適した形状をとることもでき、磁気力または電磁力により提供し得る。例えば、攪拌ディスクは、試料チャンバに印加される磁場の変化に応答するのに十分な磁性を有し得る。したがって、印加される磁場を変更することにより、攪拌ディスクを回転させ、かつ/またはタンブルさせ、試料チャンバ内で流体を攪拌させることができる。可変磁場は、例えば、関連するPCR機器に配置された単一の低コスト駆動装置により提供し得る。駆動装置は、試料チャンバのうちの1つ、いくつか、および/または複数内の溶解要素を同時に駆動するように構成し得る。溶解要素は試料チャンバ内部に含まれ、磁気駆動装置が複数の試料チャンバにわたって動作するように構成し得るため、カートリッジ1720内部の溶解は、使い捨てカートリッジと関連する機器との間に特別な界面を必要としない。この構成は、低コストの1回使い切りのカートリッジ内への統合および自動化に対して高い柔軟性を提供する。
試料チャンバ1728は、槽チャンバ1736から、洗浄液および/または再構成液等の1つまたは複数の流体を受け取るように構成される。試料チャンバに移送された試料が、スワッブ等の手段に付着している場合、槽チャンバからの流体を使用して、試料を流体形態に再構成し得る。槽チャンバからの流体は、試料を緩衝液で洗浄することにより、細菌等の試料の精製にも使用し得る。槽チャンバ1736内の流体は、カートリッジを使用して提供してもよく、使用者が供給してもよく、かつ/または取り付けられた機器からカートリッジに移送してもよい。いずれの場合でも、流体を槽チャンバ1736から試料チャンバ1728に、これら2つのチャンバを接続する流路1726に沿って移送し得る。この接続は、例えば、カートリッジ1700の上面図である図45に見られる。槽チャンバから試料チャンバに移送された流体は、フィルタ1730を通り、それにより、流体が試料チャンバに入る前に濾過される。
カートリッジ1720は廃棄物チャンバ1738も含む。破棄物チャンバは、試料と共に試料チャンバに導入されたか、または溶解中に断片化した核酸断片および他の破棄材料等の廃棄材料を試料チャンバから受け取るように構成される。廃棄物チャンバ1738は、フィルタ1730を通る流路1726を通して試料チャンバ1728に流体接続される。したがって、フィルタによる捕捉に適した固有のサイズ(または化学的親和性)を有する標的材料を試料チャンバ内部に残しながら、流体および断片化した破棄物を試料チャンバから廃棄物チャンバに移送強いうる。
例えば、流体をフィルタ1730に通して濾過して廃棄物チャンバ1738内に入れることにより、試料含有液を溶解前に精製し得る。次に、上述したように、試料チャンバ内の流体を槽チャンバ1736から補充し得る。同様に、試料含有液は、ここでもフィルタ1730に通して濾過して廃棄物チャンバ1738内に入れることにより、溶解後に精製かつ/または濃縮し得る。精製ステップ、濃縮ステップ、および流体補充ステップは、流体を試料チャンバから破棄物チャンバに、そして槽チャンバから試料チャンバに移送することにより、任意の所望の回数、繰り返し得る。
図43〜図45は、カートリッジ1720内部の5つの別個の試薬チャンバ1740a、1740b、1740c、1740d、および1740eを示す。一般に、1、2、3、4、5、6、7、8、9、10、または10以上から最高で任意の大きな数までの任意の所望の数の試薬チャンバを提供し得る(本実施形態および本明細書に示される他の使い捨てカートリッジの両方において)。各試薬チャンバは、試料含有流体を試料チャンバから受け取り、試料含有流体と特定の試薬混合物とを組み合わせるように構成される。図45に見られるように、試料含有流体は、試料チャンバから試薬チャンバに、試料チャンバを各試薬チャンバに並行して接続する流路1726に沿って移送し得る。
各試薬混合物は、例えば、プライマ、ポリメラーゼ、および/または特定の核酸配列のPCR増幅に適した酵素を含み得る。試薬チャンバ1740のうちの2つ以上内の試薬混合物は、同じもしくは実質的に同様であってもよく(例えば、対照実験を可能にする)、または各試薬混合物は、複数の異なる標的核酸配列を探すために、実質的に異なってもよい。
カートリッジ1720の試薬混合物は、関連付けられた試薬チャンバの底に配置された凍結乾燥されたペレット1742a、1742b、1742c、1742d、および1742eとして示される:図45参照。しかし、一般に、試薬混合物は、特に、流体内、凍結乾燥された粉体(ばらばらであるか、もしくはペレット以外の形態に形作られる)、または各試薬チャンバの内面に塗布されたコーティング等の任意の適した形態で提供することができる。さらに、試薬混合物は、カートリッジを使用して供給してもよく、使用者が供給してもよく、または接続されたPCR機器からカートリッジに移送してもよい。
カートリッジ1720は、各試薬チャンバ1740a、1740b、1740c、1740d、および1740eに流体接続された油チャンバ1744も含む。油チャンバ1744は、試料および試薬流体の液滴を含む油中水形乳濁液を生成するために必要な油を供給するように構成される。より詳細には、油は、チャンバ1744から、試薬チャンバの1つにそれぞれ対応し、試薬チャンバの1つとそれぞれ流体接続された複数の液滴生成領域1745a、1745b、1745c、1745d、および1745eに渡ることができる。各液滴生成器は、油背景内に懸濁した特定の試料/試薬混合物の液滴を生成するように構成される。
特に、図45に示されるように、カートリッジ1720内の油は、油チャンバ1744から複数の流路に伝わる。流路は、各液滴生成器に対応し、試薬チャンバの1つからの流路に交わり、油中水形液滴を生成するように構成された一対の油路を含む。生成された液滴は次に、複数の毛管コネクタ1746a、1746b、1746c、1746d、および1746e等の界面構成要素を通過し得る。毛管コネクタは、流体を複数の対応する毛管1748a、1748b、1748c、1748d、および1748eに移送するように構成され、毛管1748a、1748b、1748c、1748d、および1748eは、機器1700’との界面を形成するように構成される(例えば、図42参照)。
[C.実施例3:例示的な液圧機構]
この実施例では、使い捨てカートリッジの様々なチャンバ間での流体の移動を制御するのに適した2つの例示的な液圧機構の態様について説明する:図46および図47参照。
図46は、上述したカートリッジ1700または1720等の使い捨てカートリッジの様々なチャンバ間での流体の移動を制御するのに適した、全体が1760で示される2チャンバ液圧機構の態様を概略的に示す。図46の各側は、2つの流体チャンバ1762および1764を示す。各チャンバはプランジャ1766を備え、流体1768が各チャンバ内部に部分的に配置されている。図46の左側部分では、流体の大半はチャンバ1764内に配置されており、図46の右側部分では、流体の大半はチャンバ1762内に配置されている。接続流路1770がチャンバ1762とチャンバ1764との間に設けられ、流体1768をチャンバ間で流せるようにする。
チャンバ間の流体移動は、2つのプランジャ1766に不等な力が加えられ、プランジャの一方が下に移動する一方で、他方が上に移動する場合に発生する。そのような力は通常、使い捨て試料準備カートリッジを受け取るように構成された機器内に収容されるか、または他の様式でそのような機器に統合された、ピストンまたは押棒等の力アクチュエータにより加えられる。このようにして、流体を、制御された様式で使い捨てカートリッジの上述した任意のチャンバ間で移送することができる。
より詳細には、プランジャ1766の移動は、使用者により直接制御してもよく、かつ/またはプランジャを含むカートリッジを受け取って相互作用するように構成された機器により制御してもよい。例えば、使用者が、試料または試料含有流体を一方のチャンバ1762または1764(したがって、試料チャンバとみなされる)内に手作業で装填し、次に、プランジャ1766をチャンバ内に挿入して、試料または試料含有流体をチャンバ内に封止し得る。次に、手作業でまたは自動的に適切なプランジャを押下することにより、流体を液圧的に試料チャンバ内外に移送し得る。
自動的なプランジャ移動は、流体をシステムのチャンバ間で所定の様式で移送するようにプログラムされたプロセッサにより制御し得る。例えば、液圧機構1760がカートリッジ1700内に組み込まれた場合、機器1700’は、ピストン、押棒等の液圧機構のプランジャを相補する力アクチュエータ構造を含み得る。これら力アクチュエータは、関連付けられたプランジャを特定の時間に、特定の順序で、または使用者が機器に送信する信号に応答して、押下するように構成し得る。
図47は、図46の2チャンバ機構1760と同様の、全体が1780で示される3チャンバ液圧機構を概略的に示す。流体チャンバ1782、1784、および1786のそれぞれはプランジャ1787を含む。流体1788が各チャンバ内部に部分的に配置され、チャンバは流路1790に流体接続される。したがって、プランジャ1787が適宜移動した場合、流体は、あるチャンバからその他の2つのチャンバのうちの一方または両方に移送される。例えば、チャンバ1786のプランジャを押下し、同時にチャンバ1782および1784のプランジャを上げることにより、チャンバ1786からの流体をチャンバ1782および1784に移送できる。
すべてのチャンバが同じサイズおよび幾何学的形状を有する場合、等量の流体をチャンバ1786からチャンバ1782および1784に移送するためには、チャンバ1782および1784の各プランジャを、チャンバ1786のプランジャが押下される率の半分で上げる。あるいは、チャンバは異なるサイズおよび/または形状を有してもよく、その場合、プランジャの移動は、あるチャンバからその他のチャンバへの等量の流体移送を達成するように適宜変更される。さらに、様々なプランジャの移動を制御することにより、あるチャンバからの流体を、任意の所望の容量比に従って2つ以上のその他のチャンバに分けることができる。
本開示によるプランジャは、ロック機構を含み得る。特定のプランジャのロック機構は、プランジャを特定の位置にロックして、特定のチャンバに対する望ましくない流体の移送を回避するように構成し得る。例えば、破棄物チャンバに関連付けられたプランジャは、プランジャが、廃棄物チャンバ内の流体の最大容量に対応する上部(退避)位置に達した場合、プランジャを所定位置にロックするように構成されたロック機構を含み得る。これは、廃棄物が試料から除去された後、破棄流体が偶発的に試料チャンバまたは槽チャンバ等の別のチャンバに逆送することを阻止することができる。
適したプランジャロック機構は、機構が特定のプランジャの上方移動を阻止するという共通の性質をそれぞれ有する様々な形態をとることができる。例えば、適したロックは、プランジャが特定の位置に達した場合に所定位置にカチッと嵌り、プランジャがそれ以上下方に移動しないようにするバネにより付勢されるタブ(図示せず)等のプランジャ自体と一体化される機構を含み得る。あるいは、ロック機構に、使い捨てカートリッジを受け取るように構成された機構を関連付け得、その場合、ロック機構は、特定の状況下で特定のプランジャの下方移動を阻止するようにコントローラをプログラムすることを含み得る。
本開示によるプランジャは、漏れを制限するか、またはなくすようにも構成し得る。例えば、図47に示されるように、プランジャ1787は、共通シャフト1794に取り付けられ、所望の距離だけ離間された下部封止1790および上部封止1792の両方を含み得る。封止1790および1792は通常、関連付けられたチャンバの内周内に実質的に流体密封して嵌るように構成されたOリングまたは同様の構造の形態をる。したがって、図47が示すように(チャンバ1786参照)、プランジャが押下される際に下部封止を通るいかなる残留流体1788もなお、上部封止により、関連付けられたチャンバ内に閉じ込められる。
[D.実施例4:例示的な液滴生成器]
この実施例では、試料と試薬との混合物を含む油中水形液滴の生成に適し得る例示的な様々な液滴生成構成を示す:図48A〜図48F参照。生成された液滴は次に、PCR増幅のために熱循環機器に移送し得る。図示される各構成は、油相乳濁液の連続生成ならびに圧力制御されると共に容積型のポンピングと両立する。本開示による液滴生成器または液滴生成構成は、相補的なPCR機器に配置された圧力/ポンプ源に接続してもよく、あるいは液滴の生成を促進するために必要な任意のポンプおよび/または圧力源を含んでもよい。
図48A〜図48Fに示される各液滴構成は、カートリッジ等の使い捨て装置内で高スループット液滴生成(約1,000液滴/秒)が可能であり得る。各構成は、一緒に組み合わせられて、相補的な半球形溝により形成される円筒形チャネル等の流体チャネルを形成する2層の材料を射出成形することにより構築し得る。図48A〜図48Fに示される液滴生成構成の流体チャネルは、特に、50μm、100μm、150μm、200μm、または250μm等の様々なチャネル深さを有し得る。
図48Aは、3ポートクロス液滴生成構成1800を示し、第1の流体ウェル(またはチャンバ)1802からの油が、流体チャネル部分1804の2つの同様の枝路を通って移送される。ウェル1802からの油は、流体チャネル部分1808に沿って全体が1810で示される交点エリアに移送される第2の流体チャンバ1806からの水性流体と交わる。ウェル1802からの油は、2つの異なる実質的に逆方向から高低1810に到来する一方で、水性液は、到来する油の両移動方向に略垂直な単一路のみに沿って交点に到来する。その結果、交点1810において、油背景中の水性液滴(すなわち、油中水形乳濁液)が生成され、流体チャネル部分1812に沿って第3のチャンバ1814に移送され、第3のチャンバ1814において、乳濁液は一時的に格納され、かつ/または熱循環機器に移送することができる。
図48Bは、図48Aに示された液滴生成構成1800と大半の態様が同様の構成1815を示す。特に、液滴生成構成1815では、第1の流体チャンバ1816からの油は、流体チャネル部分1818の2つの同様の枝路を通って移送される。流体チャネル部分1818は、全体が1824で示される交点エリアにおいて、第2の流体チャンバ1820から水性流体を移送する流体チャネル部分1822と交わる。構成1800と同様に、チャンバ1816からの油は2つの異なる方向から交点1810に到来するが、構成1800と異なり、油は略逆(逆平行)の方向から到来しない。むしろ、チャネル部分1818のそれぞれは、図48Bではおおよそ60度で示される非垂直角度でチャネル部分1822に交わる。一般に、構成1815は、任意の所望の1つまたは複数の角度で水性流体チャネルに交わる油流体チャネルを含み得る。チャネル部分1818を通って流れる油およびチャネル部分1822を通って流れる水性液は組み合わせられて、水性液滴が油背景内に懸濁した油中水形乳濁液を形成する。構成1800の場合と同様に、液滴は次に、流体チャネル部分1826に沿って第3の流体チャンバ1828に移送して格納してもよく、かつ/または熱循環機器に移送してもよい。
図48Cは、2つの別個の油ウェルまたはチャンバを含む4ポート液滴生成構成1829を示す。第1の油チャンバ1830は、油を格納し、流体チャネル部分1832を通って、全体が1842で示されるチャネル交点に向かって油を移送させるように構成される。第2の油チャンバ1834も同様に、油を格納し、流体チャネル部分1836を通して交点に向けて油を移送させるように構成される。水性流体チャンバ1838は、試料/試薬混合物等の水性流体を格納し、流体チャネル部分1840を通って水性流体を交点1842に向けて移送させるように構成される。流体チャネル部分1832および1836を通って移動する油が、流体チャネル部分1840を通って移動する水性流体と交わると、水性液滴が油中に懸濁した油中水形乳濁液が生成される。流体チャネル1840は、各流体チャネル1832および1836と垂直角度で交わるものとして示されるが、一般に、チャネルは、図48Bの液滴生成構成1815に関連して上述したように、任意の所望の角度で交わり得る。交点1842において生成された乳濁液は、流出流体チャネル部分1844を通って乳濁液チャンバ1816に向かって移動し、乳濁液チャンバ1846内に、乳濁液を熱循環機器等の機器に移送するために一時的に保持し得る。
図48D〜図48Fは、いくつかの他の可能な液滴生成構成の流体チャネル交差領域を概略的に示し、図示の流体チャネル内部の矢印は、流体が各チャネル内部を流れる方向を示す。油、水、および生成された任意の乳濁液を受け取り、かつ/または格納する流体チャンバは図48D〜図48Fに示されないが、これらチャンバまたは油および水性流体の少なくともいくつかのソースが、図示の任意の構成を含むカートリッジ内に存在する。流体チャネルおよび関連付けられた任意のチャンバは、上述したような熱可塑性材料の相補的な部分の射出成形等の任意の適した方法で形成し得る。
図48Dは、「単一T字」構成1850を示し、油チャネル1852内を移動する油が、水性チャネル1854内を移動する水性流体と流体チャネル交点1856において交わり、流出流体チャネル1858を通って移動する油中水形乳濁液を生成する。この構成は、油が単一のみの方向から油/水交点に到来するという点で図48A〜図48Cの構成と異なる。したがって、油が2つの方向から到来する構成とわずかに異なる物理的な機構により、液滴を形成し得る。例えば、図48Dの単一T字構成において形成される液滴は、主に圧縮機構よりはむしろ主に剪断機構により形成し得る。しかし、液滴形成の物理学は完全には理解されておらず、チャネルの直径、流体の速度、および流体の粘度を含む多くの要因に依存する可能性が高い。
図48Eは、「二重T字」構成1860を示し、油チャネル1862内を移動する油が、第1の水性チャネル1864内を移動する水性流体と第1の交点1866において交わり、中間流体チャネル1868を通って移動する油中水形乳濁液を生成する。チャネル1868は、第2の交点1872において第2の水性チャネル1870と交わり、乳濁液内にさらなる油中水形液滴を生成する。生成されたすべての液滴は次に、流出流体チャネル1874を通って移動する。この構成も、油が単一のみの方向から油/水交点に到来するという点で図48A〜図48Cの構成と異なる。さらに、構成1860は、2つの油/水交点の存在により、図48Dに示される単一T字構成1850と異なる。これにより、構成1860により生成される油中水形乳濁液内の液滴の濃度は、1つのみの油/水交点を含む構成1850による乳濁液生成よりも高くなり得る。
図48Fは、油チャネル1882内を移動する油が、交点1888において第1および第2の水性チャネル1884および1886内を移動する水性流体と交わる液滴生成構成1880を示す。この構成では、水性流体は、両方ともチャネル1882内の油の移動方向に略垂直な2つの逆方向から交点に到来する。より一般には、水性流体は、任意の所望の角度で油と交わることができる。少なくとも、様々なチャネルのサイズ、油および水性流体の流量、ならびに水性チャネルと油チャネルとが交わる角度に応じて、このタイプの構成は、水中油形乳濁液または油中水形乳濁液の生成に適し得る。いずれの場合でも、乳濁液は、流出流体チャネル1890を通り、交点1888から離れて移動する。
[E.実施例5:使い捨て試料カートリッジ3]
この実施例では、3つの代替の使い捨て試料準備カートリッジの態様を説明する:図49〜図51参照。
図49は、全体が1900で示される別の使い捨て試料準備カートリッジおよびカートリッジの様々な構成要素間の適した流体接続を示す概略図である。カートリッジ1900は、標的含有試料を受け取り、PCR熱循環および増幅に向けて準備するように構成され、多くの点で図42に示されるカートリッジ1700と略同様である。したがって、カートリッジ1900は、試料チャンバ1902、廃棄物チャンバ1904、フィルタ1906、槽チャンバ1908、および試薬1911a、1911bを事前装填し得る試薬チャンバ1910a、1910bを含む。これら構成要素は、カートリッジ1700内のそれぞれの対応物と同様であり、再び詳述しない。カートリッジ1700の場合と同様に、5つ以上等の任意の所望の数の試薬チャンバをカートリッジ1900内に設け得る。
カートリッジ1900は、カートリッジ1700の液滴生成器1712とわずかに異なる、全体が1912で示される液滴生成器も含む。特に、液滴生成器1912は、2つの異なる試薬チャンバに対応し、2つの試薬チャンバに別個に接続される2つの別個の油槽を含む。したがって、油槽1914aは油を交点1916aに移送し、交点1916aにおいて、油は試薬チャンバ1910aからの水性流体と組み合わせられて、試料/試薬液滴の第1の油中水形乳濁液を形成し、油槽1914bは、油を交点1916bに移送し、交点1916bにおいて、油は試薬チャンバ1910bからの水性流体と組み合わせられて、試料/試薬液滴の第2の油中水形乳濁液を形成する。次に、両乳濁液は、熱循環機器1900’に移送し得る。カートリッジ1800と比較して、カートリッジ1900の様式で別個の油槽および油チャネルを設けることにより、別個の試薬チャンバからの試薬が相互汚染する任意の危険性を低減し得る。
図50は、全体が2000で示されたさらに別の使い捨て試料準備カートリッジおよびカートリッジの様々な構成要素間の適した流体接続を示す概略図である。図42および図49に示されるカートリッジ1700および1900のそれぞれのように、カートリッジ2000は、標的含有試料を受け取り、PCR熱循環および増幅に向けて準備するように構成される。カートリッジ2000は、試料チャンバ2002、破棄物チャンバ2004、第1のフィルタ2006、および第1の槽チャンバ2008を含み、これらはカートリッジ1700内のそれぞれの対応物と同様であり、再び詳述しない。
カートリッジ2000は第2の槽チャンバ2009も含む。フィルタ2006が、試料チャンバ2002と各槽チャンバ2008および2009との間に配置され、流体が試料チャンバ内外に移送される際に標的含有試料を試料チャンバ内に残すように機能する。上述した例示的なカートリッジと同様に、再構成流体および/または洗浄流体は一方の槽チャンバから試料チャンバ内に移送され、廃棄流体は通常、試料チャンバから破棄物チャンバに移送される。
第1および第2の槽チャンバ2008および2009は、試料チャンバ内の試料を2回、再構成し、かつ/または洗浄し得るように設けられる。例えば、再構成液を槽チャンバ2008から試料チャンバ内に移送し、その後、上述したように試料を溶解し得る。次に、標的材料を試料チャンバ内に残しながら、廃棄流体を試料チャンバから廃棄物チャンバ2004内に移送し得る。次に、洗浄液を槽チャンバ2009から試料チャンバ内に移送し、廃棄流体を再び試料チャンバから破棄物チャンバ内に移送し得る。2つの槽チャンバおよび2つの再構成/洗浄ステップを提供することにより、比較的小数の不純物を含み、ひいては比較的高い割合で標的材料を含む試料になり得る。
第2のフィルタ2007は、試料チャンバ2002と試薬チャンバ2010a、2010bとの間に配置される。試薬チャンバには試薬2011a、2011bを事前装填し得、試薬チャンバおよび試薬は両方とも、上述したそれぞれの対応物と同様である。フィルタ2007は、精製および溶解後に試料チャンバ内に残った溶解ビードまたは大きな破棄材料等のより大きな材料の通過を阻止しながら、標的ヌクレオチド材料を試料チャンバから試薬チャンバに渡すように構成される。カートリッジ1700および1900の場合と同様に、5つ以上等の任意の所望の数の試薬チャンバをカートリッジ2000内に設け得る。
フィルタ2007に対する代替または追加として、追加のフィルタ2012a、2012bを試薬チャンバ2010a、2010bに設け、同様の追加のフィルタを追加の各試薬チャンバに設け得る。これら追加のフィルタは、フィルタ2007と同様に機能し得る。すなわち、溶解ビード等の比較的大きな廃棄材料がカートリッジを通ってさらに進まないようにし得る。第2のフィルタ2007および追加のフィルタ2012a、2012bの両方を設けることにより、相対的により純粋な試料/試薬混合物が試薬チャンバからカートリッジの液滴生成部分に移送し得る。
カートリッジ2000は、全体が2014で示され、各試薬チャンバに対応する油中水形乳濁液を生成するように構成された液滴生成器を含む。しかし、上述したカートリッジと異なり、乳濁液の油は、カートリッジ内部からではなく、関連する機器2000’により供給される。カートリッジと機器との相互作用を説明するために、ダッシュの付いた参照番号が機器2000’の構成要素を表すために使用され、その一方で、ダッシュの付いてない参照番号が引き続き、カートリッジ2000の構成要素を参照するために使用される。
油をカートリッジ2000に供給するために、機器2000’内の油槽2016’は、試薬チャンバ2010aに対応する液滴を生成するために、油ライン2018a、2020aに沿って油を移送する。油は、交差領域2022aにおいて、試薬チャンバ2010aからの水性溶液と交わり、熱循環のために機器2000’内に移送し得る試料/試薬混合物を含む液滴を生成する。同様に、油槽2016’も、交差領域2022bにおいて試薬チャンバ2010bに対応する液滴を生成するために、ライン2018b、2020bに沿って油を供給し、油槽2016’(または追加の槽、図示せず)は、カートリッジ2000内に含まれる追加の任意の所望の数の試薬チャンバに対応する液滴を生成するために、油を供給するように構成し得る。
領域2022a、2022b、およびカートリッジ2000の他の任意の追加の液滴生成交差領域において生成される試料/試薬液滴はすべて、対応する流路2024a、2024b(およびその他の流路)を通して機器2000’のマルチポート弁2026’に移送し得る。弁2026’は、例えば、液滴を複数の流入チャネルから受け取り、1度に1タイプの試料/試薬液滴の被制御バッチ等の任意所望の様式で機器の熱循環領域に液滴を移送するように構成し得る。
図51は、全体が2100で示されるさらに別の使い捨て試料準備カートリッジおよびカートリッジの様々な構成要素間の適した流体接続を示す概略図である。上述したカートリッジのように、カートリッジ2100は、標的含有試料を受け取り、PCR熱循環および増幅に向けて準備するように構成される。カートリッジ2100は、試料チャンバ2102、廃棄物チャンバ2104、フィルタ2106、および試薬チャンバ2110a、2110b(および任意の所望の数の追加の試薬チャンバ)を含め、その他のカートリッジの特徴のうちのいくつかを含む。これら構成要素は、上述したそれぞれの対応物と同様であり、再び詳述しない。
カートリッジ2100は、図51に界面線Lの右側に示される関連するPCR機器2100’内に挿入されるか、または他の様式で相互作用するように構成される。この場合、機器2100’は、試料または試料含有流体以外の作業流体の略すべてをカートリッジに供給する。換言すれば、機器2100’は、カートリッジ2100に流体を付与するように構成される。図50に関連した説明の場合と同様に、ダッシュの付いた参照番号が、機器2100’の構成要素を表すために図51の説明において使用され、その一方で、ダッシュの付いていない参照番号が引き続き、カートリッジ2100の構成要素を参照するために使用される。
機器2100’の槽ポンプ2112’に、選択弁または同様の機構が備えて、流体を槽ポンプから、ポンプに繋がった様々な流体チャネルを通して選択的に移送できるようにし得る。カートリッジ2100が、実質的に流体密閉の封止が形成されるように、機器2100’内に、または機器2100’に隣接して固定位置に配置された後、槽ポンプは流体を廃棄物チャンバ2104に向かう流体チャネル2114内にポンピングし、廃棄物チャンバ2104は通常、カートリッジが機器に接続された時点では流体が入っていない。槽ポンプ2112’は、流体がチャネル2114を満たし、チャネル2116を通って進み、フィルタ2106を満たすまで、流体をチャネル2114内にポンピングし続ける。フィルタ2106が満たされた場合、槽ポンプはチャネル2114内への流体のポンピングを停止し、試薬チャンバ2110aに向かうチャネル2118a内への流体のポンピングを開始し、流体がチャネル2118aを満たすまでポンピングし続ける。槽ポンプ2112’の動作中、チャネル2122aを通して試薬チャンバ2110aに流体接続した破棄物ポンプ2120’は、空気および任意の過剰な流体を引き出すように動作する。
流体チャネル2114、2116、および2118aに流体が付与された場合、槽ポンプ2112’は、一定量の流体を槽ポンプと試料チャンバ2102との間の流体チャネル2124内に移送して、チャネル2124、試料チャンバと試薬チャンバ2110aとの間のチャネル2126a、および試薬チャンバ2110aと廃棄物ポンプ2120’との間のチャネル2122aを満たす。廃棄物ポンプ2120’は、チャネル2124、2126a、および2122aに流体が付与される際に空気および流体を引き出すように動作する。次に、槽ポンプ2112’は、追加の流体をチャネル2118aを通して試薬チャンバ2110aに、チャネル2130a、液滴生成領域2132aを通して機器2100’のマルチポート弁2134’内に移送する。
この時点で、槽ポンプ2112’から試料チャンバ2102、廃棄物チャンバ2104、および試薬チャンバ2110aに繋がり、そして試薬チャンバ2110aからマルチポート弁2134’に繋がる流体チャネルのすべてに流体が付与されている。次に、槽ポンプ2112’を使用して、任意の追加の試薬チャンバに関連付けられた流体チャネルに流体を付与し得る。例えば、槽ポンプ2112’は、チャネル2124を通して一定量の流体を移送して、試料チャンバと試薬チャンバ2110bとの間のチャネル2126bおよび試薬チャンバ2110bと廃棄物ポンプ2120’との間のチャネル2122bを満たし得、その間、廃棄物ポンプ2120’は空気および流体を引き出すように動作する。次に、槽ポンプ2112’は、チャネル2128bを通して試薬チャンバ2110bに直接、チャネル2130b、液滴生成領域2132bを通してマルチポート弁2134’内に流体を移送し得る。同様にして、槽ポンプ2112’(または場合によっては、追加の槽ポンプ)を使用して、任意の所望の数の試薬チャンバに関連付けられた流体チャネルに流体を付与することができる。
カートリッジ2100のチャネルに所望の程度まで流体が付与された場合、試料または試料含有流体を試料チャンバ内に配置し、上述した生成、濃縮、溶解、試薬混合、および/または液滴生成の各ステップのすべてを、他のカートリッジ実施形態に関して上述したように実行し得る。しかし、カートリッジ2100と上述したカートリッジとのさらに1つの違いは、カートリッジ2100が、液滴生成のために油を供給する油槽を含まないことである。むしろ、油槽2140’が機器2100’内に含まれる。油槽2140’は、ライン2142aおよび2144aを通して油を液滴生成領域2132aに供給し、ライン2142bおよび2144bを通して油を液滴生成領域2132bに供給するように構成される。油槽は、図51に示される2つを超える追加の試薬槽に対応する任意の所望の数の追加の液滴生成領域に油を供給するように構成することができる。試料/試薬液滴は、生成された後、マルチポート弁2134’に移送し得、マルチポート弁2134’は、PCR増幅のために機器2100’の熱循環部分に液滴を移送するように構成される。
[F.実施例6:使い捨て試料カートリッジ4]
この実施例では、さらに別の代替の使い捨て試料準備カートリッジの態様を説明する:図52および図53参照。
図52は、全体が2150で示される例示的なカートリッジの内部の等角投影図である。カートリッジ2150は、PCR増幅および解析のために、準備された試料を機器に、一般に油中水形乳濁液の形態で移送できるように、機器(図示せず)との界面を形成するように構成される。図52に示される内部に加えて、カートリッジ2150は、内部のいくらかまたは全体の周囲に配置された適した外部筐体(図示せず)も含み得る。外部筐体は、内部を保護するように構成し得、複数のカートリッジの格納および/または輸送に役立つ形状であり得る。
カートリッジ2150は、上部本体部2152に加えて、より詳細に後述する様々なプランジャおよびコネクタを含む。本体部2152は、例えば、熱可塑性材料または他の同様の材料を射出成形することにより一体的に構築し得る。第2の下部本体部(図示せず)をカートリッジ2150内に含め、2つの本体部を一緒に熱融着、接着、または他の様式で固定することにより上部本体部に接続されるが、この下部本体部は単に、略平坦で特徴のない材料シートであるため、これ以上説明しない。上部本体部2152等の一体的に構築されるカートリッジ本体部内の顕著な特徴を制限することは、図43および図44(例えば)を参照して上に示し説明したように、両方が流体の操作および移送に使用される特徴を含む2固体構造と比較して、コスト、単純性、構造的保全性、および/または機能の向上において利点を有し得る。
カートリッジ2150の本体部2152は、標的核酸配列を潜在的に含む試料を受け取るように構成された試料チャンバ2154、洗浄液および/または再構成液を供給するように構成された槽チャンバ2156、試料チャンバに流体接続され、廃棄材料を受け取るように構成された破棄物チャンバ2158、ならびに試料チャンバにそれぞれ流体接続され、試料含有流体を受け取り、PCR熱循環前に試料含有流体と試薬混合物とを組み合わせるように構成された様々な試薬チャンバ2160a、2160b、2160c、2160d、2160eを含む。さらに、カートリッジ2150の本体部2152は、液滴チャンバ2161a、2161b、2161c、2161d、2161eを含み、各液滴チャンバは、対応する試薬チャンバ内に含まれる試料/試薬混合物を含む水形試料含有液滴の乳濁液を受け取るように構成される。上述したように、任意の所望の数の試薬チャンバ(および対応する液滴チャンバ)をカートリッジ内に含め得る。試料チャンバ、槽チャンバ、廃棄物チャンバ、および試薬チャンバは、任意の適切なフィルタ、攪拌要素等を含め、図43のカートリッジ1720内のそれぞれの対応物と構造および機能の両方の点で略同様であるため、再び詳述しない。
本体部2152は、油流入チャンバ2162、油流出チャンバ2164、およびプライマ流出チャンバ2166も含む。油流入チャンバ2162は、より詳細に後述するように油中水形乳濁液内に試料含有液滴を生成するために使用される油を保持し移送するように構成される。油流出チャンバ2164は、油流入チャンバから移送されたが、試料含有液滴の油中水形乳濁液にまだ利用されていない油を受け取るように構成される。油流出チャンバ2164内で受け取った過度の油は、廃棄してもよく、またはリサイクルしてもよい(すなわち、油流入チャンバに戻す)。プライマ流出チャンバ2166は、より詳細に後述するように、初期カートリッジ流体付与中に1つまたは複数の付与流体を受け取るように構成される。
上部本体部2152に加えて、カートリッジ2150は、全体が2168で示される流体操作部も含む。カートリッジの流体操作部は、試料チャンバプランジャ2170および様々な試薬チャンバプランジャ2172a、2172b、2172c、2172d、2172eを含む。プランジャは、それぞれのチャンバ内で上下移動して、チャンバ内外に所望の方向で流体を移送するように構成される。カートリッジの流体操作部2168は、複数の略同様の毛管コネクタ2174および複数の略同様の毛管2176も含む。毛管コネクタは、流体を対応するチャンバに、かつ/または対応するチャンバから対応する毛管に移送するように構成され、毛管は、関連付けられた熱循環機器との界面を形成するように構成される。
図53は、上部本体部2152の底面図であり、カートリッジの様々な部分間の流体接続を形成する流体チャネル網を示す。上述したように、カートリッジ2150の下部本体部(図示せず)は一般に、上部本体部2152の底面にぴったりとくっついて配置されて、流体が、図53内に示される様々な流体チャネルを通してのみ、カートリッジの部分間を移動可能なように、流体密閉封止を形成する。したがって、流体チャネル網は、上部本体部の下面および下部本体部の上面により画定されるが、下部本体部の上面は、この例では、略平坦な面であるため、流体チャネルは全体的に、カートリッジの上部本体部内に形成される。
特に、流体チャネル2178は、再構成/洗浄流体および/または付与流体を槽チャンバ2156から試料チャンバ2154に移送するように構成され、別の流体チャネル2180は、廃棄流体を試料チャンバ2154から廃棄物チャンバ2158に移送するように構成される。さらに別の流体チャネル2182は、試料含有流体を試料チャンバ2154から試薬チャンバ2160a、2160b、2160c、2160d、2160eに移送すると共に、付与流体を試料チャンバ2154からプライマ流出チャンバ2166に移送するように構成される。さらに別の流体チャネル2184は、油を油流入チャンバ2162から複数の液滴生成領域2186a、2186b、2186c、2186d、2186eに移送するように構成される。各液滴生成領域は、試薬チャンバの1つに流体接続され、試料/試薬混合流体を試薬チャンバの1つから受け取り、試料/試薬混合流体を背景流体と組み合わせて、試料含有液滴の乳濁液を形成するようにそれぞれ構成される。複数の流体チャネル2188a、2188b、2188c、2188d、2188eは、それぞれの液滴生成領域から生成された液滴を対応する液滴チャンバ2161a、2161b、2161c、2161d、2161に輸送するように構成される。
通常、カートリッジ2150は、関連する機器により供給される流体が付与される。例えば、流体接続がカートリッジと機器との間に確立された場合、油、水、または他の任意の実質的に非混和性の流体等の付与流体を機器から適切な毛管および毛管コネクタを通して槽チャンバ2156内に移送し得る。次に、付与流体は槽チャンバから流体チャネル2178を通って試料チャンバ2154内に移送し得る。試料チャンバから、付与流体は流体チャネル2182を通りプライマ流出チャンバ2166および/または試薬チャンバ内に移送し得る。同様に、油または他の何らかの付与流体は、機器から油流入チャンバ2162、流体チャネル2184を油流出チャンバ2164および/または液滴生成チャンバ内に移送し得る。このようにして、所望の付与流体を使用して、カートリッジ2150の流体チャンバおよびチャネルの任意の所望のサブセットに流体付与し得る。
プランジャ2170、2172a、2172b、2172c、2172d、および21672e(および本開示により意図される他の任意のプランジャ)のそれぞれは、特定の流体チャネルを通して所望のように流体を方向付けるように構成されると共に、様々なチャンバ内外への流体フローを選択的に許可または阻止するようにも構成される。換言すれば、各プランジャは、プランジャとして動作することに加えて、1つまたは複数の特定の流体チャネルへの入口を選択的に開閉することにより、弁として動作するように構成し得る。例えば、試薬プランジャ2172a、2172b、2172c、2172d、および2172eがそれぞれ一番下の位置にある場合(試薬チャンバの容量を最小限にする)、プランジャは、チャネル2184から独立してチャネル2182に流体を付与できるように、流体チャネル2182と流体チャネル2184との間の流体接続(図53参照)をブロックするように構成し得る。同様にして、任意のカートリッジのプランジャを弁として使用して、カートリッジの様々な部分間の流体フローを阻止または許可することができる。
図52および図53の使い捨てカートリッジ2150は、関連付けられた機器により供給される流体を付与されるように構成された使い捨てカートリッジの単なる一例である。本開示は、様々なチャンバの配置および/または様々なチャンバ間もしくはチャンバと機器との間で流体がどのように配送されるかの変更を除き、略同様であり得る他の使い捨てカートリッジも意図する。例えば、廃棄物チャンバおよび/または槽チャンバを、図52および図53でのようにカートリッジ上ではなく機器上に配置してもよい。図52および図53でのように1つのチャンバが油を複数の領域に供給するのではなく、複数の油入力チャンバを提供し、各チャンバが油を単一の液滴生成領域に供給してもよい。液滴生成領域は、図52および図53でのように単一のT字構成に代わるクロス構成等、図48A〜図48Fに関して上述した様々な形態のうちの任意の形態をとり得る。過度の油または付与流体は、図52および図53でのように破棄してもよく、リサイクルしてもよく、または液滴生成流出口を通して配送してもよい。液滴は、図52および図53でのように複数の流出口を通して配送してもよく、または単一の共通流出口を通して配送してもよい。上記変形の略あらゆる組み合わせを利用して、特定の用途に最も適切であり得る変更されたシステムにしてもよい。
[G.実施例7:選択された実施形態]
この下位項では、限定せずに、一続きの番号が付された文章として提示される、本開示の態様による試料準備および試料カートリッジの追加の態様を開示する。
1.標的分子を増幅する方法であって、(A)流体試料を精製すること、(B)試料を溶解させること、(C)試料を試薬混合物と組み合わせること、(D)乳濁液内の試料の液滴を生成すること、および(E)乳濁液を熱循環機器に移送することを含み、精製するステップ、溶解させるステップ、組み合わせるステップ、および生成するステップはすべて、使い捨ての1回使い切りのカートリッジ内で実行される、方法。
2.使い捨てカートリッジ内の試料収集器から試料を抽出することをさらに含む、段落1に記載の方法。
3.使い捨てカートリッジ内部の試料を濃縮することをさらに含む、段落1に記載の方法。
4.精製することは、溶解前に、標的材料よりも小さな廃棄材料を除去しながら、試料内部の標的材料を残すことにより精製することを含む、段落1に記載の方法。
5.精製することは、溶解後に、標的材料よりも大きな廃棄材料を除去しながら、試料内部の標的材料を残すことにより精製することを含む、段落1に記載の方法。
6.1回使い切りの試料準備カートリッジであって、第1の本体部および第2の本体部を備え、第1の本体部は、(A)試料を受け取るように構成された試料チャンバと、(B)試料チャンバに流体接続され、再構成流体を試料チャンバに供給するように構成された槽チャンバと、(C)試料チャンバに流体接続され、試料チャンバから廃棄流体を受け取るように構成された廃棄物チャンバと、(D)試料チャンバにそれぞれ流体接続され、試料チャンバから試料含有流体を受け取り、試料含有流体を試薬混合物と組み合わせるようにそれぞれ構成された複数の試薬チャンバと、(E)試薬チャンバの1つにそれぞれ流体接続され、試薬チャンバの1つから試料/試薬混合流体を受け取り、試料/試薬混合流体を背景流体と組み合わせて、試料含有液滴の乳濁液を形成するようにそれぞれ構成された複数の液滴生成領域とを備え、試料チャンバ、槽チャンバ、廃棄物チャンバ、試薬チャンバ、および液滴生成領域は、第1の本体部の下面および第2の本体部の上面により画定される流体チャネル網により互いに流体接続される、カートリッジ。
7.流体チャネルは全体的に第1の本体部に形成され、第2の本体部の上面は略平坦面である、段落6に記載のカートリッジ。
8.背景流体は油であり、液滴生成領域に移送すべき油を受け取るように構成された油流入チャンバをさらに備える、段落6に記載のカートリッジ。
9.油流入チャンバから移送されたが、乳濁液の1つにまだ利用されていない油流出チャンバをさらに備える、段落8に記載のカートリッジ。
10.生成された乳濁液の1つを受け取るようにそれぞれ構成された複数の液滴チャンバをさらに備える、段落6に記載のカートリッジ。
11.チャンバ内外に流体を移送させるように構成された複数のプランジャを含む流体操作部をさらに備える、段落6に記載のカートリッジ。
12.流体操作部は、流体をカートリッジの少なくとも1つのチャンバと機器との間で移送するように構成された複数のコネクタをさらに含む、段落11に記載のカートリッジ。
13.各プランジャは、最も下の位置にある場合、流体チャネルのうちの少なくとも1つへの入口を選択的に閉じることにより、弁として機能するように構成される、段落11に記載のカートリッジ。
14.試料チャンバは、磁力により攪拌されるように構成された攪拌要素を含む、段落11に記載のカートリッジ。
15.試薬チャンバは、試料チャンバに平行して流体接続される、段落11に記載のカートリッジ。
16.背景流体は油であり、試薬チャンバのうちの少なくとも1つに流体接続され、対応する乳濁液の形成に使用される油を供給するように構成された少なくとも1つの油槽をさらに備える、段落11に記載のカートリッジ。
17.少なくとも1つの油槽は、各試薬チャンバに対応し、対応する乳濁液の形成に使用される油を供給するように構成された1つの油槽を含む、段落16に記載のカートリッジ。
18.一体化された溶解領域、分離領域、試薬混合領域、および微液滴生成領域を有する、核酸を試料から抽出し、微液滴を形成する微小流体装置であって、(A)細胞または微生物を溶解して、核酸を解放させる溶解領域と、(B)核酸を細胞または微生物の他の部分から分離する分離領域であって、溶解領域に接続されるように構成された分離領域と、(C)核酸を少なくとも1つの試薬と混合する試薬混合領域であって、分離領域に接続される試薬混合領域と、(D)試料流入端部、非混和性流体、および流出端部を備え、試薬混合領域に接続された液滴生成領域とを備える、装置。
[IV.液滴生成器]
本項では、例えば、液滴ベースの分析に使用される例示的な液滴生成器を説明する。
特にDNA増幅システム等のシステムにおいて、部分的または完全に使い捨ての装置を使用して試料含有液滴を生成することが望ましい場合がある。これは、特に溶解、精製、および濃縮も含み得る一連の試料準備ステップの一環として液滴を生成するように構成された使い捨てカートリッジにより達成し得る。しかし、他の場合では、実質的に追加の試料準備ステップを実行せずに液滴精製を実行するように構成された部分的または完全に使い捨ての装置を提供することが望ましいであろう。これは、例えば、DNA増幅システムが、通常、別の場所で、または医療従事者により準備された試料を解析するように構成される場合に望ましいであろう。これら状況下では、専用の液滴生成システムが最も簡易かつ最も経済的な解決策であり得る。
図54は、全体が2200で示される液滴生成システムを概略的に示す。システム2200は、液滴生成器2202および流体槽2204を含む。液滴生成器2202は、通常は油中水形乳濁液の形態の試料含有液滴を生成し、格納場所または熱循環機器等の所望の場所に輸送するように構成される。流体槽2204は、乳濁液の形成に使用される流体、通常、油等の背景流体、DNA試料および試薬混合物を含む水性溶液等の前景流体を格納し、かつ/または受け取るように構成される。
液滴の乳濁液を生成するために、液滴生成器2202は通常、図54に示されるように、流体槽2204内部に少なくとも部分的に配置される。液滴を槽2204から輸送するために、液滴生成器2202は通常、槽から物理的に取り外し可能であるか、または液滴生成器から液滴を受け取り、別の所望の場所に移送するように構成された、2206において概略的に示される適した流体接続を含む。液滴生成器2202が槽2204から取り外し可能に構成される場合、液滴生成器および槽のうちの一方または両方は使い捨てであり得る。試料に直接接触するシステムの任意の部分の廃棄は、例えば、複数の試料同士の相互汚染の危険性を回避するために役立ち得る。
液滴生成器および流体槽の多くの構成が、システム2200等の液滴生成システムの構成要素として適し得る。例えば、適した液滴生成器は、特に、バテッド管、交点チャネルが穿孔された管、他の管内部に部分的または完全に挿入された管、および複数の開口部を有する管を含み、「管」は、任意の断面形の細長い中空構造を意味する。適した流体槽としては特に、ピペット先端、スピンカラム、ウェル(個々のまたはプレートアレイの)、管、およびシリンジが挙げられる。以下の例では、特定の例示的な液滴生成器および流体槽を説明する:図55〜図71参照。追加の関連する開示を、相互参照の下に上述し、参照により本明細書に援用される米国仮特許出願、特に発明者としてKevin Dean Ness、Benjamin J.Hindson、Billy W.Colston,Jr.、およびDonald A.Masquelierの名前が挙げられている、「DROPLET GENERATOR FOR DROPLET−BASED ASSAYS」と題する2009年9月21日に出願された米国仮特許出願第61/277204号明細書に見出し得る。
[A.実施例1]
図55および図56は、例示的なクロス型液滴生成器を示す。
図55は、一対のバテッド管の形態で、全体が2210で示される例示的な第1のクロス型液滴生成器を概略的に示す。用語「クロス型液滴生成器」は、背景乳濁流体(通常、油)が2つの略逆方向から内側に向かって移動して、背景流体の移動方向に対して直角に移動する前景乳濁流体(通常、水性流体)と交わり、前景流体の元々の移動方向に沿って移動する乳濁液を形成することを示す。したがって、流入背景流体の移動方向、流出前景流体の移動方向、および流出乳濁液の移動方向はクロスをなす。
したがって、液滴生成器2210は、小さな距離Dにより隔てられた中空流体管の2つの相補的な部分2212、2214を含む。管部分2212、2214は、切断された隔てられた単一の連続した中空管から構築し得、その場合、管部分は、略等しい外径および内径を有することになる。あるいは、管部分2212、2214を別個に構築し、次に、液滴生成器2210内に適宜配置してもよく、その場合、管部分は実質的に異なる外径および/または内径を有し得る。
管部分2212、2214は、少なくとも部分的に油チャネル2216内部に配置される。油チャネル2216は通常、油および/または試料含有水性流体を含む流体を液滴生成器2210に供給するように構成された流体槽の部分である。例示的な様々な流体槽については、実施例2において後述する。油チャネル2216は特に、管内に形成される円筒形チャネル、略平坦なチャネル壁の間に形成される矩形チャネル、または周囲の流体槽内の単なる流路等の様々な形態をとり得る。管部分2212、2214は、油チャネル2216と一体形成してもよく、または実質的に流体密閉して油チャネルの1つもしくは複数の開口部内に挿入してもよい。
管部分2212は、流入流体チャネル2218を形成する中空内部を含み、管部分2214は、流出流体チャネル2220を形成する中空内部を含む。流入流体チャネル2218は、試料含有流体を周囲の流体槽または試薬槽等の流体源から油チャネル2216内に輸送するように構成され、その移送を促進するために、油チャネルと比較して加圧され得る。試料含有液滴を生成するために、油チャネル2216内の油および流入流体チャネル2218内の試料含有流体のそれぞれは、流出流体チャネル2220と比較して加圧されて、油および試料含有流体の両方を流出流体チャネルの流入開口部2222に引き込む傾向性を与える。試料含有流体が流入流体チャネル2218の流出開口部2224を出る際、試料含有流体の水性液滴を油背景内に形成し、液滴の油中水形乳濁液を流出流体チャネルに入れ得る。
管部分2212、2214のうちの一方は、周囲の流体槽内部に固定し得る一方で、他方の部分は周囲の槽から取り外し可能であり得る。そのような場合、管部分2212は通常、所定位置に固定される一方で、管部分2214は通常、取り外し可能であり、管部分2214から既知の所望の距離の位置に選択的に配置されるように構成し得る。例えば、管部分2214はシリンジ、ピペット等の先端を表し得、油チャネル2216を含む槽内に挿入し、吸引して試料含有液滴の乳濁液を流出流体チャネルの流入開口部2222内に引き込むことにより、試料含有液滴を生成し格納するために使用し得る。次に、管部分2214を流体槽から取り外し、乳濁液を熱循環機器等の別の所望の場所に移送し得る。
図56は、全体が2230で示される例示的な第2のクロス型液滴生成器を示す。液滴生成器2230は流体管の単一の部分から構築され、その単一の部分を通して、2つの垂直に交わる流体チャネル2232および2234が形成される。液滴生成器2230は、背景油および前景試料含有水性液等の試料含有液滴の乳濁液の形成に使用される流体を保持するように構成された流体槽(図示せず)内に一時的または永久的に配置し得る。流体チャネル2232の遠位開口部2236は、試料含有液を受け取り輸送するように構成され、流体チャネル2234の中間開口部2238、2240は、背景油を受け取り輸送するように構成される。
全体が2242で示される交差領域において、チャネル2232を通って移動する試料含有流体は、チャネル2234を通って移動する油と交わり、試料含有液滴の油中水形乳濁液が生成される。次に、この乳濁液はチャネル2232を通り、試料含有流体の元々の移動方向(図56では左から右に)に沿って移動し続ける。次に、所望のように、乳濁液を格納場所および/または熱循環機器に移送し得る。場合によっては、液滴生成器2230は、シリンジもしくはピペット等の取り外し可能かつ/または使い捨ての構成要素の先端であってもよく、または代替として、流体槽から所望の場所に液滴乳濁液を輸送するように構成された固定された使い捨てではない構成要素の遠位部分を表してもよい。
[B.実施例2]
図57および図58は、例示的なフロー収束液滴生成器を示す。
図57は、全体が2250で示される例示的な第1のフロー収束液滴生成器を示す。用語「フロー収束液滴生成器」は、背景流体が周囲の局所幾何学的形状により、前景試料含有流体と交わる交差領域に向けて収束した場合に液滴が生成されることを示す。次に、試料含有液滴の乳濁液が形成される。クロス型液滴生成器と異なり、フロー収束液滴生成器の背景流体および前景流体は、図57に示されるように、略直角に交わる必要はない。
フロー収束液滴生成器2250は、流体流入チャネル2252、液滴流出チャネル2254、および油槽2256を含む。流体流入チャネル2252は、試料含有流体を、全体が2258で示された流体交差領域に向けて輸送するように構成される。図57に示すように、流体流入チャネル2252は、所望のサイズの流体液滴を生成するように構成された細長いテーパ形先端2260を有する略円筒形であり得るが、非テーパ形先端等の変形も適し得る。液滴流出チャネル2254は、略円筒形であってもよく、または後述するように、先端2260と併せて、背景油を交差領域2258に向けるのに適した他の任意の所望の形状を有してもよい。油槽2256は、油または他の任意の適した乳濁液背景流体を受け取り、かつ/または格納するように構成される。
液滴を生成するために、流体を流入チャネル2252および油槽2256の両方から流出チャネル2254に引き込むための圧力差が生み出される。流入チャネル、流出チャネル、および槽の幾何学的形状により、槽からの油は、図57において矢印2262ににより示されるように、流体流入チャネル内部の試料含有流体の移動方向に平行する流体速度の成分との交差領域2258に向かって収束する流路を形成する。油背景内の試料含有液滴の乳濁液が形成され、流体流出チャネル2254内部で交差領域2258から、流体流入チャネル2252内部での試料含有流体の移動方向と略同じ方向に移動する。
流出チャネル2254は、油槽2256内部に固定し得、その場合、流出チャネル2254は、生成された油中水形乳濁液を油槽から格納場所または熱循環機器等の別の所望の場所に移送するように構成される。あるいは、流出チャネル2254は、シリンジまたはピペット等の取り外し可能かつ/または使い捨ての構成要素の部分であり得、その場合、流出チャネル2254は、所望の量の乳濁液が生成された場合に取り外し得る。次に、乳濁液は物理的にバルクで別の所望の場所に輸送し得る。
図58は、全体が2280で示される第2のフロー収束液滴生成器を示す。液滴生成器2280は、別個の試料含有流体流入チャネルを含まないことを除き、図57の液滴生成器2250と同様である。別個の試料含有流体流入チャネルを含むことに代えて、液滴生成器2280は、液滴流出チャネル2282および流体槽2284のみを含む。しかし、この場合、流体槽2284は、試料含有流体および油等の適した乳濁背景液を受け取り、かつ/または格納するように構成される。図57の実施形態と同様に、液滴流出チャネルは取り外し可能かつ/または使い捨ての構成要素の部分であり得る。
液滴生成器2280を使用して液滴を生成するために、流体を流出チャネル2282内に引き込むための圧力差が生み出される。ここでも、流体交差領域2286近傍のエリアの局所幾何学的形状により、槽からの油は、矢印2288で示されるように、交差領域2286に向かって収束する流路を形成する。さらに、試料含有流体は交差領域2286に向かって引き込まれ、交差領域2286において、試料含有流体と油との境界におけるメニスカスが、交差領域に隣接してネック領域2290を形成する。ネック領域において、メニスカスは定期的に細長い「首」に変形し、そのポイントで、離散した液滴がメニスカスから分離する。こうして、液滴がネック領域で一度に1つずつ生成される際、湯背景中の試料含有液滴の乳濁液が形成される。
[C.実施例3]
図59および図60は、全体が2300で示されるさらに別のクロス型液滴生成器を示す。液滴生成器2300は、使い捨て試料含有部2302と、使い捨てではない液滴流出部2304とを含む。試料含有部2302は、1回使い切りの使い捨て構成要素であるように構成し得、したがって、射出成形された熱可塑性材料等の比較的安価な材料で構築し得る。図59は、互いに実質的に離間され、したがって、試料含有液滴の生成に適した位置にない試料含有部2302および液滴流出部2304を有する液滴生成器2300を示す。図60は、互いの近傍に配置され、後述するように試料含有液滴を生成する位置にある試料含有部2302および液滴流出部2304を有する液滴生成器2300を示す。
液滴生成器2300の試料含有部2302は、試料槽2306および試料流体チャネル2308を含む。試料槽は、流体管(図示せず)、医療従事者による試料含有流体の手作業での挿入、または機械による試料含有流体の自動挿入等の任意の適した流体流入機構を通して試料含有流体を受け取るように構成し得る。試料流体チャネル2308は、流体を試料槽から流体流出開口部2310に輸送するように構成され、流体流出開口部2310は、試料槽から試料流体チャネルを通過した試料含有流体の液滴を放出するように構成される。図59および図60の断面図に示される試料含有部2302、試料槽2306、および試料流体チャネル2308はすべて略円筒形であるが、他の形状も適し得る。
液滴生成器2300の液滴流出部2304は、試料含有液滴を格納チャンバまたは熱循環機器(図示せず)等の所望の場所に向けて輸送するように構成された液滴流出チャネル2312を含む。液滴流出部2304は、流出部のチャネル上壁2316およびチャネル下壁2318により画定される油チャネル2314も含む。油チャネル2314は、細長い溝、円筒形(または代替の形状の)略平坦な槽、または液滴流出チャネル2312に向けての油の移送の促進に役立つ他の任意の所望の形態をとり得る。
略円筒形の開口部2320が、液滴流出部のチャネル上壁2316に形成され、試料含有部2302の相補的な円筒形下部2322を受けるように構成される。Oリング等の流体密閉封止リング2324を設けて、試料含有部2302と液滴流出部2304とが一緒に組み立てられた場合、それら2つの部分の間に実質的な流体密閉封止を形成するのに役立ち得る。円筒形の溝を試料含有部2302の外面に形成して、Oリングを所望の位置に保持し得、別の同様の溝を開口部2320内部に設け得る。これら溝内部にOリングを位置合わせすることは、使用者が円筒形開口部2320内部の試料含有部の正確な取り付け位置を見つけるのに役立ち得る。代替または追加として、様々な位置特定ピンまたは他の同様の突起部(図示せず)を設け、試料含有部および液滴流出部のうちの一方または両方を取り付けられ、試料含有部が液滴流出部に取り付けられた場合、それら部分が違いから所望の分離距離のところに停止させ得る。
図60は、一緒に組み立てられ、液滴が形成中の液滴生成器2300の2つの主要部を示す。油は、矢印2330で示されるように、油チャネル2314内部を液滴流出チャネル2312に向かって内側に移動する。同時に、試料含有流体は、試料流体チャネル2308を通して下方に移動して、全体が2332で示される交差領域において油と交わる。交差領域2332において、油中水形液滴の乳濁液を生成し、液滴流出チャネル2312内に渡す。これら流体移動のすべては通常、液滴流出チャネルの遠位端部にかけられる負圧により生じる。生成された乳濁液は、流出チャネルを通して格納チャンバ、輸送チャンバ、または直接熱循環機器内に渡され得る。まとめると、液滴生成器2300の液滴流出部および試料含有部が一緒に組み立てられた場合、実質的な流体密閉封止が、液滴流出部と試料含有部との間に形成され、流体流出開口部により放出される液滴は、油チャネル内を移動する油と交わり、乳濁液流出チャネル内に渡される油中水形液滴の乳濁液を生成する。
油チャネル2314が細長い溝の形態をとる場合、上述したように、油および試料含有流体が交わり、クロス形を形成する様々な流体速度で液滴を生成する。油チャネル2314が長く平坦なチャネルまたは槽の形態をとる場合、チャネル内部の油は、試料流体チャネルおよび液滴流出チャネルの両方に対してそれぞれ略垂直な多くの異なる方向から半径方向において液滴流出チャネル2312に近づき得る。したがって、そのような構成はなお、クロス型液滴生成器として考えられ得る。
液滴生成器2300の試料含有部2302は、上述したように、使い捨てであり得る。したがって、乳濁液が生成され、所望の場所に輸送された後、試料含有部2302を開口部2320から取り外して破棄し得る。次に、試料含有部を開口部2320内に配置し、同じまたは異なる試料/試薬混合物を使用した別の乳濁液の生成に使用し得る。流出チャネル2312の壁およびチャネル壁2316、2318を含め、液滴流出部2304の内面はすべて、疎水性コーティングでコーティングしてもよく、かつ/または1つもしくは複数の濯ぎ液で洗浄して、試料/試薬間の相互汚染の危険性を低減し得る。
[D.実施例4]
図61〜図63は、一般に、相対的により高濃度の流体の背景内に相対的により低濃度の流体の液滴の乳濁液を生成するように構成された例示的な液滴生成システムを示す。
図61は、液滴生成器2342および流体槽2344を含む、全体が2340で示される第1のそのような液滴生成システムを示す。液滴生成器2342は、略円筒形の乳濁液チャンバ2346および細長形先端2348を含むが、他の乳濁液チャンバおよび先端の形状も可能である。液滴生成器の先端は、流体槽内に少なくとも部分的に挿入するように構成される。液滴生成器2342は、乳濁液チャンバ2346を液滴生成器(図示せず)の本体部に接合するように構成された界面部2350も含む。液滴生成器の本体部は、例えば、使用者により掴まれるように構成し得、液滴生成器内部の圧力を変化させるピベットバルブ、シリンジプランジャ等の圧力機構を含み得る。
液適生成器の先端2348は、円筒形として、すなわち円形の断面を有するものとして示されるが、先端(および乳濁液チャンバ)の断面は、矩形、正方形、または楕円形等の多くの他の形状をとってもよい。先端は、油等の背景流体を受け取るように構成された遠位端開口部2352および水性試料/試薬混合物等の前景流体を受け取るように構成された側面開口部2354の両方を含む。場合によっては、遠位開口部2352は、単に先端2348の遠位端部を開いたままにすることにより形成され、したがって、先端の断面と同じ形状を有する。しかし、遠位開口部は、開口部への背景流体の所望の流速を促進するように所与の任意の所望の形状であり得る。側面開口部2354は、特に円形、正方形、矩形、星形、楕円形、または三角形等の様々な形状で形成し得る。側面開口部2354の形状は、所望の流速および/または側面開口部を通る流体のフローパターンに基づいて選択し得る。
流体槽2344は放物面として実質的に示されるが、一端部が閉じられ、他端部が開いた略あらゆる三次元容器を適した槽として形成し得る。流体槽は、例えば、チップもしくはマイクロプレート上にアレイで配置された多くの槽の1つであってもよく、または特に、個々のウェル、試験管、ピペット本体、もしくはスピンカラムチャンバ等の単一の独立した槽であってもよい。精密な形状に関わりなく、槽2344は、後述するように試料含有液滴の乳濁液を形成するために、液滴生成器2342と併せて使用される背景乳濁流体および前景乳濁流体の両方を保持するように構成される。
図62は、図61の液滴生成システムのうちの部分の拡大図を示し、試料含有液滴の乳濁液をシステムによりどのように生成できるかを示す。示されるように、槽2344は、背景乳濁流体2356(油等)および前景乳濁流体2358(水性試料/試薬混合物)の両方を保持するように構成される。システム2340では、背景流体2356は、前景流体2358と異なるより高い濃度を有するため、槽2344の底部に配置され、前景流体は背景流体の上の層に配置される。したがって、液滴生成器2342の遠位開口部2352は背景流体に接触し、その一方で、液滴生成器2342の側面開口部2354は前景流体に接触する。換言すれば、槽が背景流体および前景流体を含み、細長形先端が槽内に挿入された場合、遠位開口部は、槽により保持される背景流体に接触するように構成され、側面開口部は、槽により保持される前景流体に接触するように構成される。
背景流体中前景流体形液滴の乳濁液を生成するために、負圧または正圧が液滴生成器2342の内部流体チャネル2360にかけられる。この圧力は、特に、手作業もしくはモータ駆動式プランジャ、バルブ、またはポンプ等の任意の適した機構によりかけることができる。いずれの場合でも、かけられる圧力は、背景流体2356を液滴生成器2342の遠位開口部2352内に流入させると共に、前景流体を液滴生成器2342の側面開口部2354内に流入させる。したがって、側面開口部内に流入する前景流体は、遠位開口部を通して先端に入る背景流体の流れと交わり、側面開口部の近傍で背景流体中前景流体液滴2362の乳濁液を形成する。次に、背景流体中の液滴2362の乳濁液はチャネル2360まで進み、チャネル2360において、乳濁液チャンバ2346内に受け取られる。次に、乳濁液は、上述したように、DNAを増幅する熱循環機器等の別の場所に格納し、かつ/または輸送し得る。流入背景流体速度の方向、流入前景流体速度の方向、および流出乳濁液速度の方向は「T字」形状をなすため、図61および図62に示されるシステムは、「単一T字」液滴生成器構成として説明し得る。
図63は、図61および図62のシステム2340と同様である、全体が2380で示される別の液滴生成システムの拡大した端部を示す。特に、システム2380は、液滴生成器2382の先端2385が、遠位端開口部2386および2つの遠位側面開口部2388、2390を含むことを除き、システム2340の対応する部分とすべて同じ特徴を有する液滴生成器2382および流体槽2384を含み、遠位端開口部2386および2つの遠位側面開口部2388、2390はすべて、液滴生成器の先端内部の流体チャネル2392に流体アクセスを提供する。したがって、上向きの圧力が流体チャネル2392にかけられた場合、背景流体2394は遠位開口部2386内に流入し、前景流体2396は両方の側面開口部2388、2390内に流入する。これにより、単に1つの側面開口部を有するシステムと比較して、乳濁液内により多数かつ/または異なる分布の液滴を生成し得る。
側面開口部2388、2390の近傍での様々な流体速度の方向により、システム2380は、「二重T字」液滴生成器構成として特徴付け得る。この構成は様々な方法で一般化し得る。例えば、一対の側面開口部を、図63に示されるような長手方向にずらすのではなく、液滴生成器の先端に沿って同じ長手方向位置に配置してもよい。さらに、3つ以上等の任意の所望の数の側面開口部を液滴生成器の長さに沿って配置してもよく、そのうちのいくつかを長手方向に位置合わせし、他を長手方向においてずらしてもよい。流体速度は各側面開口部において「T字」を形成するため、そのように一般化された構成は自然に、「多数T字」液滴生成システムとして特徴付け得る。多数T字システム内の様々な側面開口部の数、場所、サイズ、および形状は通常、結果として生成される乳濁液に望まれる性質に基づいて選択される。
[E.実施例5]
図64〜図66は、相対的に低濃度の流体である背景中に相対的に高濃度の流体液滴の乳濁液を生成するように一般に構成された液滴生成システムを示す。これとは対照的に、図61〜図63は、先の実施例において、相対的に高濃度の流体である背景中に相対的に低濃度の流体の液滴の乳濁液を生成するように一般に構成された液滴生成システムを示した。
図64は、全体が2400で示される第1のそのような液滴生成システムの拡大した端部を示す。システム2400は、液滴生成器2402および流体槽2404を含む。流体槽2404は、構造および形状の行い得るすべての変形を含め、図61および図62に示される槽2344と略同様であるため、再び詳述しない。相対的に高濃度の前景流体2406は槽2404の底に配置され、相対的に低濃度の背景流体2408は、槽内の前景流体の上に配置される。
液滴生成器2402は先端2410を含み、先端2410の内部は、流体チャネル2412、遠位開口部2414、および側面開口部2416を形成する。しかし、液滴生成器2402の先端2410は、遠位開口部2414が槽2404の底に対して側面開口部2416よりも上に配置されるように構成された非線形U字形遠位端部2418を含む。したがって、上向きの圧力が流体チャネル2412に掛けられた場合、背景流体2408である槽2404内の上部流体は、遠位開口部2414を通して流体チャネル2412内に引き込まれる。同時に、前景流体2406である槽2404内の下部流体は、側面開口部2416を通して流体チャネル2412内に引き込まれる。今述べたように、側面開口部の近傍で前景流体と背景流体とが交わることにより、背景流体中に前景流体液滴2418がある乳濁液が生成され、生成された乳濁液は、格納および/または輸送のために、チャネル2412を通って上向きに進む。
様々な流入流体速度および流出流体速度の方向に基づいて、液滴生成器2402を「単一T字」生成器として特徴付け得ることが、図64に示される構成から明らかなはずである。「二重T字」構成または「多数T字」構成等の他の構成を、U字形または同様の形状の先端を有する液滴生成器と併せて使用してもよい。側面開口部の数、位置、サイズ、および形状を変更することにより、結果として生成される乳濁液に本質的に任意の望ましい特徴を付与し得る。
図65は、相対的に低濃度の流体である背景中に相対的に高濃度の液滴がある乳濁液を生成するように構成された、全体が2420で示される別の液滴生成システムを示す。システム2420は、液滴生成器2422および流体槽2424を含む。液滴生成器2422は、可変容量乳濁液槽として機能する本体2426と、流体チャネル2430を画定する細長く先鋭な先端2428とを有するシリンジである。シリンジは、上下に摺動して、シリンジ内部に圧力差を生み出し、乳濁液槽の容量を変更するように構成された可動プランジャ2431を含む。シリンジは、使用者がプランジャをシリンジ本体内部で長手方向に動かせるように構成されたハンドルまたはプランジャヘッド等のプランジャ制御機構(図示せず)も含む。
液滴生成器2422は、流体チャネル2430内に流体を受け取るか、または流体チャネル2430内の流体を吐出するように構成された遠位開口部2432を先端2428の端部に含む。先端2428は側面開口部2434も含み、側面開口部2434もまた、流体を受け取るか、または吐出するように構成される。負圧が流体チャネル2430内部にかけられる場合(すなわち、部分的な真空が生成された)場合、流体を遠位開口部2432および側面開口部2434の両方に引き込み得る。濃度の異なる流体が流体槽2424内に配置される場合(図65に示されるように)、異なる流体を2つの異なる開口部に引き込む得るため、先端2428は、詳細に上述したように、「単一T字」乳濁液生成器として機能する。これもまた上述したように、任意の所望の数、サイズ、および/または形状の側面開口部を使用して、所望の性質を有する乳濁液を生成し得る。
流体槽2424は、層状隔壁2438等の貫通可能な膜を含む取り外し可能なネジ切り先端2436を有する略円筒形のチャンバとして図65に示される。したがって、所望量の乳濁液が生成され、本体2426内に引き込まれた場合、液滴生成器2422を流体槽から引き出して、乳濁液を熱循環機器等の別の場所に輸送し得る。流体槽は、液滴生成器2422による槽の貫通および層内の流体との流体接触の確立を許しながら、大きな漏れなしで所望の乳濁液の流体材料を収容するように構成される。様々な形状およびサイズの槽ならびに様々な代替のタイプの貫通可能な膜を有する槽等のこれら特徴を有する任意の代替の槽を液滴生成器2422と併用し得る。
液滴生成器2422は、図65では、流体槽2424の下に配置される。したがって、相対的に高濃度の試料含有流体2440が液滴生成器の側面開口部2434の近傍に配置される一方で、相対的に低濃度の背景流体2442(油等)は、液滴生成器の遠位開口部2432の近傍に配置される。これにより、油背景中に試料含有液滴がある乳濁液が生成される。もちろん、システム2420を180度回転させてもよく(すなわち、図65を上下に反転させる)、その場合、試料含有流体が背景流体よりも低濃度であるとき、油背景中に試料含有液滴がある乳濁液を生成するように構成される。
図66は、相対的に低濃度の流体である背景中に相対的に高濃度の液滴がある乳濁液を生成するように構成された、全体が2450で示されるさらに別の液滴生成システムの下部を示す。システム2450は、バテッド管型の液滴生成器2452および流体槽2454を含む。流体槽2454は、図61〜図64に示され、上述した流体槽と略同様であるため、さらに説明しない。液滴生成器2452は、遠位開口部2458および一対の対向する側面開口部2460、2462を有する管2456を含む。部分的な真空が管2456内部に上から生成される場合、高濃度の試料含有流体2464は遠位開口部2458内に引き込まれ、低濃度の背景流体2466は側面開口部2460、2462内に引き込まれる。流体は側面開口部の近傍に交わり、乳濁液で管2456を通って上向きに移動する試料含有流体の液滴2468を生成する。側面開口部の近傍での流体の方向により、液滴生成器2452はクロス型液滴生成器として特徴付け得る。
[F.実施例6]
図67は、全体が2480で示される別のクロス型液滴生成システムの下部を示す。液滴生成システム2480は、乳濁液生成器2482と、乳濁液生成器により生成された乳濁液を受け取るように構成された乳濁液槽2484とを含む。名称が示唆するように、乳濁液生成器2482は、通常は油背景中の水性液滴の形態の試料含有液滴の乳濁液を生成するように構成される。乳濁液槽2484は試験管として図67に示されるが、より一般的には、乳濁液を受け取り、収容し、かつ/または所望の場所に輸送するように構成された任意の槽であり得る。
乳濁液生成器2482は、試料含有流体2488を含むように構成された内側流体チャンバ2486と、内側流体チャンバの部分を囲み、通常は油である背景流体2492を含むように構成された外側流体チャンバ2490とを含む。内側流体チャンバ2486および外側流体チャンバ2490の図示される下部は、略円筒形であり、同心であるが、他の幾何学的形状を選択してもよい。内側流体チャンバ2486は、試料含有流体2488を内側流体チャンバから所望の率で通過させるように構成された遠位開口部2494を含む。外側流体チャンバ2490は、乳濁液を外側流体チャンバから所望の率で通過させるように構成された遠位開口部2496を含む。したがって、遠位開口部2494、2496は、開口部を通る所望のフロー特性を生じさせる任意の適したサイズおよび/または形状を有し得る。
背景流体チャネル2498、2500が、内側流体チャンバの下部外部境界と外側流体チャンバの下部内側境界との間に形成され、背景流体2492を半径方向内側に外側流体チャンバの遠位開口部2496に向けて移送するように構成される。場合によっては、内側流体チャンバ2486の下部境界は、一対の溝が離散した流体チャネル2498、2500を形成することを除き、外側流体チャンバ2490の下部内面上に直接載ってもよく、または内側流体チャンバ2486および外側流体チャンバ2490をいくつかの離間機構(図示せず)により互いに直接接触せずに保持してもよい。この場合、背景流体チャネル2498、2500は、背景流体が半径方向内側に開口部2496に向けて移動できる単一の円形背景流体チャネルの部分である。
システム2480は、上のチャンバ2486、2490から正圧をかけて、試料含有流体2488および背景流体2492をそれぞれの開口部に向けて押すことにより、動作し得る。内側流体チャンバおよび外側流体チャンバは、背景流体チャネルを通って半径方向内側に流れる油が、内側流体チャンバの遠位開口部2494を通して内側流体チャンバから出る試料含有流体と交わり、外側流体チャンバの遠位開口部2496を通り、乳濁液を所望に応じて格納または輸送し得る乳濁液槽2484内に渡される背景流体内部に試料含有液滴がある乳濁液を生成するように位置決めされる。乳濁液槽2484は、少なくとも部分的に乳濁液生成器を囲むか、または乳濁液生成器により生成された乳濁液を他の様式で受け取るように構成し得る。通常、乳濁液生成器2492は乳濁液槽2484から取り外し可能であり、乳濁液が生成された後、乳濁液槽2484から恐らく取り外されるであろう。次に、乳濁液生成器は廃棄してもよく、または新しい試料を入れるための準備としてクリーニングしてもよい。あるいは、内側チャンバ2486が外側チャンバ2490から取り外し可能であり使い捨てであってもよく、その一方で、外側チャンバ2490が再使用可能であってもよい。
正圧をチャンバ2486および2490内部の流体にかける他に、乳濁液を同様に、例えば、乳濁液槽内に部分的な真空を生成することにより負圧をかけて、開口部2494および2496に引っ張り込むことにより形成してもよい。正圧または負圧のいずれの場合でも、圧力は、ポンプ、バルブ、またはプランジャ等の任意の適した機構を通して生み出し得る。さらに、システム2480を遠心分離機内に配置し回転させて、成分流体の慣性に基づいて乳濁液を生成してもよい。この技法は、「遠心力」を通して流体を移動させることと呼ばれることもあり得る。遠心分離機がこのようにして使用される場合、システム2480は、「スピンカラム」液滴生成器または乳濁液生成器として特徴付け得る。
図68は、全体が2520で示される別の乳濁液生成システムの部分を示す。システム2520は多くの点で図67のシステム2480と同様であり、システムの様々な部分の潜在的に取り外し可能であり、かつ/または使い捨て可能な性質をさらに示す。システム2520は、乳濁液生成器2522および乳濁液槽2524を含む。乳濁液生成器2522は、試料含有流体2526を含むように構成された内側流体チャンバ2525と、背景流体2530を含むように構成された外側流体チャンバ2528とを含む。内側流体チャンバ2525および外側流体チャンバ2528は、略円筒形であり、同心である。内側流体チャンバの遠位開口部2532は、内側流体チャンバから試料含有流体を通過させるように構成され、外側流体チャンバの遠位開口部2534は、外側流体チャンバから乳濁液を通過させるように構成される。
流体チャネル2536、2538が、内側流体チャンバの下部境界と外側流体チャンバの下部内面との間に形成され、背景流体を内側の遠位開口部2534に向けて移送させるように構成される。試料含有液滴2542の乳濁液2540は、正圧をかけて試料含有流体および背景流体をそれぞれの開口部に向けて押すことにより、または負圧をかけて同じ移動を達成することにより、形成される。圧力は、図67に関して上述したように、ポンプ、バルブ、プランジャ、または遠心分離機等の任意の適した機構により生み出し得る。生成された乳濁液は、開口部2534を通って乳濁液槽2524内に入り、格納されるか、または熱循環機器に輸送される。
乳濁液生成器2522は、所望のように乳濁液槽2524に挿入または取り外しし得る独立式の構成要素である。乳濁液生成器の支持リップ2544が、乳濁液チャンバの側壁2546に重なって、乳濁液チャンバに対して所望の位置に乳濁液生成器を支持するように構成される。乳濁液生成器は、乳濁液生成器から離れるように回転させて、流体および/または圧力の追加を可能にすると共に、乳濁液生成器を覆うように回転して、流体密閉封止を形成し得る蓋2548を含む。これにより、乳濁液生成器の簡便な輸送が可能になり得、望ましくない漏れがない状態で遠心分離機を使用することも可能になり得る。同様に、乳濁液槽は、乳濁液槽の上部に流体密閉封止を選択的に形成するために使用し得る蓋2550を含む。これにより、槽から流体の損失が略ない状態での乳濁液の簡便な輸送、格納、またはさらなる処理が可能になり得る。
[G.実施例7]
図69は、様々なクロス型液滴生成器の関係を示す。より詳細には、図69は、単一のクロスを含む第1のクロス型液滴生成器2560、2つのクロスを含む第2のクロス型液滴生成器2580、3つのクロスを含む第3のクロス型液滴生成器2600、およびバテッド管クロス型液滴生成器2620を示す。
液適生成器2560は、交差領域2566において交わる中空チャネル2562、2564を含む。液滴を生成するために、これらチャネルのうちの一方は一般に、前景流体を単一方向から交差領域2566に向けて搬送する一方で、他方のチャネルは背景流体を両方向から交差領域2566に向けて搬送する。通常、チャネル2562は試料含有液等の前景流体を搬送し、チャネル2564は油等の背景流体を搬送するが、この逆も可能である。いずれの場合でも、乳濁液が交差領域2566において生成され、詳細に上述したように、前景流体の移動方向においてチャネル2562を通って引き続き移動する。
液滴生成器2580は、交差領域2588において交わる3つの中空チャネル2582、2584、2586を含む。液滴を生成するために、チャネル2582は通常、試料含有液等の前景流体を単一方向から交差領域2588に向けて搬送し、各チャネル2584、2586は通常、油等の背景流体を2つの逆方向から交差領域2588に向けて搬送する。その場合、乳濁液が交差領域2588において生成され、前景流体の移動方向においてチャネル2582を通って引き続き移動する。各チャネル2584、2586が前景流体を単一方向から交差領域2588に向けて搬送し、チャネル2582が背景流体を2つの逆方向から交差領域2588に向けて搬送することも可能である。その場合、交差領域2588において生成される乳濁液は、各チャネル内の前景流体の元々の移動方向において、両チャネル2584および2586を通って移動する。こうして、液滴生成器2580は、2つの別個のチャネルから出る液滴を生成するように機能し得る。
同様に、液滴生成器2600は、交わって、交差領域2610において背景流体中に前景流体液滴がある乳濁液を生成する4つのチャネル2602、2604、2606、2608を含む。液滴生成器2580の3チャネル構成と同様に、4チャネル構成の液滴生成器2600は、チャネル2602を通って移動する単一の乳濁液を生成するために使用してもよく、またはチャネル2604、2606、および2608を通って移動する複数の乳濁液を生成するために使用してもよい。
液滴生成器2620は、中空管の第1の部分2622および中空管の第2の部分2624を含むバテッド管生成器である。管部分2622は流体チャネル2626を含み、管部分2624は流体チャネル2628を含む。管部分は短い距離で離間され、管間に交差領域2630を形成する。したがって、前景流体がチャネル2626を通って交差領域2630に向かって流れ、背景流体が半径方向内側に管外部の領域から交差領域2630に向かって流れる場合、乳濁液を生成し、乳濁液はチャネル2628内に流入し得る。
液滴生成器2560から液滴生成器2620を通しての経過は、これら様々な液滴生成器の関係を示す。特に、変数nが、管内部の交差領域で長手方向流体チャネルと交わる半径方向流体チャネルの数を表すために選ばれる場合、液滴生成器2560は「n=1」クロス型液滴生成器として特徴付け、液滴生成器2580は「n=2」クロス型液滴生成器として特徴付け、液滴生成器2600は「n=3」クロス型液滴生成器として特徴付け、液滴生成器2620は、管2622と2624との間のギャップを、単一の細長い管の円周の周囲に連続して延びる無限数の半径方向流体チャネルから形成されるものとして見ることができるため、「n=∞」クロス型液滴生成器として特徴付け得る。
[H.実施例8]
図70および図71は、実施例6の液滴生成システム2480と同様であるが、2つ以上の実質的に異なるサイズの液滴を生成するように構成された追加のクロス型液滴生成システムを示す。
図70は、2つの実質的に異なるサイズの液滴を生成するように構成された、全体が2640で示される第1のそのようなクロス型液滴生成システムの下部を示す。したがって、液滴生成システム2640は、乳濁液生成器2642と、乳濁液生成器により生成される乳濁液を受け取るように構成された乳濁液槽2644とを含む。乳濁液槽2644は、ウェル、ピペット先端、スピンカラム、スピンバイアル、またはシリンジ本体等の、乳濁液を受け取り、収容し、かつ/または所望の場所に輸送するように構成された任意の槽であり得る。
乳濁液生成器2642は、2つの異なるサイズの試料含有液滴の乳濁液を生成するように構成される。特に、乳濁液生成器2642は、試料含有流体2650を含むようにそれぞれ構成された第1および第2の内側流体チャンバ2646、2648と、内側流体チャンバの部分を囲み、油等の背景流体2654を含むように構成された外側流体チャンバ2652とを含む。あるいは、内側流体チャンバ2646、2648のそれぞれは異なる流体を含み得、その場合、生成される液滴は、異なる成分ならびに異なるサイズを有する。
それぞれの内容物に関わりなく、内側流体チャンバ2646、2648のそれぞれは、各内側流体チャンバから試料含有流体を通過させるように構成された遠位開口部2656、2658を含む。外側流体チャンバ2652は、開口部2656、2658のうちの1つとそれぞれ位置合わせされた遠位開口部2660、2662を含む。各対の位置合わせされた開口部は、図70が示すように、特定のサイズの液滴を通過させるように構成される。システム2640の位置合わせされた開口部を介して生成された乳濁液2664は、その他の点では図67の液滴生成システム2480内で乳濁液2520が生成される方法と同じ方法で生成され、詳細をここで繰り返さない。
図71は、システム2670が様々な多くの異なるサイズにわたる液滴を生成するように構成されることを除き、図70の液滴生成システム2640とよく似た液滴生成システム2670を示す。したがって、液滴生成システム2670は、乳濁液生成器2672と、乳濁液生成器により生成された乳濁液を受け取るように構成された乳濁液槽2674とを含む。上述した実施形態の多くと同様に、乳濁液槽2674は、ウェル、ピペット先端、スピンカラム、スピンバイアル、またはシリンジ本体等の、乳濁液を受け取り、収容し、かつ/または所望の場所に輸送するように構成された任意の槽であり得る。
乳濁液生成器2672は、複数の異なるサイズの試料含有液滴の乳濁液を生成するように構成される。したがって、乳濁液生成器2672は、試料含有流体2678を含むように構成された内側流体チャンバ2676と、内側流体チャンバの部分を囲み、背景流体2680を含むように構成された外側流体チャンバ2679とを含む。図71は1つのみの内側チャンバ2676を示すが、図70と同様に、2つ以上の別個の内側チャンバを代替として使用してもよい。
内側流体チャンバ2676は、特定の率で内側流体チャンバから試料含有流体を通過させるようにそれぞれ構成された複数の遠位開口部2682、2684、2686、2688を含む。外側流体チャンバ2678は、内側チャンバの開口部の1つとそれぞれ位置合わせされて、特定のサイズの液滴を含む乳濁液を通過させる遠位開口部2690、2692、2694、2696を含む。したがって、液滴生成システム2670は、広範囲のサイズの液滴を含む乳濁液2698を生成するように構成される。同様にして、液滴生成システムは、任意の所望の固有の液滴サイズ分布を有する乳濁液を生成するように構成し得る。
[I.実施例9]
この実施例では、例示的な液滴生成器のさらなる態様について説明する。上述した液滴生成システムは一般に、液滴生成器および相補的な槽等の複数の別個の構成要素を含む。しかし、本開示による液滴生成システムは、試料準備能力を有するか、または有さない射出成形されたカートリッジの形態をとってもよい。そのようなカートリッジは一般に、試料含有液滴の乳濁液にするために組み合わせられる試料および油を含むシリンジの胴体部、ウェル、または槽として機能するチャンバまたは突起部を含む。これらチャンバは、ポンピング中、システムの使い捨てではない部分への使い捨て部分の挿入中、および搬送/荷扱い中に予想される側面への力に耐えることができる頑丈な壁を必要とする。したがって、チャンバの壁は、約0.020インチの厚さであると考えられるが、0.04インチ〜0.40インチの範囲の厚さであり得る。
使い捨てカートリッジ式の液滴生成器は一般に、試料含有液および油を含み、それらの流れを方向付ける非常に精密な微小チャネルも含む。これらチャネルは、例えば、幅約250μm、深さ250μmであり得るが、これら各寸法は約50μm〜約350μmの範囲であり得る。さらに、液滴生成器のいくつかのエリア(特に試料に接触するエリア)は生体適合性を有さなければならないが、使い捨て液滴生成器の他のエリアはこの要件を満たす必要はない。
液滴生成器を使い捨てカートリッジ等の単一の組立体内に一体化することには、複数構成要素の液滴生成システムよりも優れた特定の効率的な利点があり得る。特に、液滴生成が、2つ以上の別個に製造された部分組立体を使用することを含む場合、通常、(a)部分組立体間の接続部での漏れ、(b)接続部に流れずに残る容量の増大、(c)ライン接続部での容量増大、(d)流体網内の複雑性の増大、および(e)製造/組立コストの増大の潜在性が高くなる。他方、これら様々な要件を単一の組立体に一体化することにより、列挙したすべてのエリアでの潜在的な節減が生じ得る。
成形された液滴生成器カートリッジは、他の様々な有利な特徴も有し得る。例えば、成形可能なプラスチックは通常、タンパク質、DNA、RNA、脂質、またはテストされると予想される生物学的試料の他の成分等の材料の吸収性は最低限であるか、または吸収性を有さない。さらに、単一の成形ステップの一環として、部分の一側面への側面力に耐えることが可能な突起部を成形すると共に、逆側に微小流体チャネルを成形することが可能である。次に、同じまたは同様の材料のプレート、薄いシート、またはフォイルを、微小流体チャネルを有する部分の側面に接合して、組立体の様々なエリアを繋ぐ管様のチャネルを形成し得る。部分を通る孔が、胴体型特徴をチャネルに接続する。これは、これら特徴が1つの構造に成形されるため、これら特徴同士のすべての位置合わせを安価に行い得ることを意味する。
使い捨て液滴生成カートリッジ内部の予想平均動作圧力は、2〜5psiである。流体圧力を比較的低く保つために、成形された単一のカートリッジが、本開示の他の箇所に列挙された様々な機能を満たすことができる。高圧ではなく低い内部動作圧力を維持することは、(a)カートリッジの壁断面を薄くし(すなわち、破損に耐える強い構造に対する必要性がより低い)、(b)カートリッジの壁の膨張を小さくし(すなわち、圧力変化を使用して流体フローを制御する際の均一性が高くなり)、(c)カートリッジの微小チャネル側面に接続されるプレートを薄くし得ることも意味する。これら要因は、製造組立時間の低減および製造コストの低減に繋がる。
油中水形乳濁液または複数の乳濁液を生成するために、使い捨てカートリッジ型液滴生成器が使用されるか否かに関わらず、液滴生成器の流体接触面が疎水性または親水性のいずれかを有することが望ましい場合がある。これら選択肢のいずれも、成形プロセスと両立する適切な材料を選択し、かつ/または選択された材料の表面特性を変更するコーティングを塗布することにより達成し得る。
[J.実施例10]
この実施例では、限定せずに、一続きの番号が付された文章として提示される、本開示の態様による液滴生成の追加の態様について説明する。
1.(A)乳濁液流出チャネルならびに油チャネルを画定するチャネル上壁およびチャネル下壁を含む液滴流出部と、(B)液滴流出部に選択的に組み付けられるように構成され、(i)試料槽および(ii)試料含有流体の液滴を試料槽から放出するように構成された流体流出開口部を有する試料包含部とを備え、液滴流出部および試料包含部が一緒に組み立てられた場合、実質的な流体密閉封止が、液滴流出部と試料包含部との間に形成され、流体流出開口部から放出された液滴は、油チャネル内を移動する油と交わり、乳濁液流出チャネル内に渡される油中水形液滴の乳濁液を生成する、液滴生成システム。
2.試料包含部は、システムの1回使い切りの使い捨て構成要素として構成される、請求項1に記載のシステム。
3.試料包含部は射出成形された熱可塑性材料で構築される、請求項2に記載のシステム。
4.(A)第1の濃度を有する背景乳濁流体および第2の濃度を有する前景乳濁流体を保持するように構成された流体槽と、(B)流体槽内に少なくとも部分的に挿入されるように構成され、少なくとも1つの側面開口部および遠位開口部を有する細長形先端を含む液滴生成器とを備え、背景流体および前景流体を含む槽ならびに細長形先端が槽内に挿入された場合、遠位開口部は、槽に保持される背景流体に接触するように構成され、側面開口部は、槽に保持される前景流体と接触するように構成され、液滴生成器は、側面開口部内に流入する前景流体が、遠位開口部を通って先端に入る背景流体フローと交わり、背景流体中に前景流体液滴がある乳濁液を形成するように構成される、液滴生成システム。
5.液滴生成器は、乳濁液を受け取るように構成された乳濁液チャンバをさらに含む、段落4に記載の液滴生成システム。
6.少なくとも1つの側面開口部は複数の側面開口部を含む、段落4に記載の液滴生成システム。
7.細長形先端はU字形遠位端部を含む、段落4に記載の液滴生成システム。
8.液滴生成システムであって、(A)乳濁液生成器を備え、乳濁液生成器は、(i)試料含有流体を含むように構成された内側流体チャンバであって、内側流体チャンバから試料含有流体を通過させるように構成された遠位開口部を有する内側流体チャンバと、(ii)背景流体を含むように構成され、内側流体チャンバの少なくとも部分を囲む外側流体チャンバであって、外側流体チャンバから乳濁液を通過させるように構成された遠位開口部を有する外側流体チャンバとを含み、背景流体チャネルは、内側流体チャンバの外部境界と外側流体チャンバの内部境界との間に形成され、背景流体を半径方向内側の外側流体チャンバの遠位開口部に輸送するように構成され、内側流体チャンバおよび外側流体チャンバは、背景流体チャネルを通って半径方向内側に流れる油が、内側流体チャンバから内側流体チャンバの遠位開口部を通って通過する試料含有流体と交わり、外側流体チャンバの遠位開口部を通る背景流体中に試料含有液滴がある乳濁液を生成するように位置決めされ、液滴生成システムは、(B)乳濁液生成器を少なくとも部分的に囲み、乳濁液生成器により生成された乳濁液を受け取るように構成された乳濁液槽も備える、液滴生成システム。
[V.連続フロー熱循環機]
本項では、例えば、液滴ベースの分析に使用される例示的な熱循環機について説明する。
DNA増幅システム等のシステムにおいて、試料または試料成分のコピー数を増やすために温度依存反応を行わせることが望ましい場合がある。流体または他の材料の温度を周期的に変更する方法は一般に、「熱循環」方法と呼ぶことができ、そのような周期的な温度変更を達成するために使用される装置は一般に、「熱循環機」と呼ぶことができる。PCRを通してのDNA増幅の場合、周期的な温度変更により、増幅を経ているDNAの変性(DNA「溶解」と呼ばれることもある)、プライマ結合、およびポリメラーゼ伸長が繰り返される。通常、20以上のサイクルが実行されて、検出可能な増幅が得られる。代替の酵素増幅プロセス等の他のプロセスでは、熱循環は他の効果を有し得、異なる温度範囲および/または異なる数の温度変更が適切であり得る。
図72は、PCRを促進するために試料/試薬乳濁液または他の流体混合物を熱循環させる、全体が3100で示された方法を示すフローチャートである。通常、PCRの熱循環を達成するために、3つの別個の温度または温度範囲が流体に提供される。1つ、2つ、4つ、または4以上の他の数の温度範囲を異なるプロセスに提供してもよい。PCRの場合、ステップ3102に示されるように、第1の相対的に高い温度を流体に提供することにより、標的DNAを変性させる。この変性温度は通常、92℃〜98℃の範囲である。ステップ3104に示されるように、第2の相対的に低い温度を流体に提供することにより、DNAプライマを、元々の2重鎖DNAを変性させることから生成される1本鎖DNA鋳型に結合させることができる。このプライマ結合温度は通常、50℃〜65℃の範囲である。最後に、ステップ3106に示されるように、第3の中間温度を流体に提供することにより、DNAポリメラーゼに、結合されたプライマから始まる新しい相補的なDNA鎖を合成させることができる。このポリメラーゼ伸長温度は通常、最適なポリメラーゼ活性を達成するために70℃〜80℃の範囲であり、使用されるDNAポリメラーゼの種類に依存する。
場合によっては、単一の温度をプライマ結合およびポリメラーゼ伸長(すなわち、上のステップ3104および3106)の両方に提供し得るが、これらプロセスに単一の温度を提供することは、プライマおよび/またはポリメラーゼの活性を最適化せず、ひいてはPCR反応の速度を最適化しない場合がある。単一の温度が結合および伸長の両方に提供される場合、この単一の温度は通常、55℃〜75℃の範囲である。
PCR熱循環機は、上述した2つまたは3つの温度ゾーンに加えて、ステップ3108に示されるように、相対的に高いホットスタート温度を提供するように構成された一体化された、または補足的な「ホットスタート」機構も含み得る。ホットスタート温度は、PCRを開始し、かつ/または適したポリメラーゼの追加時にPCRの開始に向けて試料/試薬混合物を準備するために提供される。より詳細には、ホットスタート温度の提供により、ポリメラーゼ酵素が追加されない場合には室温で発生し得るプライミング事象を阻害するために追加されたポリメラーゼ酵素の阻害性を逆転させ得る。この場合、試料/試薬混合物をホットスタート温度まで加熱して、PCRの発生を開始する。他の場合、ホットスタート温度を提供することにより、ポリメラーゼがない状態で試料およびプライマを事前加熱し得、この場合、続けてポリメラーゼを追加することにより、PCRが開始される。ホットスタート温度は通常、95℃〜98℃の範囲である。
熱循環機は、熱循環が(予定通り)完了した後、「最終伸長」および/または「最終保持」ステップを可能にする一体化されるか、または補足的な機構も含み得る。例えば、前者の場合、熱循環機は、任意の残っている1本鎖ヌクレオチドが完全に伸長することを保証するのに十分に長い(例えば、5〜15分間)伸長温度に試料を維持するように構成された機構を含み得る。連続フローシステムでは、この機構は、経路長を増大させるために比較的長い幅狭の管および/または流量を低減するために比較的短い幅広の管を含み得、これらは両方とも伸長温度に維持される。代替または追加として、熱循環機は、試料を伸長温度よりも低い温度(例えば、4〜15℃)に試料を保持または格納する(例えば、定まっていない時間にわたり)機構を含み得る。
所望の温度または温度領域を試料/試薬流体混合物に提供する様々な方法が、PCRに適し得る。例えば、熱チャンバ全体に対して作用するオーブンまたは他の何らかの適したヒータにより循環的に提供される様々な温度を受けることができる、試験管、マイクロプレートウェル、PCRプレートウェル等の1つまたは複数の静止した流体場所内部に流体を配置し得る。しかし、そのようなアレイ型PCRシステムは、システムに実際に流体接続できる流体場所の数により、および/または大きな(高熱質量)システム内の温度を変更する速度(例えば、商用システムの溶解温度、結合温度、および伸長温度間の遷移時間は、Taqポリメラーゼ活性の本質的な限界よりも長い大きさのオーダであり得る)により制限し得る。あるいは、流体を循環的に様々な温度領域に連続して、または準連続的に渡し得る。この場合、領域間の熱伝導を最低限に抑えて、領域間に急激な温度遷移を提供することが望ましい。各領域の温度を連続して監視し、各領域内に比較的一定の所望の温度を維持するために高速フィードバックを提供することも望ましい。
連続フローPCRシステムの一種は、流体管を巻き付けるか、または巻いて、様々な所望の温度または温度領域を提供するように構成された熱循環機の周囲に螺旋形に流体チャネルを形成することを含む。さらに、様々な温度領域を通して循環的に試料含有液滴の乳濁液を輸送するように構成された流体チャネルを提供するために、外側に巻かれた流体管に対する様々な代替を使用し得る。例えば、管の周囲に熱循環機(または熱循環機の内部セグメント)を配置するなどして、管を熱循環機の本体内部に配置してもよい。あるいは、流体密閉コーティング(シリコンコーティング等)を熱循環機の外溝またはチャネルに塗布し、次に、流体密閉シート(シリコンシート等)で包んで、いかなる別個の管も全く必要とせずに、熱循環機の周囲に循環して渡される一体化された流体チャネルを画定してもよい。
したがって、方法3100のステップ3102、3104、3106、3108において第1の温度、第2の温度、第3の温度、および/またはホットスタート温度を提供することは、略螺旋形の経路内で、熱循環機の編成温度領域、プライマ結合温度領域、ポリメラーゼ伸長温度領域、および/またはホットスタート温度領域を通して乳濁液を循環して輸送することを含み得る。これら様々な温度領域は、様々な方法で互いに断熱し得、各領域は、抵抗加熱要素、熱コアと温度領域との間で熱を伝達するように構成された熱電冷却器(TEC)の使用を通して、かつ/または任意の他の適した機構により、所望の温度を提供し得る。大域的(すなわち、2つ以上の温度領域と実質的に熱的接触する)または局所的(すなわち、1つのみの温度領域と実質的に熱的接触する)に、熱循環機に熱を提供し、かつ/または熱循環機から熱を奪うために、様々なヒートシンクおよび熱源を使用し得る。
以下の実施例において、試料/試薬混合物を周期的に加熱・冷却して、PCRを通してのDNA増幅を促進する特定の例示的な方法および装置、すなわち、例示的なPCR用途に適した熱循環機および熱循環方法を説明する。関連するさらなる開示が、相互参照において上に列挙され、参照により本明細書に援用される米国仮特許出願、特に発明者としてKevin Dean Ness、Donald A.Masquelier、Billy W.Colston,Jr.、およびBenjamin J.Hindsonの名前が挙げられている、「CONTINUOUS FLOW THERMOCYCLER」と題する2009年9月21日に出願された米国仮特許出願第61/277200号明細書に見られ得る。
[A.選択された実施形態1]
本項では、本開示の態様による第1の例示的な熱循環機3200を説明する:図73〜図80参照。
図73は、熱循環機3200の主要構成要素の分解組立等角投影図である。熱循環機は、中心長手軸を定義するコア3202と、3つの内部セグメント3204、3206、3208と、3つの外部セグメント3210、3212、3214とを含む。3対のセグメントは、図72に関連して上述したPCR熱循環の3つの部分に対応し、対応する温度領域を画定する。特に、それぞれ、セグメント3204および3210は溶解フェーズに対応し、セグメント3206および3212は結合フェーズに対応し、セグメント3208および3214は伸長(延長)フェーズに対応する。代替の実施形態では、熱循環機は、代替の数のセグメント、例えば、結合フェーズおよび伸長フェーズが組み合わせられた熱循環機内に2つのセグメントを含み得る。集合的に、特定の温度(または温度範囲)を維持することに関わる熱循環機の部分または領域は、特に「温度領域」または「温度制御ゾーン」と呼ぶことができる。
図74は、図73の熱循環機の中央部分の分解されていない等角投影図であり、コアと内部セグメントとの関係を強調している。コア3202は、熱源およびヒートシンクの両方として構成され、熱の供給を求められるのか、それとも熱の吸収が求められるのかに関わりなく、所望の一定温度に維持することができる。例えば、いくつかの実施形態では、コア3202を約70℃に維持し得る。しかし、より一般的に、コアは、2つ以上のセグメント間での熱源およびヒートシンクとして動作する実施形態では、最も温度の高いセグメントと最も温度の低いセグメントとの間(例えば、溶解セグメントの温度と結合セグメントの温度との間)の任意の適した温度に維持し得る。
内部セグメント3204、3206、3208はコアに取り付けられ、すべての内部セグメントがコアに取り付けられた場合、または組み付けられた場合におおよそ円柱形をなすように構成される。図73および図74に見られるように、内部セグメント3204、3206、3208は、外周面に外溝3216を備える。内部セグメントがコアに組み付けられた場合、これら溝は、内部セグメントにより形成される円柱面の円周に螺旋パターンを形成する。溝3216は、後述するように内部セグメントを連続して巻くことができる流体管を受けて、流体が流体管内部を移動して、組み付けられた内部セグメントにより形成された円周を螺旋状に移動させることができるように構成される。流体管は、試料含有液滴の乳濁液を熱循環システムの様々な温度領域に通して輸送する流体チャネルとして機能する。
外部セグメント3210、3212、3214は、図73に見られるように、内部セグメントの周囲にぴったりと合うように構成される。したがって、流体管を内部セグメントと外部セグメントとの間に巻き、セグメントにより安定し固定された環境的に制御された位置に保持し得る。
図75は、組み立てられた熱循環機のうちの部分を拡大した等角投影図である。この実施形態は、比較的小さな外径の流体管に特に適する。外部セグメント3210、3214の部分は、内部セグメント3204、3208、およびコア3202(図示せず)の周囲に配置される。流体管3218は溝3216内に配置されて見え、溝3216は、外部セグメントにより形成される開口部3220内部に部分的に見られる。追加の固定開口部3222が外部セグメントに設けられて、内部セグメントへの外部セグメントの取り付けに役立つ。進入領域3224を通して管を熱循環機3200の外部から内部に渡し得る。次に、管は、20回以上等の最小回数分、内部セグメントの周囲に螺旋状に巻かれ、その後、退出領域3226を通して管を熱循環機3200の内部から外部に渡し得る。退出領域3226は、管を、任意の所望の数の巻きを内部セグメントの周囲に形成した後に熱循環機3200から出せるように、比較的広い。
図76は、組み立てられた熱循環機の代替の実施形態のうちの部分を拡大した等角投影図である。この実施形態は、外部セグメントの形状のわずかな変更を示し、相対的に大きな外径の流体管に特に適する。特に、図76は、内部セグメント3204’、3208’、およびコア3202の周囲に配置された外部セグメント3210’、3214’を示す。溝3216’は、図75の溝3216よりも相対的に広く、外部セグメントにより形成される開口部3220’内で部分的に見られる。図76では、流体管を熱循環機3200の外部から内部に、および内部から外部に、単に開口部3220’の縁部を管に重ねることにより、任意の所望の溝位置で渡し得る。管進入位置と管退出位置との間で、管を内部セグメントの周囲に巻いて、内部セグメントの周囲に任意の所望の数の螺旋状の巻きを形成し得る。
図77は、外部セグメントが取り付けられていない状態の組み立てられた熱循環機の上面図である。この図は、コア3202と内部セグメント3204、3206、3208との間に配置された3つの熱電冷却器(TEC)3228、3230、3232を示す。これらのうちの1つであるTEC3228が図73に見られる。各TECは、ヒートポンプとして機能して、電圧がTECの両端に印加された場合、外面に所望の温度を維持するように構成される。TECは、特に比例積分微分(PID)コントローラ等の適したコントローラを使用して、安定状態温度に設定し得る。TECは、ペルチエ効果、ゼーベック効果、および/またはトムソン効果等の周知の熱電原理(例えば、電流が熱伝達と結合される)に従って動作する。TECは、例えば、TECを通る電流を反転させることにより、温度勾配に従うか、または温度勾配に逆らういずれかの方向に(すなわち、特定の熱循環要素にまたはその要素から)熱を伝達するように構成し得る。したがって、TECを使用して、加熱を意図される要素の加熱の加速もしくは強化、冷却を意図される要素の冷却の加速もしくは強化等を行い、各温度領域をおおよそ異なる所望の温度に維持し得る。適したTECとしては、RMT Ltd.(Moscow、Russia)から入手可能なTECが挙げられる。
そして、各TECは、図73および図77に見られるように、一対の熱伝導性を有し、機械的に順応性を有するパッド3234の間に挟み得る。パッド3234は、コア3202の外面および内部セグメント3204、3206、3208の内面の表面の凸凹による破損からTECを保護するように構成し得る。代替または追加として、パッド3234は、TECに対する潜在的に有害な剪断応力の可能性を最低限に抑えるように構成し得る。適したパッドとしては、Bergquist Company(Chanhassen、Minnesota)から入手可能なガラス繊維強化ギャップパッドが挙げられる。
図78は、コア3202、TEC3228、3230、3232、内部セグメント3208、3206、3204、および管3218の相対配置を示す概略断面図である。ここで、コア、TEC、および内部セグメントは集合的に、内部セグメントの外面3236、3238、3240のそれぞれを任意の所望の温度に維持して、組み立てられた内部セグメントの円柱周面に螺旋状に配置された管を通る流体内のPCR反応を促進するように構成される。図78は、図77に示される上面図を図77の線Cに沿って切断し、代表的な線形構成に「広げ」て示されたものとして考えることができる。図78は、連続して変形して、これら図を位相的に等しくする(同相にする)ことにより、図77から得られ、図78を単に、図77に示される構成要素の配置を視覚化する代替の方法として見ることができることを意味する。
TEC3228、3230、および3232は、図78に示されるように、PCRの異なる段階に対応する様々な温度に内部セグメントの外面3236、3238、3240のそれぞれを維持するように構成される。管3218が外面3236、3238、3240に熱的に接触するため、管3218内の任意の流体の温度もTECを介して制御し得る。特に、外面3236は、DNAを溶解(または変性)するのに適した温度Tmeltに維持され、外面3238は、1本鎖DNA鋳型にプライマを結合するのに適した温度Tannealに維持され、外面3240は、DNAポリメラーゼを使用して新しい相補的なDNA鎖を合成するのに適した温度Textendに維持される。
TEC3228、3230、3232は、電気信号に対して比較的高速に応答し、外面3236、3238、3240に望ましい温度を比較的正確に維持できるように独立して制御可能である。これは、外面の温度を監視し、リアルタイムのフィードバック信号をTECに提供する温度センサにより促進し得る。様々な温度の維持は、図77および図78の両方に見られる、内部セグメント間のギャップ3242、3244、および3246によっても促進される。この例では単に空気が充填されたこれらギャップは、隣接する内部セグメント間に絶縁を提供して、内部セグメントを互いに良好に断熱した状態に保つのに役立つ。他の実施形態では、ギャップは他の材料で充填し得る。
図79は、熱循環機の内部セグメントのうちの2つの間の界面に広がる、図75の溝3216および管3218の中央部を拡大した等角投影図である。図79に示される溝の特徴は、図76の溝3216’内にも存在する。特に、溝3216および3216’は、各内部セグメント3204、3206、3208の周面に配置された傾斜縁部輪郭3248を含む。縁部輪郭3248は、潜在的な位置合わせずれによる湾曲からの応力下にある管の破断点になる恐れがある先鋭な縁部を含まないため、内部セグメントのうちの2つの互いに対する位置合わせがわずかにずれている場合であっても、管で内部セグメントの周囲を包めるようにする。
この例での内部セグメントの構成により、図78が概略的に示すように、各内部セグメント3204、3206、3208がその他の内部セグメントから実質的に断熱されることが提供される。この例示的な構成では、セグメント間の熱伝導が比較的わずかであるため、これは、様々な温度領域の熱的接触がより大きなシステムよりも優れた利点を有する。なお存在する伝導の一原因は、ある内部セグメントから次の内部セグメントに渡る流体および流体管を介しての伝導であるが、後述するように、温度不均一性に対するこの伝導の影響は一般的に小さい。
図80は、この例により構成された2つの内部セグメントの界面付近の平均流体速度の関数としての実際に測定される温度と弧長との関係を示す。特に、温度不均一性に対する流体熱伝導の影響は一般に、流速が比較的高い場合であっても、内部セグメントの界面から千分の数ラジアン以内でごくわずかになる。システム内での循環回数は、ソフトウェア変更またはハードウェア変更(例えば、ポンプ設定、ドラム半径、各セグメントの弧長(所与のセグメントまたはゾーンでの時間長がそのセグメントの弧長に比例するため)、毛管内径等)のいずれかを通して流速を変更することにより動的に調整することができる。
図73および図77のそれぞれは、TEC3228、3230、3232の取り付けシステムの態様を示す。ここでは、上述したように、1つのTECが、コア3202と各内部セグメント3204、3206、3208との間に取り付けられる。各内部セグメントをコアに取り付ける際の位置正確性を得るために、位置特定ピン3250が、コアと内部セグメントの1つの両方に取り付けられて、各セグメントをコアに対して精密に位置合わせするように構成される。さらに、位置特定ピンの存在により、剪断力がTECに対して作用し、潜在的にTECを破損させる可能性が低減するはずである。位置特定ピンは、内部セグメントおよびコアの両方に配置される相補的なピン開口部3252内に嵌る。図73の例示的な実施形態では、単一の位置特定ピンがコアの一端部(図73の上端部)に位置決めされ、2つの位置特定ピンがコアの他端部(図73の下端部)に位置決めされる。
図73は、内部セグメントをコアに取り付けるように構成されたボルト3254およびワッシャ3256も示す。ボルトは一般に、TECがコアと内部セグメントとの間に残す熱伝導路がごくわずかになるように、低い熱伝導性を有するように選択される。例えば、ボルトは、耐熱性プラスチックまたは熱伝導性が比較的低い金属から構築して、望ましくない熱伝導を回避し得る。ワッシャは、各内部セグメントをコアに対して締め付ける既知の圧縮力を提供するように構成された、ベルビル型ワッシャ等の負荷補償ワッシャであり得る。このボルト/ワッシャの組み合わせは、時間の経過に伴う緩みに耐えると共に、ボルトおよびTECの両方に対して既知の応力を掛けることができ、熱循環機の長寿命化に繋がる。
[B.選択された実施形態2]
様々な変更および/または追加を本開示による図73〜図80の例示的な実施形態に対して行い得る。例えば、「ホットスタート」機構を追加して、高温PCR起動ステップを促進し得る。図81は、ギャップ3260により熱循環機の残りの部分から隔てられたホットスタート領域3258を含む例示的な熱循環機3200’の中央部(すなわち、他のセグメントは図示せず)を示す。ホットスタート領域は、内部セグメントと同じように流体管を受け入れるように構成されるが、ギャップ3260により内部セグメントから隔てられて、ホットスタート領域と熱循環機のその他の部分との間での不要な熱伝導を回避する。別個のコア部(図示せず)が、領域3258を、通常は95℃〜98℃の範囲である相対的に高い活性化温度まで加熱して、非特異性または早期のPCR増幅を低減するために使用された任意のポリメラーゼ阻害剤を解離するように構成し得る。
ホットスタート領域3258ならびにホットスタート領域3258に関連するギャップおよびコア部を別として、全体が3262で示される熱循環機3200’の残りの部分は、上述した熱循環機3200と同様の構造を有し得る。あるいは、熱電コントローラに代えて、熱循環機3200’は、熱循環機の様々な温度領域3263、3265、3267を加熱する複数の抵抗性セクションヒータ(図示せず)で囲まれた空気コアを含み得る。これら領域は、絶縁基部3273内に延びて、温度領域の互いに熱的分離に役立つ絶縁ギャップ3269、3271で隔て得る。絶縁ギャップを含む基部の構成は、異なる温度領域間の熱伝導性を調整するように変更することができる。
[C.選択された実施形態3]
本下位項では、本開示の態様による様々な代替の例示的な熱循環機3202a〜hを説明する:図82〜図89参照。
図82〜図89は、熱循環機の上面図を示す概略図である。これら図は、図78のように、三次元円柱形熱循環ユニットに対応し、三次元円柱形熱循環ユニットに位相的に等しい。各熱循環機は、PCRを受けている試料を搬送するために流体管3218a〜hと熱的に接触した3つの内部(例えば、溶解、結合、および伸長)セグメント3204a〜h、3206a〜h、3208a〜hを含む。そして、各セグメントは、熱をセグメントに伝える各(例えば、溶解、結合、および伸長)加熱要素3252a〜h、3254a〜h、3256a〜h(垂直な棒で示される)に熱的に接触し得る(または場合により接触しなくてもよい)。セグメントは、1つもしくは複数のTEC(断面線で示される)、1つもしくは複数の熱伝導層(点描で示される)、1つもしくは複数の断熱層(一点鎖線断面線で示される)、および/または1つもしくは複数の加熱もしくは非加熱コア(断面線もしくは点描のそれぞれで示される)とも直接または間接的に接触し得る。熱循環機のこれらおよび他の構成要素は、異なるセグメントひいては関連付けられた流体管およびPCR試料の絶対温度および相対温度を確立し、維持し、かつ/または変更するように選択し、最初にかつ/または動的に調整し得る。特に、構成要素は、他のコア構成要素(流体管およびそれに関連付けられた流体)を通しての伝導ならびに/あるいは環境との対流を介してセグメントに追加されるか、またはセグメントから除去される熱を考慮することにより、温度目標を達成するように選択し、かつ/または調整し得る。特に、TECが存在する場合、TECは、セグメントへまたはセグメントから熱を伝導して、関連付けられたセグメント温度ひいては関連付けられた反応温度に対するより高速かつ精密な制御を促進し得る。
図82は第1の代替の熱循環機3200aを示す。この実施形態では、溶解セグメント3204a、結合セグメント3206a、および伸長セグメント3208aは、各断熱層3264、3266、3268を介して共通の非加熱(例えば、プラスチックブロック)コア3260に熱的に接触される。断熱層(および本項の他の箇所において説明される断熱層)は独立して、同じまたは異なる材料から、同じまたは異なる寸法で、層が同じまたは異なる熱伝導性を有し得るように製造し得る。例えば、この実施形態では、溶解セグメントおよび伸長セグメントの断熱層は、同じで材料から同じ厚さで製造し得るが、その一方で、結合セグメントの断熱層は異なる材料から異なる厚さで製造し得る。PCRを行うための熱は、加熱要素3254a、3256a、3258aによりセグメントに供給される。この実施形態は、特に構成が単純であり、比較的少数の大半は受動的な構成要素を有する。しかし、本実施形態は、その他の特定の実施形態ほどの柔軟性および応答性を有さない。
図83は第2の代替の熱循環機3200bを示す。この実施形態では、溶解セグメント3204b、結合セグメント3206b、および伸長セグメント3208bは、共通の加熱(例えば、銅)コア3270に熱的に接触する。しかし、セグメントとコアとの間に各断熱層3274、3276、3278(各セグメントに1つずつ)、共通熱伝導体3280(3つすべての断熱層に接触する)、および共通のTEC3282(共通の熱伝導体および共通の加熱コアに接触する)が配置されて、直接的な接触が回避される。PCRを行うための熱は、加熱要素3254b、3256b、3258bならびに共通コアによりセグメントに供給される。TECを使用して、介在する断熱層および伝導層を横切って内部セグメントおよび加熱コアに、およびこれらから熱を伝導して、セグメントの温度を上下に調整し得る。
図84は第3の代替の熱循環機3200cを示す。この実施形態では、溶解セグメント3204cおよび伸長セグメント3208cは、各断熱層3294、3298を介して共通の非加熱コア3290に熱的に接触するが、結合セグメント3206cは、専用介在TEC3296を介して加熱コア3300に熱的に接触する。この構成は実質的に、結合セグメントを溶融および伸長の各セグメントから断熱し、加熱要素3256c、加熱コア3300、およびTECを介して結合セグメントの温度を相対的に高速に変更できるようにする。非加熱コア3284を通して熱的に接続された溶融および伸長の各セグメントの温度は、加熱要素3254c、3258c(加熱)および非加熱コアへの対流(除熱)を介して変更し得る。
図85は第4の代替の熱循環機3200dを示す。この実施形態では、熱循環機3200c(図84から)は、TEC3304を介在して共通の加熱コア3302にさらに結合され、TEC層を介して溶解および伸長の各セグメントの温度に対するフィードバックおよび制御を向上させ得る。
図86は第5の代替の熱循環機3200eを示す。この実施形態では、溶解セグメント3204e、結合セグメント3206e、および伸長セグメント3208eは、専用介在層3314、3318(溶融および伸長の各セグメントの場合)を介して、または専用TEC層3316(結合層の場合)を介して共通の加熱コア3310に熱的に接触する。この構成では、加熱要素3254e、3258eを介して溶解および伸長の各セグメントの温度に対する制御手段をなお提供しながら、加熱要素3256eおよびTECの組み合わせを介して結合セグメントの温度に対する相対的に高速のフィードバックおよび制御が可能である。
図87は第6の代替の熱循環機3200fを示す。図86の熱循環機3200eと同様であるこの実施形態では、共通の伝導層3320および共通のTEC3322が、セグメントを加熱コア3323の全体から隔てる。TECは、伝導層を通して結合セグメントに熱的に接触する一方で、TECは、溶解セグメントおよび伸長セグメントの両方から伝導層および専用断熱層3324、3328により隔てられる。
図88は第7の代替の熱循環機3200gを示す。この実施形態では、溶解セグメント3204g、結合セグメント3206g、および伸長セグメント3208gのそれぞれは、専用介在TEC3344、3346、3348を介して各加熱コア3334、3336、3338に熱的に接触する(合計で3つのセグメントに対して、3つの加熱コアおよび3つのTEC)。この実施形態は、各内部セグメントの温度に対する高速のフィードバックおよび別個の制御を提供する。特に、各セグメントは、2つの専用ソースから、または2つの専用シンクに熱を伝導できるように、専用加熱要素および専用加熱コアに独立して熱的に接触する。しかし、この実施形態はより複雑であり、各TECにコントローラを必要とする。
図89は第8の代替の熱循環機3200hを示す。この実施形態では、加熱コア3354の単一の部分が、TEC3358によりセグメントから隔てられて、熱循環機の1つの内部セグメント(例えば、伸長セグメント3208h)の内部に位置合わせされる。そして、伸長セグメントは、第2のTEC3364により内部セグメントから隔てられた非加熱伝導体3362を介して隣接する内部セグメント(例えば、結合セグメント3206h)に熱的に接触する。そして、結合セグメントは、第3のTEC3370により内部セグメントから隔てられた別の非加熱伝導体3368を介して隣接する内部セグメント(例えば、溶解セグメント3204h)と熱的に接触する。したがって、コア部分3354は、すべてのTECに対して熱源またはヒートシンクとして利用可能なままである。
[D.選択された実施形態4]
この実施例では、冷却機構および保護筐体等の他の構成要素も含む機器内部に配置された熱循環機を説明する:図90参照。
図90は、組立体の様々な段階での例示的な熱循環機器3400を全体的に示す。機器3400は、上述した熱循環機3200と略同様であるが、一般に、前の実施例において説明した任意の熱循環機の1つまたは複数の特徴を含む様々な形態をとり得る、全体が3402で示される熱循環機を含む。機器は、後述するように、前板、接続ポート、ヒートシンク、冷却ファン、および/または筐体等の追加の構成要素も含み得る。
前板3404が、前板の中央開口部3408および熱循環機の相補的な開口部を通る複数の固定具3406を使用して熱循環機に取り付けられる。前板は、熱循環機を外部空気流から分離し、したがって、ユニット内部の被制御温度ゾーンを維持するのに役立つ。
接続ポート3412が、前板に取り付けられ、電力を機器に供給し、機器により得られたセンサ情報を受信するように構成される。したがって、接続ポートは、機器外部から電力を受け取り、その電力を機器に送り、機器内部からセンサ信号を受信し、その信号を機器外部に送信するように構成される。電力およびセンサ信号の伝送は、機器の内外部に配置された適した接続線またはケーブル(図示せず)を通して達成し得る。
ヒートシンク3414および冷却ファン3416は、まとめて冷却機構3418と呼ばれ、熱循環機の前板とは逆側に取り付けられて示される。冷却機構3418のうちの一方または両方の構成要素は一般に、ボルト、ピン、および/またはネジ等の適した固定具を使用して熱循環機に取り付けられる。図90では、ヒートシンク3414は熱循環機に直接接続され、冷却ファン3416はヒートシンクに取り付けられる。ヒートシンク3414は中央開口部3420を含み、中央開口部3420は、中心長手軸(図73、図74、および図77参照)を定義する熱循環機コアの中央開口部と位置合わせされる。これら位置合わせされた開口部は、熱の熱循環機3402の中央(軸方向)部分からヒートシンク内への伝達を促進させる。ヒートシンクはまた、熱循環機からの過度の熱の伝導を促進するために、比較的熱伝導性を有する材料で形成し得、熱循環機からの熱の伝導を促進するために対流フィン3424を含む。
冷却ファン3416は、ヒートシンクのフィン3424および開口部3420を通して冷却空気を送風して、ヒートシンクから伝達される対流熱を増大させるように構成される。ファン3416からの空気は、ヒートシンクを通して熱循環機3402の中央開口部内にも流れ、または方向付けて、熱循環機内に対流を提供する。冷却ファンから熱循環機への空気の伝送を促進するために、バッフル、傾斜壁、または傾斜フィン(図示せず)等の専用の構造を設けてもよい。
熱循環機3402および冷却機構3418は、全体が3426で示される外部筐体内に取り付けられる。筐体3426は、熱循環機および冷却機構の様々な部分に適合するように構成されると共に、一緒に組み合わせられて、前板3404と整合して筐体3426を形成するようにさらに構成されるいくつかの離散部3428、3430、3432、3434を含み得る。筐体3426の様々な離散部および前板は集合的に、外部空気流および熱循環機内の温度変更の非制御に繋がる恐れがある他の要因から熱循環機を防護するように構成される。
[E.選択された実施形態5]
この実施例では、本開示の態様による、長さに沿ってサイズおよび/または数が変更される温度領域を有する例示的な熱循環機を説明する:図91および図92参照。
図91は、異なる温度領域をそれぞれ画定する3つの接続されたセグメント3452、3454、3456を有する、全体が3450で示された例示的な熱循環機の部分の側面図を示す。セグメント3452、3454、3456は、共通のコアを介して、またはセグメント間に配置される図示されていない材料(通常、断熱材料)を通して接続し得る。セグメント3452、3454、3456は、熱循環機3450の内部セグメントが集合的に、図91が示すような概して切頭円錐形をなすように、熱循環機の長さに沿って(すなわち、長手軸に沿って)傾斜する。したがって、熱循環機3450の外側を包む流体管3458の各巻きは、図91の上から下に漸次的に短くなり、管が辿る螺旋経路の長さは、連続した循環にわたって短くなる。流体が均一速度で管3458を通して流れると仮定すると、管内の流体がセグメント3452および3456により画定される温度領域内で過ごす時間は漸次的に短くなる。他方、セグメント3454は略一定の幅を有するため、ここでも流体が均一速度で流れると仮定すると、管3458内を流れる流体が、連続した循環毎に対応する温度領域内で過ごす時間量は略一定である。
図91に示される熱循環機は、例えば、熱循環機の動作を相対的に長い持続時間の循環で開始し、続けて循環の持続時間を低減させて、熱循環プロセス全体を加速させることが望ましい場合に有用であり得る。PCR等の用途では、連続した熱循環毎に、標的分子を複製する効率の重要性が徐々に低減するため、これが当てはまり得る。例えば、単一の標的分子が、最初の循環中に複製に失敗し、次に、続く19回の循環中に完全な効率で複製した場合、20回の循環後の結果は219個の標的分子になる。しかし、単一の標的分子が最初の19回の循環で完全な効率で複製したが、20回目の循環中に1個の分子が複製に失敗した場合、20回の循環後の結果は(220−1)固の標的分子になる。
切頭円錐形の他に、多くの他の熱循環機構成を使用して、熱循環機の様々な温度領域を通る試料流体の通過時間に影響を及ぼすことができる。例えば、様々な温度領域のサイズを、円柱形熱循環機の半径を離散段階で順次低減することにより、離散段階で低減し得る。一般に、流体管の連続した巻きが辿る路長を変更することになる任意の構成が、熱循環プロセス全体の課程にわたり所望の各温度で流体が過ごす時間を変更するために適し得る。
図92は、本開示の態様による、熱循環機の長さに沿って数が変化する温度領域を有する、全体が3500で示される例示的な熱循環機のうちの部分の側面図を示す。特に、熱循環機3500は、別個の温度領域を画定するようにそれぞれ構成される複数の内部セグメント3502、3504、3506、3508、3510を含む。これらセグメントは、任意の適した様式で共通のコア(図示せず)に取り付けてもよく、または一緒に接合してもよく、空気または他の任意の適した媒体、通常は断熱材料で隔て得る。セグメント間にギャップがある場合、そのギャップは、長手方向および接線方向の両方において所望の温度プロファイルを生成する任意の選択された幅を有し得る。図92に示すように、複数の内部セグメントは、長手軸に沿って異なる位置でコアに取り付けられた異なる数の内部セグメントを含む。
流体管3520を通って移動する流体は、セグメント3502により画定される単一のみの温度領域を有する熱循環機の第1の部分3512に直面する。続けて、流体は、セグメント3504、3506、および3508により画定される3つの温度領域を有する熱循環機の第2の部分3514に直面する。次に、流体は、セグメント3504、3508により画定される2つの温度領域を有する熱循環機の第3の部分3516に直面し、最後に、セクション3510により画定される単一の温度領域を有する熱循環機の第4の部分3518に直面する。
部分3512、3514、3516、および3518に対する代替または追加として、任意の所望の数の長手方向部分を熱循環機内に含めて、流体が熱循環プロセスを通して進む際に流体が直面する温度領域数を変更し得る。さらに、本質的に任意の数の温度領域に直面するように流体管の特定の巻きを構成し得るように、任意の所望の数の接線方向セグメントを各長手方向部分内に含め得る。熱循環機3500の特徴を図91に示される熱循環機3450の特徴と組み合わせることにより、略あらゆる時間的温度プロファイルを移動流体に提供するように熱循環機を構築することができ、それにより、開示される熱循環機は広範囲の用途に適する。
[F.選択された実施形態6]
この実施例では、本開示の態様による、熱循環機の様々な追加の態様および行い得る変形を説明する。
熱循環機について、熱循環機の加熱部の周面を略螺旋状に包む1本「鎖」の流体管を含むものとして主に上述したが、多くの変形が可能である。例えば、2重鎖以上の管を設けてもよく、様々なすべての鎖で熱循環機の部分を包んでもよい。場合によっては、鎖は、互いに繰り返し交差するように何らかの様式で編んでもよく、または熱循環機の加熱部分に、包む長さの略全長にわたって直接接触するようにすべての鎖を構成してもよい。さらに、熱循環機の周囲を包むのではなく、熱循環機の加熱部分を通過するように、1つまたは複数の管を構成し得る。例えば、加熱部分を管の周囲に鋳造、成形、または他の様式で形成し得る。場合によっては、管が必要ないように、流体密閉チャネルをこのようにして形成し得る。
場合によっては、動的に、または特定の流体が直面する循環回数に対するいくつかの異なる選択肢を提供することにより、熱循環機器により提供される熱循環の回数を変更することが望ましいであろう。熱循環回数の動的な変更は、例えば、熱循環機の周囲の流体管の巻きを解くか、または追加的に流体管を巻くことにより提供し得る。循環回数の選択肢は、例えば、機器の周囲に異なる回数で巻かれた複数の流体管を提供することにより、または特定の流体に対して循環を選択的に追加もしくは除去する各種選択肢の迂回機構(弁を有する迂回管等)を作成することにより提供し得る。
被加熱セグメントは一般に、断熱空気ギャップにより互いに隔てられて示されるが、本開示により、任意の所望の断熱材料を熱循環器の被加熱セグメント間に配置し得る。例えば、低密度ポリマーまたはシリカエーロゲルの使用により、断熱領域の熱伝導性の低減および対流による熱伝導の低減の両方により、隣接セグメントの断熱の増大を提供し得る。
開示される熱循環器は、PCR、他の任意の分子増幅プロセス、または試料が離散した液滴を含むか否かに関わりなく、流体試料の循環的な温度変更を含む実際にあらゆるプロセスに使用し得る。例えば、試料分子を適したビードまたはペレット等のキャリアに結合するなどにより、潜在的に標的を含む試料を液滴以外の離散単位に分離し得る。これら代替のキャリアを背景油中に配置し、乳濁液中の液滴と殆ど同じように熱循環し得る。あるいは、複数の熱循環器を同時に使用して、流体試料を多くの離散単位に分離せずに、異なるバルク流体試料を並行して、または重複した順序で循環し得る。
[G.選択された実施形態7]
この実施例では、限定せずに、一続きの番号が付された文章として提示される、本開示の態様による熱循環器の追加の態様を説明する。
1.試料含有流体を熱循環させて、標的分子増幅を促進する方法であって、(A)試料含有液滴の乳濁液を熱循環機器内に移送すること、(B)変性温度を乳濁液に提供すること、(C)プライマ結合温度を乳濁液に提供すること、および(D)ポリメラーゼ伸長温度を乳濁液に提供することを含み、変性温度を提供すること、プライマ結合温度を提供すること、およびポリメラーゼ伸長温度を提供することのそれぞれは、略螺旋形経路内で変性温度領域、プライマ結合温度領域、およびポリメラーゼ伸長温度領域を通して乳濁液を循環的に輸送することを含む、方法。
2.変性温度を乳濁液に提供する前に、略螺旋形経路内でホットスタート温度領域を通して乳濁液を輸送することにより、ホットスタート温度を乳濁液に提供することをさらに含む、段落1に記載の方法。
3.温度は、熱的コアと温度領域との間で熱を伝達するように構成された熱電冷却器を使用して提供される、段落1に記載の方法。
4.螺旋形経路の長さは連続した循環毎に低減する、段落1に記載の方法。
5.分子増幅を促進するように構成された熱循環システムであって、(A)中心長手軸を定義するコアと、(B)コアに取り付けられ、複数の温度領域を画定する複数の内部セグメントと、(C)各温度領域を異なる所望の温度におおよそ維持するように構成された複数の加熱要素と、(D)温度領域を通して試料含有液滴の乳濁液を循環的に輸送するように構成された流体チャネルとを備える、システム。
6.内部セグメントに取り付けられた複数の外部セグメントをさらに備え、流体チャネルは内部セグメントと外部セグメントとの間に配置される、段落5に記載のシステム。
7.流体チャネルは乳濁液を略螺旋形経路内で輸送するように構成される、段落5に記載のシステム。
8.流体チャネルは、内部セグメントの周囲を包む流体管を含む、段落5に記載のシステム。
9.流体管は、内部セグメントの周囲に略螺旋形経路を画定する内部セグメントの溝内に配置される、段落8に記載のシステム。
10.流体チャネルは内部セグメント内に配置される、段落5に記載のシステム。
11.内部セグメントは外溝を含み、流体チャネルは、溝および内部セグメントの周囲を包む流体密閉シートにより画定される、段落5に記載のシステム。
12.コアは熱源およびヒートシンクとして構成され、加熱要素は、内部セグメントのうちの1つとコアとの間に配置された少なくとも1つの熱電冷却器を含む、段落5に記載のシステム。
13.少なくとも1つの独立して制御可能な熱電冷却器が、各内部セグメントとコアとの間に配置される、段落12に記載のシステム。
14.コアは、所望の温度のうちの2つの間にある動作温度に維持される、段落12に記載のシステム。
15.少なくとも1つの熱電冷却器は、一対の熱伝導性および機械的順応性を有するパッドの間に配置される、段落12に記載のシステム。
16.コアは加熱されず、コアと各内部セグメントとの間に断熱層をさらに備える、段落5に記載のシステム。
17.コアは複数のコア部分を含み、各コア部分は独立して、内部セグメントのうちの1つに熱的に接触する、段落5に記載のシステム。
18.各内部セグメントの少なくとも部分は、内部セグメントが集合的におおよそ切頭円錐形をなすように、長手軸に沿って傾斜する、段落5に記載のシステム。
19.複数の内部セグメントは、長手軸に沿って異なる位置でコアに取り付けられた異なる数の内部セグメントを含む、段落5に記載のシステム。
20.分子増幅を促進するように構成された熱循環機器であって、(A)中心長手軸を定義する中央開口部を含むコアと、(B)コアに取り付けられ、複数の温度領域を画定するように構成された複数の内部セグメントと、(C)各温度領域を異なる所望の温度におおよそ維持するように構成された複数の加熱要素と、(D)温度領域を通して試料含有液滴の乳濁液を循環的に輸送するように構成された流体チャネルと、(E)コアの中央開口部と位置合わせされた中央開口部を含む熱伝導性ヒートシンクとを備える、機器。
21.ヒートシンクの中央開口部およびコアの中央開口部を通して空気を送風するように構成された冷却ファンをさらに備える、段落20に記載の機器。
22.液滴内で反応させる装置であって、(A)非混和性キャリア流体内に配置された液滴を生成する液滴生成器と、(B)それぞれ別個の温度に維持された少なくとも2つの温度制御ゾーンを備えたヒータ組立体と、(C)液滴を液滴生成器から受け取り、温度制御ゾーンを順に繰り返し横切るコイル状管と、(D)液滴が温度制御ゾーンにより循環的に加熱・冷却されるように、コイル状管を通して液滴を移動させるポンプとを備える、装置。
23.温度制御ゾーンのうちの少なくとも1つの別個の温度は、熱電冷却器により調整される、段落22に記載の装置。
24.熱電冷却器と通信し、熱電冷却器に供給される電力を能動的に調整して、様々な熱的負荷下で温度制御ゾーンのうちの少なくとも1つの設定点温度を維持するようにプログラムされたコントローラをさらに備える、段落22に記載の装置。
25.一対の温度制御ゾーンは熱電冷却器により互いに熱的に結合する、段落22に記載の装置。
26.熱電冷却器は一対の温度制御ゾーンの間に配置される、段落4に記載の装置。
27.ヒータ組立体は熱伝導性コアを含み、各温度制御ゾーンは、熱伝導性コアから少なくともおおよそ半径方向に配置される伝導セグメントを含む、段落22に記載の装置。
28.一対の温度制御ゾーンの各メンバの別個の温度は、各熱電冷却器により調整され、ヒータ組立体は、各熱電冷却器に接続され、一対の温度制御ゾーンの別個の温度の中間温度に維持される熱伝導性コアを含む、段落22に記載の装置。
29.管がヒータ組立体の周囲を複数回分の巻きで包む、段落22に記載の装置。
30.ヒータ組立体は、熱伝導性コアおよび熱伝導性コアに結合された加熱要素を含む、段落22に記載の装置。
31.ヒータ組立体は、3つ以上のそれぞれ別個の温度に維持された少なくとも3つの温度制御ゾーンを備え、コイル状管は複数の巻きを含み、各巻きは、少なくとも3つの温度制御ゾーンのそれぞれに熱的に結合する、段落22に記載の装置。
32.コイル状管の2つ以上の巻きは、各巻き上で同じ角度範囲位置において同じ温度制御ゾーンに熱的に結合する、段落31に記載の装置。
33.温度制御ゾーンを順次、繰り返して横切る1本または複数本の他の離散したコイル状管をさらに備える、段落22に記載の装置。
34.少なくとも1本の他のコイル状管はコイル状管に交えられる、段落33に記載の装置。
35.事前定義された温置温度に維持された少なくとも1つの熱制御温置領域をさらに備え、温置領域は温度制御ゾーンから上流に配置され、それにより、温度制御ゾーンにより循環的に加熱・冷却される前に、管を通って流れる液滴の温度を少なくとも実質的に温置温度まで到達させる、段落22に記載の装置。
36.温置領域への熱は、ヒータまたは熱電冷却器により供給される、段落35に記載の装置。
37.液滴内で反応性させる装置であって、(A)それぞれ別個の温度に維持される少なくとも2つの温度制御ゾーンを含み、温度制御ゾーンのうちの少なくとも1つの温度は熱電冷却器により調整される、ヒータ組立体と、(B)温度ゾーンを順次、繰り返して横切るコイル状管と、(C)流体が温度制御ゾーンにより循環的に加熱・冷却されるように、コイル状管を通して流体を流すポンプとを備える、装置。
38.一対の温度制御ゾーンは、熱電冷却器により互いに熱的に結合する、段落37に記載の装置。
39.熱電冷却器は一対の温度制御ゾーンの間に配置される、段落38に記載の装置。
40.ヒータ組立体は熱伝導性コアを含み、各温度制御ゾーンは、熱伝導性コアから少なくともおおよそ半径方向に配置される伝導セグメントを含む、段落37に記載の装置。
41.一対の温度制御ゾーンの各メンバの別個の温度は、各熱電冷却器により調整され、ヒータ組立体は、各熱電冷却器に接続され、一対の温度制御ゾーンの別個の温度の中間温度に維持される熱伝導性コアを含む、段落37に記載の装置。
42.管がヒータ組立体の周囲を複数回分の巻きで包む、段落37に記載の装置。
43.ヒータ組立体は、熱伝導性コアおよび熱伝導性コアに結合された加熱要素を含む、段落42に記載の装置。
44.ヒータ組立体は、3つ以上のそれぞれ別個の温度に維持された少なくとも3つの温度制御ゾーンを備え、コイル状管は複数の巻きを含み、各巻きは、少なくとも3つの温度制御ゾーンのそれぞれに熱的に結合する、段落37に記載の装置。
45.コイル状管の2つ以上の巻きは、各巻き上で同じ角度範囲位置において同じ温度制御ゾーンに熱的に結合する、段落44に記載の装置。
46.温度制御ゾーンを順次、繰り返して横切る1つまたは複数の他の離散したコイル状管をさらに備える、段落37に記載の装置。
47.事前定義された温置温度に維持された少なくとも1つの熱制御温置領域をさらに備え、温置領域は温度制御ゾーンから上流に配置され、それにより、温度制御ゾーンにより循環的に加熱・冷却される前に、管を通って流れる液滴の温度を少なくとも実質的に温置温度まで到達させる、段落37に記載の装置。
48.温置領域への熱は、ヒータまたは熱電冷却器により供給される、段落47に記載の装置。
49.核酸解析方法であって、(A)非混和性キャリア流体内に配置された液滴を生成することであって、各液滴は、核酸標的が液滴内に存在する場合、核酸標的を増幅可能な増幅な増幅反応内に配置される試料の分割物を含む、生成すること、(B)2つ以上の温度制御ゾーンを順次、繰り返して横切るコイル状管に液滴を通して、核酸標的の増幅を促進する条件下で液滴を熱的に循環させること、(C)液滴のうちの1つまたは複数から1つまたは複数の信号を検出すること、(D)信号に基づいて試料内の核酸標的の存在を特定することを含む、方法。
50.少なくとも1つの略螺旋形の巻きで複数の温度制御領域を横切るコイル状管を備える熱循環装置であって、各領域は少なくとも、第1の温度に維持された第1のゾーンおよび第2の温度に維持された第2のゾーンを含み、それにより、管を通って流れる非混和性キャリア流体内の1つまたは複数の液滴の温度を第1の温度と第2の温度との間で循環させる、装置。
51.複数の領域は2〜50の領域を含む、段落50に記載の装置。
52.温度制御ゾーンのうちの少なくとも1つの温度は、熱電コントローラにより調整される、段落50に記載の装置。
53.少なくとも2つの温度制御ゾーンは、熱電コントローラにより隔てられる、段落52に記載の装置。
54.第1の温度制御ゾーンの温度は、第1の熱電コントローラにより調整され、第2の温度制御ゾーンの温度は第2の熱電コントローラにより調整される、段落50に記載の装置。
55.第1および第2の熱電コントローラは、共通の伝導体に接続され、共通の伝導体は、第1および第2のゾーン温度の中間温度に維持される、段落53に記載の装置。
56.液滴は、水、塩、DNA、RNA、タンパク質、プリオン、蛍光染料、プローブ、プライマ、界面活性剤試料、およびヌクレオチドのうちの少なくとも1つを含む、段落50に記載の装置。
57.非混和性キャリア流体は、植物油、フルオロカーボン油、鉱物油、および界面活性剤のうちの少なくとも1つを含む、段落50に記載の装置。
58.コイル状管は複数のループを備え、第1および第2の温度制御ゾーンはロープのうちの少なくとも2つにわたって延び、それにより、管を通って流れる流体の温度を、各ループの同じ相対的角度位置で第1の循環温度と第2の循環温度との間で循環させる、段落50に記載の装置。
59.各巻きは複数の別個に制御される温度制御領域を備え、複数の領域のうちの任意のメンバの第1および第2のゾーンのうちの任意のゾーンの温度は、同じ温度に維持することができ、それにより、第1の温度に調整された巻きの角度部分および第2の温度に調整された巻きの角度部分を独立した所定の値に設定できるようにする、段落58に記載の装置。
60.コイル状管は、事前定義された温置温度に維持された少なくとも1つの熱制御温置領域をさらに備え、温置領域は温度制御領域から上流に配置され、それにより、循環領域に入る前に、管を通って流れる流体の温度を温置温度に到達させる、段落50に記載の装置。
61.温置領域への熱は、熱電コントローラまたは抵抗性ヒータにより供給される、段落60に記載の装置。
62.温度制御領域の温度を維持するための熱は、伝導、対流、放射、電気ヒータ、液体循環ヒータ、送風機、白熱光源、レーザ、LED、およびマイクロ波のうちの少なくとも1つにより提供される、段落50に記載の装置。
63.熱電コントローラは、以下の変更:管内への流体フローのオンオフ切り替え、管内の流体の流量の変化、管内で交互に流れる油および液滴パケット、管内での洗浄液のプラグの受け取り、管内の流体の濃度の変化、管内の流体の熱容量の変化、管内の流体の熱伝導性の変化、および管内の流体の熱拡散率の変化のうちの少なくとも1つを含む、移流熱流速の変更に起因して熱的負荷が変化する状況下で、略一定の温度を維持するように能動的に調整される、段落52に記載の装置。
64.連続フロー反応を行わせる装置であって、(A)流体流入のための第1の開放端部および流体流出のための第2の開放端部を有して、連続フローを可能にする少なくとも1つの毛管と、(B)少なくとも2つの中実加熱ブロックであって、少なくとも1つの加熱ブロックの温度は熱電コントローラにより制御される、少なくとも2つの中実加熱ブロックとを備える、装置。
65.少なくとも1つの加熱ブロックは抵抗ヒータにより制御される、段落64に記載の装置。
66.加熱ブロックは互いに直接接触する、段落64に記載の装置。
67.加熱ブロックは異なる温度に維持される、段落64に記載の装置。
68.装置は3つの加熱ブロックを備え、第1の加熱ブロックは85℃〜99℃の温度に維持され、第2の加熱ブロックは50℃〜65℃の温度に維持され、第3の加熱ブロックは60℃〜80℃の温度に維持される、段落64に記載の装置。
69.毛管は加熱ブロックの周囲に巻かれる、段落64に記載の装置。
70.毛管は加熱ブロックに順次繰り返して接触する、段落64に記載の装置。
71.毛管は各加熱ブロックに少なくとも20回接触する、段落64に記載の装置。
72.連続フロー反応を行わせる装置であって、(A)流体流入のための第1の開放端部および流体流出のための第2の開放端部を有して、連続フローを可能にする少なくとも1つの毛管と、(B)少なくとも2つの中実加熱ブロックであって、少なくとも1つの加熱ブロックは、抵抗により加熱され、毛管は加熱ブロックの周囲に巻かれる、装置。
73.高スループット核酸増幅を実行する装置であって、(A)試料流路を、非混和性流体を含む管に接続するオリフィスを備える微液滴生成器と、(B)流体流入のための第1の開放端部および流体流出のための第2の開放端部を有して、連続フローを可能にする少なくとも1つの毛管と、(C)複数の固定された加熱ブロックを有し、毛管が加熱ブロックの周囲に巻かれ、加熱ブロックに順次接触する、熱循環装置とを備える、装置。
[VI.検出]
この項では、例えば、試料含有液滴を検出する例示的な検出システムを説明する。システムは、液滴自体および/または液滴の内容物を感知または検出することを含み得る。液滴自体の検出は、1つの液滴(もしくは複数の液滴)の有無ならびに/あるいは特にサイズ(例えば、半径もしくは容量)、形状、種類、および/または凝集状態等の液滴の特徴を特定することを含み得る。液滴の内容物の検出は、内容物の性質(例えば、液滴が試料を含むか否か)ならびに/あるいは内容物の特徴(例えば、内容物がPCR等の反応を経たか否か、そのような任意の反応の程度等)を特定することを含み得る。
液滴および液滴の内容物の両方が検出された場合、液滴および液滴の内容物の検出は、任意の適した順序で独立して、または調整して実行し得る。例えば、検出は、逐次(一度に1滴ずつ)、並行して、バッチ等で実行し得る。
液滴および液滴の内容物の検出は、所望の情報をもたらすことが可能な、または所望の情報をもたらすために処理可能な任意の技法または機構を使用して実行し得る。これら機構は、特に、光学技法(例えば、吸収、伝送、反射、散乱、複屈折、二色性、蛍光、りん光等)、電気技法(例えば、静電容量)、および/または音響技法(例えば、超音波)を含み得る。そして、蛍光技法は特に、蛍光強度、蛍光偏光(または蛍光異方性)(FP)、蛍光相関分光法(FCS)、光退色後の蛍光回復(FRAP)、全反射蛍光(TIRF)、蛍光共鳴エネルギー移動(FRET)、蛍光寿命、および/または蛍光撮像を含み得る。
この項の残りの部分では、液滴センサおよび反応センサを含む例示的な検出システムを説明する。これら例示的なシステムでは、他の手法の中でも特に、液滴センサは、散乱光を生成し検出し得、反応センサは特に、蛍光を生成し検出し得る。便宜上、これらシステムをPCR反応の文脈の中で説明するが、技法はより一般的に、検出可能な信号を生成可能であるか、または生成するように変更可能な生化学反応等の任意の反応に適用される。
例示的なPCR分析(または他の核酸増幅分析)では、試料はまず、液滴内の試薬と組み合わせられ、次に、液滴を熱循環させ、PCRを誘導する。次に、液滴の蛍光性を測定し、1つまたは複数の標的ヌクレオチド配列を含む液滴がある場合には、その液滴を特定することが望ましい。これは一般に、液滴に、増幅されたPCR標的配列に関連付けられた1つまたは複数の蛍光プローブから、蛍光または蛍光特性の変化を誘導するように選択された波長の放射で照明することを含む。例えば、例示的な蛍光強度分析では、相対的に大きな強度の蛍光性が検出される場合、これは、標的ヌクレオチドのPCR増幅が液敵内で発生し、したがって、標的が試料のその部分に存在したことを示す。逆に、蛍光性が検出されない場合、または検出される蛍光性強度が相対的に小さい場合、これは、標的ヌクレオチドのPCR増幅が液滴内で発生せず、したがって、標的が試料のその部分に存在しない可能性が高いことを示す。他の蛍光に基づく実施形態では、反応の程度を、特に蛍光偏光、エネルギー移動、および/または寿命を含む1つまたは複数の他の蛍光パラメータの低減および/またはそのような蛍光パラメータの変化に代えて、蛍光強度の低減から特定することができる。
以下の実施例では、本発明の態様による例示的な特定の検出システムを説明する。追加の関連する開示を、相互参照の下に上述し、参照により本明細書に援用される米国仮特許出願、特に発明者としてDonald A.Masquelier、Kevin Dean Ness、Benjamin J.Hindson、およびBilly W.Colston, Jr.の名前が挙げられている、「DETECTION SYSTEMS FOR DROPLET−BASED ASSAYS」と題する2009年9月21日に出願された米国仮特許出願第61/277203号明細書に見出し得る。
[A.実施例1:検出システム1]
この実施例では、PCR増幅プロセスが完了した後、各試料/試薬液滴の終点蛍光信号の測定に基づく光学検出システムを説明する。この例示的なシステムは、定性的測定および定量的測定の両方の実行に適する:図93および図94参照。
図93は、全体が4200で示されるサイトメトリー型光学検出システムを示す。用語「サイトメトリー」は、検出システムが散乱放射および蛍光放射の両方を検出するように構成されることを指す。検出システム4200は、放射源4202、全体が4204で示される伝送光学系、前方散乱検出器4206、および蛍光検出器4208を含む。前方散乱検出器は、いくつかの実施形態では、特に、試料の側方または後方のそれぞれで検出される光を検出するように構成された側方散乱検出器および/または後方散乱検出器で置換または補強し得る。同様に、蛍光検出器は、いくつかの実施形態では、特に、励起光に非平行に(例えば、伝送光学系4204(そのような実施形態では、ダイクロイックまたはマルチダイクロイックビームスプリッタおよび適した励起・放射フィルタを含み得る)に向かって後方)発せられた蛍光を検出するように構成されたエピ蛍光検出器で置換または補強し得る。
試料含有液滴4210は、少なくともある程度のPCR熱循環をすでに受けており、全体が4214で示される交差領域で放射源4202からの放射経路と交わる毛管または他の同様の流体チャネル4212を通して移送される。収束レンズ等の光学要素4216を交差領域4214と前方散乱検出器4206との間に配置して、散乱放射を散乱検出器上に収束させ得る。同様に、光学要素4218を交差領域4214と蛍光検出器4208との間に配置して、蛍光放射を蛍光検出器上に収束させ得る。システムは、試料と検出器との間に動作可能に位置決めされ、検出器に届く直接(非散乱)励起放射(光)の量を低減する遮蔽バー4219を含み得る。遮蔽バーは、ここでは光学要素4216の前に小さな正方形の物体として示され、光学要素の背後に三角形の影4219aを生み出し得る。この装置は、検出器4206による通常の光線を散乱させた(小さな角度で)屈折率の変化の検出を容易にする。
ソース4202からの放射は、液滴に直面した際に部分的に散乱し、散乱放射を使用して、液滴の1つまたは複数の性質を特定し得る。例えば、交差領域4214における液滴の存在を示す散乱放射を散乱検出器4206により感知し、この情報を使用して、蛍光検出器4208をアクティブ化し得、蛍光検出器4208は、このようにしてアクティブ化されない場合(すなわち、液滴が交差領域に存在しない場合)には、システム内の電力を節約するために非アクティブ化のままである。蛍光検出器が常時アクティブなままである場合であっても、液滴の存在の検出は、他の目的のために有用であり得る。例えば、交差領域を通過するいくつかの液滴が蛍光検出器により検出されない場合があるため(例えば、液滴が反応生成物を含まない場合)、交差領域4214を通過する液滴の追跡が望ましい場合がある。さらに、液滴の追跡により、背景雑音(すなわち、液滴がない状態で検出器が受信する信号)を除去し、信号対雑音比を向上させることが可能であり得る。さらに、後述するように、検出された液滴の様々な性質を、前方または側方散乱検出器4206により感知されるデータから推定し得る。
散乱検出器4206により検出される放射を使用して、検出された液滴のサイズ(または他の性質)を推測し得る。特に、交差領域4214内の液滴の存在を表す散乱事象の持続時間の測定を、交差領域を通過する液滴の平均速度についての知識と組み合わせて使用して、ソース4202からの入射放射方向に垂直な平面における液滴の幅を特定することができる。幅がチャネル4214の直径未満の場合、液滴がチャネル4214の直径未満の直径を有するおおよそ球形であると推測することができ、液滴の容量を計算することができる。他方、液滴の幅がチャネル4214の直径を超える場合、これは、液滴がチャネルの壁に接触する可能性が高く、非球形であることを示す。しかし、それでもなお、チャネルを通過する円柱体または他の同様の形状として液滴をモデリングすることにより、液滴容量を推定し得る。後述するように、液滴容量の特定は、任意の対応する蛍光検出結果を正規化するために有用であり得る。
場合によっては、ソース4202からの放射は、液滴に直面しない場合であっても、例えば、流体界面または流体チャネル4212の壁等の部分的に反射する表面に直面したとき、交差領域4214から散乱し得る。この種の散乱放射は一般に、液滴から散乱する放射と異なる特性を有するため、一般に、単なる液滴散乱事象の背景として機能する。液滴がない状態で散乱が発生するか否かは、後述するように、システム4200の具体的な構成に依存する。同様に、所望のサイズ範囲外の液滴が交差領域を通過する場合も散乱が生じ得、そのような液滴から散乱した放射の特性を使用して、そのような液滴の後続処理に影響を及ぼし得る。例えば、異常に小さいか、または異常に大きな液滴から受け取る蛍光信号を統計サンプルから除去して、統計精度を増大させ得る。いずれの場合でも、交差領域4214を通過した後、放射源4202からの散乱放射および/または非散乱放射は、前方散乱検出器4206に向けられる。
交差領域4214内の液滴により吸収されたソース4202からの放射は、蛍光放射の放出を刺激し得、この放出を蛍光検出器4208により検出することができる。より詳細には、液滴に当たった放射は、プローブの蛍光部分が消光分子から分離した場合のみ有意に蛍光するように構成された、TAQMANプローブ等の蛍光プローブを励起し得る。この分離または分割は通常、ポリメラーゼにより、プローブが結合された配列が複製された場合のみ発生する。換言すれば、プローブは、標的ヌクレオチド配列がPCRを通して増幅した液滴のみ内で有意に蛍光する。したがって、放射源4202は一般に、試料内に存在することが分かっている1つまたは複数のプローブからの蛍光放出を刺激する波長の放射のみを発するように構成され、蛍光検出器4208は、そのように刺激される放射を検出するように構成される。
放射源4202は、1つもしくは複数の所望の波長または波長帯の放射を送るのに適した任意の形態をとり得る。例えば、放射源4202は、488ナノメートル(nm)の波長またはある他の所望の波長の略単色の光を発する、ダイオードレーザ等のレーザであり得る。放射源4202は、単一の波長または複数の異なる波長の光を発する複数の別個のレーザを含んでもよい。放射源4202のレーザのうちの1つまたは複数(またはすべて)は、1つまたは複数の所望の班長の放射の指向光線を発するように構成された発光ダイオード(LED)等の代替の光源で置換し得る。さらに他の実施形態では、例えば、ハロゲン灯からの白色照明を使用して、放射源を提供してもよい。
伝送光学系4204は、ソース4202からの放射の方向付け、収束、または他の様式での望ましい影響を及ぼすのに適した任意の光学構成要素を含み得る。例えば、図93に示されるように、伝送光学系は、別の光学構成要素または交差領域4214に向けてなど、所望の方向に入射放射を向けるようにそれぞれ構成された1つまたは複数のステアリングミラー4220を含み得る。図93にまた示されるように、伝送光学系は、ソース4202からの放射を交差領域4214上に収束させて、放射により生じる散乱および蛍光を最大にするように構成された収束レンズ4222を含み得る。伝送光学系は、伝送路および/またはソース4202から放射が交差領域4214に到達する前の放射の性質に影響を及ぼす、アパーチャストップ、フィルタ、発散レンズ、整形ミラー等の追加の構成要素をさらに含み得る。さらに、伝送光学系は、入射(励起)放射の性質を監視する機構をさらに含み得る(このおよび他の実施形態において)。例えば、伝送光学系は、入射放射の部分を、入射光の強度を監視するフォトダイオード等の検出器4226に反射する部分ミラー4224を含み得る。これにより、単に入射光の強度の変化を反映する変化について、検出された散乱および蛍光を補正することができる。
前方散乱検出器4206は、上述したように、交差領域4214を通過する液滴から散乱した放射を受け取り、検出するように構成される。検出器の所望のコストおよび/または感度に応じて、様々な種類の検出器が適し得る。感度が低減するおおよその順序では、適し得る例示的な種類の散乱検出器としては、フォトダイオード、アバランシェフォトダイオード、マルチピクセル光子カウンタ、および光電子増倍管が挙げられる。通常、散乱放射を散乱検出器4206に向けて再収束させるために使用される収束レンズである光学要素4216が存在することで、検出器に入射する散乱放射の単位面積当たりの強度を増大することにより、所与の用途に必要とされる前方散乱検出器の感度を低減し得る。
蛍光検出器4208は、液滴が交差領域4214を通過するとき、またはおおよそ通過するときに液滴が発する蛍光放射を受け取り、検出するように構成される。所望のコストおよび/または感度等の要因に応じて、フォトダイオード、アバランシェフォトダイオード、マルチピクセル光子カウンタ、および光電子増倍管を含め、様々な種類の蛍光検出器が適し得る。前方散乱器の場合と同様に、通常は収束レンズである光学要素4218を交差領域4214と蛍光検出器4208との間に利用することで、検出器に入射する散乱放射の単位面積当たりの強度を増大することにより、蛍光検出器に必要とされる感度を低減し得る。
図94は、蛍光検出器4208により行われた例示的な蛍光測定を示す。より詳細には、図94は、液滴からのPCR後の終点蛍光トレースを示し、各「ピーク」4230は、交点4214を通って流れる個々の液滴が発する、検出された蛍光の強度を表す。図94が示すように、結果として生成されるヒストグラムを使用して、陰性信号と陽性信号とを識別することができる。特に、点線4232で示されるように、図94に示された各信号をカットオフまたは閾値蛍光レベルと比較し得る。4234における例示的な信号について示されるように、閾値レベルを超える信号は、PCR増幅に関して、ひいては対応する液滴内の標的ヌクレオチド配列の存在に関して陽性として解釈される。他方、閾値レベル4232を下回る信号は陰性結果として解釈され、対応する液滴が標的を含まなかったことを示す。
陰性信号の一例が4236に示され、この場合、検出された蛍光が閾値量を下回るのは、液滴内の分割されない蛍光プローブの存在によるものである。上述したように、そのようなプローブの蛍光は一般に、結合ポリメラーゼによる分割がない場合であっても完全には消光されない。4230における陽性ピークと陽性ピーク4234との信号電圧ピーク高さに見られるような陽性信号の蛍光強度の差は、PCR前に液滴内に元々存在した開始核酸標的の量が異なること(例えば、1個の開始標的と2個の開始標的)を原因とすることができる。開始標的量の異なる量の比はポアッソン統計により支配し得る。
通常、実行毎に数百〜数百万個の液滴が解析される。いずれの場合でも、所望の数の信号が蛍光検出器4208により検出された後、すなわち、所望の数の液滴が交差領域4214を通過した後、陽性信号および陰性信号が計数され解析される。解析は通常、受信者動作特性曲線およびポアッソン統計を使用して実行されて、標的の存在および標的の濃度のそれぞれが特定される。ポアッソン統計を使用しての解析の実行は、すべての液滴を処理する前に標的濃度の推定を与えるためにも実行することができる(すなわち、合計液滴のサブセットが統計解析に使用される)。液滴の解析を項VIIにおいてさらに説明する。
[B.実施例2:光ファイバを使用する検出システム]
この実施例では、PCR後に試料/試薬液滴の終点蛍光信号を測定するように構成され、照明放射が試料含有液滴の経路と交わる交差領域へ、かつ/または交差領域から放射を伝送するために1つまたは複数の光ファイバを利用する蛍光検出器を説明する。この例示的なシステムは、定性的測定および定量的測定の両方の実行に適する:図95〜図99参照。
図95は、システム4200の伝送光学系4204が光ファイバ4254で置換されることを除き、図93に示されるシステム4200と同様である、全体が4250で示された光学検出システムを示す。光ファイバ4254は、ガラス、プラスチック、および/または1つもしくは複数の特定の所望の波長の放射を実質的に透過し、好ましくはわずかな強度損失で、もしくは強度損失なしでファイバの長さに沿ってその放射を伝送するように構成される他の任意の材料から構築し得る。
伝送光学系を光ファイバ4254で置換することにより、ミラーおよびレンズ等の光学要素を使用するシステムよりも、システム4254を比較的安価に、かつスペース節約的に構築することが可能であり得る。これは、その他の光学要素に関連付けられたコストおよびスペースがもはや必要ではないことに起因すると共に、光ファイバ4254が任意の所望のように形作ることが可能であり、大きな設計柔軟性が可能なことにも起因する。光ファイバ4254の他では、検出システム4250は、放射源4252、前方散乱検出器4256、および蛍光検出器4258を含み、これらはすべてシステム4200内のそれぞれの対応物と同様であり、再び詳述しない。
光ファイバ4254は、図95では、全体が4264で示される交差領域を通って流体チャネル4262内を移動する液滴4260から短距離のところで終端して示され、交差領域において、光ファイバの端部から発せられる放射が、流体チャネルを通って移動する液滴と交差する。例えば、光ファイバが交差領域に向けて放射をより精密に収束させるように構成され、かつ/または流体チャネル内に直接一体化される他の構成も可能である。これら可能性をより詳細に後述する:図98および図99ならびに付随する考察参照。
図96は、システム4200の光学要素4216および4218が図96のシステム4270内の光ファイバ4286および4288で置換されることを除き、図93に示されるシステム4200と同様である、全体が4270で示される光学検出システムを示す。図95に示され、上述された光ファイバ4254の場合と同様に、光ファイバ4286および4288のそれぞれは、ガラス、プラスチック、および/または1つもしくは複数の特定の所望の波長の放射を実質的に透過し、好ましくはわずかな強度損失で、もしくは強度損失なしでファイバの長さに沿ってその放射を伝送するように構成される他の任意の材料から構築し得る。
システム4270の場合、光ファイバ4286は、少なくとも、放射源4272により発せられる光の波長(一般に散乱中変更されない)に等しい波長を有する散乱放射を伝送するように構成され、光ファイバ4288は、少なくとも、ソース4272からの入射放射により励起する液滴4280内の任意の蛍光プローブが発する蛍光放射を伝送するように構成される。したがって、光ファイバ4286および4288は、場合によっては、異なる材料から構築し得る。光ファイバ4286および4288の使用により、システム4250での光ファイバ4254の使用と比較して、上述した理由と同じ理由により、コストおよびスペースの節約に繋がり得る。
光ファイバ4286および4288の使用の他は、システム4270はシステム4200と同様であり、放射源4272、伝送光学系4274、前方散乱検出器4276、および蛍光検出器4278を含み、これらは上述した対応物と同様であり、これ以上説明しない。ソース4272からの放射は伝送光学系4274を通り、交差領域4284において流体チャネル4282を通って移動する液滴4280に直面する。前方散乱放射のいくらかは、光ファイバ4286を通って前方散乱検出器4276に伝送される。同様に、液滴4280から発せられた蛍光放射のいくらかは、光ファイバ4288を通って蛍光検出器4278に伝送される。図95の光ファイバ4254の場合と同様に、光ファイバ4286および4288は、流体チャネル4282からある距離のところから開始して示されるが、上述したように、他の構成も可能であり、それら他の構成について図98および図99を参照して後述する。
図97は、光ファイバが入射放射および出射放射の両方の伝送に使用される、全体が4300で示される光学検出システムを示す。より詳細には、システム4300は、放射源4302、ソース4302から発せられた放射を伝送する光ファイバ4204、前方散乱検出器4306、および蛍光検出器4308を含む。PCR後の試料含有液滴4310は、流体チャネル4312を通して交差領域4314に移送される。光ファイバ4316は、散乱放射を交差領域4314から前方散乱検出器4306に伝送し、光ファイバ4318は、蛍光放射を交差領域4314から蛍光検出器4308に伝送する。
上述したように、光ファイバの使用により、様々なコストおよびスペースの節約に繋がり得る。これら節約は、システム4300内のすべての放射伝送に光ファイバを使用することにより、システム4250および4270と比較してさらに拡大し得る。放射の伝送に光ファイバを使用すること、および任意の関連付けられた効率の他、システム4300は構成要素および動作の両方の点で上述したシステムと同様であるため、これ以上説明しない。
図98は、放射源(図示せず)からの入射放射が光ファイバ4322を通して伝送されて、液滴流入流体チャネル4326を通って移動する試料含有液滴4324と交差する、全体が4320で示される交差領域の拡大図を示す。交差領域4320は、光ファイバ4322が、流体チャネル4326に流体接続された放射入射流体チャネル4328内に一体化されるという点で、上述した交差領域と異なる。したがって、放射は光ファイバ4322から、接続された流体チャネル内の流体に直接発せられ、空気と流体チャネル材料(通常、何らかの形態のガラス)との界面または流体チャネル材料とチャネル内の流体との間の界面のいずれも交差せずに液滴4324に直面する。
このようにして交差領域を構成し、異なる屈折率を有する媒質の2つの界面を回避することにより、入射放射の望ましくない反射を低減させ、液滴4324に達する放射の強度を増大させ得る。さらに、接続された流体チャネル内に光ファイバ4322を埋め込むことにより、光ファイバを流体チャネル4326から短距離のところに、かつ流体チャネル4326に対して所望の向きでより都合よく安定して配置することが可能になり、ここでも、潜在的に液滴に達する放射の強度の増大に繋がり得る。光ファイバ4322をチャネル4328内の所定位置に固定するために、流体継手4330をチャネル4328の端部に配置し得、流体継手4330は、光ファイバ4322が継手の開口部を流体密閉して通過するように構成し得る。
図98に示される種類の交差領域は、様々な形態をとり得る。例えば、図98に示されるように、光ファイバ4322は、流体チャネル4328の内径よりもわずかに小さな外径を有し得る。あるいは、光ファイバ4322は、流体チャネル4328の内径におおよそ等しい外径を有し得、これにより、光ファイバを流体チャネル内にさらにしっかりと配置し得る。さらに、図98は、チャネル4326に流体接続された流体チャネル4334内に配置された出射光ファイバ4332を示す。光ファイバ4332は、流体継手4336によりチャネル4334内に固定され、散乱放射を前方散乱検出器(図示せず)に伝送するように構成される。いくつかの実施形態では、入射光ファイバ4322および出射光ファイバ4332のうちの一方は使用されるが、他方は使用されない。さらに、蛍光検出器(図示せず)に繋がる出射光ファイバ等の1つまたは複数の追加の光ファイバが、交差領域4320内に流体結合され得る。
図99Aは、流体チャネル4344を通って流れる試料含有液滴4342と放射源(図示せず)から発せられた励起放射4346との間の、全体が4340で示される別の交差領域を示す。励起放射4346は、長軸が流体チャネル4344に対して平行する向きの光ファイバ4348を通って交差領域4340に伝送される。図99Aに示されるように、光ファイバ4348は、流体チャネル4344の近傍領域内で先細りするか、または他の様式でテーパ形になり、励起放射4346をチャネル4344内、そして液滴4342に向けて収束させ得る(光ファイバ内の内部反射を通して)。これにより、光ファイバ4348が複数の液滴に対して共線的に配置されるにも拘わらず、励起放射を主に単一の液滴4342’に向けることが可能になり得る。
流体チャネル4344は、液滴が光ファイバ4348により伝送される刺激放射に直面する交差領域4340に液滴を輸送するように構成され、液滴4342が交差領域4340の中央部を通過した後、2つ(または3つ以上)の流出流体チャネル4350および4352に分かれて示される。これにより、流体チャネル4344および光ファイバ4348の共線的配置がなお可能でありながら、試料含有液滴はPCRシステムを通って移動し続けることができる。図99Aが示すように、流出流体チャネルおよび光ファイバには、光ファイバが流出チャネル4350と4352との間にぴったりと嵌るように、相補的な形状を与え得る。これは、光ファイバと流体チャネル4344との比較的安定した共線的構成に繋がり得る(ファイバとチャネルとの自己整合に役立つ)。
図99Aに示される交差領域は、光ファイバ4348が励起放射4346を伝送すると共に、液滴により発せられる蛍光放射4354も伝送するように構成される。次に、蛍光放射は光ファイバを再び通って蛍光検出器(図示せず)に向けて伝送され、蛍光検出器は放射源と一体化して単一の構成要素にしてもよい。光ファイバ4348の近位端部の形状により、刺激された液滴4342’から発せられた蛍光放射は、光ファイバの正面および光ファイバの片側に沿った後続位置の両方から光ファイバ4348に入り得る。これは、蛍光検出の積分時間を効率的に長化させ、所与の検出器感度での検出がより良好になる。
図99Bは、図99Aの交差領域430といくつかの点で同様である、全体が4360で示される別の交差領域を示す。特に、図99Bの光ファイバ4368は、励起放射4366を放射源(図示せず)から、流体チャネル4364内を移動する試料含有液滴4362に向けて伝送し、蛍光放射4374を励起した液滴4362’から再び光ファイバを通って蛍光検出器(図示せず)に向けて伝送するように構成される。しかし、交差領域4340と異なり、交差領域4360の流体チャネル4364は、交差領域4360の中央部分の「くの字に曲がった」領域または横向き領域4380を除き、光ファイバ4368の長軸に略垂直な向きである。
交差領域4360の横向き領域4380は、液滴を、液滴が光ファイバ4368により伝送される刺激放射に直面する交差領域4360に輸送するように構成され、1度の1個の液滴等の少数のみの液滴を、光ファイバ4368の長軸に平行して移動させるように構成される。この構成により、1度に1個のみの液滴(または少数の液滴)が入射放射により刺激され、刺激された液滴のみが、実質的な蛍光放射を検出のために光ファイバ4368に再び発するため、蛍光放射の検出が相対的により正確になり得る。
図99Bの光ファイバ4368は、流体で部分的または完全に囲んでよく、この周囲流体は流体チャネル4364に連通し得る。しかし、図99Aの流体チャネル4350および4352と異なり、光ファイバ4368を囲む流体領域4370および4372は、場合によっては単一の連続流体領域を構成し得、小さすぎて、いかなる試料含有液滴も通過させない。むしろ、これら周囲流体領域は主に、光ファイバと液滴との不必要な接触をなくし、上述したように入射放射の強度を増大させるように構成される。
[C.実施例3:複数の放射チャネルを有する検出システム]
場合によっては、本開示による検出システムは、PCR熱循環を受けた試料含有液滴を照明する複数の別個の入射放射チャネルを含み得る。この実施例では、2つのそのようなシステムおよびそれぞれの潜在的な用途のうちのいくつかを説明する:図100および図101参照。
図100は、全体が4400で示される複数チャネルサイトメトリ型光学検出システムを示す。検出システム4400は、1つまたは複数の所望の波長の放射を発するように構成された放射源4402を含む。上述したように、本開示による放射源は、LED源またはレーザ源等の様々な種類のものであり得、実質的に単一の波長で、複数の実質的に離散した波長で、または1つもしくは複数の範囲の波長の放射を発し得る。
ソース4402からの放射は、ソースから、全体が4404で示される伝送光学系に向けて伝わる。伝送光学系4404は、ソース4402により発せられた放射を所望の方向に再び方向付けるように構成された、ミラー4406等の1つまたは複数の光学要素を含み得る。伝送光学系4404は、ソース4402により発せられた放射をいくつかの異なる部分に分離するように構成された、反射要素4408、4410、4412等の1つまたは複数の光学要素も含み得、いくつかの異なる部分のそれぞれは、図100に示されるような特定の様式でそれぞれ再び方向付け得る。あるいは、放射源4402を省き、反射要素4408、4410、4412のそれぞれを別個の放射源で置換し得る。場合によっては、複数の放射源をこのようにして提供することは、単一のソースからの放射を分離するよりも単純であり得る。
場合によっては、反射要素4408、4410、4412は、入射放射を異なるように伝送し反射するように構成し得る。例えば、反射要素4408は、入射した放射のおおよそ1/3を反射し、入射した放射のおおよそ2/3を透過するように構成し得、反射要素4410は、入射した反射のおおよそ1/2を反射し、入射した放射のおおよそ1/2を透過するように構成し得、反射要素4412は、入射した放射の略すべてを反射するように構成し得る。このようにして、放射源4402により発せられた放射は、おおよそ等しい強度の3つの部分に分割し得る。
ソース4402により発せられた放射を3以外のいくつかのチャネルに分離することが望ましい場合、複数の反射面を適宜構成し得る。特に、n個のチャネルが望まれる場合、n個の反射要素を使用し得、第1の反射要素は、入射した放射の分数分1/nを反射し、分数分(n−1)/nを透過するように構成され、第2の反射要素は、入射した放射の分数分1/(n−1)を反射し、分数分(n−2)/(n−1)を透過するように構成され、第3の反射要素は、入射した放射の分数分1/(n−2)を反射し、分数分(n−3)/(n−2)を透過するように構成され、一続きのうちの最後の反射要素が、入射した放射のすべてを反射し、透過しない純粋なミラーになるまで以下同様である。これにより、n個の反射要素のそれぞれは、放射源により発せられる放射のうちの等しい分数分1/nを反射することになる。
ソースからの放射をおおよそ等しい強度のいくつかの部分または異なる強度のいくつかの部分に分離するように構成された装置が、例えば、入射放射の同じ波長により励起するが、異なる波長では蛍光するように構成された蛍光プローブにそれぞれ結合された様々な標的を探すことが望ましい場合に有用であり得る。例えば、反射面4408、4410、4412は、単一のより大きな交差領域の異なる隣接部分として見ることができる放射を交差領域4414、4416、および4418のそれぞれに向けて反射するように構成し得る。同様に、反射面に代えて複数の放射源が使用される場合、各放射源は、蛍光刺激放射を交差領域の異なる隣接部分に伝送するように構成し得る。
交差領域において、到来した放射は、試料含有液滴4422が移動している流体チャネル4420(毛管等)と交差する。したがって、各液滴を複数回、照明し、それに従って各液滴を刺激し、照明された液滴がいくつかの所望の任意の標的核酸配列を含む場合、各液滴は複数回、蛍光放射を発し得る。しかし、液滴は、含む標的(ひいてはどの蛍光プローブが、標的の複製により、関連付けられた消光分子から切断されたか)に応じて、異なる波長の刺激放射を発し得る。
様々な標的に対応する、刺激された蛍光放射を検出するために、複数の蛍光検出器4424、4426、4428を使用し得、各検出器は、交差領域4414、4416、4418のうちの異なる1つ(または領域4414、4416、4418を含むより大きな交差領域の異なる部分)において生成された蛍光放射を受けるように位置決めされ向けられる。さらに、各蛍光検出器は、様々な標的分子または標的核酸配列のうちの1つまたは複数(であるが、すべてではない)に対応する異なる波長の蛍光を検出するように構成し得る。したがって、所与の照明された液滴は、検出器4424、4426、4428のうちの1つのみにより検出され、標的配列の1つのみ(またはサブセット)の「陽性」検出に繋がる刺激された蛍光を発し得る。このようにして、システム4400を使用して、複数の標的を同時に探し得る。
システム4400のように入射放射を分離させることは、ソースの非分離光線に液滴を通すためにかかる時間を超える時間にわたって試料含有液滴を照明することが望ましい場合にも有用であり得る。例えば、上述したように、システム4400は、流体チャネル4420を通過中の液滴4422が、様々な分離光線に対応するいくつかの交差領域4414、4416、4418においてソース4402からの放射と交差するように構成し得る。これら交差領域が相対的に互いの近傍に配置される場合、各液滴は本質的に、すべての交差領域4414、4416、4418にわたるエリアで連続して照明し得る。結果として積分時間(すなわち、照明放射に対する液滴の露出時間)が相対的に長くなることにより、各標的含有液滴からの蛍光を大きくし、ひいては検出システムの精度を高くし得る。同様の結果を得る別の方法を図101に示し、詳細に後述する。
なお図100を考慮すると、検出システム4400を使用して、異なる入射波長の励起放射に応答する様々なプローブが試料に結合された場合、複数の異なる核酸標的を探すこともできる。例えば、放射源4402は、複数の放射エミッタまたは所望のすべての波長の放射を生成するように構成された単一のエミッタを使用することにより、複数の離散した波長または波長範囲の放射を発するように構成し得る。この場合、各反射面4408および4410(および恐らく4412)は、ダイクロイックであり得、特定の波長(または特定の波長範囲内)の略すべての放射を反射し、残りの入射放射を透過するように構成し得る。あるいは、上述したように、複数の放射源を設け、異なる波長の蛍光刺激放射を伝送するように構成し得る。
ダイクロイック反射面が設けられる場合、反射面4408は、特定の波長または波長範囲を交差領域4414に向けて反射するように構成し、反射面4410は、別の特定の波長または波長範囲を交差領域4416に向けて反射するように構成し、反射面4412は、さらに別の特定の波長または波長範囲を交差領域4418に向けて反射するように構成し得る。あるいは、反射面4412は、すべての放射を領域4418に向けて反射するように構成し得、その理由は、この放射が、表面4408および4410によりまだ反射さされていない任意の所望の放射を含むためである。したがって、異なる波長の入射放射が各交差領域4414、4416、4418に到来し、到来した特定の波長に対する感受性を有するプローブが、関連付けられた消光分子のポリメラーゼ切断により活性化した場合のみ、すなわち、特定の標的が存在する場合のみ、刺激された蛍光放射が発生する。検出器4424、4426、4428を使用して、上述したように、様々な交差領域内の液滴の活性化を監視し得る。
図101は、全体が4450で示される別の複数チャネルサイトメトリ型光学検出システムを示す。システム4450は一般に、システム4400と同様であり、放射源4452および全体が4454で示される伝送光学系を含む。システム4450の場合、伝送光学系は、ソース4452により発せられた放射を所望のように再び方向付けるように構成された第1および第2のミラー4456、4458を含み得る。伝送光学系4454は、上述したように、ソース4452からの放射を収束させる1つまたは複数の他の光学要素(図示せず)も含み得る。
図101に示されるように、ミラー4458は、異なる角度範囲の放射を反射して、試料含有液滴4462が移送中の流体チャネル4460に沿った異なる位置範囲に向けて反射するように構成されるように調整可能であり得る。そうして反射された放射は、ミラー4458が一方向に固定された場合よりもはるかに広い、全体が4464で示された交差領域を画定する。ミラー4458が相対的に高速に調整される場合、この構成は、ソース4452からの放射で1度に2個以上の液滴を照明させることもでき、または1個の液滴を流体チャネル4460内の様々な位置で蛍光させることもできる。この場合、様々な標的プローブに対応する特定の波長の放射を受け入れるように、複数の検出器4466、4468、4470を向け得る。
あるいは、ミラー4458の調整速度が、流体チャネル4460内を移動している試料含有液滴の既知のおおよその速度に対応するように選択される場合、ミラーは、チャネルを通る液滴を「追跡」することにより、各液滴の照明時間を効率的に増大させ得る。この場合、照明中に液滴が移動する経路全体に広がる視野を有する単一のみの蛍光検出器を使用することが適切であり得る。
[D.実施例4:液滴の分離]
この実施例では、蛍光検出システムを通過する際に試料含有液滴の所望の分離を達成する流体収束機構を説明する:図102〜図104参照。上の考察が示すように、検出領域内の液滴を、ある既知の平均距離だけ、または少なくともあるおおよその最小距離だけ分離することが望ましい場合がある。例えば、適切な離間は、放射のビーム分離を可能にし、かつ/または検出器を最も適切に配置可能にし得ると共に、調整可能なミラーが使用される場合、調整可能なミラーの調整範囲の適宜選択を可能にし得る。
さらに、適切な離間は、検出システムにおいて偽陽性および他のエラーに繋がる恐れがある2つ以上の液滴からの放射の非意図的な同時検出の回避に役立つことができる。例えば、上述したように、液滴内の切断されていないプローブはなお、核酸標的が液滴内に存在しない場合であってもいくらかの量の蛍光を発する。したがって、いずれも標的を含まない2つ以上の液滴から発せられる蛍光の強度は、それら複数の液滴からの蛍光が単一の液滴からのものであると誤って考えられた場合、陽性検出結果をもたらすのに十分であり得る。液滴の間隔が近すぎる場合、液滴容量および標的濃度を特定する際のエラー等の他のエラーも生じる恐れがある。
図102は、試料含有液滴を互いにある所望量の距離だけ分離するように構成された、全体が4480で示された流体収束機構を示す。この機構は、例えば、液滴を図93の交差領域4214、図95の交差領域4264、または上述した任意のその他の交差領域等の交差領域に向けて移送する前に、液滴を分離するために使用し得る。収束機構4480は液滴流入チャネル4482を含み、液滴流入チャネル4482は、間隔が狭い試料含有液滴4484を含む。矢印4486で示される収束流体が、全体が4492で示される収束領域において液滴流入チャネルからの液滴に直面するように、収束流体流入チャネル4488、4490を通って移送される。
収束領域4492に入る液滴は、流体が収束領域を出ることができる唯一のチャネルである液滴退出チャネル4494内に流れる。退出チャネル4494は、液滴流入チャネル4482のうちのいくつかまたはすべての内径よりも小さな内径4496を有する領域を有し、流体流入チャネル4488、4490を収束させるように構成し得るが、場合によっては、これが当てはまらなくてもよい。流体は、収束流体流入チャネル4488および4490から、ならびに液滴流入チャネル4482から収束領域4492に流入し、かつ/または退出チャネル4494がその他のチャネルよりも小さな断面積を有するため、流体は、その他のチャネルよりも高速で退出チャネルを通って流れる。
流体が退出チャネルに近づくにつれて流速が増大するため、液滴は退出チャネルに入る際に加速し、図102が示すように、互いに分離される。チャネルの内径および収束流体流入速度を適宜選択することにより、本質的にあらゆる所望の平均液滴間隔を達成することができる。退出チャネル4494内には、全体が4498で示される照明ゾーンがあり得る。照明ゾーンは、液滴を放射源4500からの放射で照明することに資する、透明性の増大および/またはより薄いチャネル壁等の特徴を有し得る。前方散乱検出器4502および蛍光検出器4504は、上述したように、散乱放射および蛍光放射を検出するように適宜位置決めし得る。
図103は、全体が4510で示される別の流体収束機構を示す。図102の流体収束機構4480の場合と同様に、流体収束機構4510は、間隔が狭い試料含有液滴の間隔をある所望の最小平均値まで増大させるように構成される。流体収束機構4510は液滴流入チャネル4512を含み、液滴流入チャネル4512は本体部4514およびネック部4516を有する。本体部4514は、図103が示すように、相対的に多数の間隔の狭い試料含有液滴4515を含むように構成し得、または場合によっては、連続して流れる液滴フローを含み得る。いずれの場合でも、ネック部4516の直径は、通常、一度に1つの液滴しかネック部を通過できないように、予想される平均液滴直径に略一致するか、またはごくわずか大きいように選択し得る。
機構4510は外側流体チャネル4518も含み、外側流体チャネル4518は、少なくとも、ネック部4516を含む液滴流入チャネル4512の部分を囲む。液滴流入チャネル4512と併せて、外側流体チャネル4518は、液滴流入チャネルと外側流体チャネルとの間に収束流体流入チャネル4520を画定する。通常、液滴流入チャネル4512および外側流体チャネル4518は円筒形であり、それにより、収束流体流入チャネル4520は同心円筒シェルの形態をとる。全体が矢印4522で示される収束流体は、所望の速度で収束流体流入チャネル4520を通過し得る。したがって、各液滴4515は、ネック部4516を出る際、収束流体の流れによりネック部から離れて加速する。システムの幾何学的形状および収束流体の速度を入念に選択することにより、ネック部を出る隣接する液滴に対して任意の所望の間隔を得ることができる。放射源4524、前方散乱検出器4526、および蛍光検出器4528を設けて、上述したように、液滴を照明し、追跡し、解析し得る。
図104は、流体チャネル直径を適宜選択することが、液滴の適切な離間にどのように役立ち得るかを示す流体管4540の部分である。このポイントについては、流体収束機構4510のネック部4516の説明において上述した。この説明は、液滴流入チャネルのネック部のみならず、より一般的に、液滴を検出システム内に通す本開示による任意の流体チャネルにも当てはまる。例えば、同じ考察が、図93の流体チャネル4512、図95の流体チャネル4262等にも当てはまる。
図104が示すように、流体管4540は、予想される平均液滴直径に相関付けられた内径を有するように選択し得る。したがって、平均直径よりもわずかに小さな直径を有する液滴4542が、管内のさらなる液滴の近傍にある可能性は相対的に低い。同様に、予想される平均直径を有する液滴4544は、管4540内で自在に移動可能であり、球形を維持する。最後に、予想される平均直径よりもわずかに大きな直径を有する液滴4546は、部分的に円柱形をとり、それに従って容量を推定し得る。したがって、流体管のサイズを適宜選択することは、液滴の適切な分離に役立ち得る。
[E.実施例5:バッチ蛍光検出]
場合によっては、1度に1つずつではなく相対的に大きなバッチで試料含有液滴を照明し、かつ/または試料含有液滴から蛍光を検出することが望ましい。この実施例では、チャンバに移送された複数の液滴から発せられる蛍光をバッチ検出で検出するシステムを説明する:図105参照。
図105は、全体が4560で示されたバッチ光学検出システムを概略的に示す。試料含有液滴が、励起放射が移動流体の経路と交わる交差領域を通って連続して流れる上述した連続フロー検出システムとは対照的に、システム4560は、検出領域に集められた複数の液滴からの放射を、場合によってはシステムを通る流れを一時的に止めて、検出するように構成される。これにより、多くの液滴の蛍光レベルを1回の検出動作で検出することができ、用途によっては有利であり得る。
上述した検出システムと同様に、バッチ検出システム4560は液滴流入チャネル4562を含み、液滴流入チャネル4562内に、試料含有液滴4564を乳濁液で(油中水形乳濁液等)流入させ得る。システム4560は、2つの蛍光検出チャンバ4568、4570のいずれかに液滴を選択的に向けるように構成された、全体が4566で示される弁機構も含む。例えば、弁機構4566は、液滴流入チャネル4562と検出チャンバ4568との間に配置された第1の弁4572と、液滴流入チャネル4562と検出チャンバ4570との間に配置された第2の弁4574とを含み得る。したがって、弁4572および4574を適宜開閉することにより、液滴をチャンバ4568、4570内に選択的に移送し得る。これにより、乳濁液の略連続したフローを液滴流入流体チャネルから蛍光検出チャンバに移送できるようにし得る。
チャンバ4568、4570は、1つのみの液滴が検出器の見通し線の各部分内に配置され、検出器の焦点面に制限されるように、相対的に浅い深さを有して、各チャンバ内に実質的に単分子層のみを許すように構成し得る。あるいは、共焦点撮像またはでコンボリューションを使用する広視野撮像等の様々な三次元検出構成を、非単分子層試料と併せて使用し得る。
放射源4575は、チャンバ4568、4570内の液滴を照明するように構成され、所望の数の液滴が検出チャンバの1つに移送された後、チャンバをソース4576からの放射で照明し得る。ソース4576は、チャンバ内の略すべての液滴を照明するように、様々な方法で構成し得る。例えば、放射源4576は、幅広の放射光線を発することにより、または放射を、発せられた光線をチャンバ全体をカバーするように広げる中間光学系(図示せず)に向けて発することにより、チャンバの略全体を照明する単一の放射放出要素を含み得る。放射源は、適切な検出チャンバの部分を照明するようにそれぞれ構成される、特にレーザ、LED、および/またはランプ等の複数の放射放出要素も含み得る。代替または追加として、放射源4576の1つまたは複数の放射放出要素は、チャンバを走査して、チャンバ内の液滴を逐次照明するように構成してもよく、またはチャンバ自体を、チャンバのすべての部分が実質的に静止した放射光線に交差するように移動するように構成してもよい。場合によっては、上の技法のうちの2つ以上の組み合わせが効率的であり得る。
蛍光検出器4578が設けられ、液滴4564から発せられた蛍光を検出するように構成される。上述されたように、特定の液滴により発せられる蛍光の量は、液滴が標的ヌクレオチド配列を含む場合、はるかに高いと予期され、その理由は、液滴が標的ヌクレオチド配列を含む場合、対応する蛍光プローブが通常、関連付けられた消光分子から切断されているためである。したがって、検出チャンバ内の液滴が、刺激放射で照明された後、または場合によっては、照明が行われている間、検出器4578は、検出チャンバから蛍光を受けるように構成し得る。照明の場合と同様に、検出も様々な方法で進め得る。例えば、CCD焦点面アレイ等の大型検出器を使用して、検出チャンバ全体から発せられた放射を同時に検出し得る。あるいは、フォトダイオードまたは光電子増倍管等のより小型の検出器がチャンバを走査するか、またはチャンバを検出器に対して再位置決めして、検出チャンバの様々な部分からの蛍光放射を逐次検出し得る。
システム4560は、チャンバ4568、4570等の液滴を2つ以上の検出チャンバ内に逐次移送することにより、液滴流入チャネル4562を通る略連続したフローを可能にするように構成し得る。例えば、図105は、チャンバ4568に液滴がすでに充填されており、照明かつ/または撮像中であり、その一方で、チャンバ4570が充填プロセス中である時点でのシステムを示す。したがって、弁4572は閉じた位置にあり、弁4574は開位置にあり、チャンバ4570に液滴を流入させる。
チャンバ4568内の液滴に対する検出プロセスが完了した場合、弁4574を閉じ、弁4572を開き、チャンバ4568の遠位端部にある別の弁4580も開き得る。これは、チャンバ4568内にすでにある液滴を遠位弁4580を通して逃しながら、チャンバ4570への液滴の流入を止め、チャンバ4568への液滴の流入を再開させる。別の遠位弁4582を同様の目的でチャンバ4570の端部に配置し得る。あるいは、所与のチャンバへの液滴の流入が再開される前、かつ液滴がその他のチャンバにまだ流入している間、液滴を受け取っていないチャンバを、別の流体チャネル(図示せず)を通して入る流体で洗浄し得る。これは、同じ液滴を2度、誤って照明して検出する危険性を回避するために役立ち得る。洗浄ステップがある場合であっても、またはない場合であっても、上述したような弁の調整された動きにより、試料含有液滴の乳濁液を任意の所望の数の検出チャンバ内外に連続して移送できるようにし得る。
バッチ蛍光検出は、システムの検出チャンバ内の液滴を実際に停止させずに実行し得る。例えば、弁4580、4582が設けられない、または開かれたままの場合であっても、チャンバ4568、4570のうちの1つに入る液滴は、バッチ検出が可能なほど十分に遅くし得、これに役立つように、検出チャンバの横幅を選択し得る。代替または追加として、様々な粒子追跡アルゴリズムを使用して、液滴が検出チャンバ内を移動する際に液滴を追跡し得る。さらに、バッチ検出システムは、分子増幅システムの他の部分から部分的または完全に流体的に切断し得る。例えば、液滴含有ウェルまたは槽の単純なアレイ(プレートアレイ等)を蛍光検出領域に配置し、上述したように撮像し得る。
[F.実施例6:検出方法]
この実施例では、PCR熱循環を受けた試料含有液滴から蛍光を検出する方法を説明する:図106参照。
図106は、本開示によるDNA増幅のPCRシステムと併せて実行し得る、全体が4600で示される蛍光検出方法のステップを示すフローチャートである。方法4600の様々なステップを後述し、図106に示すが、これらステップのすべてを実行する必要は必ずしもなく、場合によっては、図106に示される順序と異なる順序で実行し得る。
ステップ4602において、試料含有液滴が、所望の平均距離だけ離間される。これは、例えば、上述したような様々なフロー収束技法により(すなわち、液滴が生成される際に液滴をフロー収束することにより)、かつ/または適した率で液滴を生成することにより、達成し得る。フロー停止システム等でのバッチ検出の場合、蛍光検出中、液滴の間隔が小さいままであることが適切であり得、したがって、液滴分離ステップを実行しなくてもよい。
ステップ4604において、試料含有液滴は放射交差領域に移送され、交差領域において、液滴は、関連付けられたヌクレオチド標的プライマのポリメラーゼ結合により消光部分がプローブから切断されたか否かに部分的に依存して、強度で、液滴内の1つまたは複数の蛍光プローブからの蛍光放射放出を刺激するように選択された照明放射に露出される。連続フロー検出の場合、交差領域を、毛管等の流体チャネル内に配置し得る。バッチ検出の場合、交差領域は、1つまたは複数のチャンバ内に配置し得る。この場合、交差領域に液滴を移送することは、1つまたは複数の弁を開閉させて、交差領域内外への液滴の連続フローを可能にするなどステップを含み得る。
ステップ4606において、放射交差領域内の液滴は、液滴内の試薬内に存在していることが分かっている蛍光プローブを励起するように選択された少なくとも1つの波長を含む刺激放射に直面し、照明される。上述したように、照明試薬は、レーザ、LED、または他の任意の適した放射源により生成し得、自由空間を通して、または1つもしくは複数の光ファイバを通して交差領域に伝送し得る。さらに、放射は、交差領域に達する前に収束、発散、分離、フィルタリング、かつ/またはその他の様式で処理して、特定の検出システム構成に最も適したように液滴を効率的に照明し得る。
ステップ4608において、交差領域内の液滴から散乱された放射は、前方散乱検出器により検出し得る。このステップは通常、各液滴が、放射交差領域として機能する検出チャンバ内でおおよそ静止しているか、または少なくとも相対的にゆっくりと移動するバッチ検出システムで実行される。しかし、連続フロー検出システム内で散乱放射を検出することは、交差領域内の液滴の存在の検出と同時の、または後続する蛍光検出との相関付けに役立ち得、上述したように、各液滴の容量および標的分子濃度を推定できるようにし得る。より一般には、ステップ4608は、液滴から散乱した放射量、交差領域を通過する際の液滴の飛行時間、液滴の電気特性、または液滴の熱的特性等の各液滴の容量を推定できるようにする任意の測定を実行することを含み得る。方法4600は、ステップ4608において実行された測定に基づいて、各液滴の容量を推定することも含み得る。
ステップ4610において、交差領域において照明された液滴により発せられた蛍光が、蛍光検出器により検出される。前の実施例において説明したように、発せられた放射は、レンズ、アパーチャ、フィルタ等の1つまたは複数の中間光学要素を通過して、または通過せずに蛍光検出器に伝送し得る。発せられた放射は、1つまたは複数の光ファイバを通して蛍光検出器に伝送してもよく、または光ファイバを通さずに蛍光検出器に伝送してもよい。バッチ検出用途では、検出器および/または交差領域は、交差領域全体よりも小さな視野を有する検出器で交差領域を光学走査できるように移動するように構成し得る。
ステップ4612において、検出された蛍光は解析されて、特定の標的ヌクレオチド配列が液滴内に存在したか否かが判断される。標的分子を含む液滴の数もしくは割合の推定、液滴内の標的分子の平均濃度、誤差マージン、および/または統計信頼度が挙げられるが、これらに限定されない追加の情報も、収集されたデータから抽出し得る。
各液滴から収集されたデータを解析に使用することは、条件付きであり得、例えば、液滴の推定容量が特定の所定範囲内にあるか否かに依存し得る。より詳細には、液滴の推定容量が所定の範囲内にある場合、その液滴により発せられた蛍光強度を、試料内の標的分子濃度の特定に使用し得る一方で、液滴の推定容量が所定の範囲外の場合、その液滴により発せられた蛍光強度は、試料内の標的分子濃度の特定から除外し得る。
[G.実施例8:追加の実施形態]
この実施例では、限定せずに、一続きの番号が付された文章として提示される、本開示の態様による試料検出のさらなる態様を説明する。
1.試料内の標的分子の濃度を検出する方法であって、(A)液滴生成器を使用して試料含有液滴を生成すること、(B)液滴内の標的分子を増幅すること、(C)液滴が放射源からの放射に直面する交差領域に液滴を移送すること、(D)液滴が交差領域を通過する際に実行される測定に基づいて、各液滴の容量を推定すること、(E)各液滴により発せられる蛍光の強度を検出すること、および(F)液滴毎に、液滴の推定容量が所定の範囲内にある場合、液滴により発せられた蛍光強度を、試料内の標的分子濃度を特定する際に使用し、液滴の推定容量が所定の範囲外である場合、試料内の標的分子濃度を特定することから、液滴により発生された蛍光強度を除外することを含む、方法。
2.測定は液滴から散乱する放射の量である、段落1に記載の方法。
3.測定は検出器視野を通過する液滴の時間である、段落1に記載の方法。
4.測定は液滴の電気特性である、段落1に記載の方法。
5.測定は液滴の熱的特性である、段落1に記載の方法。
6.液滴を交差領域に移送する前に、液滴を所望の平均距離だけ分離することをさらに含む、段落1に記載の方法。
7.蛍光検出方法であって、(A)試料含有液滴を生成すること、(B)液滴を所望の平均距離だけ離間すること、(C)液滴を放射交差領域に移送すること、(D)液滴内の蛍光プローブからの蛍光放射の放出を刺激するように構成された放射に液滴を露出させること、および(E)液滴により発せられた蛍光放射を検出することを含む、方法。
8.液滴を離間することは、液滴が生成される際に液滴をフロー収束させることを含む、段落7に記載の方法。
9.検出された蛍光放射を解析して、各液滴が標的分子を含むか否かを判断することをさらに含む、段落7に記載の方法。
10.標的分子検出システムであって、(A)試料含有液滴を生成するように構成された液滴生成器と、(B)液滴内の標的分子を複製するように構成された分子増幅器と、(C)標的分子を含む液滴からの蛍光放射の放出を刺激するように構成された放射源と、(D)液滴により発せられた蛍光放射を検出するように構成された蛍光検出器と、(E)放射源から液滴に刺激放射を伝送するように構成された第1の光ファイバとを備える、システム。
11.第1の光ファイバは、液滴が第1の光ファイバにより伝送される刺激放射に直面する交差領域に液滴を輸送するように構成された液滴流入流体チャネルに対して略平行する向きの長軸を有する、段落10に記載のシステム。
12.第1の光ファイバは、液滴が第1の光ファイバにより伝送される刺激放射に直面する交差領域に液滴を輸送するように構成された液滴流入流体チャネルの横向き領域に略平行する向きの長軸を有し、横向き領域は、1度に実質的に1つのみの液滴を第1の光ファイバの長軸に対して平行に移動させるように構成される、段落10に記載のシステム。
13.第1の光ファイバは、蛍光放射を液滴から蛍光検出器に伝送するようにさらに構成される、段落11または12に記載のシステム。
14.蛍光放射を液滴から蛍光検出器に伝送するように構成された第2の光ファイバをさらに備える、段落10に記載のシステム。
15.液滴から散乱した放射を検出するように構成された散乱検出器と、散乱放射を散乱検出器に伝送するように構成された第3の光ファイバとをさらに備える、段落14に記載のシステム。
16.(F)液滴流入流体チャネルと、(G)放射入射流体チャネルとをさらに備え、液滴流入流体チャネルは、液滴を含む流体を交差領域を通して輸送するように構成され、第1の光ファイバは、放射源からの放射を、放射入射流体チャネル内の流体に直接発するように構成され、放射入射流体チャネルは、放射を第1の光ファイバから交差領域に伝送するように構成され、液滴流入流体チャネルは、放射入射流体チャネルに流体接続される、段落10に記載のシステム。
17.標的分子検出システムであって、(A)試料含有液滴を生成するように構成された液滴生成器と、(B)液滴内の標的分子を複製するように構成された分子増幅器と、(C)放射交差領域を通して液滴を輸送するように構成された流体チャネルと、(D)蛍光刺激放射を交差領域の異なる隣接部分に伝送するようにそれぞれ構成された複数の放射源と、(E)交差領域内に配置された液滴により発せられた蛍光放射を検出するように構成された少なくとも1つの蛍光検出器とを備える、システム。
18.少なくとも1つの蛍光検出器は、交差領域の異なる部分のうちの1つ内の液滴により発せられた蛍光放射を検出するようにそれぞれ構成された複数の蛍光検出器を含む、段落17に記載のシステム。
19.各蛍光検出器は、少なくとも1つの標的分子の種類にそれぞれ対応する異なる波長の蛍光放射を検出するように構成される、段落18に記載のシステム。
20.各放射源は、異なる波長の蛍光刺激放射を伝送するように構成される、段落19に記載のシステム。
21.標的分子検出システムであって、(A)試料含有液滴の乳濁液を生成するように構成された液滴生成器と、(B)液滴内の標的分子を複製するように構成された分子増幅器と、(C)乳濁液を少なくとも1つの蛍光検出チャンバに移送するように構成された液滴流入流体チャネルと、(D)少なくとも1つの検出チャンバ内の液滴を刺激放射で照明するように構成された放射源と、(E)照明された液滴により発せられる蛍光放射を検出するように構成された蛍光検出器とを備える、システム。
22.少なくとも1つの検出チャンバは、実質的に単分子層の分子のみを含むように構成される、段落21に記載のシステム。
23.少なくとも1つの検出チャンバは、2つの検出チャンバと、2つの検出チャンバのうちの一方に液滴を選択的に向けるように構成された弁機構とを含む、段落21に記載のシステム。
24.弁機構は、乳濁液の略連続したフローを液滴流入流体チャネルから蛍光検出チャンバに移動させるように構成される、段落23に記載のシステム。
[VII.定量化/解析]
この項では、反応データを解析し、任意に解析の結果を使用してシステムパラメータを調整して、例えば、液滴ベースの分析システムと後に併用するデータの品質を向上させる例示的なシステムを説明する。このシステムについては、便宜上、PCRに関連して得られる蛍光強度データに関して説明するが、より一般的には、任意の適した反応に関連して得られる離散データに適用される。関連するさらなる開示が、相互参照において上に列挙され、参照により本明細書に援用される米国仮特許出願、特に発明者としてVincent Riot、Devin Dean Ness、Billy W.Colston,Jr.、Benjamin J.Hindson、Douglas N.Modlin、およびAnthony J.Makarewicz,Jr.の名前が挙げられている、「QUANTIFICATION OF DROPLET−BASED ASSAYS」と題する2009年9月21日に出願された米国仮特許出願第61/277216号明細書に見られ得る。
試料含有乳濁液が生成された後、PCR熱循環機等の酵素使用の増幅システムにより熱循環させ、検出システムに通して、検出システムにより収集されたデータを解析し、試料についての所望の情報を抽出することが望ましい場合がある。上述したように、収集されたデータは通常、少なくとも、放射源からの励起状態下で検出された各液滴により発せられた蛍光強度レベルを含む。所与の液滴により発せられた蛍光強度は通常、液滴内の複製された標的核酸分子の数を反映するため、元々の増幅されていない試料内の標的分子の濃度の尺度である。蛍光強度は、光電子増倍管、フォトダイオード、またはデジタルカメラ等の1つまたは複数の蛍光検出器により測定される。例えば、各液滴が検出器の視野を通過する際、検出器からの蛍光信号をデジタル化し、ピーク強度を特定し得る。ピーク強度は、局所放物線フィッティング等の曲線フィッティング技法または他の任意の適した方法を使用して特定し得る。
蛍光強度の他に、他の様々なデータを検出フェーズ中に収集し得る。例えば、各液滴が蛍光検出器または前方散乱検出器の前を通過する時間を測定し得る。液滴が検出領域を通過する際の乳濁液の流速および各液滴の幾何学的形状についての知識と併せて、この通過時間により、各液滴の容量を推定することが可能であり得る。液滴容量は、特に、熱伝導性、導電性、静電容量、および/または誘電率等の液滴の1つまたは複数の特性を測定することにより推定することもできる。
いずれの場合でも、相対的に多数の試料含有液滴のそれぞれに入手可能な、少なくとも蛍光強度を含むデータがあるものと予想される。これは一般に、何千、何万、何十万、または何十万を超える液滴を含む。このデータの解析に、解析ツールを一般に適用可能であり得る。例えば、統計技法を適用して、特定の信頼度で、任意の標的分子が、増幅されていない試料内に存在したか否かを特定し得る。この情報は、場合によっては、単にデジタル(「イエスまたはノー」)結果の形態で提示してもよく、または試料内の標的分子の濃度の推定、すなわち、単位容量当たりの標的分子数の推定を特定することが望ましいこともある。
標的分子の濃度は、乳濁液内の標的分子の数のみならず、各液滴の容量にも依存するため、標的濃度の特定は一般に、液滴の容量分布の明示的または暗示的な特定も含む。場合によっては、液滴容量の分布は、上述したように、液滴の検出器視野の通過時間または各液滴の熱的もしくは電気的特性により特定し得る。場合によっては、例えば、システムに使用される液滴生成器の基本的特徴についての知識に基づいて、液滴サイズが特定の均一容量を有すると仮定し得る。液滴容量についての知識は一般に、試料含有流体の単位容量当たりの標的分子濃度の特定に役立つ。
統計的方法を使用して、液滴容量が未知であり、液滴容量を直接特定できるパラメータが測定されない場合であっても、標的分子の濃度を推定することが可能である。より詳細には、標的分子は液滴内にランダムに分布すると仮定されるため、特定の数の標的分子を含む特定の液滴の確率は、関数のパラメータのうちの1つとして液滴濃度を使用して、ポアッソン分布関数によりモデリングし得る。
液滴が既知の平均サイズを有するが、サイズ分布が未知であると仮定される場合、検出された蛍光データまたはそのデータから計算される数量を、様々な濃度値により予測された結果と比較し得る。次に、最小二乗平均(LMS)フィッティング等の誤差最小化技法を使用して、実際の濃度値を推定し得る。
液滴のサイズが均一であると仮定されない場合であっても、標的濃度を同様にして推定し得る。これを達成するために、特定の平均および標準偏差を有する正規分布等の特定の関数形を、液滴容量の確率分布に仮定し得る。次に、ここでも試料全体を通して標的分子がランダムに分布すると仮定して、液滴内で所与の数の標的分子を見つける確率に関して新しいポアッソン型分布関数を計算し得る。ここでも標的濃度の推定は、実際の蛍光データから特定された1つまたは複数の数量を、様々な濃度値により予測された同じ数量と比較し、上述したように誤差最小化技法を適用することにより得ることができる。
統計技法を様々な方法で適用して、データ解析の精度を向上させることもできる。例えば、蛍光データの統計解析は、所与の液滴内の標的分子の陰性検出と陽性検出との閾値蛍光レベルの適宜選択を決定するために役立ち得る。この検出閾値をデータに適用することにより、単に閾値をアプリオリに選択するよりも正確に標的濃度を特定し得る。あるいは、検出閾値は変数として残し、検出されたある範囲の蛍光強度の部分(またはすべて)にわたるある範囲の異なる閾値にわたるデータから抽出し得る。
さらに、検出閾値蛍光レベルの信頼レベルは、蛍光データのサブセットを置換してのランダムサンプリング(「ジャックナイフ法」または「ジャックナイフブートストラップ法」として知られている)(統計の分野では「ブートストラップ法」として知られている)等の様々な統計リサンプリング技法を使用して増大させ得る(または同等に、所与の信頼レベルの信頼区間を狭め得る)。いずれの場合でも、置換データセットにわたる閾値レベルのばらつきを解析することにより、検出閾値の向上した信頼レベルを得ることができる。
同様に、統計法を使用して、増幅システムのより効率的な使用および/またはより正確なデータ解析に繋がり得る他の形態のフィードバックを提供してもよい。例えば、増幅されていない試料含有液滴内の標的分子濃度の初期特定により、濃度が高すぎるか、または低すぎて最適ではないことが明らかになり得、この情報を使用して、システムの様々なパラメータを調整し得る。より詳細には、標的濃度が低すぎる(が、ゼロではない)場合、多くの液滴は標的分子を全く含まず、結果として、いくつかの標的分子が試料中に存在することにも拘わらず、不良な統計および多数の「空」の液滴を準備し処理するに当たっての資源が無駄になる。他方、標的濃度が高すぎる場合、略すべての液滴が、増幅後に標的分子で飽和し、液滴間に有意な蛍光の変動がなくなるため、元々の試料の標的濃度を正確に特定することが可能ではなくなる。これら状況のいずれも、標的濃度の特定に関して望ましくない大きな信頼区間に繋がり得る。
既存のパラメータでは、増幅されていない試料含有液滴内の標的分子濃度が最適ではないとの判断に応答して、いくつかのシステムパラメータを調整し得る。例えば、液滴生成前に、試料含有溶液を希釈または濃縮して、標的濃度をそれぞれ増減し得る。同様に、生成される液滴のサイズ範囲を増大させて、増幅後に標的分子で飽和する液滴の確率を低減し、または生成される液滴のサイズ範囲を低減させて、各液滴内で標的分子が見つかる確率(および標的分子の平均数)を増大させ得る。さらに、発生している増幅が少なすぎるとの判断に応答して、熱循環温度および/または熱循環回数等の増幅システムの様々な特徴を増大し、または発生している増幅が多すぎるとの判断に応答して、そのようなパラメータを低減し得る。
図107は、複数の試料含有液滴内の標的分子の濃度を特定する、全体が4800で示された方法を示すフローチャートである。後述するように、方法4800は、濃度値の望ましくない低信頼条件に応答して、液滴生成の1つまたは複数のパラメータを調整するために使用できるフィードバック機構を含む。
ステップ4802において、信頼条件が選択される。この条件は、例えば、所望の信頼レベルおよび/または関連付けられた信頼区間を含み得る。
ステップ4804において、試料含有液滴が生成される。そのような液滴を生成する様々な方法および装置が、本明細書の他の箇所、例えば、項IIIおよび項IVにおいて説明されている。
ステップ4806において、液滴内の標的分子が、PCRまたは他の何らかの酵素による増幅技法により増幅される。標的ヌクレオチド配列を増幅する方法および装置は、本明細書の他の箇所、例えば、項Vにおいて説明されている。
ステップ4808において、蛍光強度、通過時間、1つもしくは複数の熱的特性、および/または1つもしくは複数の電気特性等のデータが、液滴から収集される。試料含有液滴の特性を検出する方法および装置は、本明細書の他の箇所、例えば、項VIにおいて説明されている。
ステップ4810において、増幅されていない試料内の標的分子濃度(すなわち、単位容量当たりの標的分子数)の測定が、収集されたデータから推定される。推定測定値は、1つもしくは複数の標的分子を含む液滴の割合および/または実際の濃度の推定を含み得る。
ステップ4812において、ステップ4810において推定された測定値の信頼条件が決定される。通常、これは、ステップ4802において受信した所望の信頼条件と比較できる信頼レベルおよび/または関連付けられた信頼区間を含む。
ステップ4814において、決定された信頼条件が所望の信頼条件と比較され、ステップ4816において、所望の信頼条件に達したか否かについて判断される。
ステップ4818において、ステップ4810の推定測定値が所望の信頼条件に達した場合、測定値は許容される。
ステップ4820において、ステップ4810の推定測定値が所望の信頼条件に達しなかった場合、適した液滴生成パラメータ調整が利用可能か否かについて判断される。適した調整は、特に、生成される液滴数の調整(すなわち、より多くの液滴を生成する)、試料の化学的性質の変更、液滴生成前の試料の希釈もしくは濃縮、異なるサイズの液滴の生成、熱循環温度の調整、および/または液滴に適用される熱循環回数の調整を含み得る。
ステップ4822において、ステップ4820により、適した液滴生成パラメータ調整が使用可能であると判断された場合、1つまたは複数の液滴生成パラメータの調整が行われ、プロセスはステップ4804に戻り、調整されたパラメータを使用してさらなる液滴を生成する。パラメータ調整は、場合によっては、単により多くの液滴を生成して、システムの他のいかなるパラメータも変更せずに、統計信頼を向上させることであってもよく、または十分な数の適切な液滴がすでに生成されており、パラメータ調整が全体的に熱循環機に関連してもよい。その場合、ステップ4804を再び実行する必要はなく、むしろ、方法はステップ4822から再びステップ4806に直接進み得る。いずれの場合でも、次に方法は、所望の信頼条件が満たされるまで、またはさらなるパラメータ調整を行うことができなくなるまで、図107が示すように循環的に進む。場合によっては、所望の信頼条件に達していない場合であっても、例えば、化学的、物理的、および/または技術的制限により、いかなる液滴生成パラメータもさらに調整することが可能ではないことがあり得る。この場合、すなわち、ステップ4820により、適した液滴生成パラメータ調整が使用可能ではないと判断された場合、所望の信頼条件を満たすことができなかったにもかかわらず、ステップ4810の測定値がステップ4818において再び許容される。
液滴蛍光データセットを想定すると、濃度推定値ならびに信頼レベルおよび信頼区間等の信頼条件の推定に使用できる様々な技法がある。以下の実施例では、様々な状況下で所望の正確度で有用な情報を抽出するためにデータに適用し得るいくつかの特定の統計技法を説明する。
[A.実施例1]
この実施例では、何らかの所定の較正またはデータセットについての知識、特に、標的含有液滴を空の液滴から区別するために使用し得る蛍光閾値およびこの特定の信頼の統計的特徴等の特徴と併用して液滴当たりの濃度を推定する技法を説明する。この実施例では、各液滴の蛍光強度を表す値の集まりが利用可能であると仮定する。この実施例において説明される技法は、ピーク蛍光データ(すなわち、特定の数の標的分子を含む液滴により発せられた最大蛍光強度)に適用可能であるが、この種のデータに限定されない。説明される技法は、標的含有液滴を空の液滴と区別するために使用可能な任意の測定に対して一般化し得る。
Cが試料の標的濃度(単位容量当たりの標的分子の数)であり、Vは液滴の容量であり(この実施例では、一定であると仮定する)、λ=CVが液滴当たりの平均コピー数である場合、所与の液滴がk個の標的分子を含む確率は、ポアッソン分布により与えられる。
Figure 2012503773
例えば、液滴当たり平均して3コピーの標的核酸がある場合、ポアッソン分布は、液滴の5.0%がゼロコピーを有し、14.9%が1コピーを有し、22.4%が2コピーを有し、22.4%が3コピーを有し、16.8%が4コピーを有し、以下同様であるとの予測を示す。1つ以上の標的核酸分子が容量内に存在する場合、液滴が反応すると妥当に仮定し得る。合計で液滴の95%が陽性となり、5%が陰性となる。一般に、液滴当たりの異なる初期コピー数は増幅後に区別できるため、これを考慮に入れた解析の一般的な説明により、濃度計算の精度の向上を提供することができる。
図108は、検出された液滴数が、蛍光強度測定値との関係のヒストグラムとしてプロットされるサンプルデータセットを表示する。データは、液滴カウントのピークを300直前の振幅に示し、約500〜700までに異なる強度のいくつかの陽性ピークを示す。陽性の強度が異なることは、標的分子の初期濃度が異なることに起因する。約500におけるピークは初期コピーが1であり、約600では初期コピーが2であり、ピークを区別できなくなるまで以下同様である。
初期コピー数Kを定義することができ、この後は、検出確率に対する差はなくなる。ここで、所与の蛍光測定値が陽性検出(X=1)として定義される確率を記述した変数Xを定義することができる。以下の式(2)が示すように、これは、蛍光的に区別可能な陽性を含む液滴の確率の和(右辺の第1項)に、蛍光的に飽和した陽性(右辺の第2項)を加算し、そして誤って陽性と識別された陰性(右辺の第3項)を加算したものとして定義される。
Figure 2012503773
これは、ポアッソン分布に式(1)を代入することにより、λに関して書くこともできる。
Figure 2012503773
所与の測定値が陰性(X=0)として定義される確率も、
Figure 2012503773
として定義することができる。
上記式は、K=1の装置、すなわち、液滴当たりの1つまたは複数の標的コピーが同じ蛍光ピーク内にあるか、または陽性と陰性との隔たりが、Pfaを無視できる程明確である装置の場合、単純化される。しかし、場合によっては、陰性液滴の蛍光ピークと陽性液滴との蛍光ピークとがかなり重複し、そのため、Pfaを無視できないことがある。この実施例はいずれの場合にも適用される。
変数Xの平均は、実現と確率との積の和である。
Figure 2012503773
または
Figure 2012503773
であり、その標準偏差は、
Figure 2012503773
により与えられる。Xの定義は、陰性液滴がX=0に対応し、陽性液滴がX=1に対応するようなものであるため、Xの平均は陽性液滴の割合でもある。
Figure 2012503773
その場合、式6および式7は、
Figure 2012503773
および
Figure 2012503773
と書き換えることができる。高度の非線形性により、式(9)および式(10)は、確率PdiおよびPfaについての事前知識なしでは、λを見つけるために容易に使用できない。すべての液滴が検出される(Pdi=1)場合、特別なケースが生じ、1つのみの蛍光状態が区別可能であり(K=1)、陽性ピークおよび陰性ピークを容易に識別可能であるため、誤検出の確率を無視できる(Pfa=0)。この場合、λについて式(9)を解くことができる。
Figure 2012503773
[B.実施例2]
この実施例では、単純化定Pdi=1、K=1、およびPfa=0が行われない状況への前の実施例の拡張を説明する。これにより、何らかの所定の較正またはデータセットについての知識を使用せずに、データを処理することが可能になる。この実施例は、式(9)により概説される一般理論に対するデータの最小二乗平均(LMS)フィッティングまたは同様のフィッティングに頼る。Fを、液滴の理論上の比率(上記式(9)参照)と実測された液滴の比率との差を記述する関数として定義する。
Figure 2012503773
この差は、適切な確率およびλが見つけられた場合にはゼロに等しいはずである。Fは一般に、陽性と陰性とを区別するために設定される閾値の関数であり、それぞれ基本仮定下にある同じ初期標的コピー数を有する液滴セットからの蛍光信号の分布は、正規分布で説明できるが、他の分布も可能であり、説明される方法の概念上の単なる拡張にすぎない。より詳細には、液滴サイズ、PCR効率、検出器を通る流量の変動、電気雑音、および他のそのようなランダム要因により、式(12)中の初期標的分子の数i毎に、平均値Mおよび標準偏差σを特徴とする蛍光値分布になる。
Figure 2012503773
これら分布から陽性と検出される液滴は、選択された閾値に依存する。
Figure 2012503773
その場合、関数Fは、
Figure 2012503773
になる。
式(15)は、検出可能な陽性の複数の状態を含む正規分布の液滴蛍光に適用される一般例である。特定のデータセットへの式(15)の最小二乗平均フィッティングを、反復数値法を通して見つけることができ、行われ得るすべての閾値設定でλ、M、およびσのフィッティング推定が最良になる。同じ技法を他の任意の明確に定義された分布の標的分子に対しても適用し得る。例えば、構成が、PCR循環回数および/またはPCR効率を考慮に入れた分布に従うものと仮定し得る。
図109は、ここでも検出された液滴数と測定された蛍光強度との関係のヒストグラムとして表示される、図108に示されたものと同じ蛍光データおよびいくつかの値のKを使用して式(15)から数値的に再生成された蛍光分布の両方を示す。図109は、数値的に特定された関数が実際のデータを良好に再生成し、λ、M、およびσの正確な特定を示すことを示す。数値的に最適な近似次数を特定するために、測定された蛍光データと数値的に再生成された関数との最小二乗平均残差を近似次数毎に計算し、最低の残差に対応する近似次数を利用し得る。例えば、図110は、式(15)を使用して得られる近似次数2〜7の場合の最小二乗平均残差を示すヒストグラムであり、少なくとも近似次数7まで、数値法がますます正確になることを示す。
図111は、この実施例の態様に基づいて試料内の標的分子濃度を数値的に推定する、全体が4900で示される方法を示すフローチャートである。ステップ4902において、試料含有液滴が生成される。そのような液滴を生成する様々な方法および装置が、本明細書の他の箇所、例えば項IIIおよび項IVにおいて説明されている。ステップ4904において、液滴内の標的分子が、PCRまたは他の何らかの酵素による増幅技法により増幅される。標的ヌクレオチド配列を増幅する方法および装置が、本明細書の他の箇所、例えば、項Vにおいて説明されている。ステップ4906において、蛍光強度、通過時間、1つもしくは複数の熱的特性、および/または1つもしくは複数の電気特性等のデータが液滴から収集される。試料含有液滴の特性を検出する方法および装置は、本明細書の他の箇所、例えば項Vにおいて説明されている。
方法4900の残りのステップは一般に計算集約的であり、したがって、通常、適した命令がプログラムされたデジタルプロセッサを用いて実行される。ステップ4908において、1つまたは複数の標的分子を含む液滴の実測割合が、ステップ4906において収集されたデータから特定される。上述したように、この割合は、陽性(標的含有)液滴と陰性液滴とを区別するために選択された閾値蛍光値の関数である。ステップ4910において、1つまたは複数の標的分子を含む液滴の割合の理論値が、元々の増幅されていない試料内の標的分子濃度の関数として特定される。この理論値は一般に、データから特定される値のように、選択された検出閾値の関数である。適した理論値が、例えば、上記式(15)の積分項により提供される。ステップ4912において、標的濃度は、ステップ4910において特定される理論上の割合と収集されたデータからステップ4908において特定される割合との差の測定を最小化することにより推定される。より一般には、このステップは、測定された割合を理論上の割合と何らかの様式で比較することにより実行し得る。
[C.実施例3]
この実施例では、例えば、上述した実施例1および2の方法を使用して得られた標的濃度の推定値の信頼区間の推定に使用し得る方法を説明する。信頼区間は、非線形最小二乗平均が使用される場合(実施例2でのように)、直接推定できない。他方、ブートストラップ法は、推定の誤差についてのいくらかのアイディアを提供できる。この原理は、収集された蛍光強度値のサブセットに基づいてそれぞれ推定される、標的分子濃度に対して複数の値を推定し、次に、複数の推定濃度値から推定濃度の平均値および標準偏差を特定することに基づく。試料(ここでは、液滴強度)のサブセットはランダムに選択される(モンテカルロ)。次に、標準偏差および平均は、推定濃度ならびに標準偏差から(推定が正規分布に従うという仮定の場合)、または実際の結果から直接定義される信頼区間を提供できる。
ジャックナイフブートストラップ法の名称で呼ばれることがある、1つの特定の種類のブートストラップ法は、データポイントの総数から1を差し引いた数を含むようにそれぞれ選択されたデータサブセットを使用する。これは、最高で総数のポイントサブセットを許しながら、推定に利用可能な統計を最大にする。これは、データセットが大きい場合に特に良好に機能する。液滴ベースの検出の場合、測定の数は数千個以上のオーダであると予想されるため、ジャックナイフブートストラップ技法は特に適し得る。ジャックナイフブートストラップの本適用では、これは、各サブセットが収集された蛍光強度値の1つを除くすべてを含むことを意味する。
ジャックナイフブートストラップ法を使用して得られる信頼区間は、以下の要因への依存性を特徴とし得る:
・解析に使用される液滴強度の数、
・使用されるデータサブセットの数(上限は強度の総数である)、
・フィッティングに使用される閾値の数、
・近似次数。
試料液滴蛍光データを使用した数値的な研究では、これら要因に関して以下の結論が示唆される:
・液滴が多いほど、信頼区間は小さく、信頼区間はおおよそ、液滴数の逆平方根として低減し、
・100個のジャックナイフデータサブセットが通常、所与の他のパラメータセットに最も小さな信頼区間を見つけるために十分であり、
・未知数の数のおおよそ3倍(近似次数の2倍に1を足したものに等しい)以上の数の異なる蛍光閾値の使用が通常、所与の他のパラメータセットに最も小さな信頼区間を見つけるために十分であり、
・最小の最小二乗平均残差を提供する近似次数を使用すべきである。
[D.実施例4]
この実施例では、前の実施例をどのようにして、液滴サイズが均一ではなく、むしろ、正規分布関数に従って液滴毎にばらつく状況に拡張し得るかを説明する。上記式(15)の適用は、計算されたλの値から初期濃度Cを計算するために、液滴容量が一定であるという仮定に頼ると共に、液滴容量Vが、
Figure 2012503773
であるという仮定に頼る。液滴容量が大きくばらつく場合、所与の液滴サイズ分布のに対して同じ原理を適用して、濃度について解くことができる。式(2)は、容量の関数として書き換えることができる。
Figure 2012503773
平均Mおよび標準偏差σを有する液滴容量の正規分布の場合、式(15)をより一般的な形にすることができる。
Figure 2012503773
式(18)は、式(15)と同じ最小二乗平均の基本原理を使用して解くことができる。上述した代替の測定による平均液滴容量についての知識ならびに標準偏差についての知識が、最小二乗平均プロセスを安定解に収束するのに役立つ。しかし、最小二乗平均プロセスは、その知識なしで試みることもでき、その場合、液滴容量の平均および平均偏差は、追加の未知変数である。さらに、理論上の研究では、平均値から7%未満の標準偏差が結果に対して有する影響が無視できることが示された。したがって、式(18)のより一般的な場合への式(15)の拡張は、必要とされる信頼区間が大きい場合には必要なしであり得る。
すべての液滴が検出されるPdi=1という特別な場合、1つのみの蛍光状態K=1が区別可能であり、陽性ピークおよび陰性ピークを容易に識別可能であるため、誤検出の確率を無視できPfa=0、式(17)は、
Figure 2012503773
を与え、標準偏差は、
Figure 2012503773
になる。一般に、任意の既知の、または測定された液滴容量分布P(V)について、平均および標準偏差を計算することができる。
[E.実施例5]
この実施例では、均一な液滴容量および完全な検出可能性(すなわち、すべての陽性液滴が検出され、誤検出がない)を仮定して、液滴濃度を推定する様々な代替の方法を説明する。これら仮定の下で、解析を、データ中の陽性の容量間隔に対して実行することができる。陽性を検出する前に、n個の陰性液滴(すなわち、標的分子を含まない液滴)を検出する確率を導出することが簡単である。式(1)のポアッソン分布を提供して、標的分子を含まない液滴の確率は、
Figure 2012503773
である。したがって、標的分子を含まない液滴が連続してn個続く確率は、
Figure 2012503773
である。さらに、1つまたは複数の標的分子を含む液滴の確率は、
Figure 2012503773
である。したがって、少なくとも1つの標的分子を含む液滴を検出する前に、標的分子を含まない液滴を連続してn個検出する理論上での確率分布は、
Figure 2012503773
である。したがって、標的分子濃度は、測定された確率分布をこの理論上の確率分布と比較することにより推定し得る。例えば、両辺の対数をとると、
Figure 2012503773
である。したがって、ln[P(n;λ)]とnとの関係のプロットは、傾き−λおよびy切片ln[1−e−λ]を有する直線になり、データから特定されるP(n;λ)を使用して、λの異なる推定を生成し得る。
式(24)を使用し、最大尤度解析を使用して、λに関連する推定量を導出し得る。特に、陽性液滴を検出する前にn個の液滴で隔てられる確率を最大化するλの値が、平均間隔値に対応する。この値は、λに関するPの微分をゼロに等しく設定することにより見つけ得る。
Figure 2012503773
式中、<n>は、観察されたデータから計算される間隔の平均値であり、すなわち、少なくとも1つの標的分子を含む液滴を検出する前の、標的分子を含まない液滴の平均数である。
[F.実施例6]
この実施例では、K=1の場合に、中心極限定理を使用して陽性検出の割合の信頼区間をどのようにして解析的に特定できるかを説明する。上記から、陽性検出率の平均値を、
Figure 2012503773
として表現し得、
その標準偏差が、
Figure 2012503773
により与えられ、陽性検出率が、陽性検出液滴と測定の総数との比率により測定される:
Figure 2012503773
ことを想起する。中心極限定理は、N個の測定値の標準偏差がEmeasurement/√Nにより与えられると述べている。したがって、95%の信頼区間(2標準偏差)の場合、
Figure 2012503773
を有し、
Figure 2012503773
である。単純な場合(ここでは、K=1、Pdi=Pdk=1、かつPfa=0を使用して示される)、λは、前式を反転させることにより導出することができ、信頼区間95%(2標準偏差)を有する結果は、
Figure 2012503773
として表現することができる。
[G.実施例7]
この実施例では、限定せずに、一続きの番号が付された文章として提示される、本開示の態様による、データを解析しデータ収集を改良するシステムの追加の態様を説明する。
1.所望の信頼度で試料内の標的分子濃度を特定する方法であって、(A)液滴生成器を使用して試料含有液滴を生成すること、(B)液滴内の標的分子を増幅すること、(C)少なくとも、複数の液滴により発せられた蛍光強度の値を含むデータを液滴から収集すること、(D)収集されたデータに基づいて、試料内の標的分子の濃度を推定すること、(E)推定濃度の信頼条件を所望の信頼条件と比較すること、および(F)所望の信頼条件に達しなかった場合、少なくとも1つの液滴生成パラメータを調整することを含む、方法。
2.液滴生成パラメータは生成される液滴の数である、段落1に記載の方法。
3.液滴生成パラメータは試料の化学的性質である、段落1に記載の方法。
4.液滴生成パラメータは液滴濃度である、段落1に記載の方法。
5.液滴生成パラメータは液滴サイズである、段落1に記載の方法。
6.液滴生成パラメータは熱循環温度である、段落1に記載の方法。
7.液滴生成パラメータは熱循環回数である、段落1に記載の方法。
8.液滴生成器は1回使い切りの液滴生成器である、段落1に記載の方法。
9.データを収集することは、検出器の視野内の複数の液滴のそれぞれの通過時間を測定することを含む、段落1に記載の方法。
10.データを収集することは、各液滴の容量を推定するのに十分な複数の液滴のそれぞれの電気特性を測定することを含む、段落1に記載の方法。
11.データを収集することは、各液滴の容量を推定するのに十分な複数の液滴のそれぞれの熱的特性を測定することを含む、段落1に記載の方法。
12.試料内の標的分子濃度を特定する方法であって、(A)液滴生成器を使用して試料含有液滴を生成すること、(B)液滴内の標的分子を増幅すること、(C)複数の液滴のそれぞれにより発せられた蛍光強度を含むデータを液滴から収集すること、(D)収集されたデータから、少なくとも1つの標的分子を含む液滴の実測割合を特定すること、(E)標的分子濃度の関数として、少なくとも1つの標的分子を含む液滴の理論上の割合を特定すること、および(F)実測割合を理論上の割合と比較することにより、濃度を特定することを含む、方法。
13.理論上の割合は、標的分子が液滴中にランダムに分布すると仮定することにより特定される、段落12に記載の方法。
14.理論上の割合は、すべての液滴が検出され、1つのみの蛍光状態が区別可能であり、誤検出がないと仮定することにより特定される、段落12に記載の方法。
15.理論上の割合は、液滴蛍光強度が正規分布に従うと仮定することにより特定される、段落12に記載の方法。
16.実測割合を理論上の割合と比較することは、理論上の割合と実測割合との差の測定を最小化することを含む、段落15に記載の方法。
17.実測割合を理論上の割合と比較することは、収集されたデータに対して理論上の割合の最小二乗平均フィッティングを適用することを含む、段落15に記載の方法。
18.実測割合および理論上の割合は両方とも、検出閾値蛍光値の関数であり、濃度を特定することは、複数の検出閾値について実測割合を理論上の割合と比較することを含む、段落12に記載の方法。
19.理論上の割合は、液滴が均一の容量を有すると仮定することにより特定される、段落12に記載の方法。
20.理論上の割合は、液滴が正規分布の容量を有すると仮定することにより特定される、段落12に記載の方法。
21.試料内の標的分子濃度を特定する方法であって、(A)液滴生成器を使用して試料含有液滴を生成すること、(B)液滴内の標的分子を増幅すること、(C)複数の液滴により発せられた蛍光強度値を含むデータを液滴から収集すること、(D)標的分子濃度の複数の値を推定することであって、各値は、収集された蛍光強度値のサブセットに基づいて推定される、推定すること、ならびに(E)複数の推定濃度値から、推定濃度の平均値および標準偏差を特定することを含む、方法。
22.サブセットはランダムに選択される、段落21に記載の方法。
23.各サブセットは、収集された蛍光強度値の1つを除くすべてを含む、段落22に記載の方法。
24.試料内の標的分子濃度を特定する方法であって、(A)液滴生成器を使用して試料含有液滴を生成すること、(B)液滴内の標的分子を増幅すること、(C)複数の液滴により発せられた蛍光強度値を含むデータを液滴から収集すること、(D)収集されたデータから、少なくとも1つの標的分子を含む液滴を検出する前に標的分子を含まない特定の数の液滴を検出する実測確率分布を特定すること、および(E)実測確率分布を理論上の確率分布と比較することにより、標的分子濃度を推定することを含む、方法。
25.実測確率分布を特定することは、少なくとも1つの標的分子を含む液滴を検出する前に標的分子を含まない液滴の平均数を特定することを含み、標的分子の濃度を推定することは、標的分子濃度の最大尤度値を推定することを含む、段落24に記載の方法。
26.試料内の標的分子濃度を特定するシステムであって、(A)試料含有液滴を生成するように構成された液滴生成器と、(B)液滴内の標的分子を増幅するように構成された熱循環機と、(C)複数の液滴により発せられた蛍光強度値を収集するように構成された蛍光検出器と、(D)収集されたデータから、試料内の標的分子濃度を推定し、推定濃度の信頼条件を所望の信頼条件と比較し、所望の信頼条件に達しない場合、液滴生成器または熱循環機の少なくとも1つのパラメータを調整する信号を送信するように構成されたデジタルプロセッサとを備える、システム。
27.核酸標的について試料を解析する方法であって、(A)試料の部分を取り出すこと、(B)上記部分から、核酸標的がある場合に核酸標的を増幅する分析混合物を作成すること、(C)分析混合物から液滴パケットを生成することであって、各パケットは少なくとも実質的に所定の数の液滴を有する、生成すること、(D)核酸を増幅させる条件下にパケットを置くこと、(E)パケットのうちの複数の液滴のそれぞれに対して1つまたは複数の測定を実行すること、(F)1つまたは複数の測定を使用して、核酸標的の増幅が発生した複数の液滴の数を特定すること、および(G)特定された液滴の数に基づいて、試料内の核酸標的の分子の合計数を推定することを含む、方法。
28.核酸標的について試料を解析する方法であって、(A)試料から第1の液滴パケットを生成することであって、各液滴は、液滴内に核酸標的が存在する場合、核酸標的を増幅可能な組成を有する、生成すること、(B)核酸を増幅させる条件下に第1のパケットを置くこと、(C)第1のパケットのうちの複数の液滴のそれぞれに対して1つまたは複数の測定を実行すること、(D)1つまたは複数の測定を使用して、核酸標的の増幅が発生した液滴の第1の割合を特定すること、(E)第1の割合が、試料内の標的の合計数を推定するための所定の信頼条件を満たすか否かを判断し、満たさない場合、条件下に置くステップ、実行するステップ、および使用するステップを、第1のパケットとは異なる平均液滴容量および/または異なる濃度の試料を有する第2の液滴パケットを使用して繰り返して、核酸標的の増幅が発生した液滴の第2の割合を特定すること、ならびに(F)第1の割合、第2の割合、またはこれら両方に基づいて試料内の核酸標的の合計数を推定することを含む、方法。
29.核酸濃度および/または信頼区間を定量化する方法であって、(A)標的核酸分子の有無について解析される、所与の開始容量を有する試料を提供すること、(B)試料から所定量の副試料を取り出すこと、(C)副試料を、標的核酸分子を複製する任意のプライマおよびまたはプローブと組み合わせること、副試料を希釈すること、副試料を濃縮させること、およびこれらの組み合わせのうちの任意のステップを実行することにより、分析混合物を作成すること、(D)分析混合物から所定数の液滴を有する液滴パケットを作成することであって、各液滴は液滴容量分布を有する、作成すること、(E)核酸を複製する条件下にパケットを置くこと、(F)パケットからの少なくとも1つの液滴に対して1つまたは複数の測定を実行すること、(G)1つまたは複数の測定を使用して、複製された標的核酸分子を含む液滴の数および場合により、容量分布が未知の場合、液滴容量を特定すること、ならびに(H)複製された標的核酸分子を含む液滴の数を使用して、試料容量内の標的核酸分子の数、その信頼区間、およびこれらの組み合わせのうちの任意のものを推定することを含む、方法。
30.液滴容量は、光学的方法(例えば、散乱、蛍光)または電気的方法(例えば、導電性、誘電率)を使用して測定される、段落29に記載の方法。
31.核酸分析複製は、光学的方法(例えば、輝度、蛍光)または電気的方法(例えば、導電性、誘電率)を使用して測定される、段落29または30に記載の方法。
32.液滴容量を変更することにより濃度を特定する方法であって、(A)試料分割容量を調整し、少なくとも、濃度を特定できる応答範囲を見つけるまで増幅された粒子の割合を測定すること、(B)応答範囲に広がる濃度範囲を有する第1の容量で所定数の液滴を作成すること、(C)増幅をサポートする条件下に液滴を置くこと、(D)信号(物理的特性)を測定して、増幅が発生したか否か、およびDNAが増幅前に液滴内に存在したか否かを判断すること、(E)液滴を計数して、増幅された液滴の割合を特定すること、(F)ポアッソン曲線またはその微分から、増幅された液滴の割合を使用して濃度範囲を推定すること、ならびに(G)推定された濃度が最適範囲外にある場合、第2の液滴容量を使用して解析を実行することを含む、方法。
33.段落32と同様に、液滴溶液を希釈または濃縮することにより、濃度を特定する方法。
[VIII.液滴ベースの分析の制御および較正]
本項では、例えば、液滴から検出される信号を使用して制御かつ/または較正される、核酸増幅のテスト等の液滴ベースの分析を実行する制御・較正方法および制御・較正装置を含め、例示的な制御・較正システムを説明する。関連するさらなる開示が、相互参照において上に列挙され、参照により本明細書に援用される米国仮特許出願、特に2009年9月1日に出願された米国仮特許出願第61/275731号明細書に見出し得る。
[A.はじめに]
増幅に関する液滴ベースのテストは一般に、正確である必要がある。不正確な場合、これらテストは、誤った結果、すなわち誤陰性および誤陽性を生成し得る。各種の誤った結果は有害な影響を有し得る。疾患の検出に関する誤陰性は、疾患が早期に処置されず、拡散を許すことを意味し得る。これとは対照的に、誤陽性は不必要な警告を生じさせ、コストがかかり、破壊的であり得る潜在的に不必要な対応を引き起こし得る。誤陰性および誤陽性に関連する問題を回避するために、不正確な増幅テストを繰り返して、テストの確実性を向上させなければならず、これはコストを増大させると共に、貴重であり得るより多くの試料および試薬を使用する。
図112は、蛍光を使用して、試料を分割することにより形成される液滴内の核酸標的の増幅を測定する例示的な手法を示すグラフ5710を示す。グラフは、時間に対して、液滴を含むフローから検出し得る蛍光信号をプロットする。各液滴は、蛍光信号により形成されるピークまたはスパイク5712(すなわち、波)等の蛍光信号強度の一時的な変化(例えば、一時的な増大)として検出し得る。
明確さを向上させるために、ここおよび本項の他の図に示される例示的なデータは、液滴を含むフローから検出される逐次データとして提示される。しかし、本項で開示される方法は、液滴セットから並行して収集し得る液滴画像データ(例えば、項IIおよび項VI参照)にも適用し得る。明確さを向上させるために、例示的なデータは単純化された形態でも提示され、各ピークは幅を有さず、液滴を搬送する連続相の検出により形成される一定の背景信号5713から突出する。しかし、信号ピークは、例えば、検出信号の周波数、各液滴の形状、フローを搬送しているチャネルのサイズおよび幾何学的形状、流量等に基づいて任意の適した形状を有し得る。さらに、信号ピークは、例えば、ここで示されるように比較的一定の間隔で、または様々な間隔で発生する任意の適した時間的分布を有し得る。ピークから提供され、かつ/またはピークから計算される液滴信号(例えば特に、ピーク高さまたはピークエリアに対応する信号)を使用して、対応する液滴内で増幅が発生したか否か、ひいては試料が分割された場合、液滴が核酸標的の少なくとも1つの分子を受け取ったか否かを判断し得る。
各液滴信号は、カットオフとも呼ばれる信号閾値5714と比較し得る。この比較は、各液滴信号が、液滴内の増幅に関して陽性信号を表す(標的が存在する)のか、それとも陰性信号を表す(標的が存在せず、かつ/または検出されない)のかの判断を提供し得る。例えば、閾値よりも大きな(および任意には閾値に等しい)液滴信号は、陽性液滴を表すものとみなし得る。逆に、閾値未満(および任意には閾値に等しい)液滴信号は、陰性液滴を表すものとみなし得る。(図112では、閾値5714を上回る陽性液滴信号は5716に示され、閾値5714を下回る陰性液滴信号は5718に示される)。したがって、閾値との比較により、各液滴信号を二進値等のデジタル値に変換し得る(例えば、陽性液滴の場合には「1」、陰性液滴の場合には「0」)。いずれの場合でも、陽性である液滴の割合を特定することができる。所与の液滴サイズの場合、陽性液滴の割合を、ポアッソン統計に基づくアルゴリズムへの入力として使用して、初期試料容量内に存在した核酸標的のコピー(分子)数を特定することができる。いくつかの実施形態では、2つ以上の閾値を使用して、結果を分類し得る(例えば、陰性、陽性、もしくは不確定、またコピーなし、1コピー、2コピー、3以上のコピー等)。
図113は、図112のフローから測定し得る液滴信号強度の範囲の例示的なヒストグラム5720を示す。各範囲の相対的な発生頻度は、棒の高さで示される。陽性信号および陰性信号の強度の分布は、増幅(陽性信号)により生成される信号強度と増幅なし(陰性信号)により生成される信号強度との小さな差よりも大きい場合がある。したがって、陽性液滴および陰性液滴からの液滴信号の分布は、5724に示されるように、増幅陽性液滴信号と増幅陰性液滴信号との問題のある重複を生み出し得る。そのため、図112に示されるように、いくつかの増幅陽性液滴は、閾値5714未満の偽陰性信号5726等の相対的に弱い液滴信号を提供し、これら陽性液滴が陰性として誤って識別されることになり得る。逆に、いくつかの増幅陰性液滴は、閾値5714を超える偽陽性陰性信号5728等の相対的に強い液滴信号を提供し、これら陰性液滴が陽性として誤って識別されることになる。いずれのタイプの誤った結果もコストがかかり、有害であり得るため、誤った検出の発生を最低限に抑えることが望ましい。
液滴から検出される信号のばらつきを生じさせ得る多くの要因がある。信号に影響し得る物理的なパラメータの例としては特に、検出時の液滴位置(例えば、検出器の「感知容量」に対する)、液滴の容量および形状、検出光学系(励起源、フィルタ、および検出器を含む)の光学的位置合わせ、検出器の応答、温度、振動、および流量を挙げることができる。蛍光信号に影響し得る反応化学的パラメータの例としては特に、各液滴内に存在する標的分子の数および/または背景核酸の量、増幅効率、試薬濃度のバッチ毎のばらつき、ならびに試薬と試料とを混合する際の容量のばらつきが挙げられる。これら物理的および化学的なパラメータのばらつきは、陽性液滴信号の分布と陰性液滴信号の分布との重複を増大させ、データの解釈を複雑化させ、テストの性能に影響を及ぼす(例えば、検出限界に影響する)恐れがある。ばらつきは、1回の実行内および/または実行間、標的のテスト内および/または異なる標的に対するテスト間、同じ機器および/または異なる機器で、同じオペレータおよび/または異なるオペレータ等で発生し得る。
したがって、液滴ベースの分析での精度および信頼性を向上させる必要がある。例えば、これらテストに液滴ベースのコントロール、場合により、テスト液滴内に組み込むことができ(分析実行のため)、またはテスト液滴と混合可能なコントロール液滴内に組み込むことができる(分析を制御するため)液滴ベースのコントロールを有することが望ましいであろう。そのように統合されたコントロールは、テスト反応と並行してコントロール反応を処理し、解析を加速化し得ることにより、コスト低減という恩恵を有し得る。システム較正(例えば特に、ハードウェア、試薬、および/またはソフトウェア(例えば、アルゴリズム)性能を確認するため)に使用できる1つまたは複数のコントロールを有することも有用であろう。
[B.定義]
本開示において使用される技術用語は、当業者により一般に認識される意味を有する。しかし、以下の用語は、後述するように追加の意味を有し得る。
信号−検出可能であり、かつ/または検出されたエネルギーおよび/または情報。検出された任意の信号は、検出後、信号および/またはデータと記述し得る。例えば、検出された液滴信号は特に、テスト信号およびテストデータ、コントロール信号またはコントロールデータ、参照信号および参照データ、較正信号および較正データ、送信信号および送信データ、またはこれらの任意の組み合わせを提供し得る。
変換−1つまたは複数の数学的演算および/または論理的演算を使用して、データセットの信号の1つまたは複数の値および/または数を変更すること。信号セットの変換は、信号のうちの1つまたは複数の値を変更することにより、かつ/または信号の任意の適したサブセットを削除/無効化することにより、変換された信号セットを生成し得る。信号の変換は特に、信号のばらつきの低減、異常値信号の削除/無効化、信号からのベースライン値の減算、異常値周波数の低減、陽性液滴信号の分布と陰性液滴信号の分布との重複の低減、回帰線に従っての信号の変更、閾値または範囲との信号値の比較に基づいての信号への新しい値の割り当て、またはこれらの任意の組み合わせを含み得る。
実行−一般におおよそ同じサイズであり、試料の分割物を含む液滴のセットがテストされる動作時間期間。
オリゴヌクレオチド−約100未満のヌクレオチドの核酸。
外因性−外部に端を発する。例えば、試料に対して外因性の核酸は、元々分離したものとして試料の外部にある。別の例として、有機体または細胞に外因性の核酸は、感染またはトランスフェクションにより有機体または細胞内に導入された核酸等、その有機体または細胞に元々存在するものではない。
内因性−元々は分離されたものとして、または試料内に元々存在するものとして試料内に存在するなど、内部に端を発する。
[C.概要]
本開示は、液滴から検出される信号を使用して制御かつ/または較正される核酸増幅の液滴ベースのテストを実行する、方法および装置を含めたシステムを提供する。
本開示は、試料解析方法を提供する。液滴が得られ得る。液滴は、オンラインで生成してもよく、または少なくとも液滴のサブセットをオフラインで事前形成してもよい。液滴のうちの少なくともサブセットまたはすべては、テストすべき試料の分割物を含み得、分割物内に少なくとも1つのテスト核酸標的が存在する場合、その核酸標的を増幅可能であり得る。いくつかの実施形態では、液滴は、テスト核酸標的およびコントロール核酸標的を増幅可能であり得る。液滴は集合的または個々に、染料または少なくとも第1の染料および第2の染料を含み得る。いくつかの実施形態では、液滴は、特に、2つ以上のタイプのテスト液滴、テスト液滴およびキャリブレーション液滴、またはテスト液滴およびコントロール液滴等の少なくとも2つのタイプのものであり得る。いくつかの実施形態では、特に、フロー内の液滴タイプの別個の時間的位置(またはフローからの別個の流出時間、例えば、液滴が撮像のために1つまたは複数の検出チャンバ内に集められる別個の時間)、液滴タイプ内のそれぞれ別個の染料の存在、同じ染料(もしくは異なる染料)の区別可能な信号強度、またはこれらの組み合わせに基づいて、2つ以上のタイプの液滴を区別し得る。
蛍光信号等の信号を液滴から検出し得る。信号は、テスト信号、キャリブレーション信号、コントロール信号、参照信号、またはこれらの任意の組み合わせを含み得る。いくつかの実施形態では、テスト信号およびコントロール信号はそれぞれ、テスト核酸標的およびコントロール核酸標的の増幅が個々の液滴内で発生したか否かを示し得る。いくつかの実施形態では、検出は、(a)第1および第2の染料を同じ波長の励起光で励起させること、および(b)第1および第2の検出チャンバのそれぞれ内で互いに少なくとも実質的に独立して第1および第2の染料から発せられた光を検出することを含み得る。
検出された信号を解析して、試料内にテスト核酸標的が存在する場合、その存在(数、濃度等)に関連するテスト結果を特定し得る。いくつかの実施形態では、解析は、テスト信号のばらつきを低減するために、参照信号に基づいてテスト信号を変換することを含み得る。テスト信号および参照信号は、それぞれ別個の検出チャネル内で検出してもよく、または同じ検出チャネル内で検出してもよい。いくつかの実施形態では、参照信号は、増幅反応に結合されない第2の染料により提供し得、したがって、受動参照(passive reference)として機能する。いくつかの実施形態では、参照信号は、コントロール増幅反応から検出されるコントロール信号により提供し得る。コントロール増幅反応は、外因性または内因性の鋳型の増幅を測定し得る。いくつかの実施形態では、解析は、(a)テスト信号または変換されたテスト信号セットを信号閾値と比較して、個々の液滴に、テスト核酸標的に関して陽性または陰性を割り当てること、および(b)比較に基づいて、試料内のテスト核酸標的の分子数を推定することを含み得る。いくつかの実施形態では、解析は、(a)コントロール信号を解析して、コントロール核酸標的に関して増幅陽性である液滴の数および/または割合に対応するコントロール値を特定すること、ならびに(b)コントロール値に基づいて、有効性の判断等、テスト結果を解釈することを含み得る。
本明細書において開示されるシステムは、改良された機器較正ならびに/あるいは液滴ベースの増幅テストの精度および/または信頼性のかなりの改良を提供し得る。本開示により提供される例示的な能力は、(1)蛍光信号のばらつきを補正/最低限に抑えて、液滴PCR結果の精度を増大させること、(2)核酸増幅が失敗したか否か(例えば、試料内の干渉成分からのPCR阻害、不正確な試料と試薬の混合、不正確な熱循環、不正確な液滴形成)の内部指標を提供すること、(3)追加のハードウェア構成要素を追加する必要なく、液滴容量の測定を提供すること、(4)ベースライン蛍光信号の変更(すなわち、ベースラインドリフト)の測定を提供すること、(5)実行前および/または実行中に液滴検出器の較正を提供すること、(6)実行前および/または実行中に定量的液滴PCR測定およびデータ処理アルゴリズムの性能を監視すること、(7)液滴保全性の確認(例えば、合体が存在しないこと)、(8)インライン検出器を使用して液滴生成および検出周波数(空間的および時間的)についての情報を得ること、(9)ばらつきを測定して、事前定義された許容差と比較すること、(10)未処理の液滴PCRデータを処理して、ばらつきを補正し、テストの精度および性能を増大させること、(11)好ましくは、単一の励起源を使用してコントロール分析を組み込むこと、ならびに/あるいは(12)2種以上の遺伝子標的を個々の液滴内で増幅し検出することにより、2種以上の遺伝子標的を定量化することの任意の組み合わせを含み得る。
[D.システム概説]
図114は、制御装置および/または較正器を用いて液滴ベースのテストを実行する例示的なシステム5740を示す。適し得る他の例示的なシステムが、本明細書の他の箇所、特に項II等に説明されている。システム5740は特に、試料準備ステーション5742、少なくとも1つの液滴生成器5744、熱循環機5746等の加熱ステーション、検出ステーション5748、ならびにデータ解析器5752およびフィードバック・制御部5754を組み込んだコントローラ5750の任意の組み合わせを含み得る。
システムは、1つまたは複数の上流位置から検出ステーション5748に向けて下流方向に少なくとも1つの試料および試薬を搬送する少なくとも1つのフローを提供し得る。フローから検出された(または撮像等のフロー停止状態で検出された)信号、特に液滴信号をデータ解析器5752に通信し得る。データ解析器は、信号を解析して、1つまたは複数のテスト結果、制御結果、較正結果、任意の結果の品質(例えば、有効性、信頼性、信頼区間等)、またはこれらの組み合わせを特定し得る。任意の結果をフィードバック・制御部5754に通信し得、フィードバック・制御部5754は、特定された結果に基づいて、試料準備ステーション5742、液滴生成器5744、熱循環機5746、検出ステーション5748、およびデータ解析器5752のうちの任意を制御し、かつ/またはそれらのうちの任意の制御を調整し得る。
準備ステーション5742は、少なくとも1つの試料5756、少なくとも1つのセットのテスト試薬5758(標的試薬とも呼ばれる)、1つもしくは複数のコントロール試薬5760、1つもしくは複数のキャリブレーション試薬5762、またはこれらの任意の組み合わせを含み、かつ/または供給し得る。任意の試料および/または試薬は、別個に格納し、かつ/または供給してもよく、1つもしくは複数の事前形成された混合物として格納かつ/または供給されてもよく、ならびに/あるいはシステムの下流領域(例えば、液滴生成器5744、熱循環機5746、または検出ステーション5748)に供給される前に選択可能に混合してもよい。さらに、任意の試料および/または試薬は、試料準備ステーション5742から液滴生成器5744、熱循環機5746、そして液滴信号を検出する検出ステーション5748に移動し得る。あるいは、任意の試料および/または試薬は、5764に示されるように液滴生成器を通らずに、熱循環機を通らずに、または5766で示されるようにこれら両方を通らずに検出ステーションに到達してもよい。したがって、本明細書において開示される任意の試料および/または試薬は、事前形成された液滴で格納し、かつ/または供給し得る。液滴は、例えば、近くまたは遠くでオフラインで事前形成し得る。事前形成された液滴は、検出ステーション5748に達する前に液滴生成器5744により形成される液滴とランダムに混合してもよく、または別個のタイプの液滴を、空間的かつ/または時間的に分離された液滴パケットとして検出してもよい。
テスト試薬5758は、試料の分割物内の、1つまたは複数の一次標的等の1つまたは複数の標的の増幅をテストするために使用される任意の試薬であり得る。一次標的は一般に、テストにおける一次的な関心の任意の試薬を含む。一次試薬は、試料に対してテストを実行する前に、試料内に未知のレベルで存在し得る。テスト試薬5758は一般に、試料内のテストすべき1つまたは複数の特定の核酸標的の増幅に関して特異性を付与する1つまたは複数のセットの標的試薬を含む。したがって、テスト試薬は、少なくとも1つ(または2つ以上)の核酸標的の増幅を始動可能な少なくとも1対(または2対以上)のプライマを含み得る。テスト試薬は、テスト標的、ポリメラーゼ(例えば、熱安定性ポリメラーゼ)、および/またはdNTPs等のそれぞれの増幅の検出に役立つ少なくとも1つのレポータも含み得る。テスト試薬は、液滴からテスト信号を検出できるようにする。
コントロール試薬5760は、テスト信号のばらつき(一般に、増幅での差により生成されるばらつき以外のばらつき)を制御し、かつ/またはテスト試薬を使用して得られた結果(結果の信頼性および/または有効性等)を解釈するために使用される任意の試薬である。コントロール試薬は、テスト信号と同じまたは異なる液滴である液滴からコントロール信号および/または参照信号を検出できるようにする。コントロール試薬は、液滴形成前にテスト試薬と混合してもよく、かつ/またはコントロール試薬を含むコントロール液滴を、テスト液滴とは別個に生成して、試料から独立して導入してもよい。
コントロール試薬は、機器コントロール、すなわち、システム(および/または環境)によりもたらされるばらつきに対するコントロールを提供し得る。したがって、機器コントロールは、液滴容量、液滴検出効率、検出器ドリフト等のばらつきを制御し得る。参照信号は、機器コントロールとして機能するコントロール試薬を含む液滴から検出し得る。
コントロール試薬は、追加または代替として、増幅コントロール、すなわち、液滴内の二次/コントロール増幅をテストするコントロールを提供し得る。したがって、コントロール試薬は、液滴内の少なくとも1つの二次的またはコントロール試薬の増幅をテストするために使用される試薬を含み得る。二次的/コントロール試薬は、特に、テストにおいて二次的な関心のものであり得、かつ/または試料内に既知のまたは予想されるレベルで存在し得る。いずれの場合でも、コントロール試薬は、液滴内でテストすべき1つまたは複数のコントロール核酸標的の増幅に関して特異性を付与する1つまたは複数のセットの標的試薬を含み得る。コントロール試薬は、少なくとも1つ(または2つ以上)のコントロール核酸標的の増幅を始動可能な少なくとも1対(たまは2対以上)のプライマを含み得る。コントロール試薬は、コントロール標的、ポリメラーゼ(例えば、熱安定性ポリメラーゼ)、および/またはdNTPs等のそれぞれの増幅の検出に役立つ少なくとも1つのレポータも含み得、あるいはこれらコントロール試薬の任意の適した組み合わせをテスト試薬により供給し得る。コントロール信号は、増幅コントロールとして機能するコントロール試薬から検出し得る。
キャリブレーション試薬5762は、システムの動作および応答の較正に使用される任意の試薬である。システム較正(例えば、流量、励起電力、光学的位置合わせ、検出器電圧、増幅器利得、液滴サイズ、液滴間隔等の較正)のために、キャリブレーション試薬を含む液滴(すなわち、キャリブレーション液滴)は、検出ステーションから上流の任意の位置でシステムのフロー内に導入し得る。キャリブレーション液滴は、テスト液滴をフロー内に導入する前、導入中、および/または導入後にシステムのフロー内に導入し得る。いくつかの実施形態では、コントロール液体内の染料のレベルを使用して、意図される測定範囲を括り、かつ/または測定範囲の上下端の近傍に配置されたキャリブレーション信号を提供する一対の染料濃度を使用するなどして、検出器の応答を較正かつ/または確認し得る。例えば、既知のサイズであり、1つまたは複数の既知の染料濃度を含む液滴をオフラインで準備し、システム内に導入し、かつ/またはシステムにより生成し得る。いくつかの実施形態では、キャリブレーション液滴は、量子ドット、ポリマービード等の蛍光粒子を含み得る。
システム5740を使用して、1つまたは複数の試料を解析する方法を実行し得る。方法は、任意の適した順序で実行される、本明細書において開示されるステップの任意の適した組み合わせを含み得る。
液滴を取得し得る。液滴は、1つまたは2つ以上のタイプであり得る。液滴の少なくともサブセットまたはすべては、システムにより生成してもよく、またはオフラインで事前形成されてもよい。液滴の少なくともサブセットは、テスト核酸標的の増幅をテストするためのテスト試薬を含み得る。液滴の少なくともサブセットは、コントロール核酸標的の増幅をテストするためのコントロール試薬および/またはキャリブレーション試薬を含み得る。液滴は1つまたは複数の染料を含み得る。
液滴は、検出器の上流においてフローに導入し得る。すべての液滴を同じ位置でフローに導入してもよく、または液滴、特に異なるタイプの液滴を2つ以上の別個の位置で導入してもよい。
液滴は、フロー内で、増幅を促進する条件下に置かれ得る。例えば、液滴を加熱し、かつ/または繰り返し加熱し冷却(熱循環)し得る。
信号を液滴から検出し得る。信号は、テスト信号、コントロール信号、参照信号、キャリブレーション信号、またはこれらの任意の組み合わせを含み得る。
信号を解析し得る。解析は、テスト信号を変換することを含み得る。解析は、追加または代替として、テスト信号および/または変換されたテスト信号を信号閾値と比較して、核酸標的の増幅に関して陽性または陰性を個々の液滴に割り当てることを含み得る。標的陽性液滴の数および/または割合を、比較の結果に基づいて特定し得る。解析は、試料内の核酸標的の存在を推定することをさらに含み得る。存在の推定は、試料内に標的がないことであり得る。存在の推定は、ポアッソン統計を使用して実行してもよく(または実行しなくてもよい)。
[E.例示的な機器の制御および較正]
図115は、第1の染料を使用して核酸標的の増幅を検出し、第2の染料を使用してテスト中のシステムのばらつきを制御する例示的な構成5780でのシステム5740の選択された態様を示す。図115および本開示の後続図に提示される他のシステム構成では、用語「液滴生成器」、「熱循環機」、および「検出ステーション」は「DG」、「TC」、および「DET」と略される。
試料準備ステーション5742は、増幅混合物を液滴生成器5744に供給し得る。増幅混合物は、試料5756と、第1の染料5784(染料1)を含む標的試薬5782(すなわち、テスト試薬5758)と、第2の染料5786(染料2)とを組み込み得る。第2の染料および標的試薬は、システム5740内に導入される前に互いに混合されてもよく、またはシステム内で混合されてもよい。標的試薬5782は、核酸標的を増幅させるためのプライマを提供し得るが、第1の染料は、増幅が発生したか否かを検出できるようにし得る。第1および第2の染料は、光学的に区別可能な蛍光染料であり得る。第2の染料は、受動参照または機器コントロールであり得る。換言すれば、第2の染料は、核酸標的が存在する場合、その核酸標的の増幅の程度から少なくとも実質的に独立した強度を有する検出可能な信号を提供し得る。
液滴生成器5744は、増幅混合物の液滴をなし得る。液滴は、熱循環機5746を通って移動して、各液滴内に核酸標的が存在する場合、核酸標的の増幅を促進させ得る。次に、液滴は検出ステーション5748に移動し得る。ステーション5748は、液滴毎に、第1の染料からテスト信号を検出し、第2の染料から参照信号(コントロール信号とも呼ばれる)を検出し得る。
図116は、図115のシステム構成5780内に含め得る例示的な標的試薬5782およびコントロール試薬5760を示す。標的試薬およびコントロール試薬は、第1の検出チャネル5788(「チャネル1」)内でテスト信号を検出し、第2の検出チャネル5790(「チャネル2」)内で参照信号を検出できるようにし得る。第1および第2のチャネルは、別個の波長および/または少なくとも実質的に重ならない波長範囲を表し得る。
標的試薬は、プローブ5792等のレポータと、標的固有のフォワードプライマおよびリバースプライマ5794とを含み得る。プローブ5792は、増幅された標的に結合する、オリゴヌクレオチド5796等の核酸を含むエネルギー移動プローブ(例えば、TAQMANプローブ)および鎖5796に接続されたエネルギー移動対であり得る。エネルギー移動対は、例えば、第1の染料5784および消光剤5798により形成し得る。
コントロール試薬5760は第2の染料5786を含み得る。第2の染料は、オリゴヌクレオチド5800等の核酸に接続してもよく(またはしなくてもよい)。オリゴヌクレオチドへの接続は、共有結合および/または結合相互作用によるものであり得る。オリゴヌクレオチドまたは他の水溶性分子への第2の染料の接続は、特に、液滴の水性相内への第2の染料の保持を向上させ、かつ/または水性相全体を通して染料が分散することに役立ち得る。
図117は、システム構成5780(図115)を使用し、場合により、図116に示される試薬を使用してシステムのばらつきを補正する例示的な手法を示すフローチャートを示す。テスト信号(すなわち、標的信号)および参照信号を同じ液滴から検出し得る。例えば、テスト信号を第1のチャネル内で検出し、参照信号を第2のチャネル内で検出し得る。テスト信号と参照信号との同時検出を示すグラフが、5810、5812のそれぞれに示される。
テスト信号のばらつきは、データ処理に誤差をもたらす恐れがある。例えば、グラフ5810は、検出されたテスト信号の強度に大きなばらつきを示す。その結果、テスト信号のうちのいくつかが誤って陽性または陰性に分類される恐れがある。この図では、2つの偽陽性が印される。しかし、テスト信号のばらつきは、同じ液滴から検出される参照信号のばらつきにミラーリングされ得る。したがって、5814に示されるように、参照信号に基づいてテスト信号を変換して、変換後のテスト信号をプロットするグラフ5816に示されるように、テスト信号のばらつきを補正し得る。テスト信号は、参照信号に関わる任意の適した演算または演算セットにより変換し得る。例えば、テスト信号の正規化と説明し得る、各テスト信号を対応する参照信号で除算するなど、テスト信号を参照信号で除算することを通して、テスト信号を変換し得る。あるいは、例えば、ベースライン減算、回帰直線からの距離等により、参照信号に基づいてテスト信号を変換し得る。変換は、テストチャネルのばらつきを補償し得る。この補償または補正は、テスト信号(すなわち、陰性テスト信号および/または陽性テスト信号)の値をより均一にし、かつ/または正規分布により近づけ得る。追加または代替として、異常値の周波数ならびに/あるいは陽性信号および陰性信号の分布の重複を低減し得る。
図118は、(a)液滴セット内の核酸標的の増幅を検出し、(b)別の液滴セットでシステムを較正し、かつ/またはシステムのばらつきを補正する例示的な構成5830でのシステム5740の選択された態様を示す。構成5830は、標的試薬5782およびコントロール試薬5760が同じ液滴内にないことを除き、図115の構成5780と同様である。したがって、標的試薬およびコントロール試薬は、5832で示されるように、システムのそれぞれ別個の液滴生成器に供給してもよく、試料液滴生成器に異なる時間に供給してもよく、または5834、5836に示されるように、コントロール試薬を、液滴生成器を通さずに事前形成された液滴内に供給してもよい。標的試薬およびコントロール試薬はこの構成では同じ液滴内にないため、コントロール試薬は、標的試薬と同じ染料(すなわち、第1の染料5784)を含んでもよく、または別個の染料(第2の染料5786)を含んでもよい。
図119は、5852で示されるシステム較正中および5854で示される試料テスト中に、システム構成5830(図118)のフローから時間の経過に伴って検出し得る蛍光信号の例示的なグラフ5850を示す。較正および試料テストは、キャリブレーション液滴とテスト液滴とを混合せずに実行してもよく、または混合して実行してもよい。
較正および試料テストは、液滴タイプを混合せずに、同じ染料(および/または同じ波長の検出)を使用して逐次実行し得る。キャリブレーション液滴とテスト液滴とを別個に保つことにより、テスト信号強度およびキャリブレーション信号強度の分布が重複してもよい。例えば、キャリブレーション液滴およびテスト液滴は、検出ステーションへの到来時間に基づいて各タイプの液滴を識別可能なように、フロー内で時間的に隔て得る。到来時間は、フローへの各液滴タイプの導入の相対時間および流速に基づいて計算し得る。したがって、キャリブレーション液滴およびテスト液滴は、信号強度に基づいて区別可能でなくてもよく(または可能であってもよく)、時間的に区別可能であってもよい。特に、テスト液滴およびキャリブレーション液滴は、液滴タイプ間の移り変わりを識別し得る時間的(および空間的)ギャップ5856により隔て得る。時間的ギャップの使用により、テスト液滴セット(すなわち、テスト実行)中に、キャリブレーション液滴セットの前後にギャップがある状態でキャリブレーション液滴セットを導入して、異なる液滴タイプへのそれぞれの移り変わりの識別を提供することも可能であり得る。換言すれば、較正は、一続きのテスト液滴が2つ以上の離散したグループに分けられるように、キャリブレーション液滴を一続きのテスト液滴内に挿入することにより、試料テスト中に実行し得る。
キャリブレーション液滴は、別個に、または混合して導入し得る2つ以上のタイプの液滴を含み得る。例えば、図119は、別個のタイプのキャリブレーション液滴により生成されるより強いキャリブレーション信号5858のセットの後に、より弱いキャリブレーション信号5860のセットが続くことを示す。より強いおよびより弱いキャリブレーション信号5858、5860は一般に、強度の点で、陽性テスト信号5862および陰性テスト信号5864のそれぞれに対応し得る。他の実施形態では、1つのみのタイプまたは3つ以上のタイプのキャリブレーション液滴を使用し得、キャリブレーション信号の1つまたは3つ以上の強度を提供するようにそれぞれ構成し得る。
あるいは、較正および試料テストは、キャリブレーション液滴およびテスト液滴をランダムに混合し、したがって、時間的に区別できない状態で実行し得る。混合されたキャリブレーション液滴およびテスト液滴は、区別可能な染料を各液滴タイプに組み込み、場合により、別個の各波長で区別可能な染料を検出することにより区別可能であり得る。代替または追加として、キャリブレーション液滴およびテスト液滴は、同じ波長で検出される、場合により同じ染料から検出される信号強度に従って区別可能であり得る。特に、キャリブレーション液滴は、テスト液滴の信号範囲(すなわち、陰性テスト液滴および陽性テスト液滴からの信号強度の集合的な分布により提供される信号範囲(例えば、図113参照))外の1つまたは複数の信号強度を有するように設計し得る。したがって、キャリブレーション液滴は、テスト液滴の信号範囲の上および/または下の信号強度を有するキャリブレーション信号に基づいて識別し得る。
図120は、図118のシステム構成5830を使用して増幅テスト中に信号のばらつきを補正する例示的な手法のフローチャート5880を示す。図120に示される手法は、キャリブレーション液滴に関して上述したように、同じ検出チャンバ内で検出される信号強度の差に基づいて、液滴信号のタイプ、すなわち、テスト液滴信号5882および参照液滴信号5884を区別する。特に、テスト液滴はある範囲5886の信号強度を生成し、参照信号5884はその範囲よりも下(または上)の強度を有し得る。したがって、別個のタイプの液滴がフロー内でランダムに散在し得る。
参照液滴は、染料と同量(または2つ以上の離散量)で形成し得る。したがって、システムにより生成される信号のばらつきがない場合、参照液滴は同じ強度の参照信号を生成するはずである。参照信号の強度のばらつきは、テスト信号の強度の対応する変化によりミラーリングし得る。例えば、グラフ5888において、参照信号5884の強度および陰性テスト信号5890の強度は、時間に関して漸次的な増大を示す。その結果、増幅陰性液滴からのテスト信号が偽陽性5892を生成する恐れがある。
テスト信号5882のばらつきは、5894に示されるように、参照信号5884に基づいてテスト信号を変換して、グラフ5898に提示される正規化テスト信号5896を生成することにより、低減し得る。変換は、例えば、テスト信号に時間的に近い1つまたは複数の参照信号、テスト信号に時間的に近い参照信号の加重平均、テスト信号に重複する平均参照信号のスライド窓等に基づいて各テスト信号を変換することにより実行し得る。テスト信号を閾値と比較する前の変換は、ここで示されるような偽陽性の発生、偽陰性の発生、またはこれら両方を低減し得る。
[F.例示的な増幅制御]
図121は、図114のシステム5740の選択された態様を示し、システムは、同じ液滴内の少なくとも一対の核酸標的の増幅をテストする例示的な構成5910である。システム構成5910は増幅混合物を形成し得、増幅混合物は液滴生成器5744に供給される。増幅混合物は、試料5756、テスト増幅試薬5858、コントロール増幅試薬5912、および少なくとも1つのコントロール鋳型5914を組み込み得る。試料、テスト試薬、コントロール試薬、およびコントロール鋳型の任意の組み合わせは、システム5740に導入する前に互いに混合してもよく、またはシステム内で混合してもよい。テスト試薬5758およびコントロール試薬5912は、少なくとも1つのテスト試薬および少なくとも1つのコントロール標的のそれぞれのプライマを提供し得る。
テスト試薬およびコントロール試薬の増幅は、例えば、第1および第2のレポータ(例えば、第1および第2のプローブ)のそれぞれ内に含まれ得る第1の染料および第2の染料を介して検出し得る。第1および第2の染料からの信号は、別個の(例えば、少なくとも実質的に重ならない)第1および第2のチャネル(すなわち、テストチャネルおよびコントロールチャネル)内でテスト信号およびコントロール信号のそれぞれとして検出し得る。
コントロール鋳型5914は、コントロール標的の外因性分子を含み得る。逆に、試料は、テスト標的の内因性分子の存在についてテストし得る。コントロール鋳型5914は、任意の適した量で存在して、液滴毎に任意の適した平均数のコントロール鋳型分子を提供し、コントロール鋳型が陽性の液滴の所望の割合を生成し得る。例えば、鋳型5914により提供される鋳型分子の数は、液滴毎に約0.1個、0.05個、0.02個、または0.01個の分子等、液滴毎に平均で実質的に1未満であり得る。したがって、コントロール鋳型分子の数/濃度は、同じ液滴内のテスト標的およびコントロール標的の両方の増幅頻度が低いように選択し得、それにより、テスト標的およびコントロール標的の両方の増幅に起因し得る競合を最低限に抑え得る。例えば、コントロール鋳型は、5つの液滴のうち約1個以下に存在し得る。
コントロール標的の増幅頻度は、システムを使用して解析を実行することにより決定し得る。いくつかの実施形態では、この頻度を、コントロール標的に対して先に決定された1つまたは複数の増幅頻度と比較し、かつ/または製造業者により提供される予想頻度値と比較し得る。いずれの場合でも、コントロール値を特定し得、コントロール値は、コントロール核酸標的に関して増幅陽性である液滴の数および/または割合に対応する。
コントロールチャネル内で取得されるコントロール信号を使用して、1回の実行の定量精度および/または2回以上の実行中でのシステムの測定精度を測定し、かつ/または検証し得る。コントロール信号は、追加または代替として、例えば、試料から測定されたテストデータの品質等のテスト結果を解釈して、テストデータの定量精度および/またはテストデータの信頼性を確認するために使用し得る。テスト結果は、測定されたコントロール値に基づいて解釈されてもよい。例えば、コントロール値が閾値未満の場合、テスト結果を無効と判断し得る。さらに、増幅陰性コントロール液滴からの信号等のコントロールチャネルから取得されたデータは、図117に関連して上述したように、参照信号を提供し得る。換言すれば、参照信号として機能するコントロール信号を使用して、テスト信号を変換し、テスト信号を正規化し得る。
図122は、図114のシステム5740の選択された態様を示し、システムは、同じ液滴内の少なくとも一対の核酸標的の増幅をテストする別の例示的な構成5920である。システム構成5920は、異なるコントロール増幅試薬5922セット(または第2のテスト増幅試薬セット)を含み、外因性コントロール鋳型がないことにより、図121の構成5910と異なる。コントロール試薬5922は、試料5756内に存在することが分かっているか、または予想され、かつ/または試料内の存在するバルク核酸母集団(例えば、DNA全体、ゲノムDNA全体、特定の種の有機体からのゲノムDNA、RNA全体、mRNA全体等)に対して既知もしくは予想される発現を有するコントロール試薬を増幅し得る。逆に、標的試薬5758は、試料内の存在が未知であり、かつ/またはバルク核酸母集団内での存在が未知であるテスト試薬を増幅し得る。いずれの場合でも、コントロール試薬の増幅を使用して、テストデータの定量精度を検証し、かつ/またはテストデータの信頼性を特性するなど、試料から測定されるテストデータの品質を特定し得る。さらに、試料内に存在すると特定されたコントロール試薬の量は、試料内に存在すると特定されたテスト試薬の量を比較し、かつ/または正規化するために突き合わせられる標準を提供し得る。いくつかの実施形態では、特定の遺伝子変異を発現する標的等、試料内では希なコントロール試薬が選択される。希なコントロール試薬を選択することにより、コントロール標的の増幅は、テスト試薬の検出限界および/または小量テスト標的の増幅を行うことができるか否かを示すことができる。いくつかの実施形態では、コントロール標的は、試料内での存在が未知の(テスト前に)第2のテスト試薬で置換し得る。
図123は、図121(または図122)のシステム構成5910(または5920)に含めて、各核酸標的に対して異なる検出チャネル(すなわち、チャネル1および2のそれぞれ)内で増幅信号を検出できるようにする例示的なテスト標的試薬5758およびコントロール標的試薬5912(または5922)を示す。チャネル1用のテスト標的試薬については、図116に関連して上述した。コントロール標的試薬5912(または5922)は、全体的な構造はテスト標的試薬と同様であるが、プライマおよびプローブの核酸配列に関して異なり、テスト標的およびコントロール標的への特異性をそれぞれ提供し得る。テストプローブおよびコントロールプローブはまた、別個の染料5784、5786および/または別個のエネルギー移動パートナ5798、5930(例えば、各染料に適した別個の消光剤)を含み得る。他の実施形態では、プローブのうちの少なくとも一方は、SYBRグリーン等の挿入染料を含むレポータで置換し得る。
図124および図125は、システム構成5910または5920および図123の試薬を使用して得ることができる例示的なデータの代表的な部分を示す。図は、異なる検出チャネル、すなわち、テストデータを検出するテストチャネル(チャネル1)およびコントロールデータを検出するコントロールチャネル(チャネル2)を使用してシステムのフローから時間の経過に伴って検出し得る蛍光信号の例示的なグラフ5940〜5946を示す。図124では、テストデータのグラフ5940は、陽性液滴信号を含まない。逆に、コントロールデータのグラフ5942は、10のうち約1つの頻度で陽性信号5948等の陽性液滴信号を識別する。したがって、コントロールデータは、液滴内の増幅が実質的に阻害されなかったことを実証し、テストデータから陽性信号がないことが、試料内にテスト試薬がなかったため、または試料内のテスト試薬が検出不可能なレベルであったことによることを示唆する。したがって、コントロールデータは、テストデータでの陰性結果の検証を支持し助ける。逆に、図125のコントロールグラフ5946は、コントロール標的の増幅がなかったことを示す(実質的により大きなデータセットを解析して、コントロールの結果が有効なことを実証し得る)。したがって、グラフ5946のコントロールデータは、テスト標的の増幅も阻害され(または希釈のしすぎ等の試料に欠陥があり(構成5920))、陰性テスト結果が有功ではないことを示す。
図126は、図114のシステムの選択された態様を示し、システムは、異なる(すなわち、重ならない)各液滴セット内の一対の核酸標的の増幅をテストする例示的な構成5960である。構成5960は、コントロール試薬5912およびコントロール鋳型5914が試料5756およびテスト試薬5758と混合されないことを除き、構成5910の構成と同様であり得る。混合されることに代えて、コントロール試薬およびコントロール鋳型を含む液滴は、5962において示されるように、システム内で別個に形成してもよく、または5964に示されるように、液滴生成器5744の下流でフロー内に導入される事前形成される液滴として供給してもよい。
図127は、異なる検出チャネルを使用して、図126のシステム構成5960のフローから時間の経過に伴って検出し得る蛍光信号の一対の例示的なグラフ5980、5982を示す。グラフ5980は、テスト試薬がある場合、テスト試薬の増幅を検出する第1のチャネルから検出される蛍光信号をプロットしている。グラフ5982は、コントロール試薬が存在する場合、コントロール試薬の増幅を検出する第2のチャネルから検出される蛍光信号をプロットしている。ここで示されるように、コントロール標的の増幅成功は、例えば特に、熱循環機および/または検出ステーションの動作、試薬の品質、増幅陽性液滴の割合、あるいはこれらの任意の組み合わせ等のシステムの態様を検証し、かつ/または測定し得る。
構成5960では、テスト試薬およびコントロール試薬は別個の液滴内に別個に配置されるため、第1および第2のチャネル内での液滴信号は同時に発生しない。すなわち、同時に検出されない。それに代えて、他の実施形態では、コントロール試薬は第2のテスト標的であり、コントロール鋳型は別の試料(または同じ試料)であり得る。したがって、少なくとも2つの検出チャネルの使用により、別個の増幅テスト用の液滴をフロー内に散在させることが可能である。
[G.例示的な複数チャネル検出]
図128は、図114のシステム内で使用し得る蛍光染料の例示的な吸収スペクトルおよび発光スペクトルを示す一対のグラフ5990、5992を示す。染料はそれぞれ、染料1および染料2と任意に印される。しかし、いずれの染料も、本明細書において開示される様々なシステム構成でのテスト信号またはコントロール信号を検出するために使用し得る。さらに、ここでは2つの区別可能な染料について説明するが、システムは、3つ、4つ、または5つ以上の区別可能な染料を使用して検出し解析するためにも使用し得る。
各グラフは、対応する染料の、5994、5996に示される吸収強度(「AB」)および5998、6000で示される発光強度(「EM」)をプロットしている。染料は、同じ波長の光を利用して、両方の染料を励起させ得るように、実質的に重複する吸収スペクトルを有し得る。逆に、染料は、異なる大きさのストークスシフト(すなわち、吸収スペクトルの最大と発光スペクトルの最大との(波長または周波数単位での)差)を示し得る。例えば、染料1はより小さなストークスシフトを示し、染料2はより大きなストークスシフトを示し得、またはこの逆を示し得る。したがって、染料の発光スペクトルは、互いに対して実質的にシフトし得る。その結果、2つの染料からの発光は、第1の波長または波長範囲(例えば、λ1)の光を検出する検出チャネルおよび第2の波長または波長範囲(例えば、λ2)の光を検出する別の検出チャネル等の異なる検出チャネル内で互いから少なくとも実質的に独立して検出し得る。
図129は、図114のシステム5740の例示的な実施形態6010での図128の蛍光染料の例示的な使用を示す概略図である。同じ液滴内または異なる液滴セット内に染料1および2を含む液滴6012を、チャネル6016内のフロー6014で搬送し得る。フロー6014は、検出ステーション5748の実施形態6020により確立される検出エリア6018を通過し得る。
検出ステーション6020は、液滴内の蛍光染料を励起させる光源6022と、液滴から発せられた光を検出する少なくとも1つの検出器6024と含み得る。光源6022は、例えば、少なくとも実質的に単一波長の励起光を発するLEDまたはレーザを含み得る。代替または追加として、光源は、光源から発せられる他の波長の光を除外する少なくとも1つの励起光学フィルタを含み得る。検出器6024は、染料から発せられた光を別個に検出できるようにする検出光学系6026、6028(例えば、ビームスプリッタ、発光光学フィルタ、別個の検出器)を備え得る。
システム6010を使用して検出し得る例示的な蛍光染料は、カルボキシフルオレセイン(FAM)およびPULSAR650染料(Ru(bpy)の誘導体)等のフルオレセイン誘導体を含む。FAMは相対的に小さなストークスシフトを有するが、Pulsar(登録商標)650染料は非常に大きなストークスシフトを有する。FAMおよびPULSAR650染料は両方とも、おおよそ460〜480nmの光で励起し得る。FAMは、最大で約520nmを有する(かつ650nmに実質的にない)光を発し、PULSAR650染料は、最大で約650nmを有する(かつ520nmに実質的にない)光を発する。カルボキシフルオレセインは、プローブ内で、例えば、BLACK HOLE Quencher(商標)1染料とペアになり得、PULSAR650染料は、プローブ内で、例えば、BLACK HOLE Quencher(商標)2染料とペアになり得る。
[H.液滴信号の例示的な自己正規化]
テスト信号は、図117および図120に関連して上述した方法と異なる方法を使用して正規化することもできる。特に、図117および図120に示される方法は、異なる検出チャネル(図117)内で検出されるか、または(b)異なる液滴(図120)内で検出される参照データを使用してテストデータを変換することを含む。この下位項では、別のデータセットではなくそれ自体の側面を使用してテストデータを変換する方法を説明する。
図130は、テスト中にシステムのばらつきを補正する例示的な方法を示すフローチャート6040を示す。方法は、第1のグラフ6042に示されるように、液滴テスト信号セットを処理して、第2のグラフ6044に示されるように、変換されたテスト信号セットを生成することを含む。陰性テスト信号6046および陽性テスト信号6048のそれぞれは、システムのばらつきがない場合に時間の経過に伴ってそれぞれ一定の値を有するべきである。しかし、グラフ6042に示される時間の経過に伴う陰性のドリフト等のシステムのばらつきは、偽陰性信号6050等の偽陰性および/または偽陽性を生じさせる恐れがある。テスト信号の変換を実行して、テスト信号がテスト中の試料内のテスト標的の存在の推定に使用される前に、システムのばらつきを補正し得る。特に、個々のテスト信号は、各テスト信号の時間的位置に従ってテストデータを使用して別様に変換しうる。例えば、各テスト信号は、テスト信号を含むか、またはテスト信号に隣接するテスト信号サブセットの平均をとるスライド窓に対する各テスト信号の正規化等、時間的に近いテストデータを使用して変換し得る。使用されるテスト信号のサブセットは、暫定的に陰性、陽性、または陰性および陽性のテスト信号であり得、変換後、これらのうち任意のテスト信号に陰性/陽性を再び割り当て得る。例えば、グラフ6044は、変換後、偽陰性信号6050に陽性が再割り当てされることを示す。
図131は、液滴信号を提供する各信号ピークの幅に基づいて、液滴信号を変換する例示的な方法を示すフローチャート6060を示す。フローチャートは、変換前および変換後のそれぞれのテストデータを表すグラフ6062、6064を含む。
グラフ6062は、各液滴ピークの幅および高さが示されるテストデータを提示する。(ここでは、各液滴ピークは、提示を単純化するために方形波として提示される。しかし、他の実施形態では、各液滴ピークは、傾斜した立ち上がりエッジおよび立ち下がりエッジを有する波等の任意の適した形状として検出し得る)。液滴蛍光ピークの幅を使用して、液滴信号が一般に固定された幾何学的形状のチャネル内で既知の流量のフロー内で検出される場合、各液滴のサイズおよび容量を特定し得る。液滴内で増幅についてテストされる試料の容量を知ることは、試料内の標的分子の濃度/数を正確に特定するために必要であり得る。均一のサイズの液滴が望まれる場合、ピーク幅を使用して、所望の範囲外のサイズの液滴を識別し得る。例えば、図131では、所定の範囲外の幅を有するピーク6066、6068はデータセットから除外される。液滴信号は、幅に基づいて変換して、容量のばらつきおよび/またはピーク幅のばらつきを補正した、変換されたテストデータ(すなわち、グラフ6064)を提供してもよい。
[I.選択された実施形態]
この下位項では、限定せずに、一続きの番号が付された文章として提示される、本開示の態様による液滴ベースの増幅テストに制御および較正を使用する方法の追加の態様を説明する。
1.試料解析方法であって、(A)第1の染料、第2の染料、および試料の分割物をそれぞれ含み、分割物内にテスト核酸標的が存在する場合、テスト核酸標的をそれぞれ増幅可能な液滴を生成すること、(B)液滴内の第1および第2の染料からテスト信号およびコントロール信号のそれぞれを検出することであって、テスト信号およびコントロール信号のそれぞれは、テスト核酸標的およびコントロール核酸標的の増幅が個々の液滴内で発生したか否かを示す、検出すること、(C)テスト信号を解析して、試料内のテスト核酸標的が存在する場合、その存在に関連するテスト結果を特定すること、(D)コントロール信号を解析して、コントロール核酸標的に関して増幅陽性である液滴の数および/または割合に対応するコントロール値を特定すること、ならびに(E)コントロール値に基づいてテスト結果を解釈することを含む、方法。
2.液滴を生成するステップは、コントロール核酸標的の増幅に関して特異性を付与するプライマを含む液滴を形成するステップを含む、段落1に記載の方法。
3.液滴を形成するステップは、コントロール核酸標的に対応するコントロール鋳型を含む1つまたは複数の鋳型を形成するステップを含み、コントロール鋳型は試料に対して外因性のものである、段落2に記載の方法。
4.液滴を形成するステップは、コントロール核酸標的に対応するコントロール鋳型を含む1つまたは複数の鋳型を形成するステップを含み、コントロール鋳型は試料に対して内因性のものである、段落2に記載の方法。
5.検出するステップは、同じ波長の励起光で第1および第2の染料を励起させるステップと、第1および第2の検出チャンバのそれぞれで第1および第2の染料から発せられた光を検出するステップとを含む、段落1に記載の方法。
6.コントロール信号に基づいて、テスト信号のばらつきを低減するように、テスト信号を変換するステップをさらに含む、段落1に記載の方法。
7.テスト信号を変換するステップは、2つ以上のテスト信号を個々に、これら2つ以上のテスト信号のそれぞれとそれぞれ同じ液滴からそれぞれ検出される対応するコントロール信号を使用して変換するステップを含む、段落6に記載の方法。
8.2つ以上のテスト信号を変換することは、各テスト信号を対応するコントロール信号で除算するステップを含む、段落7に記載の方法。
9.5つの液滴のうち約1つ以下がコントロール鋳型を含む、段落1に記載の方法。
10.テスト信号を解析するステップは、テスト信号または変換されたテスト信号セットを信号閾値と比較して、個々の液滴にテスト核酸標的の増幅に関して陽性または陰性を割り当てるステップと、比較するステップの結果に基づいて、試料内のテスト核酸標的の分子数を推定するステップを含む、段落1に記載の方法。
11.テスト結果を解釈するステップは、テスト結果の品質を判断するステップを含む、段落1に記載の方法。
12.品質を特定するステップは、コントロール値が閾値未満の場合、テスト結果を無効化と判断するステップを含む、段落11に記載の方法。
13.試料解析方法であって、(A)第1の染料、第2の染料、および試料の分割物をそれぞれ含み、分割物内にテスト核酸標的が存在する場合、テスト核酸標的をそれぞれ増幅可能な液滴を生成すること、(B)液滴内の第1および第2の染料からテスト信号および参照信号のそれぞれを検出することであって、テスト信号は、テスト核酸標的の増幅が個々の液滴内で発生したか否かを示す、検出すること、(C)参照信号に基づいて、テスト信号のばらつきを低減するように、テスト信号を変換し、変換されたテスト信号セットを生成すること、ならびに(D)変換されたテスト信号を解析して、試料内にテスト核酸標的が存在する場合、その存在に関連するテスト結果を特定することを含む、方法。
14.テスト信号を変換するステップは、2つ以上のテスト信号を、これら2つ以上のテスト信号のそれぞれと同じ各液滴からそれぞれ検出された対応する参照信号を使用して個々に変換するステップを含む、段落13に記載の方法。
15.2つ以上のテスト信号を変換するステップは、対応する参照信号により各テスト信号を除算するステップを含む、段落14に記載の方法。
16.検出するステップは、同じ波長の励起光で第1および第2の染料を励起させるステップと、第1および第2の検出チャネルのそれぞれ内で少なくとも実質的に互いから独立して第1および第2の染料から発せられた光を検出するステップとを含む、段落13に記載の方法。
17.液滴を生成するステップは、コントロール核酸標的の増幅に特異性を付与するプライマを含む液滴を形成するステップを含み、検出するステップは、第2の染料からコントロール信号を検出するステップを含み、コントロール信号は、参照信号を含み、コントロール核酸標的の増幅が個々の液滴内で発生したか否かを示す、段落13に記載の方法。
18.参照信号およびコントロール信号は同じ信号セットである、段落17に記載の方法。
19.テスト信号を解析するステップは、変換されたテスト信号を信号閾値と比較して、個々の液滴に、テスト核酸標的の増幅に関して陽性または陰性を割り当てるステップと、比較するステップの結果に基づいて、試料内のテスト核酸標的の分子数を推定するステップとを含む、段落13に記載の方法。
20.試料解析方法であって、(A)第1の染料、第2の染料、および試料の分割物をそれぞれ含み、分割物内にテスト核酸標的が存在する場合、テスト核酸標的を増幅可能な液滴を生成すること、(B)同じ波長の励起光で第1および第2の染料を励起させること、(C)第1および第2の検出チャネルのそれぞれで互いから少なくとも実質的に独立して第1および第2の染料から発せられた光を検出して、液滴内の第1および第2の染料から測定されたテスト信号および他の信号のそれぞれを提供することであって、テスト信号は、個々の液滴内でテスト核酸標的の増幅が発生したか否かを示す、提供すること、ならびに(D)テスト信号を解析して、試料内にテスト核酸標的が存在する場合、テスト核酸標的の存在に関連するテスト結果を特定することを含み、他の信号は、テスト結果を特定すること、テスト結果を解釈すること、別のテスト結果を生成すること、またはこれらの任意の組み合わせのために利用される、方法。
21.他の信号は参照信号を含み、解析するステップは、(a)参照信号に基づいてテスト信号を変換して、テスト信号のばらつきを低減するとともに、変換されたテスト信号セットを生成するステップと、(b)変換されたテスト信号セットを利用して、テスト結果を特定するステップを含む、段落20に記載の方法。
22.他の信号は、個々の液滴内でコントロール核酸標的の増幅が発生したか否かを示すコントロール信号を含む、段落20に記載の方法。
23.試料解析方法であって、(A)試料の分割物をそれぞれ含み、分割物内に核酸標的が存在する場合、核酸標的を増幅可能な液滴を生成すること、(B)液滴に対応する信号ピークを検出することであって、各信号ピークは幅を含み、個々の液滴内で核酸標的の増幅が発生したか否かを示す値を提供する、検出すること、(C)そのような信号ピークの幅に基づいて、各信号ピークの値を変換して、変換された値のセットを生成すること、(D)変換された値のセットを信号閾値と比較して、個々の液滴に、テスト核酸標的の増幅について陽性または陰性を割り当てること、および(E)比較するステップの結果に基づいて、試料内に核酸標的が存在する場合、核酸標的の存在を推定することを含む、方法。
24.試料解析方法であって、(A)試料の分割物を含み、分割物内に核酸標的が存在する場合、核酸標的を増幅可能な液滴の少なくともサブセットである液滴を取得すること、(B)液滴からテスト信号および参照信号を検出することであって、テスト信号は、個々の液滴内で標的の増幅が発生したか否かを示す、検出すること、(C)参照信号に基づいてテスト信号を変換して、変換されたテスト信号を取得すること、(D)変換されたテスト信号を信号閾値と比較して、個々の液滴に核酸標的の増幅について陽性または陰性を割り当てること、および(E)比較するステップの結果に基づいて、試料内の核酸標的の分子の数を推定することを含む、方法。
25.液滴を取得するステップは、テスト液滴および参照液滴を取得するステップを含み、テスト液滴および参照液滴は、異なるタイプの液滴をそれぞれ表し、テスト信号および参照信号は、テスト液滴および参照液滴からそれぞれ検出される、段落24に記載の方法。
26.テスト信号および参照信号は、同じ波長または同じ波長範囲で光学的に検出される、段落25に記載の方法。
27.テスト液滴および参照液滴は同じ染料を含み、同じ染料の蛍光は、テスト信号および参照信号として検出される、段落26に記載の方法。
28.強度によりテスト信号を参照信号から区別するステップをさらに含む、段落26に記載の方法。
29.区別するステップは、強度範囲内の1つまたは複数の液滴信号をテスト信号として解釈し、上記強度範囲外の1つまたは複数の液滴信号を参照信号として解釈するステップを含む、段落28に記載の方法。
30.検出するステップは検出エリア内で実行され、液滴はフローで検出エリアに移動する、段落25に記載の方法。
31.テスト液滴および参照液滴はフロー内で混合する、段落30に記載の方法。
32.テスト液滴は、フロー内で参照液滴から隔てられる、段落30に記載の方法。
33.検出するステップの前にテスト液滴を熱循環させるステップをさらに含む、段落25に記載の方法。
34.参照液滴は、取得するステップの後、そして検出するステップの前は熱循環されない、段落33に記載の方法。
35.テスト信号および参照信号は同じ液滴から検出される、段落24に記載の方法。
36.変換するステップは、同じ液滴から検出された対応する参照信号に基づいて、液滴から検出される各テスト信号を変換するステップを含む、段落26に記載の方法。
37.取得するステップは、第1および第2の蛍光染料をそれぞれ含む液滴を生成するステップを含む、段落24に記載の方法。
38.検出するステップは、同じ波長の励起光で蛍光染料を励起させるステップと、各検出チャネル内で少なくとも実質的に独立して蛍光染料からの発光を検出するステップとを含む、段落37に記載の方法。
[IX.液滴ベースの分析の臨床用途]
この項では、本明細書において開示される液滴ベースの分析の例示的な臨床用途を説明する。分析は、特に、以下に示されるように、病因学、病原学、診断、監視、ならびに/あるいは任意の適した感染、疾患、生理学的状態、および/または遺伝子型の治療監視に関連する臨床(および/または法医学)テストを行うために使用し得る。病原体テストは、特に、病原体検出用途、種分化用途、および/または薬物感受性用途を含み得る。
以下に列挙する各臨床(または非臨床)テストは、任意の適した増幅方法を使用して、特定の核酸標的または2つ以上の標的セット(例えば、臨床的に関連する標的)の任意の適した側面を解析し得る。例えば、テストは、標的(または各標的)が試料内で背景よりも上の検出可能な統計的に有意なレベルで存在するか否かを特定するために定性的であり得、またはテストは、試料内の標的(または各標的)の合計存在(すなわち、濃度/コピー数)を特定するために定量的であり得る。代替または追加として、テストは、標的の配列特徴(標的内の一塩基多型(SNP)の識別、標的が野生型であるか、それとも変異型であるかの特定、および/または標的の遺伝子型の特定等)を特定し得る。テストの実行に、項Iにおいて上述した任意の方法等の任意の適した増幅方法を使用し得る。
テストは、遺伝子疾患に関する核酸標的が存在すること(または欠失を特徴とする疾患の場合には存在しないこと)をテストすることにより、遺伝子疾患の診断を提供し得る。適した疾患固有のプライマを使用して診断し得る例示的な遺伝子疾患としては、鎌状赤血球貧血、嚢胞性繊維症(CF)、プラーダー−ヴィリ症候群(PWS)、ベータ地中海貧血、プロトロンビン血栓症、ウィリアムズ症候群、アンジェルマン症候群、脆弱X染色体症候群、第V因子ライデン変異等が挙げられる。例示的なプライマとしては、鎌状赤血球貧血用のヘモグロビン配列、嚢胞性繊維症用の嚢胞性繊維症膜貫通調節因子(CFTR)遺伝子配列等が挙げられる。診断は、2つ以上の形態を有する疾患の変異体(例えば特に、ヘモグロビン関連疾患の場合、鎌状赤血球形質(AS)、鎌状赤血球貧血(SS)、ヘモグロビンSC疾患、ヘモグロビンSD疾患、およびヘモグロビンSO疾患の区別)の特定を含み得る。これらテストは、単一の疾患または変異体あるいは一団の疾患および/または変異体についてスクリーニングするために、産前または産後に実行し得る(例えば、出産前スクリーニングでは、特に、羊膜穿刺または母体末梢循環から得られる遺伝子材料を使用する)。
テストは、天然性遺伝子および/または病原性遺伝子の転写産物の検出および/または描写を提供し得る。例えば、任意の病態生理学的伝達カスケード(例えば、TNF−アルファ、1つまたは複数のインターロイキン、NFカッパB、1つまたは複数の炎症修飾物質/伝達物質)、生感染因子(viable infectious agent)増殖等の開始および/または増幅を通知する1つまたは複数の標的を増幅するプライマを選択し得る。
テストは、身元、父親、母親、兄弟関係、双生児型、系統等を特定するために利用し得る(例えば、法医学で)。これらテストは、問題となっている個人(身元テストのための自分自身を含む)からの核酸を増幅し、核酸配列、核酸制限パターン(nucleic acid restriction pattern)等と比較することにより、実行し得る。適した核酸としては、父親テスト用のY染色体DNA、母親テスト用のミトコンドリアDNA、兄弟テスト用のゲノムDNA等を挙げることができる。
テストは、ウイルス、その転写産物、その薬剤感受性、および/またはその病原結果の検出を提供し得る。例えば、テストは、1つまたは複数のウイルス標的(例えば、少なくとも、1つまたは複数のウイルス遺伝子または転写産物の領域)を増幅するプライマを使用して、ウイルス感染を診断し、かつ/またはモニタリングし、ウイルス量、ウイルスの遺伝子型および/または血清型等を測定し得る。例示的なウイルス標的は、C型肝炎ウイルス(HCV)、B型肝炎ウイルス(HPB)、ヒト乳頭種ウイルス、ヒト免疫不全症ウイルス(HIV)、サイトメガロウイルス(CMV)、エプスタインバーウイルス、呼吸器系合胞体ウイルス(RSV)、西ナイルウイルス(WNV)、水痘帯状疱疹ウイルス(VZV)、パルボウイルス、風疹ウイルス、アルファウイルス、アデノウイルス、コクサッキーウイルス、ヒトTリンパ球向性ウイルス1型(HTLV−1)、ヘルペスウイルス(カポジ肉腫を含む)、インフルエンザウイルス、および/またはエンテロウイルス等を含み、かつ/またはこれらにより提供され得るが、これらに限定されない。いくつかの実施形態では、テストは新しいウイルス病原の検出/識別を提供し得る。
テストは、原核生物(すなわち、細菌)、その転写産物、その薬物感受性、および/またはその病原結果(例えば、細菌感染)の検出を提供し得る。例えば、テストは、1つまたは複数の細菌標的(例えば、少なくとも、1つまたは複数の細菌遺伝子または転写産物の領域)を増幅するプライマを使用し得る。検出し得る適した細菌としては、グラム陽性細菌、グラム陰性細菌、および/または他の選好性感染因子が挙げられるが、これらに限定されない。診断し、かつ/またはモニタリングし得る例示的な細菌性疾患/状態としては、性感染症(例えば、淋病(GC)、クラミジア(CT)、梅毒等)、メチシリン耐性黄色ブドウ球菌(MRSA)、クロストリジウムディフィシル(C.diff.)、バンコマイシン耐性腸球菌(VRE)等の医療関連感染(HAI)、B群連鎖球菌(GBS)、および/またはマイコバクテリア(例えば、結核、ハンセン病等を発症させる)等が挙げられる。本明細書において開示されるシステムにより実行し得るHAIについてのテストのさらなる態様は、参照により本明細書に援用される以下の米国仮特許出願に記載されている:2009年2月5日に出願された米国仮特許出願第61/206,975号明細書および2009年7月21日に出願された米国仮特許出願第61/271,538号明細書。
テストは、菌類(単細胞(例えば、イースト)および/または多細胞)、それらの転写産物、それらの発病結果(例えば、真菌感染症)、ならびに/あるいは薬剤感受性の検出を提供し得る。例えば、テストは、1つまたは複数の真菌標的(例えば、少なくとも、1つまたは複数のウイルス遺伝子または転写産物の領域)を増幅するプライマを使用し得る。診断し、かつ/またはモニタリングし得る例示的な種類の真菌感染は、菌類のヒストプラズマ属(例えば、ヒストプラズマ症を発症させる)、ブラストミケス属(例えば、分芽菌症を発症させる)、クリプトコックス属(例えば、髄膜炎を発症させる)、球虫目(例えば、下痢を発症させる)、カンジタ属、および/またはスポロトリクス属等により生じ得る。
テストは、癌等の疾患のスクリーニング、診断、モニタリング、および/または治療立案に使用し得る。例えば、癌のテストは、1つまたは複数の癌突然変異(例えば、her2/neu、BRACA−1等)、挿入/欠失/融合遺伝子(bcr−abl、k−ras、EFGR等)、増幅遺伝子、後成的修飾等を検出し、癌幹細胞を識別し、残存癌疾患負荷、および/またはp53マージン検査等を識別し、モニタリングし、かつ/または評価し得る。これらテストは、任意の適した癌マーカを標的として使用し、膀胱癌、骨肉腫、乳癌、脳腫瘍、子宮頸癌、結腸直腸癌、食道癌、胃癌、口腔咽頭癌、卵巣癌、前立腺癌、子宮癌、白血病、リンパ腫、骨髄腫、メラノーマ等の任意の適した種類の癌に適用し得る。
本システムを使用して、任意の他の適したテストを実行し得る。例えば、システムは、産前または産後に異数体について(例えば、ダウン症、パトー症候群、18トリソミー症候群、脆弱X染色体症候群等)、先天性の代謝異常(例えば、肝障害、脳障害(例えば、アシルCoAデヒドロゲナーゼ欠損))、血液型抗原、脊髄髄膜瘤(例えば、メチレンテトラヒドロ葉酸還元酵素(MTHFR)、メチオニン合成酵素、シスタチオニンβ合成酵素等の突然変異についてテストする)を含むがこれら限定されない先天性異常等をテストし得る。代替または追加として、システムは、全身紅斑性狼瘡(SLE)、乾癬等の自己免疫異常等の兆候についてテストし得る。自己免疫テストは、HLA分類、および/またはMHCコドンバイオマーカ等を含み得る。システムは、パーキン、PINK1、tau、アルファシヌクレイン、アレルの仕様、およびハンチンチン遺伝子内のトリプレット侵入深さ等の標的を使用して、神経変性または神経変性体質についてテストし得る。テストは、薬物代謝に関わる酵素の遺伝型(例えば、チトクロームPアレル、NAT2多型、UGT多型等)を特定するためにも行い得る。遺伝型特定テストは、任意の特定の疾患状態の受けやすさを特定する際に行われ得る。テストは、免疫用途、腫瘍用途等のためにクロナリティを特定するためにも実行し得る。テストは、例えば、診断する脳炎、髄膜炎等の疾患を引き起こし得る1つもしくは複数のウイルスおよび/または細菌からの核酸ならびに続くモニタリングで原因として識別されたウイルスまたは細菌からの核酸を使用して、脳炎、髄膜炎等の急性中枢神経系(CNS)感染を診断し、かつ/またはモニタリングするように設計し得る。テストは、急性虚血性疾患を診断するように構成してもよい。この診断に適した標的は、卒中後循環受容体断片に対応するCNS細胞転写産物(グルタミン酸受容体、NMDA受容体、二次メッセンジャー転写産物等)を含み得る。他の適した標的としては、虚血性心臓部から解放される細胞内心筋細胞転写産物を挙げることができる。テストは、組織増殖疾患(例えば、腎不全、肝硬変等)での転写産物(例えば、型、数等)を評価するためにも使用し得る。これら疾患での例示的な標的としては、特に、栄養因子および/または細胞外基質成分を挙げることができる。
[X.多重分析]
この項では、同じ液滴セット内の核酸標的の多重検出を実行する例示的な戦略を説明する。
デジタルPCR分析は、5’ヌクレアーゼ分析(すなわち、TAQMANプローブ)の使用を通して、プローブからの信号を生成しながら、標的配列を増幅することで検出可能になり得る。本明細書に開示される分析は、5’ヌクレアーゼ分析を多重化して、2つ以上の種の標的を個々の液滴から検出できるようにするように構成し得、これは多重検出と呼ばれる。各液滴内の標的固有試薬の存在を通して複数の標的分子について「クエリする」ことも可能である。例えば、仮に、各液滴内に異なる遺伝子配列にそれぞれ固有の50対のプライマを有する場合、存在する各標的分子が解析のためにカウントされる。逆に、存在しない標的分子はいずれもカウントされない。したがって、この項全体を通して、用語「クエリ」は、複数の標的分子についての特定のデジタル的な「イエス」または「ノー」を指す。
5’ヌクレアーゼ分析で使用されるレポータ染料に基づいて、同じ容量内の異なる標的分子を区別することが可能である。区別し得るように、染料の発光スペクトルが異なる。例えば、PCRおよび5’ヌクレアーゼ分析からの検出を多重化するために、フルオレセイン染料、フルオレセイン誘導体、およびローダミン染料を利用し得る。
異なる染料を使用して、5’ヌクレアーゼ試薬セットをコードし得る。したがって、1つの染料が、試薬25個の1セットの有無を信号で通知することができ、その一方で、第2の染料が、試薬25個の別のセットの有無を信号で通知し得る。例えば、1セットを18番染色体からの標的としてコードし、別のセットを21番染色体からの標的としてコードし得る。次に、18番染色体および21番染色体にクエリして、2セットの分析のデジタル結果に基づいて存在数をカウントすることができる。
ホモ二重鎖とヘテロ二重鎖との関係に固有の融解曲線に基づいて、同じ容量内の異なる分子を検出することも可能である。検出ステーションは、デジタルPCRにより複数の標的分子を検出するために、各液滴に1つまたは複数の融解曲線を生成するように制御可能なヒータを含み得る。
他の多重検出戦略も、本明細書において開示されるシステムに利用し得る。例えば、SNP検出のために、商業的にINVADER分析として知られているフラップエンドヌクレアーゼ分析を、管ベースまたは微小プレートベースのシステム内で多重化される。INVADER分析を利用して、本明細書において開示されるシステムに多重化してデジタル情報を提供し得る。INVADER分析を使用して、液滴毎に2つ以上のセットを配合することにより、多くの標的分子についてクエリすることもできる。コードも可能である。
分子ビーコンプローブも、多重検出に使用し得る。これらプローブは、5ヌクレアーゼ分析と同様の染料を使用するが、検出方法は異なり得る。ハイブリダイズされた場合とハイブリダイズされない場合の構造のプローブが信号を生成する。ハイブリダイズされたプローブは、標的配列増幅された場合のみ、測定可能な信号を生成する。複数の染料を同時に使用しながら、異なる温度を使用して検出を多重化することも可能である。例えば、3セットのプローブを、3つの異なる温度で溶解して標的配列から離れるように設計し得る。本明細書において開示されるシステムは、温度および染料の両方により多重デジタル結果を生成し得る。したがって、この例では、システムは、2つの染料および3つの温度で溶融するプローブを使用して6つの分析を多重化し得る。クエリおよびコードを分子ビーコンと結合することも可能である。
本明細書において開示された分析混合物は、プライマおよび1つまたは複数のレポータの様々な組み合わせを利用して、多重分析を実行し得る。例示的な組み合わせとしては、特に、(1)単一プライマ対および標的固有プローブなし(例えば、標的のレポータとしての挿入染料またはユニバーサルプローブの使用)、(2)別個の標的種を増幅する複数プライマ対および標的固有プローブなし(例えば、挿入染料またはユニバーサルプローブの使用)、(3)別個の標的種を増幅する複数プライマ対および単色標的固有プローブ(例えば、TAQMANプローブ)、(4)単一プライマ対および複数の単色標的固有プローブ、(5)複数プライマ対および複数の単色標的固有プローブ、または(6)複数プライマ対および複数のカラー標的固有プローブが挙げられる。
上記の開示は、独立した有用性を有する複数の別個の発明を包含し得る。これら各発明は好ましい形態で開示されたが、本明細書に開示され示される本発明の特定の実施形態は、多くの変形が可能であるため、限定の意味で考えられるべきではない。本発明の主旨は、本明細書において開示される様々な要素、特徴、機能、および/または特性のすべての新規かつ進歩性を有する組み合わせおよび下位組み合わせを含む。以下の特許請求の範囲は、新規性および進歩性を有するとみなされる特定の組み合わせおよび下位組み合わせを特に指摘する。特徴、機能、要素、および/または特性の他の組み合わせまたは下位組み合わせで具現される発明は、本願または関連出願からの優先権を主張する出願において特許請求し得る。そのような特許請求の範囲も、異なる発明に向けられているか、それとも同じ発明に向けられているかに関わりなく、かつ元の特許請求の範囲よりも範囲が広いか、狭いか、等しいか、または異なるかに関わらず、本開示の本発明の主旨内に含まれるものとみなされる。
600 システム
612 機器
614 試料カートリッジ
616 試料装填領域
618 試薬フルイディクス組立体
620 熱循環機
622 検出器
624 制御電子回路
626 ユーザインタフェース
628 筐体
630 トレイ

Claims (63)

  1. 試料を解析するシステムであって、
    解析すべき試料の部分を含む液滴を生成するように構成された液滴生成器であって、前記液滴は非混和性流体内に配置されて、試料乳濁液を形成する、液滴生成器と、
    流体流入口および流体流出口を有する加熱・冷却ステーションと、
    前記加熱・冷却ステーションから下流の検出ステーションと、
    前記加熱・冷却ステーションの前記流体流入口から前記流体流出口まで単一パス連続流路を形成するチャネルと、
    前記チャネルを通して前記試料乳濁液を移動させるポンプと、
    前記チャネルを通して流体を輸送するようにプログラムされたコントローラと、
    前記検出ステーションにおいて収集されたデータを処理するように構成された解析器と
    を備える、システム。
  2. 前記検出システムは、前記試料乳濁液が前記加熱・冷却システムを通過した後、前記試料乳濁液内の標的の存在を検出するように配置される、請求項1に記載のシステム。
  3. 液滴槽と、前記液滴生成器を前記槽に接続する第1の流体管と、前記槽を前記加熱・冷却ステーションの前記流体流入口に接続する第2の流体管とをさらに備える、請求項1に記載のシステム。
  4. 前記液滴生成器は、前記加熱・冷却ステーションを前記試料乳濁液内に含まれる試料からの汚染に曝さずに、前記加熱・冷却ステーションに1回使い切りで着脱可能に接続するように構成される、請求項1に記載のシステム。
  5. 前記液滴生成器は、前記加熱・冷却ステーションの外部で前記試料乳濁液を生成するように構成される、請求項1に記載のシステム。
  6. 前記加熱・冷却ステーションは、液滴内に含まれる核酸標的に対してポリメラーゼ連鎖反応を行うように構成された複数の加熱ゾーンを前記流路に沿って含む、請求項1に記載のシステム。
  7. 前記加熱・冷却ステーションは、少なくとも1つの熱電冷却器を含む、請求項1に記載のシステム。
  8. 前記コントローラは、前記検出ステーションから受信するデータに基づいて液滴サイズを変更するように前記液滴生成器を調整するようにプログラムされる、請求項1に記載のシステム。
  9. 前記コントローラは、前記検出ステーションから受信するデータに基づいて液滴生成前に試料濃度を変更するようにプログラムされる、請求項1に記載のシステム。
  10. 前記コントローラは、前記検出ステーションから受信するデータに基づいて、前記液滴生成器内の液滴生成前に試料準備手順を変更するようにプログラムされる、請求項1に記載のシステム。
  11. 前記解析器は、試料部分を含む液滴の母集団からの前記標的を含む液滴の頻度に少なくとも部分的に基づいて、前記試料内の標的分子の濃度を特定するようにプログラムされる、請求項1に記載のシステム。
  12. 前記液滴生成器は、試料槽と、油源と、油/試料交点、および乳濁液流出口とを含み、前記乳濁液流出口は、前記加熱・冷却ステーションの受けポートと着脱可能に封止係合するように構成された遠位端部を有する、請求項1に記載のシステム。
  13. 前記液滴生成器は、乳濁化を促進する少なくとも1つのピストンを有するカートリッジ内に含まれる、請求項1に記載のシステム。
  14. 前記液滴生成器は、チャネル網を通して試料乳濁液をポンピングする少なくとも1つのピストンを有するカートリッジ内に含まれる、請求項1に記載のシステム。
  15. 前記チャネルは、前記加熱・冷却ステーションを通過する螺旋状毛管部分を含む、請求項1に記載のシステム。
  16. 前記毛管部分は、前記液滴生成器により生成される液滴の直径とおおよそ等しい直径を有する、請求項15に記載のシステム。
  17. 前記毛管部分は、前記加熱・冷却ステーション内の変性ゾーン前にホットスタートゾーンを通過するホットスタートセグメントを含む、請求項1に記載のシステム。
  18. 前記加熱・冷却ステーションは、熱的コアと前記加熱・冷却ゾーンとの間で熱を伝達することにより、前記加熱・冷却ゾーン内の温度を制御するように構成された熱電冷却器を含む、請求項1に記載のシステム。
  19. 前記螺旋毛管部分は、連続した循環にわたって長さが減少する螺旋経路を画定する、請求項15に記載のシステム。
  20. 前記加熱・冷却ステーションは、
    中心長手軸を定義するコアと、
    前記コアに取り付けられ、複数の温度領域を画定する複数のセグメントと、
    各温度領域をおおよそ所望の温度に維持するように構成された複数の加熱要素であって、前記チャネルの部分は、前記温度領域を通して試料乳濁液を循環的に輸送するように構成される、加熱要素と
    を含む、請求項1に記載のシステム。
  21. 前記複数のセグメントは、複数の温度領域を画定する複数の内部セグメントと、前記内部セグメントに取り付けられる複数の外部セグメントとを含み、前記チャネルの部分は前記内部セグメントと前記外部セグメントとの間に配置される、請求項20に記載のシステム。
  22. チャネルの前記部分は、前記内部セグメントの周囲を包む流体管を含む、請求項21に記載のシステム。
  23. 前記流体管は、前記内部セグメントの周囲に略螺旋状に包む前記内部セグメントの溝内に配置される、請求項21に記載のシステム。
  24. 前記液滴生成器は使い捨てカートリッジ内に含まれる、請求項1に記載のシステム。
  25. 前記カートリッジは、試料から核酸を抽出し、液滴を熱安定性試料乳濁液に形成するための細胞溶解領域、分離領域、試薬混合領域、および液滴生成領域を含む、請求項24に記載のシステム。
  26. 前記チャネルは、試料乳濁液の連続フローを可能にする開放端部を有する、請求項1に記載のシステム。
  27. 前記液滴生成器は熱安定性試料乳濁液を生成可能である、請求項1に記載のシステム。
  28. 試料解析システムであって、
    核酸標的を増幅するための反応混合物として準備される試料分割物をそれぞれ含む液滴を含む複数の乳濁液を形成する少なくとも1つの液滴生成器と、
    前記乳濁液を保持するキャビティアレイを画定するプレートと、
    前記キャビティ内に配置された前記乳濁液を加熱して、液滴内の核酸増幅を誘導する加熱・冷却装置と、
    前記乳濁液の無傷の液滴から信号を検出する検出組立体と、
    前記検出組立体と通信し、前記無傷の液滴から検出された信号に基づいて、核酸標的が存在する場合、試料内の核酸標的の存在を推定するようにプログラムされたコントローラと
    を備える、システム。
  29. 前記液滴生成器は前記プレートに一体化される、請求項28に記載のシステム。
  30. 各キャビティは別個の液滴生成器により供給される、請求項29に記載のシステム。
  31. 各キャビティは同じ液滴生成器により供給される、請求項29に記載のシステム。
  32. 前記液滴生成器は前記プレートの部分ではない、請求項28に記載のシステム。
  33. 前記液滴生成器は、少なくとも1つの油槽と、試料槽と、各槽から少なくとも1つのキャビティまでの流路とを含む、請求項28に記載のシステム。
  34. 液滴生成を促進する圧力源をさらに備える、請求項28に記載のシステム。
  35. 前記検出組立体は、液滴が前記キャビティ内に配置されている間、液滴から信号を検出するように構成される、請求項28に記載のシステム。
  36. 前記キャビティから前記検出組立体の検出場所まで液滴を移送するように構成される流体移送装置をさらに備える、請求項28に記載のシステム。
  37. 前記検出場所は前記プレートとは別個である、請求項36に記載のシステム。
  38. 前記検出組立体は液滴を逐次検出するように構成される、請求項36に記載のシステム。
  39. 前記検出組立体は液滴のバッチを撮像するように構成される、請求項36に記載のシステム。
  40. 前記検出組立体は、異なる乳濁液にそれぞれ対応する液滴バッチを逐次撮像するように構成される、請求項39に記載のシステム。
  41. 前記検出組立体は共焦点光学系を含む、請求項28に記載のシステム。
  42. 各キャビティは前記プレートの壁により上下の境界が定められる、請求項28に記載のシステム。
  43. 各キャビティは前記プレートの透明壁により境界を定められ、前記透明壁を通してそのようなキャビティ内の液滴を検出することが可能である、請求項28に記載のシステム。
  44. 前記液滴生成器は、前記プレートの上から試料を装填できるように上方に開いた試料槽を含む、請求項28に記載のシステム。
  45. 前記キャビティはウェルであり、前記システムは、前記ウェルを封止する封止部材をさらに備える、請求項28に記載のシステム。
  46. 前記液滴生成器は、前記液滴が逐次生成される1つまたは複数のオリフィスを含む、請求項28に記載のシステム。
  47. 前記液滴生成器は、単分散する液滴を形成するように構成される、請求項28に記載のシステム。
  48. 前記コントローラは、核酸標的の増幅に関して陽性であると判断された液滴の割合に基づいて、核酸標的の存在を推定するように構成される、請求項28に記載のシステム。
  49. 試料解析システムであって、
    油槽、試料槽、キャビティ、および試料を前記試料槽から受け取ると共に、キャリア流体を前記油槽から受け取り、乳濁液として前記キャビティに流れる液滴を生成するチャネル交点を含む液滴生成器と、
    前記液滴生成器を加熱して、前記キャビティ内の前記乳濁液の液滴内での核酸増幅を誘導する加熱装置と
    を備える、システム。
  50. 前記液滴生成器および複数の他の液滴生成器を含むプレートをさらに備える、請求項48に記載のシステム。
  51. 液滴生成を促進する圧力源をさらに備える、請求項48に記載のシステム。
  52. 前記圧力源は、前記液滴生成器との封止関係を形成するマニフォルドを含む、請求項50に記載のシステム。
  53. 前記乳濁液の液滴から信号を検出する検出組立体をさらに備える、請求項48に記載のシステム。
  54. 前記検出組立体は、液滴が前記キャビティ内に配置されている間、液滴から信号を検出するように構成される、請求項52に記載のシステム。
  55. 前記検出組立体は、前記液滴生成器が前記加熱装置に熱的に結合されている間、前記液滴から信号を検出するように構成される、請求項52に記載のシステム。
  56. 前記検出組立体は液滴のバッチを撮像するように構成される、請求項52に記載のシステム。
  57. 前記検出組立体は共焦点光学系を含む、請求項55に記載のシステム。
  58. 前記検出組立体と通信し、前記検出された信号に基づいて、前記試料内に核酸標的が存在する場合、試料内の核酸標的の存在を推定するようにプログラムされたコントローラをさらに備える、請求項52に記載のシステム。
  59. 前記加熱装置は、前記液滴生成器を受け取る温度制御チャンバを含む、請求項48に記載のシステム。
  60. 前記加熱装置は、前記液滴生成器を熱的に循環させて、前記キャビティ内の前記乳濁液の前記液滴内にPCR増幅を誘導する加熱・冷却装置である、請求項48に記載のシステム。
  61. 前記キャビティは前記液滴生成器の壁により上下の境界が定められる、請求項48に記載のシステム。
  62. 前記キャビティは、前記液滴生成器の透明壁により境界を定められ、前記透明壁を通して前記キャビティ内の液滴を検出することが可能である、請求項48に記載のシステム。
  63. 前記キャビティはウェルであり、前記システムは、前記ウェルを封止する封止部材をさらに備える、請求項48に記載のシステム。
JP2011529019A 2008-09-23 2009-09-23 液滴ベースの分析システム Pending JP2012503773A (ja)

Applications Claiming Priority (21)

Application Number Priority Date Filing Date Title
US19404308P 2008-09-23 2008-09-23
US61/194,043 2008-09-23
US20697509P 2009-02-05 2009-02-05
US61/206,975 2009-02-05
US27153809P 2009-07-21 2009-07-21
US61/271,538 2009-07-21
US27573109P 2009-09-01 2009-09-01
US61/275,731 2009-09-01
US27720009P 2009-09-21 2009-09-21
US27721609P 2009-09-21 2009-09-21
US27720409P 2009-09-21 2009-09-21
US27724909P 2009-09-21 2009-09-21
US27720309P 2009-09-21 2009-09-21
US61/277,216 2009-09-21
US61/277,204 2009-09-21
US61/277,203 2009-09-21
US61/277,249 2009-09-21
US61/277,200 2009-09-21
US27727009P 2009-09-22 2009-09-22
US61/277,270 2009-09-22
PCT/US2009/005317 WO2010036352A1 (en) 2008-09-23 2009-09-23 Droplet-based assay system

Publications (2)

Publication Number Publication Date
JP2012503773A true JP2012503773A (ja) 2012-02-09
JP2012503773A5 JP2012503773A5 (ja) 2012-11-08

Family

ID=42060021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011529019A Pending JP2012503773A (ja) 2008-09-23 2009-09-23 液滴ベースの分析システム

Country Status (8)

Country Link
US (1) US20220008928A1 (ja)
EP (2) EP3964821A1 (ja)
JP (1) JP2012503773A (ja)
CN (1) CN102405402A (ja)
AU (1) AU2009297108B2 (ja)
CA (4) CA3210271A1 (ja)
GB (3) GB2477053B (ja)
WO (1) WO2010036352A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532424A (ja) * 2012-10-08 2015-11-09 エコール ポリテクニック 生物学的材料を含有する溶液を処理および分析するためのマイクロ流体工程ならびにこれに対応するマイクロ流体回路
WO2016121886A1 (ja) * 2015-01-28 2016-08-04 株式会社ダナフォーム 分析用デバイス、分析用チップ、分析キット、および、これらを用いた分析方法
JP2018205047A (ja) * 2017-05-31 2018-12-27 シスメックス株式会社 検体処理チップ、検体処理チップの送液装置および送液方法
JPWO2017183298A1 (ja) * 2016-04-20 2019-01-17 シスメックス株式会社 核酸分析装置
WO2019031287A1 (ja) * 2017-08-09 2019-02-14 キヤノン株式会社 分析システム、分析方法、プログラム、および記憶媒体
WO2019188871A1 (ja) * 2018-03-27 2019-10-03 株式会社エンプラス 流体取扱装置
WO2019230485A1 (ja) * 2018-05-31 2019-12-05 キヤノン株式会社 カートリッジ
JP2019208397A (ja) * 2018-05-31 2019-12-12 キヤノン株式会社 カートリッジ
JP2020520454A (ja) * 2017-05-11 2020-07-09 イー・エム・デイー・ミリポア・コーポレイシヨン 連続流動システムにおける狭い滞留時間分布を維持する方法
JP2020110092A (ja) * 2019-01-13 2020-07-27 テクノグローバル株式会社 遺伝子検出システム、遺伝子検出チップ、遺伝子検出装置、遺伝子増幅方法、及び遺伝子増幅装置
JP2022519200A (ja) * 2019-01-31 2022-03-22 サンプリックス エーピーエス マイクロ流体デバイスおよびダブルエマルション液滴の提供のための方法
JP7417794B2 (ja) 2019-12-10 2024-01-19 杏林製薬株式会社 核酸増幅方法、核酸増幅装置及び核酸増幅用チップ
JP7495993B2 (ja) 2020-04-01 2024-06-05 メルク パテント ゲーエムベーハー 乳化装置

Families Citing this family (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2467691A (en) 2008-09-05 2010-08-11 Aueon Inc Methods for stratifying and annotating cancer drug treatment options
US8951939B2 (en) 2011-07-12 2015-02-10 Bio-Rad Laboratories, Inc. Digital assays with multiplexed detection of two or more targets in the same optical channel
US9764322B2 (en) 2008-09-23 2017-09-19 Bio-Rad Laboratories, Inc. System for generating droplets with pressure monitoring
US11130128B2 (en) 2008-09-23 2021-09-28 Bio-Rad Laboratories, Inc. Detection method for a target nucleic acid
US10512910B2 (en) 2008-09-23 2019-12-24 Bio-Rad Laboratories, Inc. Droplet-based analysis method
US9492797B2 (en) 2008-09-23 2016-11-15 Bio-Rad Laboratories, Inc. System for detection of spaced droplets
US9156010B2 (en) 2008-09-23 2015-10-13 Bio-Rad Laboratories, Inc. Droplet-based assay system
US9921154B2 (en) 2011-03-18 2018-03-20 Bio-Rad Laboratories, Inc. Multiplexed digital assays
US8691510B2 (en) 2008-11-07 2014-04-08 Sequenta, Inc. Sequence analysis of complex amplicons
ES2453066T3 (es) 2008-11-07 2014-04-03 Sequenta, Inc. Métodos para supervisar las condiciones por análisis de secuencia
US8748103B2 (en) 2008-11-07 2014-06-10 Sequenta, Inc. Monitoring health and disease status using clonotype profiles
US9528160B2 (en) 2008-11-07 2016-12-27 Adaptive Biotechnolgies Corp. Rare clonotypes and uses thereof
US9365901B2 (en) 2008-11-07 2016-06-14 Adaptive Biotechnologies Corp. Monitoring immunoglobulin heavy chain evolution in B-cell acute lymphoblastic leukemia
US9506119B2 (en) 2008-11-07 2016-11-29 Adaptive Biotechnologies Corp. Method of sequence determination using sequence tags
US8628927B2 (en) 2008-11-07 2014-01-14 Sequenta, Inc. Monitoring health and disease status using clonotype profiles
EP2387627B1 (en) 2009-01-15 2016-03-30 Adaptive Biotechnologies Corporation Adaptive immunity profiling and methods for generation of monoclonal antibodies
EP2446052B1 (en) 2009-06-25 2018-08-08 Fred Hutchinson Cancer Research Center Method of measuring adaptive immunity
US9043160B1 (en) 2009-11-09 2015-05-26 Sequenta, Inc. Method of determining clonotypes and clonotype profiles
CN102985552B (zh) * 2009-11-25 2016-02-17 伯乐生命医学产品有限公司 用于检测遗传物质的方法和组合物
EP2550528B1 (en) 2010-03-25 2019-09-11 Bio-Rad Laboratories, Inc. Droplet generation for droplet-based assays
WO2012031006A1 (en) * 2010-08-31 2012-03-08 Canon U.S. Life Sciences, Inc. Slug control during thermal cycling
AU2011305445B2 (en) 2010-09-24 2017-03-16 The Board Of Trustees Of The Leland Stanford Junior University Direct capture, amplification and sequencing of target DNA using immobilized primers
SG190074A1 (en) * 2010-11-01 2013-06-28 Bio Rad Laboratories System for forming emulsions
EP3483285B1 (en) 2011-02-09 2021-07-14 Bio-Rad Laboratories, Inc. Analysis of nucleic acids
CN103534360A (zh) * 2011-03-18 2014-01-22 伯乐生命医学产品有限公司 借助对信号的组合使用进行的多重数字分析
EP2694982A1 (en) * 2011-04-08 2014-02-12 Stokes Bio Limited Systems and methods for continuous flow pcr systems
EP2702175B1 (en) 2011-04-25 2018-08-08 Bio-Rad Laboratories, Inc. Methods and compositions for nucleic acid analysis
EP2520509B1 (en) * 2011-05-06 2017-10-04 Airbus Defence and Space GmbH Apparatus for dispensing liquid droplets into a gas flow
US10385475B2 (en) 2011-09-12 2019-08-20 Adaptive Biotechnologies Corp. Random array sequencing of low-complexity libraries
CN103958050B (zh) 2011-09-28 2016-09-14 哈佛学院院长等 用于液滴产生和/或流体操纵的系统和方法
EP2761306A4 (en) * 2011-09-30 2015-07-01 Univ British Columbia METHODS AND APPARATUS FOR REGULAR FLOWBLOCKING
US9279159B2 (en) 2011-10-21 2016-03-08 Adaptive Biotechnologies Corporation Quantification of adaptive immune cell genomes in a complex mixture of cells
AU2012347460B2 (en) 2011-12-09 2017-05-25 Adaptive Biotechnologies Corporation Diagnosis of lymphoid malignancies and minimal residual disease detection
US9499865B2 (en) 2011-12-13 2016-11-22 Adaptive Biotechnologies Corp. Detection and measurement of tissue-infiltrating lymphocytes
WO2013101783A2 (en) 2011-12-30 2013-07-04 Bio-Rad Laboratories, Inc. Methods and compositions for performing nucleic acid amplification reactions
ES2662128T3 (es) 2012-03-05 2018-04-05 Adaptive Biotechnologies Corporation Determinación de cadenas de receptor inmunitario emparejadas a partir de la frecuencia de subunidades coincidentes
SG10201507700VA (en) 2012-05-08 2015-10-29 Adaptive Biotechnologies Corp Compositions and method for measuring and calibrating amplification bias in multiplexed pcr reactions
WO2013192351A1 (en) 2012-06-20 2013-12-27 Bio-Rad Laboratories, Inc. Stabilized droplets for calibration and testing
US9422602B2 (en) 2012-08-15 2016-08-23 Bio-Rad Laboratories, Inc. Methods and compositions for determining nucleic acid degradation
US9970052B2 (en) 2012-08-23 2018-05-15 Bio-Rad Laboratories, Inc. Digital assays with a generic reporter
CN102886280B (zh) * 2012-08-28 2014-06-11 博奥生物有限公司 一种微流控芯片及其应用
AU2013327423B2 (en) 2012-10-01 2017-06-22 Adaptive Biotechnologies Corporation Immunocompetence assessment by adaptive immune receptor diversity and clonality characterization
WO2015160439A2 (en) 2014-04-17 2015-10-22 Adaptive Biotechnologies Corporation Quantification of adaptive immune cell genomes in a complex mixture of cells
EP2954102B1 (en) * 2013-02-08 2018-12-19 Bio-Rad Laboratories, Inc. Affinity-based partition assay for detection of target molecules
US9745571B2 (en) * 2013-03-07 2017-08-29 Bio-Rad Laboratories, Inc. Repetitive reverse transcription partition assay
US10119134B2 (en) 2013-03-15 2018-11-06 Abvitro Llc Single cell bar-coding for antibody discovery
US9347095B2 (en) 2013-03-15 2016-05-24 Bio-Rad Laboratories, Inc. Digital assays for mutation detection
CN105408495B (zh) 2013-04-26 2019-01-08 基纽拜奥股份有限公司 通过茎环结构阻断3’dna末端的聚合酶延伸的方法
CN105431575B (zh) 2013-05-09 2017-08-29 生物辐射实验室股份有限公司 磁性免疫数字pcr试验
EP2999959B1 (en) * 2013-05-23 2021-07-07 Qorvo US, Inc. Two part fluid assembly
WO2014205447A2 (en) * 2013-06-21 2014-12-24 Bio-Rad Laboratories, Inc. Microfluidic system with fluid pickups
US9708657B2 (en) 2013-07-01 2017-07-18 Adaptive Biotechnologies Corp. Method for generating clonotype profiles using sequence tags
WO2015013681A1 (en) 2013-07-25 2015-01-29 Bio-Rad Laboratories, Inc. Genetic assays
EP3074122A4 (en) 2013-11-27 2017-11-29 Bio-Rad Laboratories, Inc. Microfluidic droplet packing
EP2986761B1 (en) 2014-02-13 2018-08-15 Bio-rad Laboratories, Inc. Chromosome conformation capture in droplet partitions
EP3114240B1 (en) 2014-03-05 2019-07-24 Adaptive Biotechnologies Corporation Methods using randomer-containing synthetic molecules
US10066265B2 (en) 2014-04-01 2018-09-04 Adaptive Biotechnologies Corp. Determining antigen-specific t-cells
CN113215221A (zh) * 2014-04-08 2021-08-06 华盛顿大学商业中心 用于使用多分散小滴执行数字检定的方法和设备
WO2015195698A1 (en) 2014-06-16 2015-12-23 Gnubio, Inc. Size alternating injection into drops to facilitate sorting
JP6672310B2 (ja) 2014-09-15 2020-03-25 アブビトロ, エルエルシー ハイスループットヌクレオチドライブラリーシークエンシング
EP3212790B1 (en) 2014-10-29 2020-03-25 Adaptive Biotechnologies Corp. Highly-multiplexed simultaneous detection of nucleic acids encoding paired adaptive immune receptor heterodimers from many samples
JP6393583B2 (ja) * 2014-10-30 2018-09-19 株式会社ディスコ 保護膜検出装置及び保護膜検出方法
US10246701B2 (en) 2014-11-14 2019-04-02 Adaptive Biotechnologies Corp. Multiplexed digital quantitation of rearranged lymphoid receptors in a complex mixture
WO2016086029A1 (en) 2014-11-25 2016-06-02 Adaptive Biotechnologies Corporation Characterization of adaptive immune response to vaccination or infection using immune repertoire sequencing
US11066698B2 (en) 2015-02-17 2021-07-20 Bio-Rad Laboratories, Inc. Small nucleic acid quantification using split cycle amplification
US11047008B2 (en) 2015-02-24 2021-06-29 Adaptive Biotechnologies Corporation Methods for diagnosing infectious disease and determining HLA status using immune repertoire sequencing
EP3929291A1 (en) 2015-03-17 2021-12-29 Bio-Rad Laboratories, Inc. Detection of genome editing
FR3033715B1 (fr) 2015-03-18 2017-04-14 R A L Diagnostics Dispositif de preparation d'une couche de cellules biologiques sur une lame et appareil de preparation automatique d'une couche de cellules utilisant ledit dispositif
US11041202B2 (en) 2015-04-01 2021-06-22 Adaptive Biotechnologies Corporation Method of identifying human compatible T cell receptors specific for an antigenic target
EP3298162B1 (en) 2015-05-18 2019-11-27 Saga Diagnostics AB Detection of target nucleic acid and variants
CN104846100B (zh) * 2015-05-24 2017-10-10 北京工业大学 一种可用于微滴数字pcr的微滴制备方法
US10379130B2 (en) 2015-06-26 2019-08-13 Abbott Laboratories Reaction vessel exchanger device for a diagnostic analyzer
US11123740B2 (en) 2015-06-29 2021-09-21 Arizona Board Of Regents On Behalf Of Arizona State University Systems and methods for continuous flow digital droplet polymerase chain reaction bioanalysis
EP3341508A4 (en) 2015-08-25 2019-05-15 Bio-Rad Laboratories, Inc. DIGITAL IMMUNOASSAY
US20180274021A1 (en) 2015-09-24 2018-09-27 Abvitro Llc Single amplicon activated exclusion pcr
CN108291257B (zh) 2015-09-24 2023-12-29 阿布维特罗有限责任公司 亲和-寡核苷酸缀合物及其用途
AU2016326734B2 (en) 2015-09-25 2022-07-07 Abvitro Llc High throughput process for T cell receptor target identification of natively-paired T cell receptor sequences
US11965891B2 (en) 2015-12-30 2024-04-23 Bio-Rad Laboratories, Inc. Digital protein quantification
CN108700609A (zh) * 2015-12-30 2018-10-23 生物辐射实验室股份有限公司 具有自动校准的液滴测定系统
EP3397765B1 (en) 2015-12-30 2023-02-01 Bio-Rad Laboratories, Inc. Method for quantitating the frequency of wild-type and mutant fragments in a nucleic acid sample
CN105543073B (zh) * 2016-01-08 2019-09-20 西安交通大学 一种集成式数字核酸扩增检测系统
EP3400298B1 (en) 2016-01-08 2024-03-06 Bio-Rad Laboratories, Inc. Multiple beads per droplet resolution
US10190961B2 (en) 2016-03-18 2019-01-29 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Sample analyzer and sample analyzing method thereof
EP3432854B1 (en) 2016-03-24 2021-02-17 Bio-Rad Laboratories, Inc. Use of gel beads to control droplet dispersion
CN105861299B (zh) * 2016-05-05 2018-05-22 广东顺德工业设计研究院(广东顺德创新设计研究院) 微滴式数字pcr荧光检测系统和荧光检测装置
CN105806821B (zh) * 2016-05-16 2018-06-29 青岛衡立检测有限公司 一种检测苦味酸的便携式检测器
CN106018362B (zh) * 2016-05-16 2018-06-08 江苏国恒检测有限公司 一种检测苦味酸的测定器
US11946107B2 (en) 2016-06-16 2024-04-02 Bio-Rad Europe Gmbh Method of detecting Salmonella typhimurium
MA54568A (fr) 2016-07-01 2021-10-27 Carlsberg As Substitutions de nucléotides prédéterminées
US10676736B2 (en) 2016-08-05 2020-06-09 Bio-Rad Laboratories, Inc. Second strand direct
US10428325B1 (en) 2016-09-21 2019-10-01 Adaptive Biotechnologies Corporation Identification of antigen-specific B cell receptors
JP6929354B2 (ja) 2016-09-24 2021-09-01 アブビトロ, エルエルシー 親和性−オリゴヌクレオチドコンジュゲートおよびその使用
CN106501215A (zh) * 2016-10-31 2017-03-15 天津科技大学 一种微气泡体积浓度测量装置
WO2018098438A1 (en) 2016-11-28 2018-05-31 Arizona Board Of Regents On Behalf Of Arizona State University Systems and methods related to continuous flow droplet reaction
US20190323095A1 (en) 2016-12-02 2019-10-24 University Of Virginia Patent Foundation Compositions and methods for absolute quantification of reverse transcriptase enzymes
CN106596489B (zh) * 2016-12-19 2019-06-28 中国科学院苏州生物医学工程技术研究所 用于荧光液滴检测中荧光强度数据的处理方法
CN110139932B (zh) 2016-12-19 2024-05-17 生物辐射实验室股份有限公司 液滴加标的相邻性保留的标签化dna
CN110914447A (zh) * 2017-01-26 2020-03-24 生物辐射实验室股份有限公司 包括水性样品稳定化的测定执行系统
WO2018146699A1 (en) * 2017-02-07 2018-08-16 Shilps Sciences Private Limited A system for microdroplet manipulation
EP3601593B1 (en) 2017-03-24 2021-12-22 Bio-Rad Laboratories, Inc. Universal hairpin primers
US20200354784A1 (en) 2017-05-26 2020-11-12 Abvitro Llc High-throughput polynucleotide library sequencing and transcriptome analysis
CN110770356B (zh) 2017-06-20 2024-06-07 生物辐射实验室股份有限公司 使用珠寡核苷酸的mda
EP3642397A4 (en) * 2017-06-20 2021-03-31 10X Genomics, Inc. IMPROVED DROPLET STABILIZATION METHODS AND SYSTEMS
CN107312850A (zh) * 2017-07-19 2017-11-03 华东医药(杭州)基因科技有限公司 一种pcr无效扩增的检测方法
US20200292526A1 (en) 2017-09-07 2020-09-17 Juno Therapeutics, Inc. Methods of identifying cellular attributes related to outcomes associated with cell therapy
WO2019067415A1 (en) 2017-09-27 2019-04-04 Bio-Rad Laboratories, Inc. DIGITAL AFFINITY LINK ASSAY
WO2019079125A2 (en) 2017-10-19 2019-04-25 Bio-Rad Laboratories, Inc. DIGITAL AMPLIFICATION TESTS WITH UNCONVENTIONAL AND / OR INVERTED PHOTOLUMINESCENCE CHANGES
CN111295443B (zh) 2017-11-02 2024-04-16 生物辐射实验室股份有限公司 基于转座酶的基因组分析
US20210309958A1 (en) * 2017-11-13 2021-10-07 Satoshi Izumi Device with specific number of cell(s) and nucleic acids in the wells and testing/calibration method using the device
CN107674821A (zh) * 2017-11-16 2018-02-09 格致诊断公司 液滴温度循环反应设备
US11254980B1 (en) 2017-11-29 2022-02-22 Adaptive Biotechnologies Corporation Methods of profiling targeted polynucleotides while mitigating sequencing depth requirements
CN110066859A (zh) * 2018-01-24 2019-07-30 思纳福(北京)医疗科技有限公司 数字pcr检测仪
EP4324962A3 (en) 2018-01-31 2024-05-08 Bio-Rad Laboratories, Inc. Methods and compositions for deconvoluting partition barcodes
EP3910320A1 (en) * 2018-03-29 2021-11-17 The Automation Partnership (Cambridge) Ltd. Computer-implemented method and system for spectroscopic analysis of biological material
FR3082440B1 (fr) * 2018-06-14 2020-12-11 Paris Sciences Lettres Quartier Latin Methode de transfert de matiere dans un dispositif microfluidique ou millifluidique
WO2020014296A1 (en) * 2018-07-12 2020-01-16 Luminex Corporation Systems and methods for performing variable sample preparation and analysis processes
CN108709785B (zh) * 2018-08-02 2024-04-05 潍坊学院 一种用于根土复合体的新型自动土样击实仪及方法
WO2020030090A1 (en) * 2018-08-09 2020-02-13 Versitech Limited Systems for automated handling of fluid samples into microfluidic droplets for in vitro diagnostic
US11479816B2 (en) 2018-08-20 2022-10-25 Bio-Rad Laboratories, Inc. Nucleotide sequence generation by barcode bead-colocalization in partitions
WO2020060994A1 (en) * 2018-09-17 2020-03-26 The University Of North Carolina At Chapel Hill Method for quantifying dna fragments in a sample by size
CN111220563B (zh) * 2018-11-26 2023-02-10 吉林农业大学 一种采用红外光谱检测回收油的方法
DE102019108155B3 (de) 2019-03-29 2020-06-04 Leibniz-Institut Für Photonische Technologien E.V. Mikrotropfenrückhalteanordnung
CN110308113B (zh) * 2019-07-04 2021-06-22 中南林业科技大学 一种用于近红外光谱检测的全方位翻转准球形水果装置
CN114786473B (zh) 2019-10-10 2023-12-19 嘉士伯有限公司 制备突变植物的方法
CN112834277B (zh) * 2019-11-22 2023-08-29 北方工业大学 一种可连续使用的流体取送样密闭接口组件
US11060141B1 (en) 2019-12-23 2021-07-13 Stilla Technologies Multiplex drop-off digital polymerase chain reaction methods
EP4121567A2 (en) 2020-03-16 2023-01-25 The University of North Carolina at Chapel Hill Compositions and methods for the selective detection of tumor-derived viral dna
EP4126364A4 (en) * 2020-03-24 2024-02-28 Bio Rad Laboratories Inc METHOD AND SYSTEM FOR THERMAL CONTROL OF A CHEMICAL REACTION IN DROPS
US20230249178A1 (en) 2020-07-08 2023-08-10 Roche Sequencing Solutions, Inc. Split-pool synthesis apparatus and methods of performing split-pool synthesis
CN111986175A (zh) * 2020-08-19 2020-11-24 北京科技大学 工业喷嘴所喷液滴的粒径测量方法
WO2022047154A2 (en) * 2020-08-28 2022-03-03 Chan Zuckerberg Biohub, Inc. Point of care and improved detection and quantification of biomolecules
CN112268794B (zh) * 2020-09-29 2021-08-31 中国科学院金属研究所 一种确定金属材料抗穿甲最佳微观组织状态的方法
EP4228793A1 (en) 2020-10-15 2023-08-23 Kapa Biosystems, Inc. Electrophoretic devices and methods for next-generation sequencing library preparation
CN116601308A (zh) * 2020-12-22 2023-08-15 豪夫迈·罗氏有限公司 使用大斯托克斯位移荧光染料进行多重实时pcr的方法
US20220193674A1 (en) * 2020-12-23 2022-06-23 Imec Vzw Microfluidic Device Unit
US20240120030A1 (en) * 2021-01-13 2024-04-11 Mgi Tech Co., Ltd. Method for analyzing droplets on the basis of volume distribution, and computer device and storage medium
WO2023067110A1 (en) 2021-10-20 2023-04-27 Tataa Biocenter Ab Methods and compositions for detection of mutant nucleic acid sequences
WO2023069109A1 (en) * 2021-10-22 2023-04-27 Hewlett-Packard Development Company, L.P. Digital droplet pcr system
US11964277B2 (en) * 2022-03-10 2024-04-23 Hewlett-Packard Development Company, L.P. Metered volume microfluidic devices
WO2023170272A1 (en) 2022-03-11 2023-09-14 Carlsberg A/S Modulation of protein levels
CN115074236B (zh) * 2022-07-21 2022-10-25 鲲鹏基因(北京)科技有限责任公司 用于pcr仪的温控装置、扩增设备和pcr仪
CN114994139B (zh) * 2022-08-05 2022-11-08 国网天津市电力公司电力科学研究院 一种电缆缓冲层的缺陷检测方法、装置、设备及存储介质
CN117384750B (zh) * 2023-12-06 2024-03-08 博奥生物集团有限公司 一种全集成数字化核酸分析卡盒

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835971A (ja) * 1994-07-25 1996-02-06 Hitachi Ltd ピペット
US20030006140A1 (en) * 2001-02-28 2003-01-09 Giacomo Vacca Microfluidic control using dielectric pumping
JP2005130851A (ja) * 2003-08-30 2005-05-26 F Hoffmann La Roche Ag 液体中の検体測定方法および装置
JP2007175002A (ja) * 2005-12-28 2007-07-12 Shimadzu Corp 遺伝子解析装置
WO2007081385A2 (en) * 2006-01-11 2007-07-19 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
WO2007121489A2 (en) * 2006-04-19 2007-10-25 Applera Corporation Reagents, methods, and libraries for gel-free bead-based sequencing
US20080038810A1 (en) * 2006-04-18 2008-02-14 Pollack Michael G Droplet-based nucleic acid amplification device, system, and method
WO2008063227A2 (en) * 2006-05-11 2008-05-29 Raindance Technologies, Inc. Microfluidic devices

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051025A (en) * 1976-09-29 1977-09-27 The United States Of America As Represented By The Department Of Health, Education And Welfare Preparative countercurrent chromatography with a slowly rotating helical tube array
EP1587940A4 (en) * 2002-12-20 2006-06-07 Caliper Life Sciences Inc SINGLE MOLECULAR AMPLIFICATION AND DNA PROOF
US7041481B2 (en) * 2003-03-14 2006-05-09 The Regents Of The University Of California Chemical amplification based on fluid partitioning
US20070109542A1 (en) * 2003-08-01 2007-05-17 Tracy David H Optical resonance analysis unit
WO2006085905A1 (en) * 2004-05-28 2006-08-17 Board Of Regents, The University Of Texas System Programmable fluidic processors
CN101065239B (zh) * 2004-10-22 2012-02-15 住友金属矿山株式会社 阻气型透明塑料基板、其制造方法和使用其的柔性显示元件
DE102005037401B4 (de) * 2005-08-08 2007-09-27 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Bildung einer Emulsion in einem fluidischen Mikrosystem
EP1991357B1 (en) * 2006-02-07 2016-09-14 Stokes Bio Limited A microfluidic analysis system
ES2303473B1 (es) 2007-01-26 2009-05-21 Guillermo Petri Larrea Sistema para garantizar los estiramientos de los tornillos en una union embridada y pretensada.
US9029085B2 (en) * 2007-03-07 2015-05-12 President And Fellows Of Harvard College Assays and other reactions involving droplets

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835971A (ja) * 1994-07-25 1996-02-06 Hitachi Ltd ピペット
US20030006140A1 (en) * 2001-02-28 2003-01-09 Giacomo Vacca Microfluidic control using dielectric pumping
JP2005130851A (ja) * 2003-08-30 2005-05-26 F Hoffmann La Roche Ag 液体中の検体測定方法および装置
JP2007175002A (ja) * 2005-12-28 2007-07-12 Shimadzu Corp 遺伝子解析装置
WO2007081385A2 (en) * 2006-01-11 2007-07-19 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
JP2009536313A (ja) * 2006-01-11 2009-10-08 レインダンス テクノロジーズ, インコーポレイテッド ナノリアクターの形成および制御において使用するマイクロ流体デバイスおよび方法
US20080038810A1 (en) * 2006-04-18 2008-02-14 Pollack Michael G Droplet-based nucleic acid amplification device, system, and method
WO2007121489A2 (en) * 2006-04-19 2007-10-25 Applera Corporation Reagents, methods, and libraries for gel-free bead-based sequencing
JP2009538123A (ja) * 2006-04-19 2009-11-05 アプライド バイオシステムズ, エルエルシー ゲル非含有ビーズベースの配列決定のための試薬、方法およびライブラリー
WO2008063227A2 (en) * 2006-05-11 2008-05-29 Raindance Technologies, Inc. Microfluidic devices
JP2010506136A (ja) * 2006-05-11 2010-02-25 レインダンス テクノロジーズ, インコーポレイテッド 微小流体デバイス

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532424A (ja) * 2012-10-08 2015-11-09 エコール ポリテクニック 生物学的材料を含有する溶液を処理および分析するためのマイクロ流体工程ならびにこれに対応するマイクロ流体回路
WO2016121886A1 (ja) * 2015-01-28 2016-08-04 株式会社ダナフォーム 分析用デバイス、分析用チップ、分析キット、および、これらを用いた分析方法
JP2019054825A (ja) * 2016-04-20 2019-04-11 シスメックス株式会社 核酸分析装置
US10814326B2 (en) 2016-04-20 2020-10-27 Sysmex Corporation Nucleic acid analyzer and nucleic acid analyzing method
JPWO2017183298A1 (ja) * 2016-04-20 2019-01-17 シスメックス株式会社 核酸分析装置
JP2020520454A (ja) * 2017-05-11 2020-07-09 イー・エム・デイー・ミリポア・コーポレイシヨン 連続流動システムにおける狭い滞留時間分布を維持する方法
JP7022767B2 (ja) 2017-05-11 2022-02-18 イー・エム・デイー・ミリポア・コーポレイシヨン 連続流動システムにおける狭い滞留時間分布を維持する方法
JP2018205047A (ja) * 2017-05-31 2018-12-27 シスメックス株式会社 検体処理チップ、検体処理チップの送液装置および送液方法
JP7010603B2 (ja) 2017-05-31 2022-01-26 シスメックス株式会社 検体処理チップ
WO2019031287A1 (ja) * 2017-08-09 2019-02-14 キヤノン株式会社 分析システム、分析方法、プログラム、および記憶媒体
JP2019174167A (ja) * 2018-03-27 2019-10-10 株式会社エンプラス 流体取扱装置
WO2019188871A1 (ja) * 2018-03-27 2019-10-03 株式会社エンプラス 流体取扱装置
JP2019208397A (ja) * 2018-05-31 2019-12-12 キヤノン株式会社 カートリッジ
WO2019230485A1 (ja) * 2018-05-31 2019-12-05 キヤノン株式会社 カートリッジ
JP7179494B2 (ja) 2018-05-31 2022-11-29 キヤノン株式会社 カートリッジ
JP2020110092A (ja) * 2019-01-13 2020-07-27 テクノグローバル株式会社 遺伝子検出システム、遺伝子検出チップ、遺伝子検出装置、遺伝子増幅方法、及び遺伝子増幅装置
JP2022519200A (ja) * 2019-01-31 2022-03-22 サンプリックス エーピーエス マイクロ流体デバイスおよびダブルエマルション液滴の提供のための方法
JP7231748B2 (ja) 2019-01-31 2023-03-01 サンプリックス エーピーエス マイクロ流体デバイスおよびダブルエマルション液滴の提供のための方法
JP7417794B2 (ja) 2019-12-10 2024-01-19 杏林製薬株式会社 核酸増幅方法、核酸増幅装置及び核酸増幅用チップ
JP7495993B2 (ja) 2020-04-01 2024-06-05 メルク パテント ゲーエムベーハー 乳化装置

Also Published As

Publication number Publication date
GB2502409B (en) 2014-03-12
CN102405402A (zh) 2012-04-04
CA3075139A1 (en) 2010-04-01
GB2504241B8 (en) 2014-10-15
GB2502409B8 (en) 2014-10-15
CA3210271A1 (en) 2010-04-01
AU2009297108A1 (en) 2010-04-01
CA2738578C (en) 2021-05-04
GB201319376D0 (en) 2013-12-18
CA3149293C (en) 2023-09-12
GB2504241A8 (en) 2014-10-15
CA3075139C (en) 2022-04-12
AU2009297108B2 (en) 2015-02-12
EP2347245B1 (en) 2021-11-03
GB2477053B (en) 2013-11-13
EP3964821A1 (en) 2022-03-09
EP2347245A4 (en) 2018-03-28
CA2738578A1 (en) 2010-04-01
GB2477053A (en) 2011-07-20
CA3149293A1 (en) 2010-04-01
GB2504241B (en) 2014-03-12
US20220008928A1 (en) 2022-01-13
GB201303939D0 (en) 2013-04-17
EP2347245A1 (en) 2011-07-27
GB2502409A (en) 2013-11-27
WO2010036352A1 (en) 2010-04-01
GB2504241A (en) 2014-01-22
GB2502409A8 (en) 2014-10-15
GB201106793D0 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
US11612892B2 (en) Method of performing droplet-based assays
US20220008928A1 (en) Method of analysis
US11130128B2 (en) Detection method for a target nucleic acid
US10512910B2 (en) Droplet-based analysis method
JP6155418B2 (ja) 多重エマルジョンの合体による、流体を混合するためのシステム
US20140200164A1 (en) System for detection of spaced droplets
US20230372935A1 (en) Partition-based method of analysis
US20220008914A1 (en) Partition-based method of analysis

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140203

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140430

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150511