JP2012235926A - 医療装置システム及び生体情報監視方法 - Google Patents

医療装置システム及び生体情報監視方法 Download PDF

Info

Publication number
JP2012235926A
JP2012235926A JP2011107466A JP2011107466A JP2012235926A JP 2012235926 A JP2012235926 A JP 2012235926A JP 2011107466 A JP2011107466 A JP 2011107466A JP 2011107466 A JP2011107466 A JP 2011107466A JP 2012235926 A JP2012235926 A JP 2012235926A
Authority
JP
Japan
Prior art keywords
image
lock
light
area
oxygen saturation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011107466A
Other languages
English (en)
Other versions
JP5642619B2 (ja
Inventor
Hiroshi Yamaguchi
博司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2011107466A priority Critical patent/JP5642619B2/ja
Priority to EP12165966.8A priority patent/EP2522273B1/en
Priority to US13/464,393 priority patent/US8965474B2/en
Publication of JP2012235926A publication Critical patent/JP2012235926A/ja
Application granted granted Critical
Publication of JP5642619B2 publication Critical patent/JP5642619B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/063Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for monochromatic or narrow-band illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0653Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with wavelength conversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
    • A61B1/3132Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes for laparoscopy

Abstract

【課題】酸素飽和度の時間的変化を確実にモニタリングする。
【解決手段】血中ヘモグロビンの酸素飽和度の変化により吸光係数が変化する波長範囲を有する酸素飽和度測定光と波長範囲が広帯域に及ぶ白色光とを交互に体腔内に照射する。それぞれの光の照射毎にカラーの撮像素子で撮像することにより特殊光画像及び通常光画像を取得する。これら特殊光画像及び通常光画像上に、被検体の関心領域の動きに従って追従するロックオンエリアを設定する。ロックオンエリア内における関心領域の酸素飽和度は、特殊光画像及び通常光画像に基づき、それら画像を取得する毎に算出される。この算出されたロックオンエリア内の酸素飽和度は、モニタリング画像94のグラフ93上に、時系列に沿って表示される。
【選択図】図8

Description

本発明は、体腔内や消化管などの被検体の関心領域における酸素飽和度の時間的変化をモニタリングする医療装置システム及び生体情報監視方法に関する。
近年、腹腔鏡を用いて手術を行う腹腔鏡手術が注目されている(特許文献1参照)。腹腔鏡手術では、患者の腹に開けられた2、3個の小さな穴を開け、それら穴に腹腔鏡及び手術用処置具を腹腔内に刺し込む。そして、二酸化炭素からなる気腹ガスで腹腔内を膨らませた状態で、術者は、腹腔鏡によってモニタに写し出される腹腔内の画像を観察しながら、手術用処置具を使って各種手術を行う。このように、腹腔鏡手術は、腹腔鏡の限られた視野だけで手術を行う必要があるため、術者には高い技量が求められるものの、一般的な外科手術と異なり開腹の必要が無いため、患者の負担はかなり軽減される。
腹腔鏡手術では、腹壁を気腹するために二酸化炭素を用いているため、腹腔内における血管は低酸素状態に陥りやすい。仮に、低酸素状態となった場合には、腹腔鏡手術を中断し、外科手術に切り替えられる。したがって、腹腔鏡手術時においては、血中の酸素飽和度をモニタリングしておく必要がある。
酸素飽和度のモニタリング方法としては、手の指などに経皮的測定プローブを挟み込んで経皮的に酸素飽和度を測定する方法の他、腹腔鏡の鉗子チャンネルを介して挿入された非接触式測定プローブによって、血管の酸素飽和度を非接触で測定する方法などがある(非特許文献1参照)。この非特許文献1の非接触式測定プローブは、所定波長の測定光を血管に向けて照射し、その血管からの反射光をCCDなどの撮像素子で受光する。そして、撮像素子から出力される受光信号に基づいて、血管の酸素飽和度を求めている。
特開2000−139947号公報
米国Spectros社製品「T-Stat」、[online]、[平成22年11月12日検索]、インターネット<URL:http://www.spectros.com/products/t-stat-ischemia-detection/about-t-stat/system-overview.html>
腹腔鏡手術の中でも、例えば、血管バイパス手術などでは、非特許文献1のような非接触式測定プローブで、手術上重要な血管(例えば、大動脈や冠動脈など)の酸素飽和度の時間的変化をモニタリングすることによって、安全に手術を進めることができる。しかしながら、非特許文献1では、非接触式測定プローブを腹腔鏡の先端部から突出させた状態で測定するため、何らかの拍子又は手術の進行上、腹腔鏡の先端部に動きがあった場合には、それに伴って非接触式測定プローブの位置もずれてしまう。このように非接触式測定プローブの位置がずれてしまうと、その非接触式測定プローブから照射される測定光が、モニタリングしようとする血管に十分に当たらなくなる。このような場合には、血管の酸素飽和度の算出を確実にできなくなるおそれがある。
本発明は、腹腔鏡の先端部における動きなどによって被検体の撮像エリアが変化したとしても、被検体における酸素飽和度の時間的変化を確実にモニタリングすることができる医療装置システム及び生体情報監視方法を提供することを目的とする。
上記目的を達成するために、本発明の医療装置システムは、光の波長に関する分光情報を少なくとも2種以上含む被検体画像を一定時間毎に取得する画像取得手段と、被検体の関心領域の動きに追従するロックオンエリアを、前記被検体画像上の関心領域に設定するロックオン設定手段と、前記被検体画像のうち前記ロックオンエリア部分の画像に基づいて、前記ロックオンエリアにおける酸素飽和度の時間的変化を監視するために用いられるモニタリング画像を生成するモニタリング画像生成手段と、前記モニタリング画像を表示する表示手段とを備えることを特徴とする。
前記モニタリング画像生成手段は、前記被検体画像を取得する毎に、前記関心領域の動きに合わせて前記ロックオンエリアの位置を更新する位置更新部と、前記ロックオンエリアの位置を更新する毎に、前記ロックオンエリア内の酸素飽和度を算出する酸素飽和度算出部と、算出した酸素飽和度を時系列的に表すグラフを含むモニタリング画像を生成するモニタリング画像生成部とを有することが好ましい。
前記位置更新部は、前記被検体画像を取得する毎に、前記ロックオンエリアの位置を特定するためのロックオンエリア特定マーカを前記被検体画像から抽出し、その抽出したロックオンエリア特定マーカを用いて前記ロックオンエリアの位置を更新することが好ましい。前記位置更新部は、画像取得タイミングが異なる複数の被検体画像間の動き量を前記ロックオンエリア特定マーカを用いて算出し、その算出した動き量に従って前記ロックオンエリアの位置を更新することが好ましい。
前記酸素飽和度算出部は、酸化ヘモグロビンと還元ヘモグロビンの吸光係数が異なる波長の光に関する2種類の分光情報を含む被検体画像に基づいて、前記ロックオンエリア内の酸素飽和度を算出することが好ましい。前記表示手段は、前記モニタリング画像内において、前記グラフと同時に、最新の被検体画像を表示することが好ましい。前記ロックオンエリアにおける酸素飽和度が一定値以下となったときに、アラームを発するアラーム手段を備えることが好ましい。
前記画像取得手段は、特定波長の狭帯域光と波長が広帯域に及ぶ広帯域光を交互に照射し、それぞれの光を照射する毎にカラーの撮像素子で撮像することにより、前記被検体画像を取得することが好ましい。前記画像取得手段は、互いに波長が異なる複数の狭帯域光を被検体に順次照射し、各狭帯域光の照射毎にモノクロの撮像素子で撮像することにより、前記被検体画像を取得することが好ましい。
前記画像取得手段は、腹腔内を腹腔鏡装置で撮像することで得られる腹腔鏡画像を取得することが好ましい。前記画像取得手段は、消化管を含む管内を内視鏡装置で撮像することにより得られる管内画像を取得することが好ましい。
本発明の生体情報監視方法は、光の波長に関する分光情報を少なくとも2種以上含む被検体画像を、画像取得手段によって一定時間毎に取得するステップと、被検体の関心領域の動きに追従するロックオンエリアを、前記被検体画像上の関心領域に設定する処理を、ロックオン設定手段で行うステップと、前記ロックオンエリアにおける酸素飽和度の時間的変化を監視するために用いられるモニタリング画像を、前記被検体画像のうち前記ロックオンエリア部分の画像を用いてモニタリング画像生成手段で生成するステップと、前記モニタリング画像を表示装置に表示するステップとを備えることを特徴とする。
本発明によれば、被検体の関心領域の動きをロックオンエリアで追従するとともに、そのロックオンエリアでロックオンされた関心領域の酸素飽和度の時間的変化を、表示手段上のモニタリング画像に表示することから、仮に、腹腔鏡の先端部における動きなどによって関心領域が動いたとしても、その関心領域における酸素飽和度の時間的変化を確実にモニタリングすることができる
第1実施形態の腹腔鏡システムを示す図である。 腹腔鏡システムの内部構成を表す図である。 腹腔鏡スコープの先端部を表す図である。 酸素飽和度測定光及び白色光の発光スペクトルを表す図ある。 RGBのカラーフィルタの分光透過率を示す図である。 通常観察モードにおける撮像素子の撮像制御を説明するための図である。 酸素飽和度監視モードにおける撮像素子の撮像制御を説明するための図である。 酸素飽和度監視部の構成を示す図である。 モニタリング画像を表す図である。 ロックオンエリアを設定する手順を説明するための図である。 ロックオンエリアの位置特定に用いられるランドマークを説明するための図である。 酸素飽和度と信号比B1/G2、R2/G2との相関関係を示す図である。 ヘモグロビンの吸光係数を示す図である。 図11のグラフにおいて信号比から酸素飽和度を求める方法を説明するための説明図である。 ロックオンエリアの位置更新を説明するための図である。 本発明の作用を説明するための図である。 第2実施形態における腹腔鏡システムの内部構成を表す図である。 白色光の発光スペクトルを表す図である。 回転フィルタを示す図である。 図18の回転フィルタとは別の透過特性を有する回転フィルタを示す図である。 内視鏡システムを示す図である。
図1に示すように、第1実施形態の腹腔鏡システム2では、手術台3に寝かされた被検者Pの体腔内を腹腔鏡装置12で観察して手術部位を特定するとともに、その特定した手術部位に対して、電気メスなどの処置具5を使って手術を施す。体腔内の観察には、所定の波長範囲の光を発する光源装置11と、光源装置11から発せられる光を導光して被検体の被観察領域に照明光を照射し、その反射光等を撮像する腹腔鏡装置12と、腹腔鏡装置12で得られた画像信号を画像処理するプロセッサ装置13と、画像処理によって得られた画像を表示する表示装置14が用いられる。また、体腔内の視野・術野を確保するために、体腔を気腹させるCO2ガスを体腔に供給する気腹装置16が用いられる。
処置具5及び腹腔鏡装置12は、それぞれトラカール17,18を介して、体腔内に挿入される。これらトラカール17,18は金属製の中空管17a,18aと術者把持部17b,18bを備えており、術者が術者把持管17b,18bを把持した状態で、中空管17a,18aの先鋭状先端を腹部に刺し込むことにより、中空管17a、18aが体腔内に挿入される。このように中空管17a,18aが体腔内に挿入されたトラカール17,18に対して、処置具5及び腹腔鏡装置12のそれぞれが挿入される。
腹腔鏡システム2は、波長範囲が青色から赤色に及ぶ可視光の被検体像からなる通常光画像を表示装置14に表示する通常観察モードと、血管バイパス手術などにおいて手術上重要な血管などを含む関心領域の酸素飽和度の経時的変化を監視する酸素飽和度監視モードを備えている。これらモードは、腹腔鏡装置12の切り替えスイッチ17や入力装置15から入力される指示に基づき、適宜切り替えられる。
図2に示すように、光源装置11は、2種のレーザ光源LD1,LD2と、光源制御部20と、合波器21と、分波器22とを備えている。レーザ光源LD1は、酸素飽和度の測定に用いられる狭帯域光(酸素飽和度測定光)を発生させる。この酸素飽和度測定光の中心波長は473nmである。レーザ光源LD2は、腹腔鏡装置12の先端部に配置された蛍光体50から白色光(疑似白色光)を発生させるための励起光を発生させる。この励起光の中心波長は445nmである。
各レーザ光源LD1,LD2から発せられる光は、集光レンズ(図示省略)を介してそれぞれ対応する光ファイバ24,25に入射する。なお、レーザ光源LD1,LD2は、ブロードエリア型のInGaN系レーザダイオードが使用でき、また、InGaNAs系レーザダイオードやGaNAs系レーザダイオード等を用いることもできる。
光源制御部20は、レーザ光源LD1,LD2を制御することによって、各レーザ光源LD1,LD2の発光タイミングや各レーザ光源LD1,LD2間の光量比を調節する。本実施形態では、通常観察モードのときには、レーザ光源LD1をオフにし、レーザ光源LD2をオンにする。一方、酸素飽和度監視モードのときには、レーザ光源LD1をオンにしたときはレーザ光源LD2をオフにし、反対にレーザ光源LD1をオフにしたときはレーザ光源LD2をオンにする。この切替は一定時間毎に繰り返し行われる。
合波器21は、各光ファイバ24,25からの光を合波させる。合波した光は、分波器である分波器22によって4系統の光に分波される。分波された4系統の光のうち、レーザ光源LD1からの光はライトガイド26,27で伝送され、レーザ光源LD2からの光はライトガイド28、29で伝送される。ライトガイド26〜29は多数の光ファイバを束ねたバンドルファイバなどから構成される。なお、合波器21及び分波器22を用いずに、各レーザ光源LD1,LD2からの光を直接ライトガイド26〜29に入れる構成としてもよい。
腹腔鏡装置12は、腹腔鏡スコープ32と、ライトガイド26〜29で伝送される4系統(4灯)の光を照射する照明部33と、被観察領域を撮像する1系統の撮像部34と、腹腔鏡スコープ32の先端部の湾曲操作や観察のための操作を行う操作部35と、腹腔鏡スコープ32と光源装置11及びプロセッサ装置13とを着脱自在に接続するコネクタ部36を備えている。
照明部33は、撮像部34の両脇に設けられた2つの照明窓43,44を備えており、各照明窓43,44は、酸素飽和度測定光と白色光の2種類の光を被観察領域に向けて照射する。撮像部34は、腹腔鏡スコープ32の先端部の略中心位置に、被写体領域からの反射光等を撮像する1つの観察窓42を備えている。
照明窓43の奥には2つの投光ユニット46,47が収納されている。一方の投光ユニット46では、ライトガイド26からの酸素飽和度測定光を、レンズ48を介して被観察領域に向けて照射する。もう一方の投光ユニット47では、ライトガイド28からの励起光を蛍光体50に当てて白色光を発光させ、その白色光をレンズ51を介して被観察領域に向けて照射する。なお、他方の照明窓44の奥にも、上記投光ユニット46と同様の投光ユニット53と、上記投光ユニット47と同様の投光ユニット54の2つが収納されている。
図3に示すように、4つの投光ユニット46,47,53,54は、蛍光体50を備える投光ユニット47,54の出射面間を結ぶ直線L1と、蛍光体50を備えていない投光ユニット46,53の出射面間を結ぶ直線L2とが、観察窓42の中心部で交差するように、互い違いに配置されている。このような配置にすることによって、照明ムラの発生を防止することができる。
蛍光体50は、レーザ光源LD2からの励起光の一部を吸収して緑色〜黄色に励起発光する複数種の蛍光物質(例えばYAG系蛍光物質、或いはBAM(BaMgAl1017)等の蛍光物質)を含んで構成される。励起光が蛍光体50に照射されると、蛍光体50から発せられる緑色〜黄色の励起発光光(蛍光)と、蛍光体50により吸収されず透過した励起光とが合わされて、白色光(疑似白色光)が生成される。なお、蛍光体50は、商品名としてマイクロホワイト(登録商標)(Micro White(MW))とも呼ばれている。
したがって、蛍光体50を備える投光ユニット47,54から発せられる白色光は、図4に示すように、中心波長445nmの励起光の波長範囲と、その励起光によって励起発光する蛍光において発光強度が増大する概ね450nm〜700nmの波長範囲とを有する発光スペクトルとなる。一方、蛍光体50を備えていない投光ユニット46,53から発せられる酸素飽和度測定光は、中心波長473nmの近傍に波長範囲を有する発光スペクトルとなる。
なお、ここで、本発明でいう白色光とは、厳密に可視光の全ての波長成分を含むものに限らず、例えば、上述した疑似白色光を始めとして、基準色であるR(赤),G(緑),B(青)等、特定の波長帯の光を含むものであればよい。つまり、本発明のいう白色光には、例えば、緑色から赤色にかけての波長成分を含む光や、青色から緑色にかけての波長成分を含む光等も広義に含まれるものとする。
観察窓42の奥には、被検体の被観察領域の像光を取り込むための対物レンズユニット(図示省略)等の光学系が設けられており、さらにその対物レンズユニットの奥には、被観察領域の像光を受光して被観察領域を撮像するCCD(Charge Coupled Device)やCMOS(Complementary Metal-Oxide Semiconductor)などの撮像素子60が設けられている。
撮像素子60は、対物レンズユニットからの光を受光面(撮像面)で受光し、受光した光を光電変換して撮像信号(アナログ信号)を出力する。撮像素子60はカラーCCDであり、その受光面には、R色のカラーフィルタが設けられたR画素、G色のカラーフィルタが設けられたG画素、B色のカラーフィルタが設けられたB画素を1組とする画素群が、多数マトリックス状に配列されている。
B色、G色、R色のカラーフィルタは、それぞれ図5に示すような分光透過率63,64,65を有している。したがって、被観察領域からの反射光等のうち白色光はB色、G色、R色のカラーフィルタのカラーフィルタの全てを透過するため、撮像素子60のB画素、G画素、R画素の全てから一定以上の輝度値を有する撮像信号が出力される。一方、酸素飽和度測定光は、中心波長が473nmであるため、B画素から一定以上の輝度値を有する撮像信号が出力される一方、G画素及びR画素からは輝度値が非常に小さい又はほぼ「0」の撮像信号が出力される。
撮像素子60から出力される撮像信号(アナログ信号)は、スコープケーブル67を通じてA/D変換器68に入力される。A/D変換器68は、撮像信号(アナログ信号)をその電圧レベルに対応する画像信号(デジタル信号)に変換する。変換後の画像信号は、コネクタ部36を介して、プロセッサ装置13の通常光画像生成部80又は酸素飽和度監視部82に入力される。
撮像制御部70は撮像素子60の撮像制御を行う。図6Aに示すように、通常観察モード時には、1フレーム期間内で、白色光(445nm+蛍光体(本実施形態では445nmの励起光を蛍光体50に当てて白色光を発生させるため、このように表記する))を光電変換して得られる電荷を蓄積するステップと、蓄積した電荷を読み出すステップの合計2ステップが行われる。これにより、通常光画像の画像信号が得られる。この撮像制御は、通常観察モードに設定されている間、繰り返し行われる。
一方、酸素飽和度監視モード時には、図6Bに示すように、1フレーム期間内で、酸素飽和度測定光(473nmの狭帯域光)を光電変換して得られる電荷を蓄積するステップと、蓄積した電荷を読み出すステップの合計2ステップが行われる(1フレーム目)。そして、その次に、1フレーム期間内で、白色光(445nm+MW)を光電変換して得られる電荷を蓄積するステップと、蓄積した電荷を読み出すステップの合計2ステップが行われる(2フレーム目)。これにより、1フレーム目の特殊光画像と2フレーム目の通常光画像とからなる測定用画像群の画像信号が得られる。この撮像制御は、酸素飽和度監視モードに設定されている間、繰り返し行われる。
なお、以下の説明のために、1フレーム目の特殊光画像の画像信号のうち、撮像素子60のB画素から出力される青色信号をB1と、G画素から出力される緑色信号をG1と、R画素から出力される赤色信号をR1とする。また、2フレーム目の画像信号のうち、B画素から出力される青色信号をB2と、G画素から出力される緑色信号をG2と、R画素から出力される赤色信号をR2とする。
図2に示すように、プロセッサ装置13は、制御部72と、記憶部74と、通常光画像生成部80と、酸素飽和度監視部82とを備えており、制御部72には表示装置14及び入力装置15が接続されている。制御部72は、腹腔鏡装置12の切り替えスイッチ17、ロックオンSW19、入力装置15から入力される入力情報に基づいて、通常光画像生成部80、酸素飽和度監視部82、光源装置11の光源制御部20、腹腔鏡装置12の撮像制御部70、及び表示装置14の動作を制御する。
通常光画像生成部80は、通常観察モード時に得られる画像信号に対して所定の画像処理を施すことによって、通常光画像を生成する。生成された通常光画像は、表示装置14に表示される。
酸素飽和度監視部82は、酸素飽和度監視モード下において、体腔内の関心領域における酸素飽和度の経時変化を測定することで、関心領域の酸素状態を監視する。酸素飽和度監視部82は、図7に示すように、測定用画像群を取り込む画像取込部85と、体腔内の最新画像と酸素飽和度の経時的変化を表示装置14に表示するためのモニタリング画像94(図8参照)を生成するモニタリング画像生成部86と、関心領域の動きに追従させるロックオンエリア98(図9参照)を設定するロックオンエリア設定部87と、ロックオンエリア98内の画像情報を取得する画像情報取得部88と、画像情報取得部88で取得した画像情報に基づいて、ロックオンエリア98内の酸素飽和度を算出する酸素飽和度算出部89と、ロックオンエリアの設定後、測定用画像群を取り込む毎に、ロックオンエリア98の位置を更新するロックオンエリア更新部90と、ロックオンエリア98内の酸素飽和度が一定値を下回った時に警告音を発するアラーム部91とを備えている。
画像取込部85は、撮像素子60で撮像を行った順に測定用画像群を取り込み、取り込んだ測定用画像群をモニタリング画面生成部86、ロックオンエリア設定部87、及びロックオンエリア更新部90に送信する。モニタリング画像生成部86は、図8に示すように、測定用画像群のうち最新の通常光画像である観察画像92と、その観察画像92の隣に位置し、関心領域の酸素飽和度を時系列的に表すグラフ93とからなるモニタリング画像94を生成する。このモニタリング画像94は、画像取込部85から測定用画像群を取り込むごとに行われ、また酸素飽和度算出部89で酸素飽和度を算出するごとに生成される。生成されたモニタリング画像94は、表示装置14に表示される。なお、グラフ93上への酸素飽和度の値のプロットは、グラフ作成部86aにより行われる。
ロックオンエリア設定部87は、図9(A)に示すように、観察画像92の所定位置に矩形状の測定対象指定エリア96を表示する。術者などは、体腔内の関心部位(例えばRITA(右内胸動脈)やLITA(左内胸動脈)など(図9では関心部位をRITAの一部とする))を含む関心領域が測定対象指定エリア96に入るように、腹腔鏡スコープ32の先端部や入力装置15を操作する。そして、関心領域が測定対象指定エリア96に入ったら、ロックオンSW19を押圧操作する。これにより、図9(B)に示すように、その関心領域がロックオンエリア98として設定される。これ以降、このロックオンエリア98(関心領域)の酸素飽和度の経時的変化が測定される。
ロックオンエリア98を設定した後は、そのロックオンエリア98を設定したときの第1測定用画像群(第1通常光画像、第1特殊光画像)に加えて、その第1測定用画像群の後に取り込まれる第2測定用画像群(第2通常光画像、第2特殊光画像)、・・・、第n測定用画像群(nは2以上の自然数)、・・・が、順次画像情報取得部88に送信される。なお、第n測定用画像群は、「n」は値が大きくなるほど後の時刻に撮像された(取り込んだ)ものであることを表している。
画像情報取得部88は、図10に示すように、第1測定用画像群のうち第1通常光画像から、一定の特徴量を有する複数のランドマーク100を抽出する。これらランドマーク100は第1測定用画像群の後に取り込まれる第n測定用画像群からロックオンエリア98の位置を特定するために用いられる。ランドマーク100の特徴量は、例えば、体腔内の血管走行をエッジ検出処理することで得られる。エッジ検出の対象となる部分としては、例えば、血管とその近傍の生体組織の境界部分や血管が交差する部分が挙げられる。
なお、図10では図が複雑になることを避けるために、一部のランドマークのみに符号100を付している。また、ランドマーク100の抽出は、血管走行などの生体の構造が明確に写し出されている通常光画像から行うが、特殊光画像においても生体の構造が明確に写し出されている場合には、特殊光画像からランドマーク100の抽出を行ってもよい。
また、画像情報取得部88は、測定用画像群のうち特殊光画像からロックオンエリア98部分の信号値(青色信号B1´、緑色信号G1´、赤色信号R1´)を抽出するとともに、通常光画像からロックオンエリア98部分の信号値(青色信号B2´、緑色信号G2´、赤色信号R2´)を抽出する。抽出した信号値は、関心領域の酸素飽和度の算出に用いられる。
酸素飽和度算出部89は、画像情報取得部88で求めたロックオンエリア98部分の信号値に基づき、信号比算出部89a、相関関係記憶部89b、及び演算部89c(図7参照)によって、ロックオンエリア98の酸素飽和度を算出する。信号比算出部89aは、ロックオンエリア98部分の画像信号において、特殊光画像及び通常光画像間で同じ位置にある画素間の信号比を算出する。本実施形態では、信号比算出部89aは、特殊光画像の青色信号B1´と通常光画像の緑色信号G2´との信号比B1´/G2´と、通常光画像の緑色信号G2´と赤色信号R2´との信号比R2´/G2´とを求める。
相関関係記憶部89bは、酸素飽和度監視モード下で取得した画像信号全体の信号比B1/G2及びR2/G2と酸素飽和度との相関関係を記憶している。信号比と酸素飽和度との相関関係は、図11に示す二次元空間上に酸素飽和度の等高線を定義した2次元テーブルで記憶されている。この等高線の位置、形は光散乱の物理的なシミュレーションで得られ、血液量に応じて変わるように定義されている。例えば、血液量の変化があると、各等高線間の間隔が広くなったり、狭くなったりする。なお、信号比B1/G2,R2/G2はlogスケールで記憶されている。
なお、上記相関関係は、図12に示すような酸化ヘモグロビンや還元ヘモグロビンの吸光特性や光散乱特性と密接に関連性し合っている。図12において、曲線102は酸化ヘモグロビンの吸光係数を、曲線103は還元ヘモグロビンの吸光係数を示している。例えば、473nmのように吸光係数の差が大きい波長では、酸素飽和度の情報を取り易い。しかしながら、473nmの光に対応する信号を含む青色信号は、酸素飽和度だけでなく血液量にも依存度が高い。そこで、青色信号B1に加え、主として血液量に依存して変化する光に対応する赤色信号R2と、青色信号B1と赤色信号R2のリファレンス信号となる緑色信号G2から得られる信号比B1/G2及びR2/G2を用いることで、血液量に依存することなく、酸素飽和度を正確に求めることができる。
また、血中ヘモグロビンの吸光係数の波長依存性から、以下の3つのことが言える。
・波長470nm近辺(例えば、中心波長470nm±10nmの青色の波長領域)では酸素飽和度の変化に応じて吸光係数が大きく変化する。
・540〜580nmの緑色の波長範囲で平均すると、酸素飽和度の影響を受けにくい。
・590〜700nmの赤色の波長範囲では、酸素飽和度によって一見吸光係数が大きく変化するように見えるが、吸光係数の値自体が非常に小さいので、結果的に酸素飽和度の影響を受けにくい。
演算部89cは、相関関係記憶部89bに記憶された相関関係と信号比算出部89aで求めた信号比B1´/G2´、R2´/G2´とを用いて、ロックオンエリア内の酸素飽和度を求める。酸素飽和度の算出に当たっては、まず、図13に示すように、二次元空間において信号比B1´/G2´、R2´/G2´に対応する対応点Pを特定する。
そして、対応点Pが酸素飽和度=0%限界の下限ライン105と酸素飽和度=100%限界の上限ライン106との間にある場合、その対応点Pが位置する等高線のパーセント値が、酸素飽和度となる。例えば、図13の場合であれば、対応点Pが位置する等高線は60%を示しているため、この60%が酸素飽和度となる。算出された酸素飽和度は、グラフ作成部86aによって、モニタリング画像94上のグラフ93にプロットされる。
なお、対応点Pが下限ライン105と上限ライン106との間から外れている場合には、対応点Pが下限ライン105よりも上方に位置するときには酸素飽和度を0%とし、対応点Pが上限ライン106よりも下方に位置するときには酸素飽和度を100%とする。なお、対応点Pが下限ライン105と上限ライン106との間から外れている場合には、その画素における酸素飽和度の信頼度を下げて表示しないようにしてもよい。
ロックオンエリア更新部90では、図14(A)に示すように、第1測定用画像群の後に取り込まれる第n測定用画像群のうち第n通常光画像から、複数のランドマーク110を抽出する。ランドマーク110の抽出は、上記のランドマーク100と同様に行う。そして、第1通常光画像上のランドマーク100と第n通常光画像上のランドマーク110とで特徴量が略一致するものを特定するとともに、それら特徴量が略一致するランドマーク100,110間の移動量Mを求める。そして、その移動量Mから、第1及び第n通常光画像間における動き量を取得する。なお、図14では図が複雑になることを避けるために、一部のランドマークのみに符号100,110を付している。
そして、図14(B)に示すように、取得した動き量に従って、第n測定用画像群におけるロックオンエリア98の位置を変更する。これにより、ロックオンエリア98の位置が更新される。ロックオンエリア98の位置が変更されたら、上記と同様にして、ロックオンエリア98内の酸素飽和度を再測定する。
次に、本発明の作用について図15のフローチャートに沿って説明する。腹腔鏡装置の切り替えスイッチ17によって、酸素飽和度監視モードに切り替えられると、中心波長473nmの酸素飽和度測定光と中心波長445nmの励起光で励起発光される白色光とが交互に体腔内に照射され、それぞれの光の照射毎に、B画素、G画素、R画素からなるカラーCCDである撮像素子60で撮像される。これにより、酸素飽和度測定光の照射・撮像により得られる特殊光画像と白色光の照射・撮像により得られる通常光画像とからなる測定用画像群が得られる。この測定用画像群の取得は、酸素飽和度監視モードに設定されている間、繰り返し行われる。
測定用画像群の取得毎に、表示装置14にはモニタリング画像94が表示される。モニタリング画像94には、測定用画像群のうち通常光画像が観察画像92として表示され、その観察画像92の隣の位置に、関心領域の酸素飽和度を時系列的に表すグラフ93が表示される。また、モニタリング画像94の表示時には、ロックオンエリア98の設定がされるまでの間、観察画像98の所定位置に測定対象指定エリア96が表示される。
術者は、表示装置14に表示された観察画像を見ながら、関心領域が測定対象指定エリア96に入るように、腹腔鏡スコープ32の先端部や入力装置15を操作する。そして、関心領域が測定対象指定エリア96に入ったときに、ロックオンSW19を押圧操作する。これにより、関心領域がロックオンエリア98として設定される(ロックオン開始)。
ロックオンエリア98が設定されたら、その設定時の第1測定用画像のうち第1通常光画像から複数のランドマーク100を抽出する。また、第1測定用画像のうち第1特殊光画像からロックオンエリア98部分の信号値(B1´、G1´、R1´)を抽出するとともに、第1通常光画像からロックオンエリア98部分の信号値(B2´、G2´、R2´)を抽出する。
ロックオンエリア98部分の信号値が抽出されたら、信号比算出部89aによってロックオンエリア98部分の信号比B1´/G2´と信号比R2´/G2´を求める。信号比が求まると、演算部89cは、相関関係記憶部89bに記憶している相関関係から、信号比B1´/G2´、R2´/G2´に対応する酸素飽和度を求める。これにより、ロックオンエリア98の酸素飽和度が得られる。得られた酸素飽和度は、グラフ作成部86aによって、モニタリング画像94上のグラフ92にプロットされる。
次に、第1測定用画像の後に撮像された第2測定用画像のうち第2通常光画像から複数のランドマークを抽出する。そして、この第2通常光画像上のランドマークと第1通常光画像上のランドマークとで特徴量が略一致するものを特定するとともに、それら特徴量が略一致するランドマーク間の移動量Mを求める。この移動量Mから第1通常光画像及び第2通常光画像間の動き量を求め、この動き量に従って、ロックオンエリア98の位置を更新する。そして、上記と同様にして、位置が更新されたロックオンエリア98内の酸素飽和度を測定し、測定した酸素飽和度をグラフ92上にプロットする。
そして、第3測定用画像群〜第n測定用画像群に対しても、同様に、ロックオンエリア98の更新を行い、更新ごとに酸素飽和度の測定及びグラフ92へのプロットを行う。このロックオンエリア98の更新ごとの酸素飽和度の測定及びグラフ92へのプロットは、ロックオンSW19が再度押圧操作されるまで、繰り返し行われる。これにより、ロックオンエリア98は、関心領域の動きに合わせて位置が移動するとともに、移動毎にロックオンエリア98内の酸素飽和度が算出される。したがって、仮に、関心領域に大きな動きが生じたとしても、その関心領域の酸素飽和度の時間的変化を確実にモニタリングすることができる。
そして、ロックオンSW19が再び押圧操作されたら、ロックオンが解除される。これにより、ロックオンエリア98に対する酸素飽和度の測定は終了する。これに伴って、観察画像92上からロックオンエリア98の表示が消え、再度、測定対象指定エリア96が観察画像92上に表示される。
図16に示すように、第2実施形態の腹腔鏡システム120は、光源装置11に回転フィルタ方式を採用するとともに、回転フィルタ122からの照明光を2つの投光ユニット46及び53から体腔内に照射する。なお、それ以外については、腹腔鏡システム120は腹腔鏡システム2と同様の構成を有しているので、説明を省略する。
腹腔鏡システム120には、第1実施形態におけるレーザ光源LD1,LD2、光源制御部20、及び合波器21に代えて、図17に示すような分光強度を有する白色光を発するキセノン光源等の広帯域光源121と、白色光のうち酸素飽和度測定光の波長成分のみを透過又は白色光をそのまま透過させる回転フィルタ122と、回転フィルタ122を透過した光が入射する光ファイバ123と、回転フィルタ122の回転を制御する回転制御部124が設けられている。光ファイバ123に入射した光は、分波器22で2系統の光に分波され、分波された光はそれぞれライトガイド26及び27を介して、投光ユニット46及び53から被検体内に照射される。
図18に示すように、回転フィルタ122は、白色光のうち波長範囲が460〜480nmの酸素飽和度測定光(図4参照)を透過させるバンドフィルタ125と、白色光をそのまま透過させる開口部126とからなる。したがって、回転フィルタ122が回転することで、酸素飽和度測定光と白色光とが交互に被検体内に照射される。このとき、第1実施形態と同様に、酸素飽和度測定光が照射されたときに1フレーム目の画像信号を取得し、白色光が照射されたときに2フレーム目の画像信号を取得する。これら取得した2フレーム分の画像信号からなる測定用画像は、第1実施形態と同様に、ロックオンエリア98部分の酸素飽和度の算出に用いられる。
この第2実施形態においては、白色光が図17のような分光強度特性を有するため、通常光画像信号の青色信号B2には400nm〜530nmの波長範囲の光に対応する信号が含まれ、緑色信号G2には540nm〜580nmの波長範囲の光に対応する信号が含まれ、赤色信号R2には590nm〜700nmの波長範囲の光に対応する信号が含まれる。
なお、第2実施形態では、図18に示す回転フィルタ122に代えて、図19に示すような回転フィルタ130を用いてもよい。この回転フィルタ130の第1透過部131は広帯域光源121からの白色光のうち460〜480nmの波長範囲の第1透過光を透過させ、第2透過部132は白色光のうち540〜580nmの波長範囲の第2透過光を透過させ、第3透過部133は白色光のうち590〜700nmの波長範囲の第3透過光を透過させる。この回転フィルタ130が回転すると、第1〜第3透過光が順次被検体に照射される。
回転フィルタ130を用いる場合には、モノクロの撮像素子60によって、各透過光が照射される毎に撮像を行う。したがって、第1〜第3透過光の照射により、3フレーム分の画像信号が得られる。これら画像信号のうち、第1透過光を照射したときに得られる画像信号を青色信号Bとし、第2透過光を照射したときに得られる画像信号を緑色信号Gとし、第3透過光を照射したときに得られる画像信号を赤色信号Rとする。したがって、酸素飽和度の算出に用いられる信号比はB/G、R/Gとなる。R/Gは第1実施形態の信号比R2/G2に対応し、B/Gは第1実施形態の信号比B1/G2に対応する。
なお、上記第1及び第2実施形態では、腹腔鏡システムで本発明を実施したが、これに代えて、図20に示すように、消化管などの管内を観察する内視鏡システム200に対しても本発明の適用は可能である。
内視鏡システム200は、上記光源装置11、プロセッサ装置13、及びモニタ14と同様の機能を有する光源装置201、プロセッサ装置203、モニタ204を備えている。また、消化管用内視鏡202には、上記腹腔鏡装置12と同様に、挿入部206の先端部206aに、酸素飽和度測定光及び白色光を管内に向けて照射する4系統(4灯)の光を照射する照明部(上記第1及び第2実施形態の照明部33に対応)と、被観察領域を撮像する1系統の撮像部(上記第1及び第2実施形態の撮像部34に対応)とが設けられている。その他についても、消化管用内視鏡202は上記腹腔鏡装置12と同様の機能を有している。
また、挿入部206の先端部206aは、アングルノブ212を操作することにより、上下左右方向に湾曲動作する。したがって、このように先端部206aが湾曲動作した場合には、関心領域を見失いやすいが、上記第1及び第2実施形態に示したように、関心領域をロックオンエリア98として設定しておくことで、関心領域を見失うことはない。したがって、消化管用内視鏡202を用いる場合でも、関心領域の酸素状態の測定を確実に行うことができる。
なお、上記第1及び第2実施形態では、エッジ検出処理により得られるランドマークを使ってロックオンエリアの更新を行ったが、その他、血管太さ、血管深さ、血管形状など酸素飽和度以外の各種パラメータを使ってロックオンエリアの更新を行ってもよい。
2,120 腹腔鏡システム
12 腹腔鏡装置
13 プロセッサ装置
82 酸素飽和度監視部
86 モニタリング画像生成部
86a グラフ作成部
87 ロックオンエリア設定部
88 画像情報取得部
89 酸素飽和度算出部
90 ロックオンエリア更新部
91 アラーム部
93 グラフ
94 モニタリング画像
98 ロックオンエリア
100,110 ランドマーク
200 内視鏡システム

Claims (12)

  1. 光の波長に関する分光情報を少なくとも2種以上含む被検体画像を一定時間毎に取得する画像取得手段と、
    被検体の関心領域の動きに追従するロックオンエリアを、前記被検体画像上の関心領域に設定するロックオン設定手段と、
    前記被検体画像のうち前記ロックオンエリア部分の画像に基づいて、前記ロックオンエリアにおける酸素飽和度の時間的変化を監視するために用いられるモニタリング画像を生成するモニタリング画像生成手段と、
    前記モニタリング画像を表示する表示手段とを備えることを特徴とする医療装置システム。
  2. 前記モニタリング画像生成手段は、
    前記被検体画像を取得する毎に、前記関心領域の動きに合わせて前記ロックオンエリアの位置を更新する位置更新部と、
    前記ロックオンエリアの位置を更新する毎に、前記ロックオンエリア内の酸素飽和度を算出する酸素飽和度算出部と、
    算出した酸素飽和度を時系列的に表すグラフを含むモニタリング画像を生成するモニタリング画像生成部とを有することを特徴とする請求項1記載の医療装置システム。
  3. 前記位置更新部は、前記被検体画像を取得する毎に、前記ロックオンエリアの位置を特定するためのロックオンエリア特定マーカを前記被検体画像から抽出し、その抽出したロックオンエリア特定マーカを用いて前記ロックオンエリアの位置を更新することを特徴とする請求項2記載の医療装置システム。
  4. 前記位置更新部は、画像取得タイミングが異なる複数の被検体画像間の動き量を前記ロックオンエリア特定マーカを用いて算出し、その算出した動き量に従って前記ロックオンエリアの位置を更新することを特徴とする請求項3記載の医療装置システム。
  5. 前記酸素飽和度算出部は、酸化ヘモグロビンと還元ヘモグロビンの吸光係数が異なる波長の光に関する2種類の分光情報を含む被検体画像に基づいて、前記ロックオンエリア内の酸素飽和度を算出することを特徴とする請求項2ないし4いずれか1項記載の医療装置システム。
  6. 前記表示手段は、前記モニタリング画像内において、前記グラフと同時に、最新の被検体画像を表示することを特徴とする請求項1ないし5いずれか1項記載の医療装置システム。
  7. 前記ロックオンエリアにおける酸素飽和度が一定値以下となったときに、アラームを発するアラーム手段を備えることを特徴とする請求項1ないし6いずれか1項記載の医療装置システム。
  8. 前記画像取得手段は、特定波長の狭帯域光と波長が広帯域に及ぶ広帯域光を交互に照射し、それぞれの光を照射する毎にカラーの撮像素子で撮像することにより、前記被検体画像を取得することを特徴とする請求項1ないし7いずれか1項記載の医療装置システム。
  9. 前記画像取得手段は、互いに波長が異なる複数の狭帯域光を被検体に順次照射し、各狭帯域光の照射毎にモノクロの撮像素子で撮像することにより、前記被検体画像を取得することを特徴とする請求項1ないし7いずれか1項記載の医療装置システム。
  10. 前記画像取得手段は、腹腔内を腹腔鏡装置で撮像することで得られる腹腔鏡画像を取得することを特徴とする請求項1ないし9いずれか1項記載の医療装置システム。
  11. 前記画像取得手段は、消化管を含む管内を内視鏡装置で撮像することにより得られる管内画像を取得することを特徴とする請求項1ないし9いずれか1項記載の医療装置システム。
  12. 光の波長に関する分光情報を少なくとも2種以上含む被検体画像を、画像取得手段によって一定時間毎に取得するステップと、
    被検体の関心領域の動きに追従するロックオンエリアを、前記被検体画像上の関心領域に設定する処理を、ロックオン設定手段で行うステップと、
    前記ロックオンエリアにおける酸素飽和度の時間的変化を監視するために用いられるモニタリング画像を、前記被検体画像のうち前記ロックオンエリア部分の画像を用いてモニタリング画像生成手段で生成するステップと、
    前記モニタリング画像を表示装置に表示するステップとを備えることを特徴とする生体情報監視方法。
JP2011107466A 2011-05-12 2011-05-12 医療装置システム及び医療装置システムの作動方法 Active JP5642619B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011107466A JP5642619B2 (ja) 2011-05-12 2011-05-12 医療装置システム及び医療装置システムの作動方法
EP12165966.8A EP2522273B1 (en) 2011-05-12 2012-04-27 Tissue imaging system for oxygen saturation detection
US13/464,393 US8965474B2 (en) 2011-05-12 2012-05-04 Tissue imaging system and in vivo monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011107466A JP5642619B2 (ja) 2011-05-12 2011-05-12 医療装置システム及び医療装置システムの作動方法

Publications (2)

Publication Number Publication Date
JP2012235926A true JP2012235926A (ja) 2012-12-06
JP5642619B2 JP5642619B2 (ja) 2014-12-17

Family

ID=46062081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011107466A Active JP5642619B2 (ja) 2011-05-12 2011-05-12 医療装置システム及び医療装置システムの作動方法

Country Status (3)

Country Link
US (1) US8965474B2 (ja)
EP (1) EP2522273B1 (ja)
JP (1) JP5642619B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016174836A (ja) * 2015-03-20 2016-10-06 富士フイルム株式会社 画像処理装置、内視鏡システム、画像処理装置の作動方法、及び内視鏡システムの作動方法
JPWO2017085793A1 (ja) * 2015-11-17 2018-09-13 オリンパス株式会社 内視鏡システム、画像処理装置、画像処理方法およびプログラム
US10653295B2 (en) 2015-09-29 2020-05-19 Fujifilm Corporation Image processing apparatus, endoscope system, and image processing method
US10672123B2 (en) 2015-09-28 2020-06-02 Fujifilm Corporation Image processing apparatus, endoscope system, and image processing method
WO2024034253A1 (ja) * 2022-08-12 2024-02-15 富士フイルム株式会社 内視鏡システム及びその作動方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9737213B1 (en) * 2009-03-24 2017-08-22 Vioptix, Inc. Using an oximeter probe to detect intestinal ischemia
JP2013099464A (ja) * 2011-11-09 2013-05-23 Fujifilm Corp 内視鏡システム、内視鏡システムのプロセッサ装置、及び画像表示方法
JP6010571B2 (ja) 2014-02-27 2016-10-19 富士フイルム株式会社 内視鏡システム、内視鏡システム用プロセッサ装置、内視鏡システムの作動方法、内視鏡システム用プロセッサ装置の作動方法
EP3278710B1 (en) * 2015-04-02 2020-04-22 FUJIFILM Corporation Processor device and endoscopic system
JP6362274B2 (ja) * 2015-07-14 2018-07-25 富士フイルム株式会社 内視鏡システム及び内視鏡システムの作動方法
TWI730080B (zh) 2016-04-20 2021-06-11 美商菲歐普提斯公司 可執行電子選擇式組織深度分析之血氧計探針
US10722158B2 (en) 2016-04-20 2020-07-28 Vioptix, Inc. Handheld oximeter probe with replaceable probe tip
TWI765885B (zh) 2016-04-21 2022-06-01 美商菲歐普提斯公司 利用黑色素校正之測定組織氧飽和度的方法和裝置
TWI754641B (zh) 2016-04-22 2022-02-11 美商菲歐普提斯公司 血氧計裝置及具有此裝置之血氧計系統
MX2018012831A (es) 2016-04-22 2019-03-28 Vioptix Inc Determinación de saturación absoluta y relativa del oxígeno tisular.
BR112019000806A8 (pt) * 2016-07-18 2023-03-21 Vioptix Inc Dispositivo de oximetria com extensão laparoscópico
US10943092B2 (en) 2018-05-23 2021-03-09 ClairLabs Ltd. Monitoring system
DE102019217541A1 (de) * 2019-11-13 2021-05-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Medizinische Bildgebungseinrichtung, Verfahren und Verwendung
JP2023005896A (ja) * 2021-06-29 2023-01-18 富士フイルム株式会社 内視鏡システム、医療画像処理装置及びその作動方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315715A (ja) * 1988-06-16 1989-12-20 Toshiba Corp 内視鏡装置
JPH04240436A (ja) * 1991-01-25 1992-08-27 Olympus Optical Co Ltd 内視鏡システム
JPH05111477A (ja) * 1991-10-18 1993-05-07 Olympus Optical Co Ltd 代謝情報測定装置
JPH06285050A (ja) * 1993-04-01 1994-10-11 Olympus Optical Co Ltd 内視鏡装置
JPH10216080A (ja) * 1997-02-04 1998-08-18 Olympus Optical Co Ltd 内視鏡用画像処理装置
JP2003115052A (ja) * 2001-10-09 2003-04-18 National Institute Of Advanced Industrial & Technology 画像処理方法及び画像処理装置
JP2005095634A (ja) * 2004-10-18 2005-04-14 Toshiba Corp 内視鏡装置
JP2006191989A (ja) * 2005-01-11 2006-07-27 Olympus Corp 蛍光観察内視鏡装置
JP2008250999A (ja) * 2007-03-08 2008-10-16 Omron Corp 対象物追跡方法、対象物追跡装置および対象物追跡プログラム
JP2010005056A (ja) * 2008-06-26 2010-01-14 Fujinon Corp 画像取得方法および装置
WO2010134512A1 (ja) * 2009-05-20 2010-11-25 株式会社 日立メディコ 医用画像診断装置とその関心領域設定方法
US20110077462A1 (en) * 2009-09-30 2011-03-31 Fujifilm Corporation Electronic endoscope system, processor for electronic endoscope, and method of displaying vascular information
JP2011087906A (ja) * 2009-09-28 2011-05-06 Fujifilm Corp 画像表示方法および装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001556A (en) * 1987-09-30 1991-03-19 Olympus Optical Co., Ltd. Endoscope apparatus for processing a picture image of an object based on a selected wavelength range
US5408998A (en) * 1994-03-10 1995-04-25 Ethicon Endo-Surgery Video based tissue oximetry
JP2000139947A (ja) 1998-09-01 2000-05-23 Olympus Optical Co Ltd 医療システム
US6658276B2 (en) * 1999-01-25 2003-12-02 Masimo Corporation Pulse oximeter user interface
JP4817509B2 (ja) * 2001-02-19 2011-11-16 キヤノン株式会社 検眼装置
JP5278854B2 (ja) * 2007-12-10 2013-09-04 富士フイルム株式会社 画像処理システムおよびプログラム
US8485966B2 (en) * 2009-05-08 2013-07-16 Boston Scientific Scimed, Inc. Endoscope with distal tip having encased optical components and display orientation capabilities
JP5457247B2 (ja) * 2010-03-26 2014-04-02 富士フイルム株式会社 電子内視鏡システム、電子内視鏡用のプロセッサ装置、及び電子内視鏡システムの作動方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315715A (ja) * 1988-06-16 1989-12-20 Toshiba Corp 内視鏡装置
JPH04240436A (ja) * 1991-01-25 1992-08-27 Olympus Optical Co Ltd 内視鏡システム
JPH05111477A (ja) * 1991-10-18 1993-05-07 Olympus Optical Co Ltd 代謝情報測定装置
JPH06285050A (ja) * 1993-04-01 1994-10-11 Olympus Optical Co Ltd 内視鏡装置
JPH10216080A (ja) * 1997-02-04 1998-08-18 Olympus Optical Co Ltd 内視鏡用画像処理装置
JP2003115052A (ja) * 2001-10-09 2003-04-18 National Institute Of Advanced Industrial & Technology 画像処理方法及び画像処理装置
JP2005095634A (ja) * 2004-10-18 2005-04-14 Toshiba Corp 内視鏡装置
JP2006191989A (ja) * 2005-01-11 2006-07-27 Olympus Corp 蛍光観察内視鏡装置
JP2008250999A (ja) * 2007-03-08 2008-10-16 Omron Corp 対象物追跡方法、対象物追跡装置および対象物追跡プログラム
JP2010005056A (ja) * 2008-06-26 2010-01-14 Fujinon Corp 画像取得方法および装置
WO2010134512A1 (ja) * 2009-05-20 2010-11-25 株式会社 日立メディコ 医用画像診断装置とその関心領域設定方法
JP2011087906A (ja) * 2009-09-28 2011-05-06 Fujifilm Corp 画像表示方法および装置
US20110077462A1 (en) * 2009-09-30 2011-03-31 Fujifilm Corporation Electronic endoscope system, processor for electronic endoscope, and method of displaying vascular information

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016174836A (ja) * 2015-03-20 2016-10-06 富士フイルム株式会社 画像処理装置、内視鏡システム、画像処理装置の作動方法、及び内視鏡システムの作動方法
US10672123B2 (en) 2015-09-28 2020-06-02 Fujifilm Corporation Image processing apparatus, endoscope system, and image processing method
US10653295B2 (en) 2015-09-29 2020-05-19 Fujifilm Corporation Image processing apparatus, endoscope system, and image processing method
JPWO2017085793A1 (ja) * 2015-11-17 2018-09-13 オリンパス株式会社 内視鏡システム、画像処理装置、画像処理方法およびプログラム
WO2024034253A1 (ja) * 2022-08-12 2024-02-15 富士フイルム株式会社 内視鏡システム及びその作動方法

Also Published As

Publication number Publication date
EP2522273A1 (en) 2012-11-14
EP2522273B1 (en) 2016-08-31
JP5642619B2 (ja) 2014-12-17
US20120289801A1 (en) 2012-11-15
US8965474B2 (en) 2015-02-24

Similar Documents

Publication Publication Date Title
JP5642619B2 (ja) 医療装置システム及び医療装置システムの作動方法
JP5496075B2 (ja) 内視鏡診断装置
JP5231511B2 (ja) 内視鏡診断装置
JP5303012B2 (ja) 内視鏡システム、内視鏡システムのプロセッサ装置及び内視鏡システムの作動方法
US11412965B2 (en) Endoscope system
JP2011254936A (ja) 電子内視鏡システム、電子内視鏡用のプロセッサ装置、及び追跡方法
JP2012152460A (ja) 医療システム、医療システムのプロセッサ装置、及び画像生成方法
JP5774531B2 (ja) 内視鏡システム、内視鏡システムのプロセッサ装置、内視鏡システムの作動方法、及び画像処理プログラム
JP2013146484A (ja) 電子内視鏡システム、画像処理装置、画像処理方法及び画像処理プログラム
US9999343B2 (en) Endoscope system
JP7432786B2 (ja) 内視鏡システム、プロセッサ装置、及び内視鏡システムの作動方法
JP5611891B2 (ja) 内視鏡システム及び内視鏡システムの作動方法
JP7166448B2 (ja) 内視鏡システム、内視鏡システムの作動方法、画像処理装置、及び画像処理装置用プログラム
JP2015173737A (ja) 生体観察システム
JP2012125402A (ja) 内視鏡システム、内視鏡システムのプロセッサ装置及び機能情報取得方法
JP5844447B2 (ja) 電子内視鏡システム、電子内視鏡用のプロセッサ装置、及び電子内視鏡システムの作動方法
WO2014073331A1 (ja) 内視鏡システム
JP2012100733A (ja) 内視鏡診断装置
JP2013102898A (ja) 内視鏡診断装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141029

R150 Certificate of patent or registration of utility model

Ref document number: 5642619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250