JP2012212672A - 架橋絶縁体用ポリエチレン系樹脂組成物およびそれを用いた高周波同軸ケーブル - Google Patents

架橋絶縁体用ポリエチレン系樹脂組成物およびそれを用いた高周波同軸ケーブル Download PDF

Info

Publication number
JP2012212672A
JP2012212672A JP2012066670A JP2012066670A JP2012212672A JP 2012212672 A JP2012212672 A JP 2012212672A JP 2012066670 A JP2012066670 A JP 2012066670A JP 2012066670 A JP2012066670 A JP 2012066670A JP 2012212672 A JP2012212672 A JP 2012212672A
Authority
JP
Japan
Prior art keywords
polyethylene
group
resin composition
crosslinked
coaxial cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012066670A
Other languages
English (en)
Inventor
Minoru Yamamoto
実 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2012066670A priority Critical patent/JP2012212672A/ja
Publication of JP2012212672A publication Critical patent/JP2012212672A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Landscapes

  • Communication Cables (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

【課題】熱老化特性や半田耐熱性等の耐熱性が良好かつ電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブルを得る事ができる架橋絶縁体用ポリエチレン系樹脂組成物およびこの架橋絶縁体用ポリエチレン系樹脂組成物からなる高周波同軸ケーブルを提供する。
【解決手段】直鎖状ポリエチレン(α)90〜60質量部と、高圧法低密度ポリエチレン(β)10〜40質量部((α)と(β)との合計は100質量部)に、ヒンダードフェノール系酸化防止剤0.05〜0.3質量部を含んでなる架橋絶縁体用ポリエチレン系樹脂組成物(γ)であって、下記(γ−1)〜(γ−5)の要件を満たすことを特徴とする、上記架橋絶縁体用ポリエチレン系樹脂組成物。
(γ−1)密度が930〜960kg/mである。
(γ−2)190℃、2.16kg荷重におけるメルトフローレートが0.1〜20g/10分である。
(γ−3)示差走査型熱量計による昇温測定において得られる吸熱曲線の融点ピークが一つである。
(γ−4)伸長粘度の測定においてひずみ硬化性を有し、かつ、ひずみ硬化度(λmax)が2.0〜30である。
(γ−5)空洞共振器摂動法による2.45GHzのtanδが0.7×10−4〜1.5×10−4である。
【選択図】なし

Description

本発明は、高周波帯域において誘電正接(tanδ)が低く、かつ電子線架橋性が良好な架橋絶縁体用ポリエチレン系樹脂組成物およびそれを用いた高周波同軸ケーブルに関する。更に詳しくは、電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低く、かつ熱老化特性や半田耐熱性等の耐熱性が良好な高周波同軸ケーブルを得る事ができる架橋絶縁体用ポリエチレン系樹脂組成物およびこの架橋絶縁体用ポリエチレン系樹脂組成物からなる高周波同軸ケーブルに関するものである。
高周波用の同軸ケーブルは、銅からなる中心導体とその上に設けられた低誘電率特性、低誘電正接特性を有するポリエチレンやフッ素樹脂等の誘電体層と、その外周に設けられる外部導体から構成されている。
近年、同軸ケーブルの小サイズ化や情報通信速度と容量アップを目的としてこの高周波同軸ケーブルの使用周波数がアップする傾向(周波数域がGHz帯域のような高周波帯域)にあり、これに伴い、より伝送ロスの少ない、すなわち減衰量の少ないケーブルが要求されるようになってきている。同軸ケーブルの減衰量は(1)式に示すとおり、導体に起因する抵抗減衰量と絶縁体材料(ポリエチレン)に起因する漏洩減衰量とを足した値である。抵抗減衰量はケーブル形状で決定されるため変更できない。
そのため漏洩減衰量を小さくする必要がある。漏洩減衰量は(2)式のような関係で示される。

本式が示すように漏洩減衰量を小さくするためには、誘電率
ε、誘電正接tanδを小さくする材料が求められている。
また、用途によっては、半田耐熱性などの高い耐熱性や優れた熱老化特性なども要求される。このような半田耐熱性を持たせるためには、絶縁体部分の架橋させることが不可欠となる(例えば特許文献1 )。この架橋にあたっては、シラン架橋や有機過酸化物架橋も考えられるが、これらの場合、tanδが大きくなる傾向となるため、一般には電子線架橋が採用されている。電子線架橋では、一般に大きなtanδの増大を招くことはないが、使用周波数がアップする傾向の中、周波数域がGHz帯域のような高周波帯域では、tanδの増大が顕著に見られる。
特開平06−220265号公報
L.A.UTRACKI著、西 敏夫訳、「ポリマーアロイとポリマーブレンド」、東京化学同人、第1版、1991年12月6日、p.75 三菱電線工業時報、第100号、79〜83ページ
本発明が解決しようとする課題は、高周波帯域において誘電正接(tanδ)が低く、かつ電子線架橋性が良好な架橋絶縁体用ポリエチレン系樹脂組成物および熱老化特性や半田耐熱性等の耐熱性が良好かつ電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い、この架橋絶縁体用ポリエチレン系樹脂組成物からなる高周波同軸ケーブルを提供することである。
本発明者は、上記課題を解決するために鋭意研究を重ねた結果、直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)をの特定割合で含み、高周波帯域において誘電正接(tanδ)が低く、かつ電子線架橋性を有する架橋絶縁体用ポリエチレン系樹脂組成物を使用することによって、高周波同軸ケーブルにおける架橋絶縁層が、電子線照射後も高周波帯域における誘電正接(tanδ)が低く、熱老化特性や半田耐熱性等の耐熱性も良好な高周波同軸ケーブルが得られることを見いだし、この知見に基づいて本発明をなすに至った。
すなわち、本発明は、特定の割合で2種のポリエチレン系樹脂を含んでなる特定の物性の架橋絶縁体用ポリエチレン系樹脂組成物およびこの架橋絶縁体用ポリエチレン系樹脂組成物からなる高周波同軸ケーブルに関する。
本発明において、高周波帯域において誘電正接(tanδ)が低く、かつ電子線架橋性が良好な架橋絶縁体用ポリエチレン系樹脂組成物からなる高周波同軸ケーブルは、電子線照射後も高周波帯域における誘電正接(tanδ)が低く、熱老化特性や半田耐熱性等の耐熱性も良好である。
本発明の一実施例のポリエチレン系樹脂組成物の伸長粘度のプロットを示したグラフである。
以下、本願発明について具体的に説明する。
本発明の架橋絶縁体用ポリエチレン系樹脂組成物は、直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)とヒンダードフェノール系酸化防止剤とを含むポリエチレン系樹脂組成物である。ポリエチレン系樹脂組成物における直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)の配合割合は、直鎖状ポリエチレン(α)90〜60質量部、高圧法低密度ポリエチレン(β)10〜40質量部((α)と(β)との合計は100質量部)であり、直鎖状ポリエチレン(α)の配合量は85〜65質量部であることが好ましく、より好ましくは80〜70質量部である。高圧法低密度ポリエチレン(β)の配合量は15〜35質量部であることが好ましく、より好ましくは20〜30質量部である。
高圧法低密度ポリエチレン(β)のブレンド量が10質量部以上かつ40質量部以下であれば、架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブルを容易に得ることができる。
本実施の形態の架橋絶縁体用ポリエチレン系樹脂組成物の密度は、930〜960kg/mであり、好ましくは940〜960kg/mであり、より好ましくは945〜960kg/mである。絶縁体用ポリエチレン系樹脂組成物の密度は、後述の実施例に記載の方法により、測定することができる。
架橋絶縁体用ポリエチレン系樹脂組成物の密度が930kg/m以上かつ960kg/m以下であれば、剛性かつ柔軟で、架橋絶縁体用ポリエチレン系樹脂組成物に用いた場合に、高周波同軸ケーブルにおいて電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い。
架橋絶縁体用ポリエチレン系樹脂組成物の密度は、高周波同軸ケーブルにおいて電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い点で、上記範囲内にあることが好ましい。
本実施の形態の架橋絶縁体用ポリエチレン系樹脂組成物のメルトフローレート(以下、「MFR」と記載する場合がある。)は、190℃、2.16kg荷重において0.1〜20g/10分であり、好ましくは2.0〜10g/10分であり、より好ましくは4.0〜8.0g/10分である。架橋絶縁体用ポリエチレン系樹脂組成物のMFRは、後述の実施例に記載の方法により、測定することができる。
架橋絶縁体用ポリエチレン系樹脂組成物のMFRが0.1g/10分以上かつ20g/10分以下であれば、高周波同軸ケーブルにおける架橋絶縁層の成形加工性に優れる。
本実施の形態の架橋絶縁体用ポリエチレン系樹脂組成物は、示差走査型熱量計による昇温測定において得られる吸熱曲線の融点ピークが一つであることが必要である。これによって直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)を相溶状態とすることができ、両者の結晶状態が相分離することを抑制できると推定される。このため、高周波同軸ケーブルにおける熱老化特性や半田耐熱性等の耐熱性が良好かつ電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブルを得ることができる。
架橋絶縁体用ポリエチレン系樹脂組成物の昇温測定における吸熱曲線は、後述の実施例記載の方法により、得ることができる。
通常直鎖状ポリエチレンと高圧法低密度ポリエチレンとは相溶性が低いが、例えば分子量分布の狭い直鎖状ポリエチレン(α)を用いることにより融点ピークが一つである樹脂組成物を得ることができる。分子量分布の狭い直鎖状ポリエチレン(α)を用いることにより両者の相溶性が高められるものと考えられる。
本発明で用いられる架橋絶縁体用ポリエチレン系樹脂組成物は、伸長粘度の測定においてひずみ硬化性を有する。
溶融張力は、樹脂の分子量を大きくする(メルトフローレートを小さくする)ことで改善されるが、従来のポリエチレン樹脂では、一軸伸長流動におけるひずみ硬化性は発現せず、両者を同一視することはできない。本発明は、架橋絶縁層の成形加工性や外観性は、樹脂の変形に伴う粘度の急激な上昇、いわゆるひずみ硬化現象により大きな影響を受けるとの発見に基づく。
すなわち、樹脂の成形加工性の指標の一つとして、伸張粘度の測定から得られるひずみ硬化性が有効であることが見出された。このひずみ硬化性は、伸長粘度の非線形性を表す指標であり、通常、分子の絡み合いが多いほど、この値が大きくなると言われている。分子の絡み合いは、一般的に分岐の量、分岐鎖の長さに影響を受ける。したがって、分岐の量、分岐の長さが長いほど、ひずみ硬化性は大きくなる。
ここで、ひずみ硬化度の測定方法に関しては、一軸伸長粘度を測定できれば、どのような方法でも原理的に同一の値が得られるが、例えば、測定方法及び測定機器の詳細は、公知文献:Polymer 42(2001)8663に記載の方法があるが、好ましい測定方法及び測定機器として、以下を挙げることができる。
(測定方法)
装置:ティー・エー・インスツルメント社製 ARES
冶具:ティー・エー・インスツルメント社製 Extentional Viscosity Fixture(EVF)伸長粘度測定用治具
測定温度:134℃
ひずみ速度:0.5/sec
試験片の作製:プレス成形して18mm×10mm、厚み0.7mmのシートを作製する。
(算出方法)
ひずみ速度:0.5/secの場合の伸長粘度を、横軸に時間t(秒)、縦軸に伸長粘度ηE(Pa・秒)を両対数グラフでプロットする。その両対数グラフ上でひずみ硬化を起こす直前の粘度を直線で近似し、伸長粘度ηEの急激な立ち上がり現象をひずみ硬化性の有無の指標とする。また、伸長粘度ηEの最大値(ηmax)を求め、また、その時間までの近似直線上の粘度をηlinとする。ηmax/ηlinを、ひずみ硬化度(λmax)と定義し、ひずみ硬化性の程度の指標とする。
このような特性を有するポリエチレン系樹脂組成物は、例えば分子量分布(Mw/Mn)が狭い直鎖状ポリエチレン(α)とゲルパーミエーションクロマトグラフにより求められる高分子量成分の占有率が多く、一般に分岐状側鎖がより数多く存在する高圧法低密度ポリエチレン(β)を配合することで得る事ができる。
本発明の実施の形態の架橋絶縁体用ポリエチレン系樹脂組成物は、2.45GHzの誘電正接(tanδ)が0.7×10−4〜1.5×10−4であり、好ましくは、0.7×10−4〜1.2×10−4、さらに好ましくは、0.7×10−4〜1.0×10−4である。誘電正接(tanδ)は樹脂の構造、すなわちポリマー主鎖に対して側鎖の数が少ないほど誘電正接(tanδ)が小さくなる傾向にある。
架橋絶縁体用ポリエチレン系樹脂組成物の誘電正接(tanδ)測定方法に関して、好ましい測定方法及び測定機器として、以下を挙げることができる。
(測定方法)
装置:空洞共振器摂動法誘電率測定装置(関東電子応用開発社製)
ネットワークアナライザー8720D(アジレント社製)
測定温度、湿度:23℃、45%
試験片の作製:熱プレス成形して100mm×100mm、厚み2.0mmのシートを所定の大きさ(1.2〜1.8mm□×80mmの棒状)に切削して測定用サンプルを作製する。
本発明の架橋絶縁体用ポリエチレン系樹脂組成物の好ましい使用形態の一つである高周波同軸ケーブルにおいては、高周波帯域において、誘電正接(tanδ)と組成物の密度とが密接に関係しており、低分子量のオリゴマーや不純物の含有量等が同じであれば、密度が高い程誘電正接(tanδ)が小さくなる(例えば前述の非特許文献2参照)。このため、高周波同軸ケーブルの架橋絶縁層を構成する架橋絶縁体用ポリエチレン系樹脂組成物としては、密度が高い方が好ましい。よって本発明では、誘電正接(tanδ)の低い高密度ポリエチレンの比率を多くした高密度ポリエチレンリッチの混合樹脂、すなわち架橋絶縁体用ポリエチレン系樹脂組成物を用いている。しかし、高密度ポリエチレンを単独で用いる方法では、電子線架橋特性が不良で、熱老化特性や半田耐熱性等の耐熱性が良好かつ電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブルを得る事ができない。
架橋絶縁体用ポリエチレン系樹脂組成物は、高周波同軸ケーブルに成形加工する際等の観点から、190℃における溶融張力が少なくとも10mN以上であることが好ましい。190℃における溶融張力の好ましい範囲は、10〜40mNであり、より好ましくは20〜30mNである。10mN以上であれば、高周波同軸ケーブルにおける架橋絶縁層の成型加工性ならびに外観性が良好である。40mN以下であれば、例えば高周波同軸ケーブルにおける架橋絶縁層に加工する際に、押出機の負荷(電流値)が小さいので好ましい。本発明の好ましい形態であるそれぞれ特定の物性を有する直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)を含む架橋絶縁体用ポリエチレン系樹脂組成物が、通常比較的に溶融張力が低いにも関わらず、その架橋絶縁体用ポリエチレン系樹脂組成物からなる架橋絶縁層は、驚くべきことに、電子線架橋特性が良好なことから熱老化特性や半田耐熱性等の耐熱性が良好かつ電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブルを得る事ができる。
架橋絶縁体用ポリエチレン系樹脂組成物の溶融張力は、後述の実施例記載の方法により測定することができる。
(直鎖状ポリエチレン(α))
本発明で用いられるポリエチレン系樹脂組成物に好ましく用いられる直鎖状ポリエチレン(α)は、エチレン単独重合体又はエチレンから導かれる繰り返し単位と1又は2種以上の炭素数3〜20のα−オレフィンから導かれる繰り返し単位とからなる共重合体であることが好ましい。なお、「直鎖状」ポリエチレンとは、従来の高圧法低密度ポリエチレンを除外する趣旨であり、それ以外のいかなるポリエチレンをも包含する概念である。
エチレンと共重合させる炭素数3〜20のα−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン、3−メチル−1−ブテン、4−メチル−1−ペンテン、6−メチル−1−ヘプテンなどが挙げられる。α−オレフィンとしては、一般的に入手し易さから、1−ブテン、1−ヘキセン、1−オクテンが好ましく、重合プロセスを考慮すると、1−ブテンが好ましい。
共重合体としては、エチレンと1種類のα−オレフィンとの共重合体であってもよく、エチレンと2種類以上を組合せたα−オレフィンとの共重合体であってもよい。直鎖状ポリエチレン(α)としては、エチレンとα−オレフィンの共重合体とエチレンと別のα−オレフィンとの共重合体を任意の比率でドライブレンド又はメルトブレンドした共重合体であってもよい。
本実施の形態で用いる直鎖状ポリエチレン(α)の密度は、935〜975kg/mであることが好ましい。直鎖状ポリエチレン(α)の密度は、より好ましくは940〜965kg/mであり、さらに好ましくは945〜960kg/mである。
直鎖状ポリエチレン(α)の密度が935kg/m以上であれば、架橋絶縁体用ポリエチレン系樹脂組成物に用いた場合に、剛性かつ柔軟で、高周波同軸ケーブルにおいて電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い特性の観点から好ましい。直鎖状ポリエチレン(α)の密度が975kg/m以下であれば、架橋絶縁体用ポリエチレン系樹脂組成物に用いた場合、剛性かつ柔軟で、高周波同軸ケーブルにおいて電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い特性の観点から好ましい。
直鎖状ポリエチレン(α)の密度は、架橋絶縁体用ポリエチレン系樹脂組成物に用いた場合、剛性かつ柔軟で、高周波同軸ケーブルにおいて電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い点で、上記範囲内にあることが好ましい。
本実施の形態において、密度は、以下の実施例に記載の方法により測定することができる。また、樹脂組成物中の直鎖状ポリエチレン(α)の密度は、クロス分別クロマトグラフ法(CFC法)などの方法により直鎖状ポリエチレンを分取することにより測定することができる。
本実施の形態で用いる直鎖状ポリエチレン(α)のMFRは、高周波同軸ケーブルにおける架橋絶縁層の成形加工性の観点から190℃、2.16kg荷重において0.1〜20g/10分であることが好ましい。直鎖状ポリエチレン(α)のMFRは、より好ましくは1〜15g/10分であり、さらに好ましくは5〜10g/10分である。
直鎖状ポリエチレン(α)のMFRが0.1g/10分以上かつ20g/10分以下であれば、高周波同軸ケーブルにおける架橋絶縁層の成形加工性に優れ、表面外観が良好である。
本実施の形態において、MFRは、以下の実施例に記載の方法により測定することができる。また、樹脂組成物中の直鎖状ポリエチレン(α)のMFRは、樹脂組成物のMFRと直鎖状ポリエチレンの配合割合から求めることができる。
本実施の形態で用いる直鎖状ポリエチレン(α)の分子量分布(Mw/Mn)は、ゲル・パーミエーション・クロマトグラフィー法において、3〜7であることが好ましく、より好ましくは3〜6の範囲である。一般的な触媒であるチーグラー触媒を用いて得られる直鎖状ポリエチレンの場合、分子量分布は低くても8〜9程度であるが、例えば後述の特定触媒を用いることにより分子量分布の狭い直鎖状ポリエチレンを得ることができる。
直鎖状ポリエチレン(α)の分子量分布が、上記範囲内にあると、分子量の均一性に起因して、架橋絶縁体用ポリエチレン系樹脂組成物の電子線架橋特性が良好なことから熱老化特性や半田耐熱性等の耐熱性が良好かつ電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブルを得ることができるので好ましい。
特に、直鎖状ポリエチレン(α)の分子量分布が7以下であれば、直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)のブレンドにおいて、従来の一般的なチーグラーナッタ触媒を用いて重合されたエチレン単独重合体又はエチレンとα−オレフィンとの共重合体の場合と異なり、直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)とを良好な相溶状態とすることができ、両者の結晶状態が相分離することを抑制できると推定される。このため、架橋絶縁体用ポリエチレン系樹脂組成物の電子線架橋特性が良好なことから熱老化特性や半田耐熱性等の耐熱性が良好かつ電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブルを得ることができると推定される。
本実施の形態において、分子量分布は、ゲル・パーミエーション・クロマトグラフィー法により求めることができ、より具体的には、以下の実施例に記載の方法により測定することができる。また、ポリエチレン系樹脂組成物中の直鎖状ポリエチレン(α)の分子量分布は、クロス分別クロマトグラフ法(CFC法)などの方法により測定することができる。
本発明で用いる直鎖状ポリエチレン(α)は、好ましくはエチレン単独重合体又はエチレンとα−オレフィンとの共重合体であって、分子量分布:Mw/Mnは3〜7と狭い。このとき分子量が比較的均一となることにより本発明の課題が効果的に達成されるものと推察される。
本発明で用いる直鎖状ポリエチレン(α)の吸熱曲線の融点ピーク及び発熱曲線のピークである結晶化温度は、それぞれ示差走査型熱量計による昇温測定及び降温測定において求めることができる。
直鎖状ポリエチレン(α)の示差走査型熱量計による昇温測定において得られる吸熱曲線の融点ピークが一つであることが好ましい。これによって直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)を相溶状態とすることができ、両者の結晶状態が相分離することを抑制できると推定される。このため、架橋絶縁体用ポリエチレン系樹脂組成物の電子線架橋特性が良好なことから熱老化特性や半田耐熱性等の耐熱性が良好かつ電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブルを得ることができると推定される。
直鎖状ポリエチレン(α)の示差走査型熱量計による降温測定において得られる発熱曲線のピークである結晶化温度が、110℃〜130℃であることが好ましく、より好ましくは115℃〜125℃であることが望ましい。結晶化温度が110℃以上であり、結晶化温度が130℃以下であれば、架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブル高周波同軸ケーブルを得ることができる。
示差走査型熱量計による測定は、示差走査熱量計(パーキンエルマー社製DSC−7型装置)を用い、以下の条件で測定することができる。1)ポリマー試料約5mgをアルミパンに詰め200℃/分で200℃まで昇温し、200℃で5分間保持する。2)次いで、200℃から10℃/分の降温速度で50℃まで降温し、降温完了後5分間保持する。3)次いで、50℃から10℃/分の昇温速度で200℃まで昇温する。この2)の過程で観察される発熱曲線より発熱ピーク位置の最高温度を結晶化温度(℃)として求めることができる。また、この3)の過程で観察される吸熱曲線より融解ピーク位置の最高温度を融点ピーク(℃)として求めることができる。
直鎖状ポリエチレン(α)の製造方法は、第一の好ましい形態として以下に記載の方法により製造することができる。
この製造方法で得られる直鎖状ポリエチレン(α)は、ゲルパーミエーションクロマトグラフィー法により求められるMw/Mn、分子量分布が狭いことを特徴としている。
直鎖状ポリエチレン(α)の製造方法として好ましいのは、α−オレフィンを単段重合してポリオレフィンを製造する方法であり、この重合に使用される触媒が固体触媒[A]と有機金属化合物[B]からなり、固体触媒[A]が、下記一般式(1)で表される不活性炭化水素溶媒に可溶である有機マグネシウム化合物(a−1)と下記一般式(2)で表される塩素化剤(a−2)との反応により調製された担体(A−1)に、アルコール(A−2)を反応させ、次に下記一般式(3)で表される有機金属化合物(A−3)を反応させ、次に下記一般式(4)で表されるチタン化合物(A−4)を担持することにより調製されたものであり、有機金属化合物[B]が下記一般式(5)で示される有機アルミニウム化合物及び下記一般式(6)で表される不活性炭化水素溶媒に可溶である有機マグネシウム化合物からなる群に属することを特徴とする、ポリオレフィンの製造方法、である。
(Mα(Mg)β(R(R(OR −(1)
(式中、Mは周期律表第1族、第2族、第12族及び第13族からなる群に属するマグネシウム以外の金属原子であり、R、R及びRはそれぞれ炭素数2以上20以下の炭化水素基であり、α、β、a、b及びcは次の関係を満たす実数である。0≦α、0<β、0≦a、0≦b、0<c、0<a+b、0<c/(α+β)≦2、kα+2β=a+b+c(但し、kはMの原子価))
SiCl (4−(d+e)) −(2)
(式中、Rは炭素数1以上12以下の炭化水素基であり、dとeは次の関係を満たす数である。1≦d、1≦e、2≦d+e≦4)
(h−f) −(3)
(式中Mは周期律表第I〜III族に属する金属原子、Rは炭素数1以上20以下の炭化水素基であり、QはOR、OSiR、NR1011、SR12及びハロゲンからなる群に属する基を表し、R、R、R、R、R10、R11、R12は水素原子又は炭化水素基であり、fは0より大きな実数であり、hはMの原子価である)
Ti(OR13(4−i) −(4)
(式中、iは0以上4以下の実数であり、R13は炭素数1以上20以下の炭化水素基であり、Xはハロゲン原子である。)
14 (3−j)AlQ’ −(5)
(式中、R14は炭素数1以上12以下の炭化水素基であり、Q’は水素原子、ハロゲン原子、及びOR15からなる群に属する基であり、R15は炭素数1以上20以下の炭化水素基であり、jは0以上2以下の実数である)
(Mγ(Mg)δ(R15(R16 −(6)
(式中、Mは周期律表第1族、第2族、第12族及び第13族からなる群に属するマグネシウム以外の金属原子であり、R15及びR16はそれぞれ炭素数2以上20以下の炭化水素基であり、γ、δ、m及びnは次の関係を満たす実数である。0≦γ、0<δ、0≦k、0≦m、pγ+2δ=m+n(但し、pはMの原子価))
次に、固体触媒[A]について説明する。
固体触媒[A]が、下記一般式(1)で表される不活性炭化水素溶媒に可溶である有機マグネシウム化合物(a−1)と下記一般式(2)で表される塩素化剤(a−2)との反応により調製された担体(A−1)に、アルコール(A−2)を反応させ、次に下記一般式(3)で表される有機アルミニウム化合物(A−3)を反応させ、次に下記一般式(4)で表されるチタン化合物(A−4)を担持することにより調製される。
(Mα(Mg)β(R(R(OR −(1)
(式中、Mは周期律表第1族、第2族、第12族及び第13族からなる群に属するマグネシウム以外の金属原子であり、R、R及びRはそれぞれ炭素数2以上20以下の炭化水素基であり、α、β、a、b及びcは次の関係を満たす実数である。0≦α、0<β、0≦a、0≦b、0<c、0<a+b、0<c/(α+β)≦2、kα+2β=a+b+c(但し、kはMの原子価))
SiCl (4−(d+e)) −(2)
(式中、Rは炭素数1以上12以下の炭化水素基であり、dとeは次の関係を満たす数である。1≦d、1≦e、2≦d+e≦4)
(h−f) −(3)
(式中Mは周期律表第I〜III族に属する金属原子、Rは炭素数1以上20以下の炭化水素基であり、QはOR、OSiR、NR1011、SR12及びハロゲンからなる群に属する基を表し、R、R、R、R、R10、R11、R12は水素原子又は炭化水素基であり、fは0より大きな実数であり、hはMの原子価である)
Ti(OR13(4−i) −(4)
(式中、iは0以上4以下の実数であり、R13は炭素数1以上20以下の炭化水素基であり、Xはハロゲン原子である。)
次に、不活性炭化水素溶媒について説明する。不活性炭化水素溶媒は、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素化合物、ベンゼン、トルエン等の芳香族炭化水素化合物ないしシクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素化合物のことであり、脂肪族炭化水素であることが好ましい。
次に、上記一般式(1)で表される不活性炭化水素溶媒に可溶である有機マグネシウム化合物について説明する。この有機マグネシウム化合物は、不活性炭化水素溶媒に可溶な有機マグネシウムの錯化合物の形として示されているが、ジヒドロカルビルマグネシウム化合物及びこの化合物と他の金属化合物との錯体のすべてを包含するものである。記号α、β、a、b、cの関係式kα+2β=a+b+cは金属原子の原子価と置換基との化学量論性を示している。
上記一般式(1)において、RないしRで表される炭化水素基は、アルキル基、シクロアルキル基又はアリール基であり、たとえば、メチル、エチル、プロピル、ブチル、プロピル、ヘキシル、オクチル、デシル、シクロヘキシル、フェニル基等が挙げられ、好ましくはRないしRはアルキル基である。α>0の場合、金属原子Mとしては、周期律表第I族ないし第III族に属する金属元素が使用でき、たとえば、リチウム、ナトリウム、カリウム、ベリリウム、亜鉛、ホウ素、アルミニウム等が挙げられるが、アルミニウム、ホウ素、ベリリウム、亜鉛が特に好ましい。
金属原子Mに対するマグネシウムの比β/αは、任意に設定可能であるが、好ましくは0.1〜30、特に0.5〜10の範囲が好ましい。また、α=0である或る種の有機マグネシウム化合物を用いる場合、例えば、Rが1−メチルプロピル等の場合には不活性炭化水素溶媒に可溶であり、このような化合物も本発明に好ましい結果を与える。一般式(Mα(Mg)β(R(R(ORにおいて、α=0の場合のR、Rは次に示す三つの群(1)、(2)、(3)のうちのいずれか一つの基であることが推奨される。
(1)R、Rの少なくとも一方が炭素原子数4〜6である二級又は三級のアルキル基であること、好ましくはR、Rがともに炭素原子数4〜6であり、少なくとも一方が二級又は三級のアルキル基であること。
(2)RとRとが炭素原子数の互いに相異なるアルキル基であること、好ましくはRが炭素原子数2又は3のアルキル基であり、Rが炭素原子数4以上のアルキル基であること。
(3)R、Rの少なくとも一方が炭素原子数6以上の炭化水素基であること、好ましくはR、Rに含まれる炭素原子数を加算すると12以上になるアルキル基であること。
以下これらの基を具体的に示す。(1)において炭素原子数4〜6である二級又は三級のアルキル基としては、1−メチルプロピル、2−メチルプロピル、1,1−ジメチルエチル、2−メチルブチル、2−エチルプロピル、2,2−ジメチルプロピル、2−メチルペンチル、2−エチルブチル、2,2−ジメチルブチル、2−メチル−2−エチルプロピル基等が用いられ、1−メチルプロピル基が特に好ましい。次に(2)において炭素原子数2又は3のアルキル基としてはエチル、1−メチルエチル、プロピル基等が挙げられ、エチル基が特に好ましい。また炭素原子数4以上のアルキル基としては、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル基等が挙げられ、ブチル、ヘキシル基が特に好ましい。
さらに、(3)において炭素原子数6以上の炭化水素基としては、ヘキシル、ヘプチル、オクチル、ノニル、デシル、フェニル、2−ナフチル基等が挙げられる。炭化水素基の中ではアルキル基が好ましく、アルキル基の中でもヘキシル、オクチル基が特に好ましい。一般に、アルキル基に含まれる炭素原子数が増えると不活性炭化水素溶媒に溶けやすくなるが、溶液の粘度が高くなるために必要以上に長鎖のアルキル基を用いることは取り扱い上好ましくない。なお、上記有機マグネシウム化合物は不活性炭化水素溶液として使用されるが、該溶液中に微量のエーテル、エステル、アミン等のルイス塩基性化合物が含有され、あるいは残存していても差し支えなく使用できる。
次にアルコキシ基(OR)について説明する。Rで表される炭化水素基としては、炭素原子数1以上12以下のアルキル基又はアリール基が好ましく、3以上10以下のアルキル基又はアリール基が特に好ましい。具体的には、たとえば、メチル、エチル、プロピル、1−メチルエチル、ブチル、1−メチルプロピル、1,1−ジメチルエチル、ペンチル、ヘキシル、2−メチルペンチル、2−エチルブチル、2−エチルペンチル、2−エチルヘキシル、2−エチル−4−メチルペンチル、2−プロピルヘプチル、2−エチル−5−メチルオクチル、オクチル、ノニル、デシル、フェニル、ナフチル基等が挙げられ、ブチル、1−メチルプロピル、2−メチルペンチル及び2−エチルヘキシル基が特に好ましい。
これらの有機マグネシウム化合物は、一般式RMgX及びR Mg(Rは前述の意味であり、Xはハロゲンである)からなる群に属する有機マグネシウム化合物と、一般式M 及びM (k−1)H(M、R、kは前述の意味である)からなる群に属する有機金属化合物とを不活性炭化水素溶媒中、室温〜150℃の間で反応させ、必要な場合には続いてRで表される炭化水素基を有するアルコール又は不活性炭化水素溶媒に可溶な上記Rで表される炭化水素基を有するアルコキシマグネシウム化合物、等と反応させる方法により合成される。
このうち、不活性炭化水素溶媒に可溶な有機マグネシウム化合物とアルコールとを反応させる場合、反応の順序については、有機マグネシウム化合物中にアルコールを加えていく方法、アルコール中に有機マグネシウム化合物を加えていく方法、又は両者を同時に加えていく方法のいずれの方法も用いることができる。本発明において不活性炭化水素溶媒に可溶な有機マグネシウム化合物とアルコールとの反応比率については特に制限はないが、反応の結果、得られるアルコキシ基含有有機マグネシウム化合物における、全金属原子に対するアルコキシ基のモル組成比c/(α+β)の範囲は0≦c/(α+β)≦2であり、0≦c/(α+β)<1が特に好ましい。
次に、好ましく用いられる塩素化剤について説明する。
(A−1)を合成する際に好ましく使用される塩素化剤は下記の一般式(2)で示される、少なくとも一つはSi−H結合を有する塩化珪素化合物である。
SiCl (4−(d+e)) −(2)
(式中、Rは炭素数1以上12以下の炭化水素基であり、dとeは次の関係を満たす数である。1≦d、1≦e、2≦d+e≦4)
上記の式(2)において、Rで表される炭化水素基は、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基であり、たとえば、メチル、エチル、プロピル、1−メチルエチル、ブチル、ペンチル、ヘキシル、オクチル、デシル、シクロヘキシル、フェニル基等が挙げられ、炭素数1以上10以下のアルキル基が好ましく、メチル、エチル、プロピル、1−メチルエチル基等の炭素数1〜3のアルキル基が特に好ましい。また、d及びeは2≦d+e≦4の関係を満たす1以上の実数であり、eが2以上であることが特に好ましい。
これらの化合物としては、HSiCl、HSiClCH、HSiCl、HSiCl、HSiCl(1−CH)、HSiCl、HSiCl、HSiCl(4−Cl−C)、HSiClCH=CH、HSiClCH、HSiCl(1−C10)、HSiClCHCH=CH、HSiClCH、HSiClC、HSiCl(CH、HSiCl(C、HSiClCH(1−CH)、HSiClCH(C)、HSiCl(C等が挙げられ、これらの化合物又はこれらの化合物から選ばれた二種類以上の混合物からなる塩化珪素化合物が使用される。塩化珪素化合物としては、トリクロロシラン、モノメチルジクロロシラン、ジメチルクロロシラン、エチルジクロロシランが好ましく、トリクロロシラン、モノメチルジクロロシランが特に好ましい。
次に、好ましく用いられる有機マグネシウム化合物と塩素化剤との反応について説明する。有機マグネシウム化合物と塩素化剤との反応に際しては塩素化剤を予め反応溶媒体、たとえば、不活性炭化水素溶媒、1,2−ジクロルエタン、o−ジクロルベンゼン、ジクロルメタン等の塩素化炭化水素、若しくはジエチルエーテル、テトラヒドロフラン等のエーテル系媒体、あるいはこれらの混合媒体を用いて希釈した後利用することが好ましい。特に、触媒の性能上、不活性炭化水素溶媒が好ましい。この場合においては、反応の温度については特に制限はないが、反応の進行上、好ましくは塩素化剤として使用する塩化珪素化合物の沸点以上若しくは40℃以上で実施される。有機マグネシウム化合物と塩化珪素化合物との反応比率にも特に制限はないが、通常有機マグネシウム化合物1モルに対し、塩化珪素化合物0.01〜100モルであり、好ましくは有機マグネシウム化合物1モルに対し、塩化珪素化合物0.1〜10モルの範囲である。
その反応方法については、有機マグネシウム化合物と塩化珪素化合物とを同時に反応器に導入しつつ反応させる同時添加の方法、塩化珪素化合物を事前に反応器に仕込んだ後に有機マグネシウム化合物を反応器に導入させる方法、もしくは有機マグネシウム化合物を事前に反応器に仕込んだ後に塩化珪素化合物を反応器に導入させる方法等があるが、塩化珪素化合物を事前に反応器に仕込んだ後に有機マグネシウム化合物を反応器に導入させる方法が好ましい。上記反応により得られる固体成分はろ過あるいはデカンテーション法により分離した後、不活性炭化水素溶媒を用いて充分に洗浄し、未反応物あるいは副生成物等を除去することが好ましい。
有機マグネシウム化合物と塩化珪素化合物との反応を固体の存在下に行うこともできる。この固体は無機固体、有機固体のいずれでもよいが、無機固体を用いるほうが好ましい。無機固体として、下記のものが挙げられる。
(i)無機酸化物
(ii)無機炭酸塩、珪酸塩、硫酸塩
(iii)無機水酸化物
(iv)無機ハロゲン化物
(v)(i)〜(iv)なる複塩、固溶体ないし混合物
無機固体の具体例としては、シリカ、アルミナ、シリカ・アルミナ、水和アルミナ、マグネシア、トリア、チタニア、ジルコニア、リン酸カルシウム、硫酸バリウム、硫酸カルシウム、珪酸マグネシウム、マグネシウム・カルシウム、アルミニウムシリケート[(Mg・Ca)O・Al・5SiO・nHO]、珪酸カリウム・アルミニウム[KO・3Al・6SiO・2HO]、珪酸マグネシウム鉄[(Mg・Fe)SiO]、珪酸アルミニウム[Al・SiO]、炭酸カルシウム、塩化マグネシウム、よう化マグネシウム等が挙げられるが、特に好ましくは、シリカ、シリカ・アルミナないし塩化マグネシウムが好ましい。無機固体の比表面積は、好ましくは20m/g以上特に好ましくは90m/g以上である。
次に、好ましく用いられるアルコール(A−2)について説明する。アルコール(A−2)として、炭素数1以上20以下の飽和又は不飽和のアルコールが好ましい。このようなアルコールとしては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、2−メチル−2−プロパノール、1−ペンタノール、1−ヘキサノール、1−ヘプタノール、1−オクタノール、2−エチル−1−ヘキサノール、シクロヘキサノール、フェノール、クレゾール等が挙げられ、炭素数3〜8の直鎖アルコールが特に好ましい。これらのアルコールを混合して使用することも可能である。
アルコール(A−2)の使用量には特に制限はないが、担体(A−1)中に含まれるマグネシウム原子に対するモル比で0.05より大きく10以下であることが好ましく、0.1以上1以下がさらに好ましく、0.2以上0.5以下がさらに好ましい。アルコール(A−2)の使用量が、担体(A−1)中に含まれるマグネシウム原子に対するモル比で0.05より大きい場合には、触媒担体に含まれるSiを含む成分を効率的に除去することができるために触媒特性が向上するために好ましい。また、アルコール(A−2)の使用量が、担体(A−1)中に含まれるマグネシウム原子に対するモル比で10以下である場合には、過剰なアルコールが触媒に残存することにより触媒特性を低下させる現象を抑制できるために好ましい。さらには、アルコール(A−2)の使用量が、担体(A−1)中に含まれるマグネシウム原子に対するモル比で0.2以上0.5以下である場合には、触媒特性を向上させるために必要なアルコールが適当量触媒に残存するために好ましい。担体(A−1)とアルコール(A−2)との反応は、不活性炭化水素溶媒の存在下又は非存在下において行うことができる。反応時の温度には特に制限はないが、25℃以上200℃以下の範囲で実施されることが好ましい。
次に、好ましく用いられる有機金属化合物(A−3)について説明する。
この有機金属化合物(A−3)は下記の一般式(3)で表される。
(h−f) −(3)
(式中Mは周期律表第I〜III族に属する金属原子、Rは炭素数1以上20以下の炭化水素基であり、QはOR、OSiR、NR1011、SR12及びハロゲンからなる群に属する基を表し、R、R、R、R、R10、R11、R12は水素原子又は炭化水素基であり、fは0より大きな実数であり、hはMの原子価である)
は周期律表第I〜III族に属する金属原子であり、たとえば、リチウム、ナトリウム、カリウム、ベリリウム、マグネシウム、ホウ素、アルミニウム等が挙げられるが、マグネシウム、ホウ素、アルミニウムが特に好ましい。Rで表される炭化水素基はアルキル基、シクロアルキル基又はアリール基であり、たとえば、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、オクチル、デシル、シクロヘキシル、フェニル基等が挙げられ、好ましくはアルキル基である。
QはOR、OSiR、NR1011、SR12及びハロゲンからなる群に属する基を表し、R、R、R、R、R10、R11、R12は水素原子又は炭化水素基であり、Qがハロゲンであることが特に好ましい。
有機金属化合物(A−3)の例としては、メチルリチウム、ブチルリチウム、メチルマグネシウムクロリド、メチルマグネシウムブロミド、メチルマグネシウムアイオダイド、エチルマグネシウムクロリド、エチルマグネシウムブロミド、エチルマグネシウムアイオダイド、ブチルマグネシウムクロリド、ブチルマグネシウムブロミド、ブチルマグネシウムアイオダイド、ジブチルマグネシウム、ジヘキシルマグネシウム、トリエチルホウ素、トリメチルアルミニウム、ジメチルアルミニウムブロミド、ジメチルアルミニウムクロリド、ジメチルアルミニウムメトキシド、メチルアルミニウムジクロリド、メチルアルミニウムセスキクロリド、トリエチルアルミニウム、ジエチルアルミニウムクロリド、ジエチルアルミニウムブロミド、ジエチルアルミニウムエトキシド、エチルアルミニウムジクロリド、エチルアルミニウムセスキクロリド、トリプロピルアルミニウム、トリブチルアルミニウム、トリ(2−メチルプロピル)アルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウム等が挙げられ、有機アルミニウム化合物が特に好ましい。これらの化合物を混合して使用することも可能である。
有機金属化合物(A−3)の使用量には特に制限はないが、アルコール(A−2)に対するモル比で、0.01倍以上20倍以下であることが好ましく、0.1倍以上10以下であることがさらに好ましく、0.5倍以上2.5倍以下であることがさらに好ましい。有機金属化合物(A−3)の使用量が、アルコール(A−2)に対するモル比で0.01倍以上であれば、過剰なアルコールを効率的に除去することが可能であり、また、有機金属化合物(A−3)の使用量が、アルコール(A−2)に対するモル比で20倍以下であれば、有機金属化合物(A−3)が触媒製造工程における有機金属化合物(A−3)反応の後の工程に悪影響をおよぼさない。さらには、有機金属化合物(A−3)の使用量が、アルコール(A−2)に対するモル比で0.5倍以上2.5倍以下であれば、触媒特性を改善するために必要なアルコールを触媒に残すことが可能である。また、担体(A−1)に含まれるマグネシウム原子に対するモル比で0.01倍以上20倍以下であることが好ましく、0.1倍以上10倍以下であることがさらに好ましい。反応の温度については特に制限はないが、25℃以上200℃以下であり、かつ反応媒体の沸点未満の範囲が好ましい。
次に、好ましく用いられるチタン化合物(A−4)について説明する。
チタン化合物(A−4)として下記の一般式(4)で表されるチタン化合物が使用される。
Ti(OR13(4−i) −(4)
(式中、iは0以上4以下の実数であり、R13は炭素数1以上20以下の炭化水素基であり、Xはハロゲン原子である。)
13で表される炭化水素基としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、2−エチルヘキシル、ヘプチル、オクチル、デシル、アリル基等の脂肪族炭化水素基、シクロヘキシル、2−メチルシクロヘキシル、シクロペンチル基等の脂環式炭化水素基、フェニル、ナフチル基等の芳香族炭化水素基等が挙げられるが、脂肪族炭化水素基が好ましい。Xで表されるハロゲン原子としては、塩素、臭素、ヨウ素が挙げられるが、塩素が好ましい。具体的には、四塩化チタンが好ましい。上記から選ばれたチタン化合物(A−4)を、2種以上混合して使用することが可能である。
チタン化合物(A−4)の使用量には特に制限はないが、担体(A−1)に対する担持量については、担体(A−1)に含まれるマグネシウム原子に対するモル比で0.01以上20以下が好ましく、0.05以上10以下が特に好ましい。チタン化合物(A−4)の担体(A−1)に対する担持量は、少なすぎれば触媒あたりの重合活性が低く、多すぎればチタンあたりの重合活性が低くなる傾向にある。チタン化合物(A−4)の担体(A−1)に対する担持量が、担体(A−1)に含まれるマグネシウム原子に対するモル比で0.01以上であれば、触媒あたりの重合活性が充分に高く、20以下であればチタンあたりの重合活性が充分に高い。担持の際の反応温度については特に制限はないが、25℃以上150℃以下の範囲で行うことが好ましい。
チタン化合物(A−4)を担持する際、チタン化合物(A−4)と有機金属化合物(A−5)とを反応させることにより担持することが好ましい。この有機金属化合物(A−5)は前述の一般式(3)で表される化合物であり、前述の有機金属化合物(A−3)と同一であってもよく、異なっていてもよい。
(h−f) −(3)
(A−4)と(A−5)との反応の順序には特に制限は無く、(A−4)に続いて(A−5)を加える、(A−5)に続いて(A−4)を加える、(A−4)と(A−5)とを同時に添加する、のいずれの方法も可能であり、(A−4)に続いて(A−5)を加えることが好ましい。(A−4)に対する(A−5)のモル比は、好ましくは0.1〜10、特に好ましくは0.5〜5である。(A−2)と(A−5)との反応は不活性炭化水素溶媒中で行われるが、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒を用いることが好ましい。反応の温度については特に制限はないが、25℃以上200℃以下であり、かつ反応媒体の沸点未満の範囲が好ましい。
次に、好ましく用いられる有機金属化合物[B]について説明する。有機金属化合物[B]は、下記一般式(5)で表される有機アルミニウム化合物又は下記一般式(6)で表される特定の有機マグネシウム化合物であることが好ましい。
好ましく用いられる有機アルミニウム化合物は下記の一般式(5)で表される。
14 (3−j)AlQ’ −(5)
(式中、R14は炭素数1以上12以下の炭化水素基であり、Q’は水素原子、ハロゲン原子、及びOR15からなる群に属する基であり、R15は炭素数1以上20以下の炭化水素基であり、jは0以上2以下の実数である)
14の例としては、メチル基、エチル基、プロピル基、ブチル基、2−メチルプロピル基、ペンチル基、3−メチルブチル基、ヘキシル基、オクチル基、デシル基、フェニル基、トリル基等が挙げられ、中でもエチル基、2−メチルプロピル基が特に好ましい。これらの炭化水素基は二種類以上含まれていてもよい。hは0.05以上1.5以下であることが好ましく、0.1以上1.2以下であることが特に好ましい。
次に、上記有機マグネシウム化合物は下記の一般式(6)で表される。
(Mγ(Mg)δ(R15(R16 −(6)
(式中、Mは周期律表第1族、第2族、第12族及び第13族からなる群に属するマグネシウム以外の金属原子であり、R15及びR16はそれぞれ炭素数2以上20以下の炭化水素基であり、γ、δ、m及びnは次の関係を満たす実数である。0≦γ、0<δ、0≦k、0≦m、pγ+2δ=m+n(但し、pはMの原子価))
この有機マグネシウム化合物は、不活性炭化水素溶媒に可溶な有機マグネシウムの錯化合物の形として示されているが、ジヒドロカルビルマグネシウム化合物及びこの化合物と他の金属化合物との錯体のすべてを包含するものである。記号γ、δ、m、nの関係pγ+2δ=m+nは金属原子の原子価と置換基との化学量論性を示している。
上記一般式(6)において、R15及びR16で表される炭化水素基は、アルキル基、シクロアルキル基又はアリール基であり、たとえば、メチル、エチル、プロピル、ブチル、プロピル、ヘキシル、オクチル、デシル、シクロヘキシル、フェニル基等が挙げられ、好ましくはR15及びR16はアルキル基である。γ>0の場合、金属原子Mとしては、周期律表第I族ないし第III族に属する金属元素が使用でき、たとえば、リチウム、ナトリウム、カリウム、ベリリウム、亜鉛、ホウ素、アルミニウム等が挙げられるが、アルミニウム、ホウ素、ベリリウム、亜鉛が特に好ましい。
金属原子Mに対するマグネシウムの比δ/γには特に制限はないが、0.1以上30以下であることが好ましく、0.5以上10以下であることがさらに好ましい。また、γ=0である有機マグネシウム化合物を用いる場合、例えば、R15が1−メチルプロピル等の場合には不活性炭化水素溶媒に可溶であり、このような化合物も本発明に好ましい結果を与える。上記一般式(6)において、γ=0の場合のR15、R16は次に示す三つの群(1)、(2)、(3)のうちのいずれか一つの基であることが推奨される。
(1)R15、R16の少なくとも一方が炭素原子数4以上6以下である二級又は三級のアルキル基であること、好ましくはR15、R16がともに炭素原子数4以上6以下であり、少なくとも一方が二級又は三級のアルキル基であること。
(2)R15とR16とが炭素原子数の互いに相異なるアルキル基であること、好ましくはR15が炭素原子数2又は3のアルキル基であり、R16が炭素原子数4以上のアルキル基であること。
(3)R15、R16の少なくとも一方が炭素原子数6以上の炭化水素基であること、好ましくはR15、R16に含まれる炭素原子数を加算すると12以上になるアルキル基であること。
以下これらの基を具体的に示す。(1)において炭素原子数4以上6以下である二級又は三級のアルキル基としては、1−メチルプロピル、2−メチルプロピル、1,1−ジメチルエチル、2−メチルブチル、2−エチルプロピル、2,2−ジメチルプロピル、2−メチルペンチル、2−エチルブチル、2,2−ジメチルブチル、2−メチル−2−エチルプロピル基等が用いられ、1−メチルプロピル基が特に好ましい。
次に、(2)において炭素原子数2又は3のアルキル基としてはエチル、1−メチルエチル、プロピル基等が挙げられ、エチル基が特に好ましい。また炭素原子数4以上のアルキル基としては、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル基等が挙げられ、ブチル、ヘキシル基が特に好ましい。
さらに、(3)において炭素原子数6以上の炭化水素基としては、ヘキシル、ヘプチル、オクチル、ノニル、デシル、フェニル、2−ナフチル基等が挙げられる。炭化水素基の中ではアルキル基が好ましく、アルキル基の中でもヘキシル、オクチル基が特に好ましい。一般に、アルキル基に含まれる炭素原子数が増えると不活性炭化水素溶媒に溶けやすくなるが、溶液の粘度が高くなるために必要以上に長鎖のアルキル基を用いることは取り扱い上好ましくない。なお、上記有機マグネシウム化合物は不活性炭化水素溶液として使用されるが、該溶液中に微量のエーテル、エステル、アミン等のルイス塩基性化合物が含有され、あるいは残存していても差し支えなく使用できる。
これらの有機マグネシウム化合物は、一般式R15MgX及びR15 Mg(R15は前述の意味であり、Xはハロゲンである)からなる群に属する有機マグネシウム化合物と、一般式M16 及びM16 (k−1)H(M、R16、kは前述の意味である)からなる群に属する有機金属化合物とを不活性炭化水素溶媒中、25℃以上150℃以下の間で反応させる方法により合成される。
かくして得られた触媒は、特にエチレンの重合及びエチレンと炭素数3以上のα−オレフィンとの共重合に対して、チタン当たりの活性が高く、かつ触媒当たりの活性が非常に高い特徴を有する。
重合溶媒としては、スラリー重合に通常使用される不活性炭化水素溶媒が好ましく用いられる。重合温度は通常室温以上120℃以下であり、50℃以上100℃以下であることが好ましい。重合圧力は通常常圧以上10MPa以下の範囲で実施される。得られる重合体の分子量は、重合系に存在させる水素の濃度を変化させるか、重合温度を変化させるか、あるいは有機金属化合物[B]の濃度を変化させることによって調節することができる。
上記触媒を用いたポリオレフィンの製造プロセスに特に制限はなく、一般に用いられている溶液法、高圧法、高圧バルク法、ガス法、スラリー法のいずれの製造方法にも適用できる。例えば、重合圧力はゲージ圧として0.1MPa以上200MPa以下であり、重合温度は25℃以上250℃以下であり、溶媒としてプロパン、ブタン、イソブタン、ヘキサン、シクロヘキサン等を用いるものも含まれる。
また直鎖状ポリエチレン(α)の製造方法の第二の好ましい形態としては、メタロセン担持触媒[I]を予め水素と接触させた後、液体助触媒成分[II]と共に重合反応器へ導入し、エチレン単独の重合又はエチレンと炭素数3〜20のα−オレフィンとの共重合を行う方法が挙げられる。
この製造方法で得られる直鎖状ポリエチレン(α)は、ゲルパーミエーションクロマトグラフィー法により求められるMw/Mn、分子量分布が狭いことはもちろん、先述の製造方法とは異なり、さらに低分子量成分であるオリゴマー成分を低減することができると共に、製法において塩素を含まないため、クリーン性に優れ、樹脂材料自体の誘電正接(tanδ)が小さいことから、本発明における電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブルの絶縁材料に適している。
重合法は公知の各種方法を使用でき、例えば、不活性ガス中での流動床式気相重合又は撹拌式気相重合、不活性溶媒中でのスラリー重合、モノマーを溶媒とするバルク重合などが挙げられる。重合法としては、不活性溶媒中でのスラリー重合が好ましい。
(メタロセン担持触媒[I])
メタロセン担持触媒[I]としては、(I−a)担体物質、(I−b)有機アルミニウム、(I−c)環状η結合性アニオン配位子を有する遷移金属化合物、及び(I−d)該環状η結合性アニオン配位子を有する遷移金属化合物と反応して触媒活性を発現する錯体を形成可能な活性化剤から調製されたメタロセン担持触媒を用いることが好ましい。
(I−a)担体物質としては、有機担体、無機担体のいずれでもよい。
有機担体としては、好ましくは、炭素数2〜20のα−オレフィンの重合体、芳香族不飽和炭化水素重合体、及び極性基含有重合体などが挙げられる。
炭素数2〜20のα−オレフィンの重合体としては、例えば、エチレン樹脂、プロピレン樹脂、1−ブテン樹脂、エチレン−プロピレン共重合体樹脂、エチレン−1−ヘキセン共重合体樹脂、プロピレン−1−ブテン共重合体樹脂及びエチレン−1−ヘキセン共重合体などが挙げられる。
芳香族不飽和炭化水素重合体としては、例えば、スチレン樹脂及びスチレン−ジビニルベンゼン共重合体樹脂などが挙げられる。
極性基含有重合体としては、例えば、アクリル酸エステル樹脂、メタクリル酸エステル樹脂、アクリロニトリル樹脂、塩化ビニル樹脂、アミド樹脂、及びカーボネート樹脂などが挙げられる。
無機担体としては、好ましくは、無機酸化物、無機ハロゲン化物、無機の炭酸塩、硫酸塩、及び硝酸塩、並びに水酸化物などが挙げられる。
無機酸化物としては、例えば、SiO、Al、MgO、TiO、B、CaO、ZnO、BaO、ThO、SiO−MgO、SiO−Al、SiO−MgO及びSiO−Vなどが挙げられる。
無機ハロゲン化合物としては、例えば、MgCl、AlCl及びMnClなどが挙げられる。
無機の炭酸塩、硫酸塩、及び硝酸塩としては、例えば、NaCO、KCO、CaCO、MgCO、Al(SO、BaSO、KNO、Mg(NOなどが挙げられる。
水酸化物としては、例えば、Mg(OH)、Al(OH)、Ca(OH)などが挙げられる。
(I−a)担体物質としては、SiOであることが好ましい。
担体の粒子径は任意であるが、粒子径分布としては、1〜3000μmであることが好ましく、粒子の分散性の見地から、粒子径分布は10〜1000μmの範囲内であることが、さらに好ましい。
(I−a)担体物質は必要に応じて(I−b)有機アルミニウムで処理される。
(I−b)有機アルミニウムとしては、一般式:(−Al(R)O−)n(式中、Rは炭素数1〜10の炭化水素基であり、一部ハロゲン原子及び/又はRO基で置換されていてもよい。nは重合度であり、5以上、好ましくは10以上である。)で示される直鎖状又は環状重合体などが挙げられる。
(I−b)有機アルミニウム化合物としては、例えば、Rがメチル基、エチル基、イソブチルエチル基である、メチルアルモキサン、エチルアルモキサン、及びイソブチルエチルアルモキサンなどが挙げられる。
(I−b)有機アルミニウムとしては、上記以外にも、例えば、トリアルキルアルミニウム、ジアルキルハロゲノアルミニウム、セスキアルキルハロゲノアルミニウム、アルメニルアルミニウム、ジアルキルハイドロアルミニウム、及びセスキアルキルハイドロアルミニウムなどが挙げられる。
トリアルキルアルミニウムとしては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム、及びトリオクチルアルミニウムなどが挙げられる。
ジアルキルハロゲノアルミニウムとしては、例えば、ジメチルアルミニウムクロライド及びジエチルアルミニウムクロライドなどのジアルキルハロゲノアルミニウムなどが挙げられる。
セスキアルキルハロゲノアルミニウムとしては、例えば、セスキメチルアルミニウムクロライド及びセスキエチルアルミニウムクロライドなどが挙げられる。
(I−b)有機アルミニウムとしては、エチルアルミニウムジクロライド、ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、及びセスキエチルアルミニウムハイドライドなどを挙げることもできる。
(I−b)有機アルミニウムとしては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムハイドライド、及びジイソブチルアルミニウムハイドライドであることが好ましい。
(I−c)環状η結合性アニオン配位子を有する遷移金属化合物としては、下記式(7)で示される化合物を挙げられる。
上記式(7)中、Mは1つ以上の配位子Lとη結合をしている酸化数+2、+3、+4の長周期型周期律表第4族の遷移金属である。遷移金属としては、チタニウムが好ましい。
Lは環状η結合性アニオン配位子であり、各々独立にシクロペンタジエニル基、インデニル基、テトラヒドロインデニル基、フルオレニル基、テトラヒドロフルオレニル基、又はオクタヒドロフルオレニル基であり、これらの基は20個までの非水素原子を含む炭化水素基、ハロゲン、ハロゲン置換炭化水素基、アミノヒドロカルビ基、ヒドロカルビオルオキシ基、ジヒドロカルビルアミノ基、ジヒドロカルビルフォスフィノ基、シリル基、アミノシリル基、ヒドロカルビルオキシシリル基及びハロシリル基から各々独立に選ばれる1〜8の置換基を任意に有していてもよく、2つのLが20個までの非水素原子を含むヒドロカルバジイル、ハロヒドロカルバジイル、ヒドロカルビレンオキシ、ヒドロカルビレンアミノ、ジラジイル、ハロシラジイル、アミノシランなどの2価の置換基により結合されていてもよい。
Xは各々独立に、60個までの非水素原子を有する、1価のアニオン性σ結合型配位子、Mと2価で結合する2価のアニオン性σ結合型配位子、又はM及びLに各々l個ずつの価数で結合する2価のアニオンσ結合型配位子である。
X’は各々独立に、炭素数4〜40からなるホスフィン、エーテル、アミン、オレフィン、及び/又は共役ジエンから選ばれる中性ルイス塩基配位性化合物である。lは1又は2の整数である。
pは0〜2の整数であり、Xが1価のアニオン性σ結合型配位子であるか、M及びLに各々1個ずつの価数で結合する2価のアニオン性σ結合型配位子である場合、pはMの形式酸化数よりもl以上少なく、XがMと2価で結合する2価のアニオン性σ結合型配位子である場合、pはMの形式酸化数よりもl+1以上少ない。
qは0、1又は2の整数である。
(I−c)環状η結合性アニオン配位子を有する遷移金属化合物としては、上記式(7)でl=1である化合物が好ましい。
(I−c)環状η結合性アニオン配位子を有する遷移金属化合物の好適な化合物としては、下記式(8)で示される化合物が挙げられる。
上記式(8)中、Mは形式酸化数+2、+3又は+4のチタニウム、ジルコニウム、ハフニウムであり、チタニウムであることが好ましい。
は各々独立に、水素、炭化水素基、シリル基、ゲルミル基、シアノ基、ハロゲン、又はこれらの複合基であり、各々20個までの非水素原子を有することができる。また、近接するR同士がヒドロカルバジイル、ジラジイル、又はゲルマジイルなどの2価の誘導体を形成して環状となっていてもよい。
X”は各々独立に、ハロゲン、炭化水素基、ヒドロカルビルオキシ基、ヒドロカルビルアミノ基、又はシリル基であり、各々20個までの非水素原子を有しており、また2つのX”が炭素数5〜30の中性共役ジエン又は2価の誘導体を形成してもよい。
Yは、O、S、NR又はPRである。
ZはSiR 、CR 、SiR SiR 、CR CR 、CR=CR、CR SiR 、又はGeR である。
は各々独立に、炭素数1〜12のアルキル基又はアリール基である。
nは1〜3の整数である。
(I−c)環状η結合性アニオン配位子を有する遷移金属化合物のより好適な化合物としては、下記式(9)又は下記式(10)で示される化合物が挙げられる。

上記式(9)及び式(10)中、Mはチタニウム、ジルコニウム、又はハフニウムであり、チタニウムであることが好ましい。
は各々独立に、水素、炭化水素基、シリル基、ゲルミル基、シアノ基、ハロゲン又はこれらの複合基であり、各々20までの非水素原子を有することができる。
Z、Y、X及びX’は、前出のとおりである。
pは0〜2の整数であり、qは0又は1の整数である。
但し、pが2でqが0の場合、Mの酸化数は+4であり、かつXはハロゲン、炭化水素基、ヒドロカルビルオキシ基、ジヒドロカルビルアミノ基、ジヒドロカルビルフォスフィド基、ヒドロカルビルスルフィド基、シリル基又はこれらの複合基であり、20個までの非水素原子を有している。また、pが1でqが0の場合、Mの酸化数は+3であり、かつXはアリル基、2−(N,N−ジメチルアミノメチル)フェニル基又は2−(N,N−ジメチル)−アミノベンジル基から選ばれる安定化アニオン配位子であるか、又はMの酸化数が+4であり、かつXが2価の共役ジエンの誘導体であるか、又はMとXが共にメタロシクロペンテン基を形成している。さらに、pが0でqが1の場合、Mの酸化数は+2であり、かつX’は中性の共役又は非共役ジエンであって任意に1つ以上の炭化水素で置換されていてもよく、X’は40までの炭素原子を含み得るものであり、Mとπ型錯体を形成している。
(I−c)環状η結合性アニオン配位子を有する遷移金属化合物のさらに好適な化合物としては、下記式(11)又は下記式(12)で示される化合物が挙げられる。

上記式(11)及び式(12)中、Mはチタニウムである。
は各々独立に、水素又は炭素数1〜6のアルキル基である。
Yは、O、S、NR、又はPRであり、Zは、SiR 、CR 、SiR SiR 、CR CR 、CR=CR、CR SiR、又はGeR である。
は各々独立に、水素、炭化水素基、ヒドロカルビルオキシ基、シリル基、ハロゲン化アルキル基、ハロゲン化アリール基又はこれらの複合基であり、Rは20個までの非水素原子を有することができ、必要に応じてZ中の2つのR同士又はZ中のRとY中のRが環状となっていてもよい。
pは0〜2の整数であり、qは0又は1の整数である。
但し、pが2でqが0の場合、Mの酸化数は+4であり、かつXは各々独立に、メチル基又はヒドロベンジル基である。また、pが1でqが0の場合、Mの酸化数は+3であり、かつXが2−(N,N−ジメチル)−アミノベンジル基であるか、又はMの酸化数が+4であり、かつXが2−ブテン−1,4−ジイルである。さらに、pが0でqが1の場合、Mの酸化数は+2であり、かつX’は1,4−ジフェニル−1,3−ブタジエン又は1,3−ペンタジエンである。
前記ジエン類は金属錯体を形成する非対称ジエン類を例示したものであり、実際には各幾何異性体の混合物である。
(I−d)該環状η結合性アニオン配位子を有する遷移金属化合物と反応して触媒活性を発現する錯体を形成可能な活性化剤(以下、単に「(I−d)活性剤」と記載する場合がある。)としては、例えば、下記式(13)で示される化合物が挙げられる。
メタロセン担持触媒[I]においては、(I−c)環状η結合性アニオン配位子を有する遷移金属化合物と上記(I−d)活性化剤により形成される錯体が、触媒活性種として高いオレフィン重合活性を示す。
上記式(13)中、[L−H]d+はプロトン付与のブレンステッド酸であり、Lは中性ルイス塩基である。
[Md−は相溶性の非配位性アニオンであり、Mは周期律表第5族乃至15族から選ばれる金属又はメタロイドであり、Qは各々独立に、ヒドリド、ジアルキルアミド基、ハライド、アルコキサイド基、アリロキサイド基、炭化水素基、又は炭素数20個までの置換炭化水素基である。但し、ハライドであるQは1個以下である。
mは1〜7の整数であり、tは2〜14の整数であり、dは1〜7の整数であり、t−m=dである。
(I−d)活性化剤の好適な化合物としては、下記式(14)で示される化合物が挙げられる。
上記式(14)中、[L−H]d+はプロトン付与のブレンステッド酸であり、Lは中性ルイス塩基である。
[M(G(T−H)d−は相溶性の非配位性アニオンであり、Mは周期律表第5族乃至15族から選ばれる金属又はメタロイドであり、Qは各々独立に、ヒドリド、ジアルキルアミド基、ハライド、アルコキシド基、アリロキサイド基、炭化水素基、又は炭素数20個までの置換炭化水素基である。但し、ハライドであるQは1個以下である。
GはM及びTと結合するr+1の価数を持つ多価炭化水素基であり、TはO、S、NR又はPRであり、Rはヒドロカルビル基、トリヒドロカルビルシリル基、トリヒドロカルビルゲルマニウム基、若しくは水素である。
mは1〜7の整数であり、wは0〜7の整数であり、uは0又は1の整数であり、rは1〜3の整数であり、zは1〜8の整数であり、w+z−m=dである。
(I−d)活性化剤のより好適な化合物としては、下記式(15)で示される化合物が挙げられる。
上記式(15)中、[L−H]d+はプロトン付与のブレンステッド酸であり、Lは中性ルイス塩基である。
[BQは相溶性の非配位性アニオンであり、Bはホウ素原子、Qはペンタフルオロフェニル基であり、Qは置換基としてOH基を1つ有する炭素数6〜20の置換アリール基である。
相溶性の非配位性アニオンとしては、トリフェニル(ヒドロキシフェニル)ボレート、ジフェニル−ジ(ヒドロキシフェニル)ボレート、トリフェニル(2,4−ジヒドロキシフェニル)ボレート、トリ(p−トリル)フェニル(ヒドロキシフェニル)ボレート、トリス(ペンタフルオロフェニル)(ヒドロキシフェニル)ボレート、トリス(2,4−ジメチルフェニル)(ヒドロキシフェニル)ボレート、トリス(3,5−ジメチルフェニル)(ヒドロキシフェニル)ボレート、トリス(3,5−ジ−トリフルオロメチルフェニル)(ヒドロキシフェニル)ボレート、トリス(ペンタフルオロフェニル、)(2−ヒドロキシエチル)ボレート、トリス(ペンタフルオロフェニル)(4−ヒドロキシブチル)ボレート、トリス(ペンタフルオロフェニル)(4−ヒドロキシ−シクロヘキシル)ボレート、トリス(ペンタフルオロフェニル)(4−(4’−ヒドロキシフェニル)フェニル)ボレート、トリス(ペンタフルオロフェニル)(6−ヒドロキシ−2−ナフチル)ボレートなどが挙げられ、トリス(ペンタフルオロフェニル)(ヒドロキシフェニル)ボレートであることが好ましい。
相溶性の非配位性アニオンとしては、上記例示のボレートのヒドロキシ基がNHRで置き換えられたボレートを挙げることができる。ここでRは、メチル基、エチル基又はt−ブチル基であることが好ましい。
プロトン付与のブレンステッド酸としては、トリエチルアンモニウム、トリプロピルアンモニウム、トリ(n−ブチル)アンモニウム、トリメチルアンモニウム、トリブチルアンモニウム、トリ(n−オクチル)アンモニウム、ジエチルメチルアンモニウム、ジブチルメチルアンモニウム、ジブチルエチルアンモニウム、ジヘキシルメチルアンモニウム、ジオクチルメチルアンモニウム、ジデシルメチルアンモニウム、ジドデシルメチルアンモニウム、ジテトラデシルメチルアンモニウム、ジヘキサデシルメチルアンモニウム、ジオクタデシルメチルアンモニウム、ジイコシルメチルアンモニウム、ビス(水素化タロウアルキル)メチルアンモニウムなどのようなトリアルキル基置換型アンモニウムカチオンが挙げられ、N,N−ジメチルアニリニウム、N,N−ジエチルアニリニウム、N,N−2,4,6−ペンタメチルアニリニウム、N,N−ジメチルベンジルアニリニウムなどのようなN,N−ジアルキルアニリニウムカチオンなども挙げられる。
(液体助触媒成分[II])
液体助触媒成分[II]は下記式(16)で示される炭化水素溶媒に可溶な有機マグネシウム化合物[III−1](以下、単に「有機マグネシウム化合物[III−1]」と記載する場合がある。)とアミン、アルコール、シロキサン化合物から選ばれる化合物[III−2](以下、単に「化合物[III−2]」と記載する場合がある。)との反応によって合成される、炭化水素溶媒に可溶な有機マグネシウム化合物である。
上記式(16)中、Mは周期律表第1〜3族に属する金属原子であり、R及びRは炭素数2〜20の炭化水素基であり、a、b、c、dは次の関係を満たす実数である。
0≦a、0<b、0≦c、0≦d、c+d>0、かつe×a+2b=c+d(eはMの原子価である。)
有機マグネシウム化合物[III−1]と化合物[III−2]との反応には特に制限はないが、ヘキサン、ヘプタンなどの脂肪族炭化水素及び/又はベンゼン、トルエンなどの芳香族炭化水素などの不活性反応媒体中、室温〜150℃の間で反応させることが好ましい。
液体助触媒成分を製造する反応において添加する順序については特に制限はなく、有機マグネシウム化合物[III−1]中に化合物[III−2]を添加する方法、化合物[III−2]に有機マグネシウム化合物[III−1]を添加する方法、又は両者を同時に添加する方法のいずれの方法を用いてもよい。
有機マグネシウム化合物[III−1]と化合物[III−2]との反応比率については特に制限はないが、反応により合成される液体助触媒成分[II]に含まれる全金属原子に対する化合物[III−2]のモル比が0.01〜2であるように化合物[III−2]を添加することが好ましく、0.1〜1となるように添加することがより好ましい。
液体助触媒成分[II]は不純物のスカベンジャーとして用いられる。液体助触媒成分[II]は、高濃度であっても重合活性を低下させることが少なく、したがって広い濃度範囲で高い重合活性を発現させることができる。このため液体助触媒成分[II]を含むオレフィン重合用触媒は、重合活性の制御が容易である。
液体助触媒成分[II]は1種で使用してもよいし2種類以上混合して使用してもよい。
重合に使用する際の液体助触媒成分[II]の濃度については特に制限はないが、液体助触媒成分[II]に含まれる全金属原子のモル濃度が0.001mmol/リットル以上、10mmol/リットル以下であることが好ましく、0.01mmol/リットル以上、5mmol/リットル以下であることがより好ましい。
該モル濃度が0.001mmol/リットル以上であれば、不純物のスカベンジャーとしての作用を十分に発揮することができ、10mmol/リットル以下であれば、重合活性を十分に発揮させることができる。
有機マグネシウム化合物[III−1]は上記式(16)で示される炭化水素溶媒に可溶な有機マグネシウム化合物である。
上記式(16)として、有機マグネシウム化合物[III−1]は、炭化水素溶媒に可溶な有機マグネシウムの錯化合物の形として示されているが、(RMg及びこれらと他の金属化合物との錯体の全てを包含するものである。記号a、b、c、dの関係式e×a+2b=c+dは、金属原子の原子価と置換基との化学量論性を示している。
上記式(16)中、R及びRの炭素数2〜20の炭化水素基は、アルキル基、シクロアルキル基又はアリール基であり、メチル基、エチル基、プロピル基、1−メチルエチル基、ブチル基、1−メチルプロピル基、2−メチルプロピル基、1,1−ジメチルエチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、フェニル基、トリル基であり、アルキル基であることが好ましく、一級アルキル基であることがより好ましい。
a>0の場合、金属原子Mとしては、周期律表第1〜3族からなる群に属する金属元素が使用でき、例えば、リチウム、ナトリウム、カリウム、ベリリウム、亜鉛、ホウ素、アルミニウムなどが挙げられるが、特にアルミニウム、ホウ素、ベリリウム、亜鉛が好ましい。
金属原子Mに対するマグネシウムのモル比b/aには特に制限はないが、0.1以上50以下の範囲が好ましく、0.5以上10以下の範囲がより好ましい。
a=0の場合、有機マグネシウム化合物[III−1]が炭化水素溶媒に可溶な有機マグネシウム化合物であることが好ましく、上記式(16)のR及びRが次に示す三つの群(i)、(ii)、(iii)のいずれか一つであることがさらに好ましい。
(i)R及びRの少なくとも一方が炭素原子数4〜6である二級又は三級のアルキル基であり、好ましくはR及びRが共に炭素原子数4〜6であり、かつ少なくとも一方は二級又は三級のアルキル基である。
(ii)R及びRが炭素原子数の互いに相異なるアルキル基であり、好ましくはRが炭素原子数2又は3のアルキル基であり、Rが炭素原子数4以上のアルキル基である。
(iii)R及びRの少なくとも一方が炭素原子数6以上の炭化水素基であり、好ましくはR及びRが共に炭素原子数6以上のアルキル基である。
(i)において炭素原子数4〜6である二級又は三級のアルキル基としては、1−メチルプロピル基、1,1−ジメチルエチル基、1−メチルブチル基、1−エチルプロピル基、1,1−ジメチルプロピル基、1−メチルペンチル基、1−エチルブチル基、1,1−ジメチルブチル基、1−メチル−1−エチルプロピル基などが挙げられ、1−メチルプロピル基が好ましい。
(ii)において炭素原子数2又は3のアルキル基としては、エチル基、プロピル基が挙げられ、エチル基が好ましい。また、炭素原子数4以上のアルキル基としては、ブチル基、アミル基、ヘキシル基、オクチル基などが挙げられ、ブチル基、ヘキシル基が好ましい。
(iii)において炭素原子数6以上の炭化水素基としては、ヘキシル基、オクチル基、デシル基、フェニル基などが挙げられ、アルキル基である方が好ましく、ヘキシル基であることがより好ましい。
有機マグネシウム化合物[III−1]として、一般にアルキル基の炭素原子数を増やすと炭化水素溶媒に溶けやすくなるが、溶液の粘性が高くなる傾向があり、必要以上に長鎖のアルキル基を用いることは取り扱い上好ましくないことがある。有機マグネシウム化合物[III−1]は炭化水素溶液として用いられるが、該溶液中に微量のエーテル、エステル、アミンなどのコンプレックス化剤をわずかに含有してもよく、また、該溶液中に該コンプレックス化剤が残存していても差し支えなく用いることができる。
化合物[III−2]は、アミン、アルコール、シロキサン化合物からなる群に属する化合物である。
アミン化合物としては、特に制限はないが、脂肪族、脂環式又は芳香族アミンが挙げられる。
アミン化合物としては、例えば、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、ブチルアミン、ジブチルアミン、トリブチルアミン、ヘキシルアミン、ジヘキシルアミン、トリヘキシルアミン、オクチルアミン、ジオクチルアミン、トリオクチルアミン、アニリン、N−メチルアニリン、N,N−ジメチルアニリン、トルイジンなどが挙げられる。
アルコール化合物としては、特に制限はないが、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、1,1−ジメチルエタノール、ペンタノール、ヘキサノール、2−メチルペンタノール、2−エチル−1−ブタノール、2−エチル−1−ペンタノール、2−エチル−1−ヘキサノール、2−エチル−4−メチル−1−ペンタノール、2−プロピル−1−ヘプタノール、2−エチル−5−メチル−1−オクタノール、1−オクタノール、1−デカノール、シクロヘキサノール、フェノールが挙げられ、1−ブタノール、2−ブタノール、2−メチル−1−ペンタノール及び2−エチル−1−ヘキサノールが好ましい。
シロキサン化合物としては、特に制限はないが、下記式(17)で示される構成単位を有するシロキサン化合物が挙げられる。
シロキサン化合物は1種類又は2種類以上の構成単位から成る2量体以上の鎖状又は環状の化合物の形で用いることができる。
上記式(17)中、R及びRは、水素、炭素原子数1〜30の炭化水素基又は炭素原子数1〜40の置換された炭化水素基なる群より選ばれる基である。
炭素原子数1〜30の炭化水素基としては、特に制限はないが、メチル基、エチル基、プロピル基、1−メチルエチル基、ブチル基、1−メチルプロピル基、2−メチルプロピル基、1,1−ジメチルエチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、フェニル基、トリル基、ビニル基が挙げられる。炭素原子数1〜40の置換された炭化水素基としては、特に制限はないが、トリフルオロプロピル基が挙げられる。
シロキサン化合物として、対称ジヒドロテトラメチルジシロキサン、ヘキサメチルジシロキサン、ヘキサメチルトリシロキサン、ペンタメチルトリヒドロトリシロキサン、環状メチルヒドロテトラシロキサン、環状メチルヒドロペンタシロキサン、環状ジメチルテトラシロキサン、環状メチルトリフルオロプロピルテトラシロキサン、環状メチルフェニルテトラシロキサン、環状ジフェニルテトラシロキサン、(末端メチル封塞)メチルヒドロポリシロキサン、ジメチルポリシロキサン、(末端メチル封塞)フェニルヒドロポリシロキサン、メチルフェニルポリシロキサンが好ましい。
(高圧法低密度ポリエチレン(β))
本発明のポリエチレン系樹脂組成物に用いられる高圧法低密度ポリエチレン(β)は、エチレン単独重合体又はエチレンと1又は2種以上の炭素数3〜20のα−オレフィンとの共重合体であることが好ましく、公知の高圧ラジカル重合法により得ることができる。
本発明で用いる高圧法低密度ポリエチレン(β)の密度は910〜930kg/mであることが好ましく、より好ましくは915〜928kg/mである。高圧法低密度ポリエチレン(β)の密度は、後述の実施例に記載の方法により、測定することができる。また、樹脂組成物中の高圧法低密度ポリエチレン(β)の密度は、クロス分別クロマトグラフ法(CFC法)などの方法により高圧法低密度ポリエチレンを分取することにより測定することができる。
本発明で用いる高圧法低密度ポリエチレン(β)のMFRは0.1〜10g/10分であることが好ましく、より好ましくは1.0〜5g/10分である。高圧法低密度ポリエチレン(β)のMFRは、後述の実施例に記載の方法により、測定することができる。また、樹脂組成物中の高圧法低密度ポリエチレン(β)のMFRは、樹脂組成物のMFRと高圧法低密度ポリエチレンの配合割合から求めることができる。
本発明で用いる高圧法低密度ポリエチレン(β)の換算分子量10以上の成分の占有率は、ゲル・パーミエーション・クロマトグラフィー法において求められ、好ましくは1.5〜9.0質量%であり、より好ましくは2.5〜8.7質量%、さらに好ましくは4.0〜8.5質量%の範囲である。このような高分子量成分が多い高圧法低密度ポリエチレン(β)は、オートクレーブタイプのリアクターでエチレンをラジカル重合することにより得ることができる。
高圧法低密度ポリエチレン(β)の換算分子量10以上の成分の占有率が、上記範囲内にあれば、高圧法低密度ポリエチレン(β)の分岐状側鎖が数多く存在し、分岐点を起点に直鎖状ポリエチレン(α)が結晶化して、直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)において成形加工時にネットワーク構造が形成されると推定している。よって、ひずみ硬化性を有し、かつ電子線架橋特性が良好な架橋絶縁体用ポリエチレン系樹脂組成物を使用することにより、熱老化特性や半田耐熱性等の耐熱性が良好かつ電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブルを得ることができるものと推定される。
特に、高圧法低密度ポリエチレン(β)の換算分子量10以上の成分の占有率が1.5質量%以上であれば、直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)のブレンドにおいて、直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)とを良好な相溶状態とすることができ、両者の結晶状態が相分離することを抑制できると推定される。このため、ひずみ硬化性を有し、かつ電子線架橋特性が良好な架橋絶縁体用ポリエチレン系樹脂組成物を使用することにより、熱老化特性や半田耐熱性等の耐熱性が良好かつ電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブルを得ることができるものと推定される。
上記換算分子量10以上の成分の占有率は、ゲル・パーミエーション・クロマトグラフィー法により求めることができ、より具体的には、後述の実施例に記載の方法により測定することができる。また、ポリエチレン系樹脂組成物中の高圧法低密度ポリエチレン(β)の換算分子量10以上の成分の占有率は、クロス分別クロマトグラフ法(CFC法)などの方法により測定することもできる。
このような特性を有する高圧法低密度ポリエチレン(β)は、オートクレーブタイプのリアクターでエチレンをラジカル重合して得る事ができ、より上記換算分子量10以上の成分の占有率が多く、分岐状側鎖がより数多く存在するものである。これを用いることにより、熱老化特性や半田耐熱性等の耐熱性が良好かつ電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブルを得ることができる。
本発明で用いる高圧法低密度ポリエチレン(β)の分子量分布(Mw/Mn)は、ゲル・パーミエーション・クロマトグラフィー法において、好ましくは7〜22であり、より好ましくは10〜20の範囲である。高圧法低密度ポリエチレン(β)の分子量分布は、ゲル・パーミエーション・クロマトグラフィー法により求めることができ、より具体的には、後述の実施例に記載の方法により測定することができる。
高圧法低密度ポリエチレン(β)の分子量分布が、上記範囲内にあれば、高圧法低密度ポリエチレン(β)の分岐状側鎖が数多く存在し、分岐点を起点に直鎖状ポリエチレン(α)が結晶化して、直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)において成形時にネットワーク構造が形成されると推定している。よって、ひずみ硬化性を有し、かつ電子線架橋特性が良好な架橋絶縁体用ポリエチレン系樹脂組成物を使用することにより、熱老化特性や半田耐熱性等の耐熱性が良好かつ電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブルを得ることができるものと推定される。
特に、高圧法低密度ポリエチレン(β)の分子量分布が7以上であれば、直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)のブレンドにおいて、直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)とを良好な相溶状態とすることができ、両者の結晶状態が相分離することを抑制できると推定される。このため、ひずみ硬化性を有し、かつ電子線架橋特性が良好な架橋絶縁体用ポリエチレン系樹脂組成物を使用することにより、熱老化特性や半田耐熱性等の耐熱性が良好かつ電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブルを得ることができるものと推定される。
高圧法低密度ポリエチレン(β)の溶融張力比(以下、MTRと略す。)は、下記式〔1〕で表され、その値が0.7以上であることが好ましく、より好ましくは0.8以上である。また、メルトフローレート比(以下、FRRと略す。)と溶融張力(以下、MTと略す。)との関係が下記式〔2〕を満たすことが好ましい。双方の条件を満たすことが特に好ましい。
MTR=(MT240 ℃)/(MT190 ℃)≧0.7 〔1〕
(MT190 ℃)≧0.65(FRR)−20 〔2〕
(ただし、ここで上記式〔1〕及び〔2〕において、MTRは溶融張力比、MTは溶融張力、MTの添え字は溶融張力の測定温度(℃)、FRRは温度=190℃、荷重=21.6kgでのMFRと温度=190℃、荷重=2.16kgでのMFRとの比である。)
ここでMTRが0.7以上であり、かつ上記式(2)の条件を満足する場合、成形加工性の悪化が抑制され、成形外観の状態が良好となる。以上、本発明に用いられるポリエチレン系樹脂組成物における高圧法低密度ポリエチレン(β)は、成形加工性、成形外観の観点からMTRおよびFRRと溶融張力の関係が、上記範囲であることが好ましい。
このような特性を有する高圧法低密度ポリエチレン(β)を用いることにより、熱老化特性や半田耐熱性等の耐熱性が良好かつ電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブルを得ることができる。
高圧法低密度ポリエチレン(β)は、本発明の目的を損なわない範囲であれば、エチレンと他のα−オレフィン、酢酸ビニル、アクリル酸エステルなどとの共重合体であってもよい。
本発明のポリエチレン系樹脂組成物は、上記のような直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)とヒンダードフェノール系酸化防止剤とから構成される樹脂組成物である。このような好ましくは分子量分布の狭い直鎖状ポリエチレン(α)と好ましくはゲル・パーミエーション・クロマトグラフィー法により求めることができる換算分子量10以上の成分の占有率が1.5〜9.0質量%と多く、分岐状側鎖が数多く存在する高圧法低密度ポリエチレン(β)とをポリマーブレンドすることで、ひずみ硬化性を有し、かつ電子線架橋特性が良好な架橋絶縁体用ポリエチレン系樹脂組成物から、熱老化特性や半田耐熱性等の耐熱性が良好かつ電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブルを得ることができる。
一般的に高密度ポリエチレンと低密度ポリエチレンのブレンド系は非相溶であり、両者の結晶状態が相分離する(例えば、非特許文献1参照)ことから、高密度ポリエチレンと低密度ポリエチレンとをブレンドした組成物では、ひずみ硬化性が乏しく、また電子線架橋特性が不良なことから、熱老化特性や半田耐熱性等の耐熱性が良好かつ電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブルを得ることは困難であるとされていた。
しかしながら、分子量分布Mw/Mnが3〜7と狭く、均一な分子量を有する直鎖状ポリエチレン(α)と、ゲル・パーミエーション・クロマトグラフィー法により求めることができる換算分子量10以上の成分の占有率が1.5〜9.0質量%と多く、分岐状側鎖が数多く存在する高圧法低密度ポリエチレン(β)とを所定の比率範囲でポリマーブレンドする好ましい実施形態においては、結晶化速度が速くなると共に結晶サイズが小さくなって結晶状態が均一となる傾向が認められ、直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)が相溶状態で共結晶化しているものと示唆される。この様な好ましい実施形態の架橋絶縁体用ポリエチレン系樹脂組成物からなる高周波同軸ケーブルは、その架橋絶縁層の成形加工性が改良される傾向が認められる。直鎖状ポリエチレン(α)をベース樹脂として高圧法低密度ポリエチレン(β)のブレンド量が約20質量%程度である場合に、これらの傾向がより顕著である。
架橋絶縁体用ポリエチレン系樹脂組成物は、ヒンダードフェノール系酸化防止剤を含んでいる。直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)との合計100質量部に対する配合量は、ヒンダードフェノール系酸化防止剤0.05〜0.3質量部であり、好ましくは0.06〜0.2質量部、さらに好ましくは0.07〜0.1質量部である。
通常の酸化防止剤としては、従来から種々のものが提案されており、上記ヒンダート・フェノール系のものの他に、例えば、ビスフェノール系、モノフェノール系、アミン・ケトン系、芳香族二級アミン系、ポリフェノール系などのものがある。これらの酸化防止剤を、上記ヒンダート・フェノール系酸化防止剤と併用してもよい。
本発明で用いる酸化防止剤は、上記したように、ヒンダート・フェノール系のもので、より具体的には、n−オクタデシル−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)−プロピオネート、n−オクタデシル−3−(3’−メチル−5’−t−ブチル−4’−ヒドロキシフェニル)−プロピオネート、n−テトラデシル−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)−プロピオネート、1,6−ヘキサンジオール−ビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオネート]、1,4−ブタンジオール−ビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオネート]、2,2’−メチレンビス−(4−メチル−t−ブチルフェノール)、トリエチレングリコール−ビス−[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)−プロピオネート]、テトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]2,4,8,10−テトラオキサスピロ(5,5)ウンデカン、N,N’−ビス−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオニルヘキサメチレンジアミン、N,N’−テトラメチレン−ビス−3−(3’−メチル−5’−t−ブチル−4’−ヒドロキシフェノール)プロピオニルジアミン、N,N’−ビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェノール)プロピオニル]ヒドラジン、N−サリチロイル−N’−サリチリデンヒドラジン、3−(N−サリチロイル)アミノ−1,2,4−トリアゾール、N,N’−ビス[2−{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}エチル]オキシアミド、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N’−ヘキサメチレンビス−(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマイド等を挙げることができるが、
これらには限定されない。好ましくは、トリエチレングリコール−ビス−[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)−プロピオネート]、テトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、1,6−ヘキサンジオール−ビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオネート]、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N’−ヘキサメチレンビス−(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマイドである。ヒンダードフェノール系化合物の具体的な商品名としては、旭電化工業社の“アデカスタブ”AO−20,AO−30,AO−40,AO−50,AO−60,AO−70,AO−80,AO−330、チバスペシャリティケミカル社製“イルガノックス”245,259,565,1010,1035,1076,1098,1222,1330,1425,1520,3114,5057、住友化学社の“スミライザー”BHT−R、MDP−S、BBM−S、WX−R、NW、BP−76、BP−101、GA−80、GM、GS、サイアナミド社の“サイアノックス”CY−1790などが挙げられる。
ここで、電子線架橋させた際、tanδ が低く、かつ、半田耐熱性などの高い耐熱性
を有すると共に、優れた熱老化特性も併せ持った、架橋絶縁体用ポリエチレン系樹脂組成物を得るために、ヒンダードフェノール系の酸化防止剤を、ベース樹脂のポリエチレン系樹脂組成物に適量含有させた上で、電子線を照射する。
つまり、直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)との合計100質量部に対して0.05質量部以上添加することで、電子線照射による架橋絶縁体用ポリエチレン系樹脂組成物の樹脂分子の崩壊の十分な防止効果が得られ、樹脂の分子量が低下する低分子量化現象を適切に抑制できる。即ち、架橋絶縁体用ポリエチレン系樹脂組成物の熱老化特性が良好になる。一方、0.3質量部以下であることで、電子線照射による架橋反応自体の進行阻害作用は実用上問題の無いレベルにとどまる。即ち、潜在的に酸化防止剤の存在は、架橋を促進させるラジカル反応のラジカルキャッチャとして作用するものの、その量が上記範囲であれば架橋反応の阻害要因として実用上問題とはならない。
言い換えれば、上記範囲の含有量とすることにより、例えば得られる電子線照射後の架橋絶縁層のゲル分率を50%以上とすることができ、半田耐熱性などの高い耐熱性が得られ、また、優れた熱老化特性が得られる。
さらに、使用周波数がアップする傾向の中、周波数域がGHz帯域のような高周波帯域では、電子線照射により、従来技術の架橋絶縁体用ポリエチレン系樹脂組成物のtanδの増大が顕著に見られる。本発明における架橋絶縁体用ポリエチレン系樹脂組成物は、電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が驚くべきことに低く維持できる。
架橋絶縁体用ポリエチレン系樹脂組成物には、本発明の目的を損なわない範囲で必要に応じて公知の添加剤を添加することができる。上記の酸化防止剤を除いた添加剤としては、耐候安定剤、帯電防止剤、防曇剤、抗ブロッキング剤、スリップ剤、滑剤、核剤、顔料、タッキファイヤー、カーボンブラック、タルク、ガラス粉、ガラス繊維等の無機充填剤または補強剤、有機充填剤または補強剤、難燃剤、中性子遮蔽剤等の公知の添加剤を配合することができる。また、他の熱可塑性樹脂と混合して用いることもできる。これらの例として、粘着付与樹脂、ワックス、L−LDPE、ポリプロピレン、ポリ−1−ブテン、ポリ−4−メチル−1−ペンテン、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、ポリスチレン、これらの無水マレイン酸グラフト物等を例示することができる。
次に、本発明の実施の形態に係る高周波同軸ケーブルについて説明する。
高周波同軸ケーブルは、軟銅線等からなる内部導体の外周を架橋絶縁層で一体被覆すると共に、その周囲を銅テープや銅導波管等からなる外部導体で覆い、さらにその周囲をポリエチレン等のシースで覆った構造で構成されている。
高周波同軸ケーブルは、直鎖状ポリエチレン(α)及び高圧法低密度ポリエチレン(β)からなるポリエチレン系樹脂組成物100質量部にヒンダードフェノール系酸化防止剤0.05〜0.3質量部を含んでなる本発明の絶縁体用ポリエチレン系樹脂組成物を押出機に入れた後、通常150〜210℃の温度範囲で内部導体上に被覆する。次にこの被覆された絶縁層に、通常5〜20Mradの電子線を照射して架橋絶縁層を形成して、高周波同軸ケーブルを製造することができる。
高周波同軸ケーブルにおける、架橋絶縁層のゲル分率は通常50〜60%であり、好ましくは50〜55%である。架橋絶縁層のゲル分率は、後述の実施例に記載の方法により、測定することができる。
高周波同軸ケーブルにおける、架橋絶縁層のゲル分率が50%以上であれば、熱老化特性や半田耐熱性等の耐熱性が良好な高周波同軸ケーブルを得る事ができる。また、架橋絶縁層のゲル分率が60%以下であれば、電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低い高周波同軸ケーブルを得る事ができる
高周波同軸ケーブルにおける、高周波帯域における誘電正接(tanδ)は、円筒型空洞共振器摂動法による2.45GHzの測定で、tanδが2.0×10−4以下であることが好ましい。
本発明で照射する電子線の照射量は、3〜20Mradが好ましい。より好ましくは5〜15Mrad、さらに好ましくは7〜10Mradである。つまり、照射する絶縁層の厚さにより左右されるが、照射量が3Mrad以上では、所望の架橋促進効果が得やすく、所望のゲル分率、即ちゲル分率50%の確保が容易であり、熱老化特性や半田耐熱性等の耐熱性が良好な高周波同軸ケーブルを得る事ができるからである。一方、照射量が20Mradを以下では、通常架橋絶縁層のゲル分率が60%を超えず、架橋絶縁層のtanδの増大を抑制できる。これにより、電子線照射による好ましくない樹脂の低分子量化現象が抑制され、熱老化特性の低下も抑制できる。
よって、架橋絶縁層を構成する架橋絶縁体用ポリエチレン系樹脂組成物は、高周波帯域において誘電正接(tanδ)が低く、かつ電子線架橋性が良好なことから、電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低く、かつ熱老化特性や半田耐熱性等の耐熱性が良好な高周波同軸ケーブルとして要求される性能を十分に満足できる。
以下、本実施の形態を実施例及び比較例によって更に詳細に説明するが、本実施の形態は、これらの実施例のみに限定されるものではない。なお、本実施の形態に用いられる測定方法及び評価方法は以下のとおりである。
(1)密度
JIS−K−7112:1999に準じて測定した。
(2)メルトフローレート(MFR)
JIS−K−7210:1999(温度=190℃、荷重=2.16kg)に準じて測定した。メルトフローレート比を得るため、温度=190℃、荷重=21.6kgでも測定を行った。
(3)ゲル・パーミエーション・クロマトグラフィー法によるMw/Mn(分子量分布)ならびに換算分子量10以上の成分の占有率
Waters社製150−C ALC/GPCの装置を用い、カラムとしてShodex製AT−807Sと東ソー製TSK−gelGMH−H6を直列にして用い、ゲルパーミエーションクロマトグラフィーによる測定を行った。溶媒に10ppmのイルガノックス1010を含むトリクロロベンゼンを用いて、140℃で測定した。なお、標準物質として市販の単分散のポリスチレンを用い、検量線を作成した。
(4)示差走査型熱量計による融点ピーク(℃)
示差走査熱量計(パーキンエルマー社製DSC−7型装置)を用い、以下の条件で測定した。1)ポリマー試料約5mgをアルミパンに詰め200℃/分で200℃まで昇温し、200℃で5分間保持した。2)次いで、200℃から10℃/分の降温速度で50℃まで降温し、降温完了後5分間保持した。3)次いで、50℃から10℃/分の昇温速度で200℃まで昇温した。この3)の過程で観察される吸熱曲線より融解ピーク位置の最高温度を融点ピーク(℃)として求めた。
(5)ひずみ硬化性
以下の方法で測定した。
装置:ティー・エー・インスツルメント社製 ARES
冶具:ティー・エー・インスツルメント社製 Extentional Viscosity Fixture(EVF)伸長粘度測定用治具
測定温度:134℃
ひずみ速度:0.5/sec
試験片の作製:プレス成形して18mm×10mm、厚み0.7mmのシートを作製する。
(算出方法)
ひずみ速度:0.5/secの場合の伸長粘度を、横軸に時間t(秒)、縦軸に伸長粘度ηE(Pa・秒)を両対数グラフでプロットする。その両対数グラフ上でひずみ硬化を起こす直前の粘度を直線で近似し、伸長粘度ηEの急激な立ち上がり現象をひずみ硬化性の有無の指標とした。また、伸長粘度ηEの最大値(ηmax)を求め、また、その時間までの近似直線上の粘度をηlinとした(図1参照)。ηmax/ηlinを、ひずみ硬化度(λmax)と定義し、ひずみ硬化性の程度の指標とした。
(6)溶融張力(MT)
2.095mm径、長さ8.0mmのキャピラリーを備えた東洋精機(株)製;キャピログラフ1Dを用い、60mm/minでポリエチレン樹脂を190℃、または240℃で押し出し、2m/minで引き取る時の張力を測定して得た。190℃で押し出したときの溶融張力をMT190℃、240℃で押し出したときの溶融張力をMT240℃として表す。さらにこれらから、下式〔1〕に従い、溶融張力比(MTR)を求めた。
MTR=(MT240 ℃)/(MT190 ℃) 〔1〕
(7)メルトフローレート比(FRR)
メルトフローレート比は、JIS−K−7210:1999で規定されるMFR(温度=190℃、荷重=21.6kg)をMFR(温度=190℃、荷重=2.16kg)で除して得た。
(8)誘電正接(tanδ)の測定
架橋絶縁体用ポリエチレン系樹脂組成物のペレットを使用し、熱プレス成形して100mm×100mm、厚み2.0mmのシートを所定の大きさ(1.2〜1.8mm□×80mmの棒状)に切削して測定用サンプルを作製した。空洞共振器摂動法誘電率測定装置(関東電子応用開発社製)を用いて、各サンプルの2.45GHzでの誘電正接(tanδ)をアジレント社製ネットワークアナライザー8720Dで測定を行った。
また、作製した高周波同軸ケーブルから架橋絶縁層を一部切り取り、上記と同様に測定用サンプルを作製し、架橋絶縁層の各サンプルを上記と同様に測定して、減衰量の目安とした。
○:架橋絶縁層のtanδが、2.0×10−4以下の場合を合格とした。
×:架橋絶縁層のtanδが、2.0×10−4を超える場合を不合格とした。
(9)ゲル分率
高周波同軸ケーブルを構成している架橋絶縁層から10g切り取り、キシレン溶媒を用いてソックスレー抽出器で10時間抽出し、抽出残量を測定し以下の式により求める。

(10)半田耐熱性
高周波同軸ケーブルを320℃の半田浴中に5秒間晒し、架橋絶縁層の溶融の有無を調べた。
○:溶融が見られない場合を合格とした。
×:溶融した場合を不合格とした。
(11)熱老化特性
JIS K3005に準拠して行い、120℃×96時間の熱老化条件下で、加熱前後における引張強度(TS)の残率および引張伸び(EL)を測定し、下記の通りに評価した。
○:熱老化TS( 熱老化前後でのTSの残率)が80%以上、かつ熱老化EL(熱老化前後でのELの残率)が65%以上の場合を合格とした。
×:熱老化TSが80%未満のとき、或いは熱老化ELが65%未満のとき、又は120℃×96時間の試験により溶融が生じた場合を不合格とした。
<樹脂サンプル作製>
・直鎖状ポリエチレン(α−i)
(1)固体触媒[A−1]の調製
(1−1)不活性炭化水素溶媒に可溶な錯体の合成
ジブチルマグネシウム175gとトリエチルアルミニウム30gとを、ヘキサン1リットルと共に容量4リットルのステンレス製反応器にいれ、85℃で2時間撹拌しながら反応させることにより、組成AlMg(C(C10の錯体を合成した。
(1−2)担体の調製
充分に窒素置換された15リットルの反応器に、トリクロルシラン(HSiCl)を2モル/リットルのn−ヘプタン溶液として2740ミリリットル仕込み、攪拌しながら50℃に保ち、組成式AlMg(C(n−C10.8(On−C1.2で示される有機マグネシウム成分のn−ヘプタン溶液7リットル(マグネシウム換算で5モル)を1時間かけて加え、更に50℃にて1時間攪拌下反応させた。反応終了後、上澄み液を除去し、n−ヘキサン7リットルで4回洗浄を行い、固体物質スラリーを得た。この固体を分離・乾燥して分析した結果、固体1グラム当たり、Mg8.62ミリモル、Cl17.1ミリモル、n−ブトキシ基(On−C)0.84ミリモルを含有していた。
(1−3)固体触媒の調製
上記固体500gを含有するスラリーを、n−ブチルアルコール1モル/リットルのn−ヘキサン溶液2160ミリリットルとともに、攪拌下50℃で1時間反応させた。反応終了後上澄みを除去し、7リットルのn−ヘキサンで1回洗浄した。このスラリーを50℃に保ち、ジエチルアルミニウムクロリド1モル/リットルのn−ヘキサン溶液970ミリリットルを攪拌下加えて1時間反応させた。反応終了後上澄みを除去し、7リットルのn−ヘキサンで2回洗浄した。このスラリーを50℃に保ち、ジエチルアルミニウムクロリド1モル/リットルのn−ヘキサン溶液270ミリリットル及び四塩化チタン1モル/リットルのn−ヘキサン溶液270ミリリットルを加えて、2時間反応した。反応終了後上澄みを除去し、内温を50℃に保った状態で、7リットルのn−ヘキサンで4回洗浄して、固体触媒成分をヘキサンスラリー溶液として得た。この固体触媒を分離・乾燥して分析した結果、固体触媒1グラムあたりチタン0.52ミリモルを含有していた。
(2)重合
触媒として、固体触媒[A−1]とトリイソブチルアルミニウムを組み合わせて使用した。
重合には反応容積300リットルのステンレス製重合器を用いた。γ線を使用した液面計により測定された重合器内の溶媒の体積とポリエチレンの体積との和は170Lであり、重合器から溶媒とポリエチレンとが定常的に抜き取られる体積あたりの速度は51リットル/hであった。従って、平均滞留時間は1.1時間であった。重合器1からポリマーは10kg/hの速度で抜き取られた。重合温度86℃、重合圧力0.6MPaの条件で、触媒は上記の固体触媒[A−1]を0.5g/h、上記の有機アルミニウム化合物[B−1]をAl原子換算で20ミリモル/h、またヘキサンは40リットル/hの速度で導入した。分子量調整剤としては水素を用い、エチレンと水素と1−ブテンを、水素の気相濃度が43モル%、1−ブテンの気相濃度が2.4モル%、エチレンの供給量が10kg/hになるように重合器に供給し重合を行った。重合器における触媒活性は20000g/g/hであった。
上記重合により、パウダー状の直鎖状ポリエチレン(α−i)を製造した。得られた直鎖状ポリエチレン(α−i)の密度は959kg/m、MFRは12、分子量分布:Mw/Mnは7.0であった。
・直鎖状ポリエチレン(α−ii〜iii)
[メタロセン担持触媒[I]の調製]
シリカP−10[富士シリシア社(日本国)製]を、窒素雰囲気下、400℃で5時間焼成し、脱水した。脱水シリカの表面水酸基の量は、1.3mmol/g−SiOであった。容量1.8リットルのオートクレーブにこの脱水シリカ40gを入れ、ヘキサン800ccを加えて分散させ、スラリーを得た。得られたスラリーを攪拌下50℃に保ちながらトリエチルアルミニウムのヘキサン溶液(濃度1mol/リットル)を60cc加え、その後2時間攪拌し、トリエチルアルミニウムとシリカの表面水酸基とを反応させ、トリエチルアルミニウム処理されたシリカと上澄み液とを含み、該トリエチルアルミニウム処理されたシリカの全ての表面水酸基がトリエチルアルミニウムによりキャッピングされている成分[IV]を得た。その後、得られた反応混合物中の上澄み液をデカンテーションによって除去することにより、上澄み液中の未反応のトリエチルアルミニウムを除去した。その後、ヘキサンを適量加え、トリエチルアルミニウム処理されたシリカのヘキサンスラリー800ccを得た。
一方、[(N−t−ブチルアミド)(テトラメチル−η−シクロペンタジエニル)ジメチルシラン]チタニウム−1,3−ペンタジエン(以下、「チタニウム錯体」と記載する。)200mmolをアイソパーE[エクソンケミカル社(米国)製の炭化水素混合物の商品名]1000ccに溶解し、予めトリエチルアルミニウムとジブチルマグネシウムより合成した組成式AlMg(C(n−C12の1mol/リットルヘキサン溶液を20cc加え、更にヘキサンを加えてチタニウム錯体濃度を0.1mol/リットルに調整し、成分[V]を得た。
また、ビス(水素化タロウアルキル)メチルアンモニウム−トリス(ペンタフルオロフェニル)(4−ヒドロキシフェニル)ボレート(以下、「ボレート」と記載する。)5.7gをトルエン50ccに添加して溶解し、ボレートの100mmol/リットルトルエン溶液を得た。このボレートのトルエン溶液にエトキシジエチルアルミニウムの1mol/リットルヘキサン溶液5ccを室温で加え、さらにヘキサンを加えて溶液中のボレート濃度が70mmol/リットルとなるようにした。その後、室温で1時間攪拌し、ボレートを含む反応混合物を得た。
ボレートを含むこの反応混合物46ccを、上記で得られた成分[IV]のスラリー800ccに15〜20℃で攪拌しながら加え、ボレートを物理吸着によりシリカに担持した。こうして、ボレートを担持したシリカのスラリーが得られた。さらに上記で得られた成分[V]のうち32ccを加え、3時間攪拌し、チタニウム錯体とボレートとを反応させた。こうしてシリカと上澄み液とを含み、触媒活性種が該シリカ上に形成されているメタロセン担持触媒[I]を得た。
[液体助触媒成分[II]の調製]
有機マグネシウム化合物[III−1]として、AlMg(C(n−C12で示される有機マグネシウム化合物を使用した。化合物[III−2]として、メチルヒドロポリシロキサン(25℃における粘度20センチストークス)を使用した。
200ccのフラスコにヘキサン40ccとAlMg(C(n−C12を、MgとAlの総量として37.8mmolを攪拌しながら添加し、25℃でメチルヒドロポリシロキサン2.27g(37.8mmol)を含有するヘキサン40ccを攪拌しながら添加し、その後80℃に温度を上げて3時間、攪拌下に反応させることにより、液体助触媒成分[II]を調製した。
[直鎖状ポリエチレン(α−ii、α−iii)であるエチレン単独重合体及びエチレンとα−オレフィンとの共重合体の調製]
(α−ii)上記により得られたメタロセン担持触媒[I]と液体助触媒成分[II]は、触媒移送ラインに連鎖移動剤として必要量の水素を供給することで水素を接触させて重合反応器に導入し、溶媒としてヘキサン、モノマーとしてエチレン及び1−ブテンを用いた。反応温度は78℃としてエチレン、1−ブテン、水素の混合ガス(ガス組成は1−ブテンとエチレン+1−ブテンのモル比が0.30、水素とエチレン+水素のモル比が0.0032を維持できるように調節)を全圧が0.8MPaで直鎖状ポリエチレン(α)であるエチレンと1−ブテンとの共重合体を重合した。得られた直鎖状ポリエチレン(α−i)であるエチレン−1−ブテン共重合体は密度が947kg/m、MFRが5.0g/10分、ゲルパーミエーションクロマトグラフィー法により求められた分子量分布(Mw/Mn)が3.5の直鎖状ポリエチレンであるエチレン−1−ブテン共重合体(α−ii)を得た。
(α−iii)エチレン、水素の混合ガス(ガス組成は水素とエチレン+水素のモル比が0.48を維持できるように調節)を全圧が0.8MPaで直鎖状ポリエチレン(α)であるエチレン単独重合体を重合した。得られた直鎖状ポリエチレン(α)であるエチレン単独重合体は密度が966kg/m、MFRが12g/10分、分子量分布:Mw/Mnが3.4の直鎖状ポリエチレンであるエチレン単独重合体(α−iii)を得た。
[高圧法低密度ポリエチレン(β)であるエチレン重合体の調製]
高圧法低密度ポリエチレン(β−i)はオートクレーブタイプのリアクターでエチレンをラジカル重合して得られたものである。重合条件は過酸化物存在下で、200〜300℃の温度、100〜250MPaの重合圧力に設定して、密度919kg/m、MFR2.0g/10分である高圧法低密度ポリエチレン(β−i)を得た。
高圧法低密度ポリエチレン(β−i)は、溶融張力比が 0.85、メルトフローレート比が、43.1、メルトフローレート比(以下、FRRと略す。)と溶融張力(以下、MTと略す。)との関係が式〔2〕を満たしている。(β−i)の換算分子量10以上の成分の占有率、分子量分布:Mw/Mn、及び溶融張力(190℃)を、表1に示した。
[実施例1〜3]
直鎖状ポリエチレン(α)及び分岐状高圧法低密度ポリエチレン(β)を表1に記載の割合で混合して得られたポリエチレン系樹脂組成物100質量部にヒンダードフェノール系酸化防止剤としてチバ・スペシャリティケミカルズ社のイルガノックス1076を0.1質量部加え、日本製鋼所社製TEX−44(スクリュー径44mm、L/D=35)の二軸押出成形機を利用し、190℃の温度で溶融混錬して造粒し、架橋絶縁体用ポリエチレン系樹脂組成物を作製した。
その後、タンデム型二段型押出機を有する装置を使用して、架橋絶縁体用ポリエチレン系樹脂組成物を第1押出機に入れて適温(180〜220℃の範囲にて調整)で十分に加熱溶融混練された後、第二押出機で適温(180〜220℃の範囲にて調整)にて押出しヘッドで外径0.8mmφの銅内部導体外周に外径が2.7mmとなる架橋絶縁層を押出被覆形成した。そして7Mradの電子線を照射して架橋した後外部導体並びにポリ塩化ビニル樹脂製のシースを被覆して3.3mmを有する高周波同軸ケーブルを作製した。
得られた架橋絶縁体用ポリエチレン系樹脂組成物及びそれから得られた高周波同軸ケーブルの評価結果を表2に併せて示した。
また、得られた実施例2のポリエチレン系樹脂組成物に関して、伸長粘度のプロット図の一例を図1に示した。
高周波同軸ケーブルの架橋絶縁層は、押出時の肉眼による表面外観がいずれも良好であった。
[比較例1、2]
表2に記載の割合で直鎖状ポリエチレン(α)と分岐状高圧法低密度ポリエチレン(β)をブレンドし、実施例1と同様の方法によりポリエチレン系樹脂組成物を得た。比較例2のポリエチレン系樹脂組成物は、伸長粘度の測定においてひずみ硬化性をはっきりと確認できなかった。
得られた絶縁体用ポリエチレン系樹脂組成物を用い実施例1と同様の方法により高周波同軸ケーブルを作製し、架橋絶縁体用ポリエチレン系樹脂組成物及び高周波同軸ケーブルの評価を行った。結果を表2に併せて示した。
高周波同軸ケーブルの架橋絶縁層は、押出時の肉眼による表面外観が、比較例1では良好であったが、比較例2では、表面が部分的に凸状にがさつき、不良であった。
ここで直鎖状ポリエチレン(α−iv)は、特開昭60−4506号公報記載の方法でチーグラー触媒を用いて重合された表1記載の物性を有するエチレンと1−ブテンとの共重合体である。

本発明は、高周波帯域において誘電正接(tanδ)が低く、かつ電子線架橋性が良好な架橋絶縁体用ポリエチレン系樹脂組成物およびそれを用いた高周波同軸ケーブルに関する。更に詳しくは、電子線照射後の架橋絶縁層の高周波帯域における誘電正接(tanδ)が低く、かつ熱老化特性や半田耐熱性等の耐熱性が良好な高周波同軸ケーブルを得る事ができる架橋絶縁体用ポリエチレン系樹脂組成物およびこの架橋絶縁体用ポリエチレン系樹脂組成物からなる高周波同軸ケーブルに関するものであり、高い産業上の利用可能性を有する。

Claims (6)

  1. 直鎖状ポリエチレン(α)90〜60質量部と、高圧法低密度ポリエチレン(β)10〜40質量部((α)と(β)との合計は100質量部)に、ヒンダードフェノール系酸化防止剤0.05〜0.3質量部を含んでなる架橋絶縁体用ポリエチレン系樹脂組成物(γ)であって、下記(γ−1)〜(γ−5)の要件を満たすことを特徴とする、上記架橋絶縁体用ポリエチレン系樹脂組成物。
    (γ−1)密度が930〜960kg/mである。
    (γ−2)190℃、2.16kg荷重におけるメルトフローレートが0.1〜20g/10分である。
    (γ−3)示差走査型熱量計による昇温測定において得られる吸熱曲線の融点ピークが一つである。
    (γ−4)伸長粘度の測定においてひずみ硬化性を有し、かつ、ひずみ硬化度(λmax)が2.0〜30である。
    (γ−5)空洞共振器摂動法による2.45GHzのtanδが0.7×10−4〜1.5×10−4である。
  2. 前記直鎖状ポリエチレン(α)が、下記(α−1)〜(α−4)の要件を満たし、かつ前記高圧法低密度ポリエチレン(β)が、下記(β−1)〜(β−3)の要件を満たす請求項1に記載の架橋絶縁体用ポリエチレン系樹脂組成物。
    (α−1)エチレン単独重合体又はエチレンから導かれる繰り返し単位と1又は2種以上の炭素数3〜20のα−オレフィンから導かれる繰り返し単位とからなる共重合体である。
    (α−2)密度が935〜975kg/mである。
    (α−3)190℃、2.16kg荷重におけるメルトフローレートが0.1〜20g/10分である。
    (α−4)ゲルパーミエーションクロマトグラフィー法により求められるMw/Mnが、3〜7である。
    (Mnは数平均分子量であり、Mwは重量平均分子量であり、Mw/Mnは分子量分布を表す指標である。)
    (β−1)密度が910〜930kg/mである。
    (β−2)190℃、2.16kg荷重におけるメルトフローレートが0.1〜10g/10分である。
    (β−3)ゲルパーミエーションクロマトグラフにより求められる換算分子量10以上の成分の占有率が全体の1.5〜9.0質量%である。
  3. 前記直鎖状ポリエチレン(α)が、(ア)担体物質、(イ)有機アルミニウム、(ウ)環状η結合性アニオン配位子を有する遷移金属化合物、及び(エ)該環状η結合性アニオン配位子を有する遷移金属化合物と反応して触媒活性を発現する錯体を形成可能な活性化剤から調製されたメタロセン担持触媒[I]と、液体助触媒成分[II]を用いた重合により製造されたものである、請求項1〜2のいずれか1項に記載の架橋絶縁体用ポリエチレン系樹脂組成物。
  4. 前記直鎖状ポリエチレン(α)がエチレンから導かれる繰り返し単位と1−ブテン、1−ヘキセン及び1−オクテンからなる群より選ばれる少なくとも一種のα−オレフィンから導かれる繰り返し単位とからなる共重合体である請求項1〜3のいずれか1項に記載の架橋絶縁体用ポリエチレン系樹脂組成物。
  5. 内部導体の外周に、架橋絶縁層、外部導体、シースを順に設けた高周波同軸ケーブルにおいて、該架橋絶縁層が請求項1〜4のいずれか1項に記載の架橋絶縁体用ポリエチレン系樹脂組成物を含んでなることを特徴とする上記高周波同軸ケーブル。
  6. 請求項1〜4のいずれか1項に記載の架橋絶縁体用ポリエチレン系樹脂組成物を前記内部導体上に押出し被覆させた後、これに電子線を3〜20MRadの照射量で照射して前記架橋絶縁層を形成する工程を有する請求項5に記載の高周波同軸ケーブルの製造方法。
JP2012066670A 2011-03-23 2012-03-23 架橋絶縁体用ポリエチレン系樹脂組成物およびそれを用いた高周波同軸ケーブル Pending JP2012212672A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012066670A JP2012212672A (ja) 2011-03-23 2012-03-23 架橋絶縁体用ポリエチレン系樹脂組成物およびそれを用いた高周波同軸ケーブル

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011064525 2011-03-23
JP2011064525 2011-03-23
JP2012066670A JP2012212672A (ja) 2011-03-23 2012-03-23 架橋絶縁体用ポリエチレン系樹脂組成物およびそれを用いた高周波同軸ケーブル

Publications (1)

Publication Number Publication Date
JP2012212672A true JP2012212672A (ja) 2012-11-01

Family

ID=47265528

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012065597A Expired - Fee Related JP5829160B2 (ja) 2011-03-23 2012-03-22 絶縁体用ポリエチレン系樹脂組成物およびそれを用いた高周波同軸ケーブル
JP2012066670A Pending JP2012212672A (ja) 2011-03-23 2012-03-23 架橋絶縁体用ポリエチレン系樹脂組成物およびそれを用いた高周波同軸ケーブル

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012065597A Expired - Fee Related JP5829160B2 (ja) 2011-03-23 2012-03-22 絶縁体用ポリエチレン系樹脂組成物およびそれを用いた高周波同軸ケーブル

Country Status (1)

Country Link
JP (2) JP5829160B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064801A1 (ja) * 2012-10-25 2014-05-01 旭化成ケミカルズ株式会社 絶縁体用ポリエチレン系樹脂組成物およびそれを用いた高周波同軸ケーブル
KR20150087235A (ko) * 2012-11-20 2015-07-29 다우 글로벌 테크놀로지스 엘엘씨 높은 용융 강도를 갖는 저밀도 에틸렌-기재 중합체
CN106356136A (zh) * 2015-07-22 2017-01-25 深圳市穗榕同轴电缆科技有限公司 一种同轴电缆护套或绝缘层组合物及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262927A (ja) * 1991-12-13 1993-10-12 Nippon Petrochem Co Ltd 架橋性難燃組成物
JPH05262932A (ja) * 1991-12-13 1993-10-12 Nippon Petrochem Co Ltd 架橋性高難燃組成物
JPH10168254A (ja) * 1996-12-13 1998-06-23 Grand Polymer:Kk 射出延伸ブロー成形用ポリプロピレン組成物およびその成形体
JPH10316805A (ja) * 1997-05-19 1998-12-02 Asahi Chem Ind Co Ltd カレンダー成形用組成物
JPH11323037A (ja) * 1998-05-08 1999-11-26 Mitsui Chem Inc 多官能化合物濃縮物及びそれを用いるポリエステル成形体の製造方法
JP2003145695A (ja) * 2001-11-09 2003-05-20 Oji Paper Co Ltd ポリエチレン系熱収縮フィルムの製造方法
JP2003217364A (ja) * 2002-01-18 2003-07-31 Mitsubishi Cable Ind Ltd 発泡絶縁同軸ケーブル
WO2009041115A1 (ja) * 2007-09-25 2009-04-02 Polyplastics Co., Ltd. 同軸ケーブル

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5586905B2 (ja) * 2009-03-19 2014-09-10 旭化成ケミカルズ株式会社 ポリエチレン系樹脂製無架橋押出発泡シート

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262927A (ja) * 1991-12-13 1993-10-12 Nippon Petrochem Co Ltd 架橋性難燃組成物
JPH05262932A (ja) * 1991-12-13 1993-10-12 Nippon Petrochem Co Ltd 架橋性高難燃組成物
JPH10168254A (ja) * 1996-12-13 1998-06-23 Grand Polymer:Kk 射出延伸ブロー成形用ポリプロピレン組成物およびその成形体
JPH10316805A (ja) * 1997-05-19 1998-12-02 Asahi Chem Ind Co Ltd カレンダー成形用組成物
JPH11323037A (ja) * 1998-05-08 1999-11-26 Mitsui Chem Inc 多官能化合物濃縮物及びそれを用いるポリエステル成形体の製造方法
JP2003145695A (ja) * 2001-11-09 2003-05-20 Oji Paper Co Ltd ポリエチレン系熱収縮フィルムの製造方法
JP2003217364A (ja) * 2002-01-18 2003-07-31 Mitsubishi Cable Ind Ltd 発泡絶縁同軸ケーブル
WO2009041115A1 (ja) * 2007-09-25 2009-04-02 Polyplastics Co., Ltd. 同軸ケーブル

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064801A1 (ja) * 2012-10-25 2014-05-01 旭化成ケミカルズ株式会社 絶縁体用ポリエチレン系樹脂組成物およびそれを用いた高周波同軸ケーブル
JPWO2014064801A1 (ja) * 2012-10-25 2016-09-05 旭化成株式会社 絶縁体用ポリエチレン系樹脂組成物およびそれを用いた高周波同軸ケーブル
KR20150087235A (ko) * 2012-11-20 2015-07-29 다우 글로벌 테크놀로지스 엘엘씨 높은 용융 강도를 갖는 저밀도 에틸렌-기재 중합체
JP2015535035A (ja) * 2012-11-20 2015-12-07 ダウ グローバル テクノロジーズ エルエルシー 高い溶融強度を有する低密度エチレン系ポリマー
KR102067312B1 (ko) 2012-11-20 2020-01-16 다우 글로벌 테크놀로지스 엘엘씨 높은 용융 강도를 갖는 저밀도 에틸렌-기재 중합체
US10975179B2 (en) 2012-11-20 2021-04-13 Dow Global Technologies Llc Low density ethylene-based polymers with high melt strength
CN106356136A (zh) * 2015-07-22 2017-01-25 深圳市穗榕同轴电缆科技有限公司 一种同轴电缆护套或绝缘层组合物及其制备方法
CN106356136B (zh) * 2015-07-22 2017-12-08 深圳市穗榕同轴电缆科技有限公司 一种同轴电缆护套或绝缘层组合物及其制备方法

Also Published As

Publication number Publication date
JP5829160B2 (ja) 2015-12-09
JP2012211315A (ja) 2012-11-01

Similar Documents

Publication Publication Date Title
JP5586905B2 (ja) ポリエチレン系樹脂製無架橋押出発泡シート
US11912852B2 (en) Process for making crosslinked cable insulation using high melt strength ethylene-based polymer made in a tubular reactor and optionally modified with a branching agent
JP2005534802A (ja) シラン架橋性ポリエチレン
JP2012255138A (ja) 表面保護フィルム用ポリエチレン樹脂組成物
US10679769B2 (en) Cable with improved electrical properties
JP2012212672A (ja) 架橋絶縁体用ポリエチレン系樹脂組成物およびそれを用いた高周波同軸ケーブル
JP2011256375A (ja) 無架橋発泡用ポリエチレン系樹脂組成物ならびにそのポリエチレン系樹脂無架橋発泡成形体
JP5289729B2 (ja) ポリマーブレンド系シラン変性ポリエチレン系樹脂組成物およびその架橋体
WO2014064801A1 (ja) 絶縁体用ポリエチレン系樹脂組成物およびそれを用いた高周波同軸ケーブル
TWI576865B (zh) 絕緣體用聚乙烯系樹脂組合物及使用其之高頻同軸纜
JP5829088B2 (ja) 発泡フィルム
JP5827848B2 (ja) 架橋発泡成形体
JP2013124300A (ja) 無架橋発泡用ポリエチレン系樹脂組成物
JP5334235B2 (ja) ポリマーブレンド系ポリエチレン系樹脂組成物からなる給水用またはガス輸送用パイプ
JP5829105B2 (ja) ブロー成形用ポリエチレン系樹脂組成物及びそれよりなるブロー成形体
JP2012071893A (ja) リードフレーム用スペーサー
JP5841869B2 (ja) 自動車内装材成形用基材、それよりなる自動車内装材成形用積層基材
JP5334275B2 (ja) ポリマーブレンド系ポリエチレン系樹脂組成物およびその成型体
JP2012082411A (ja) 射出発泡成形体
US20240071647A1 (en) Composition
JP2012211313A (ja) ポリエチレン系樹脂製断熱材基材、それよりなる断熱パイプカバー
JP2013223959A (ja) ポリエチレン積層フィルム
JP2010116437A (ja) ポリエチレン系樹脂組成物およびその成型体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160609