JP2012209428A - 蒸着拡散処理用ケース及びr−t−b系焼結磁石の製造方法 - Google Patents

蒸着拡散処理用ケース及びr−t−b系焼結磁石の製造方法 Download PDF

Info

Publication number
JP2012209428A
JP2012209428A JP2011074051A JP2011074051A JP2012209428A JP 2012209428 A JP2012209428 A JP 2012209428A JP 2011074051 A JP2011074051 A JP 2011074051A JP 2011074051 A JP2011074051 A JP 2011074051A JP 2012209428 A JP2012209428 A JP 2012209428A
Authority
JP
Japan
Prior art keywords
sintered magnet
vapor deposition
rtb
case
deposition diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011074051A
Other languages
English (en)
Other versions
JP5742012B2 (ja
Inventor
Toru Obata
徹 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011074051A priority Critical patent/JP5742012B2/ja
Publication of JP2012209428A publication Critical patent/JP2012209428A/ja
Application granted granted Critical
Publication of JP5742012B2 publication Critical patent/JP5742012B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

【課題】R−T−B系焼結磁石と支持体との溶着の発生を減少させる蒸着拡散処理用ケース及びその蒸着拡散処置用ケースを用いたR−T−B系焼結磁石の製造方法を提供すること。
【解決手段】棒状部材を用いた支持体を介して、RH供給源とR−T−B系焼結磁石を上下方向へ交互に多段配置する。これにより、従来用いられている格子状の網などの支持体とくらべて、R−T−B系焼結磁石と支持体との溶着の発生を大幅に低減した蒸着拡散処理用ケース及びそのケースを用いたR−T−B系焼結磁石の製造方法を提供することができる。
【選択図】図1

Description

本発明は、R−T−B系焼結磁石の製造に使用される蒸着拡散処理用ケース及び当該蒸着拡散処理用ケースを用いたR−T−B系焼結磁石の製造方法に関する。
R−T−B系焼結磁石体(Rは希土類元素のうち少なくとも1種、TはFeまたはFe及びCo)は、永久磁石の中で最も高性能な磁石として知られており、ハイブリッド自動車用、電気自動車用や家電製品等用の各種モータに使用されている。
しかし、R−T−B系焼結磁石体は高温で保磁力HcJ(以下、単に「HcJ」と記載する)が低下し、不可逆熱減磁が起こる。そのため、特にハイブリッド自動車用や電気自動車用のモータに使用される場合、高温下でも高いHcJを維持することが要求されている。
近年、R−T−B系焼結磁石体のHcJ向上を目的として、焼結した後に蒸着手段を用いてDy、Ho、Tb等の重希土類元素RHを磁石表面に供給し、その重希土類元素RHを磁石内部へ拡散させることによって、残留磁束密度B(以下、単に「B」と記載する)の低下を抑制しつつHcJを向上させる蒸着拡散法が提案されている。
特許文献1は、R−T−B系焼結磁石と重希土類元素RHを含有するバルク体とを所定の間隔を形成して対向配置し、これらを所定温度に加熱することにより、前記バルク体から重希土類元素RHをR−T−B系焼結磁石の表面に供給しつつ、重希土類元素RHをR−T−B系焼結磁石の内部に拡散させる蒸着拡散法を開示している。
特許文献1では、R−T−B系焼結磁石の両面から同時に蒸着拡散を行う方法として、R−T−B系焼結磁石をNb網に載せ、その上下に所定の間隔を形成して重希土類元素RHを含有する前記バルク体を配置する方法を開示している。
特許文献2は、Dy及びTbの少なくとも一方を含む金属蒸発材料とR−T−B系焼結磁石を処理箱内に収納し、真空雰囲気にて所定温度に加熱することにより、金属蒸発材料を蒸発させてR−T−B系焼結磁石に付着させ、この付着したDy及びTbの金属原子を当該焼結磁石の結晶粒界及び/又は結晶粒界相に拡散させる蒸着拡散法を開示している。
特許文献2では、金属蒸発材料とR−T−B系焼結磁石との間に、これらが相互に接触せず、かつ、蒸発した金属原子の通過を許容し、前記R−T−B系焼結磁石の複数個が並置できるエキスパンドメタルを介在させ、金属蒸発材料とR−T−B系焼結磁石を上下方向へ交互に積み重ねる収納方法を開示している。
特許文献3は、希土類磁石の焼結処理を行う際に用いる焼結ケースに関するもので、熱伝導性に優れ、熱変形を起こし難く、高い機械的強度を持つ焼結ケースを開示している。
特許文献3では、焼結ケースは、開口部を有する本体フレームとその開口部を開閉するドア部材を備え、希土類磁石の成形体を載せた焼結プレートが本体フレーム内に取り付けられたロッド上を水平方向にスライドして本体フレーム内に挿入される。また、本体フレームは補強チャネルにより補強されている。これらの構造により、量産性に富み、また歪みが生じ難い、焼結ケースを開示している。
国際公開第2007/102391号 特開2009−135393号公報 特開2000−315611号公報
特許文献1、2に記載される蒸着拡散法では、熱処理による拡散反応を利用し、R−T−B系焼結磁石の主相外殻部に重希土類元素RHの濃縮層を形成する。その時、重希土類元素RHが、R−T−B系焼結磁石の表面から当該R−T−B系焼結磁石の内部に拡散すると同時に、前記R−T−B系焼結磁石の内部に含まれている軽希土類元素RL(RLは、NdおよびPrの少なくとも一種)を主体とする液相成分が、前記R−T−B系焼結磁石の表面に向かって拡散する。この様に、前記重希土類元素RHが、前記R−T−B系焼結磁石の表面から内部へ、前記軽希土類元素RLが、前記R−T−B系焼結磁石の内部から表面へと相互に拡散が起こることにより、R−T−B系焼結磁石表面に、軽希土類元素RLを主体とする溶出部分が形成される。この部分は、R−T−B系焼結磁石を支持する支持体と反応を起こす。そのため、支持体とR−T−B系焼結磁石とが固着(以下、「溶着」と記載する)してしまう。
特許文献1、2ではRH拡散源(特許文献2では、金属蒸発材料に相当)やR−T−B系焼結磁石がNb網(特許文献2では、エキスパンドメタルに相当)からなる支持体の上に載置されている。
特許文献1、2の方法では、支持体が網やエキスパンドメタル等で構成されているため、R−T−B系焼結磁石と接触する箇所が多い。そのため、複数のR−T−B系焼結磁石を蒸着拡散法により処理した場合、多くのR−T−B系焼結磁石が支持体と溶着してしまうという問題があった。
溶着を引き起こしたR−T−B系焼結磁石を支持体から無理に取り外そうとすると、R−T−B系焼結磁石自体を破壊してしまう恐れがある。よって、慎重に取り外す必要があり、支持体からR−T−B系焼結磁石を取り外す作業の工数が増大してしまう。よって、支持体とR−T−B系焼結磁石との接触箇所を出来る限り少なくし、支持体とR−T―B系焼結磁石との溶着を減少させることが望まれている。
特許文献3の焼結ケースは、希土類磁石の焼結処理を行う際に用いるものであり、蒸着拡散処理に関しては全く記載がない。
仮に、特許文献3の焼結ケースを使用して蒸着拡散処理を行っても、重希土類元素RHは、RH拡散源とR−T−B系焼結磁石との間に配置される焼結プレートに付着してしまい、蒸着拡散処理そのものを行うことができない。
本発明は、上記問題を解決するためになされたものであり、その目的とするところは、R−T−B系焼結磁石体と支持体との接触面積を大幅に低減させることにより、R−T−B系焼結磁石と支持体との溶着の発生を減少させる蒸着拡散処理用ケース及びその蒸着拡散処理用ケースを用いたR−T−B系焼結磁石の製造方法を提供することにある。
請求項1に記載の本発明による蒸着拡散処理用ケースは、R−T−B系焼結磁石体(Rは希土類元素のうち少なくとも1種、TはFeまたはFe及びCo)とRH供給源(重希土類元素RHからなる金属又は重希土類元素RHを25原子%以上含む合金。ただし、重希土類元素RHは、Dy、HoおよびTbのうち少なくとも1種)を加熱することにより、前記RH供給源から前記重希土類元素RHを前記R−T−B系焼結磁石体の表面に供給しつつ、前記重希土類元素RHを前記R−T−B系焼結磁石体の内部に拡散させる蒸着拡散処理に用いるケースであって、四角形の底板と、前記底板に取り付けられた、互いに対向する一対の四角形の側板と、前記側板を介して前記底板と対向するように前記側板に取り付けられた四角形の天板とを有する筒状ケース本体と、前記筒状ケース本体の開口部を開閉可能にする蓋体を有し、前記筒状ケース本体内において、前記RH供給源と前記R−T−B系焼結磁石体とを上下方向へ交互に多段配置すべく、前記一対の側板間に取り付けられた複数の棒状部材が水平方向に所定の空隙を形成し並列配置してなる支持体を、上下方向に所定の空隙を形成し多段配置したことを特徴とする。
請求項2に記載の本発明は、請求項1に記載の蒸着拡散処理用ケースにおいて、前記筒状ケース本体の開口部の一方が封鎖されていることを特徴とする。
請求項3に記載の本発明は、請求項1及び2に記載の蒸着拡散処理用ケース内に、前記RH供給源と前記R−T−B系焼結磁石体を前記支持体を介して上下方向へ交互に配置する工程と、前記蒸着拡散処理用ケース内を、800℃以上950℃以下として前記蒸着拡散処理を行う工程とを含むR−T−B系焼結磁石の製造方法を特徴とする。
請求項4に記載の本発明は、請求項3に記載のR−T−B系焼結磁石の製造方法において、蒸着拡散処理用ケース内の圧力を、0.1Pa以上50Pa以下として前記蒸着拡散処理を行うことを特徴とする。
請求項5に記載の本発明は、請求項3又は4に記載のR−T−B系焼結磁石の製造方法において、蒸着拡散処理の後、前記蒸着拡散処理用ケース内を、圧力200Pa以上2000Pa以下、温度800℃以上950℃以下として熱処理を行うことを特徴とする。
本発明の蒸着拡散処理用ケース及びR−T−B系焼結磁石の製造方法により、R−T−B系焼結磁石と支持体との溶着の発生を減少させることができる。これにより、R−T−B系焼結磁石と支持体との取り外し工数を大幅に削減させることができる。
本発明の蒸着拡散処理用ケ―スの一例を示す斜視図である。 本発明の蒸着拡散処理用ケースを構成する筒状ケース本体の一例を示す斜視図である。 図1のX−X断面を示す断面図である。 図1のY−Y断面を示す断面図である。 支持体を形成する棒状部材の配置状態の一例を示す説明図である。 図1の蓋体と天板との係合の一例を示す部分拡大図である。 図1をZ方向から見た時のR−T−B系焼結磁石体の配置の一例を示す平面図である。 図1をZ方向から見た時のRH供給源の配置の一例を示す平面図である。
以下に、本発明を実施するための形態を図面に基づき説明する。各図面において、同じ部分には同じ符号を付している。
なお、本発明においては、蒸着拡散処理前のR−T−B系焼結磁石を「R−T−B系焼結磁石体」とし、蒸着拡散処理後のR−T−B系焼結磁石を「R−T―B系焼結磁石」とし、それぞれ区別して表記する。
また、本発明における蒸着拡散処理とは、R−T−B系焼結磁石体とRH供給源を加熱することにより、前記RH供給源から重希土類元素RHを前記R−T−B系焼結磁石体の表面に供給しつつ、前記重希土類元素RHを前記R−T−B系焼結磁石体の内部に拡散させることによって、Bの低下を抑制しつつ、HcJを向上させる処理方法である。
本発明ではRH供給源とR−T−B系焼結磁石体を、支持体を介して上下方向に交互に載置した後、RH供給源から前記重希土類元素RHをR−T−B系焼結磁石体の表面に供給しつつ、前記重希土類元素RHをR−T−B系焼結磁石体の内部へ拡散させる。
図1における本発明の蒸着拡散処理用ケース1は、図2に示す筒状ケース本体2と、筒状ケース本体2の開口部を開閉可能にする蓋体6,6を有する。筒状ケース本体2は、底板5と、底板5に取り付けられた、互いに対向する一対の側板3,3と、側板3,3を介して底板5と対向するように側板3,3に取り付けられた天板4とから構成される。
図3は、図1のX−X断面を示す断面図であり、図4は、図1のY−Y断面を示す断面図である。図3のように、蒸着拡散処理用ケース1は、互いに対向する一対の側板3,3間に棒状部材7が取り付けられている。また、棒状部材7は、図4のように、断面が円形の形状を有し、所定の空隙を形成し水平方向に並列配置している。
図5は、支持体8を形成する棒状部材7の配置状態の一例を示す説明図である。図5のように、棒状部材7は、互いの空隙をW1とする2本を一組(図中A)とし、それら組同士の空隙をW2とし水平方向に7組配置することにより、支持体8を形成している。
図3及び図4に示すように、蒸着拡散処理用ケース1は、支持体8を上下方向に14段有している。最上段に位置する支持体8上及びケース内最下部に位置する底板5上にゲッター11を配置している。上記最上段以外の支持体8を介して、RH供給源9とR−T−B系焼結磁石体10を交互に上下方向へ多段配置している。図では、支持体8を上下方向に14段有しているが、その段数は任意である。支持体8の段数は、蒸着拡散処理用ケース1の大きさやRH供給源9、R−T−B系焼結磁石体10等の形状や大きさによってそれらを効率良く収納できるよう選定することが好ましい。
蒸着拡散処理用ケース1を構成する各部材は、Mo、W、Taなどを含む高融点金属や、窒化硼素、ジルコニア、カルシア、マグネシアなどを含むセラミックス材料等、蒸着拡散処理時に、変形や変質を発生し難い材料で構成されていることが望ましい。
筒状ケース本体2は、棒状部材7を介し、RH供給源9やR−T−B系焼結磁石体10を上下に多段配置し、かつ、RH供給源9やR−T−B系焼結磁石体10に接触せずにこれらを覆う必要がある。そのため、四角形の側板3,3、天板4、底板5により筒状形状を形成することが望ましく、図1においては、側板3,3、天板4、底板5はそれぞれ、所定寸法の矩形状にて形成されている。
棒状部材7は、RH供給源9やR−T−B系焼結磁石体10を線接触にて支持でき、RH供給源9からのR−T−B系焼結磁石体10への重希土類元素RHの良好なる供給が阻害されなければその断面形状、寸法は任意である。断面形状は例えば、円形以外の楕円形であっても良いし、三角形または4つ以上の頂点を有する多角形であっても良い。
棒状部材7の直径(断面形状が円形以外の場合は、その外接円の直径)は、RH供給源9やR−T−B系焼結磁石体10を支持するために、0.4mm以上から10mm以下の範囲に設定することが好ましい。0.4mm未満であると量産規模で多用されるRH供給源9やR−T−B系焼結磁石体10を支持するための機械的強度が不足する恐れがある。また、10mmを超える直径があれば、十分な機械的強度が得られるが、RH供給源からR−T−B系焼結磁石への重希土類元素RHの供給が阻害されるため、上記範囲内に設定することが好ましい。
棒状部材7同士の空隙は、等間隔である方が汎用性があり、いろいろな大きさのRH供給源9やR−T−B系焼結磁石体10を支持できる。さらに、支持体8とR−T−B系焼結磁石体10との接触面積を低減するため、RH供給源9やR−T−B系焼結磁石体10を支持できる範囲で棒状部材7同士の空隙を広くとった方が好ましい。そのため、棒状部材7同士の空隙は、10mm以上とするのが好ましく、更に好ましくは、15mm以上、最も好ましくは、25mm以上である。
ただし、棒状部材7同士の空隙は、必ずしも等間隔にする必要はなく、RH供給源9やR−T−B系焼結磁石体10を安定して支持でき、かつ、支持体8とR−T−B系焼結磁石体10との接触面積を低減できるように、RH供給源9やR−T−B系焼結磁石体10の大きさに合わせて適宜設定してもよい。例えば図5に示すように、2本の棒状部材7を一組とし、水平方向に複数組配置することで支持体8を形成してもよい。。
RH供給源9やR−T−B系焼結磁石体10と、そのすぐ上側に位置する支持体8との空隙は、0.1mmから15mmの範囲に設定することが好ましい。RH供給源9やR−T−B系焼結磁石体10が棒状部材7と接触しないように、0.1mm以上の空隙を確保することが好ましい。また、15mm以下とすることで、効率よく重希土類元素RHをR−T−B系焼結磁石体10へ供給することができる。
蓋体6は図1に示すように、筒状ケース本体2の開口部を開閉可能にするように2箇所設けているが、必ずしも2箇所に設ける必要はなく、2箇所のうち一方が封鎖されていても良い。すなわち、蓋体6は、筒状ケース本体2の開口部からRH供給源9とR−T−B系焼結磁石体10を所定の位置に配置した後、当該開口部を閉じることが出来れば良く、RH供給源9とR−T−B系焼結磁石体10の配置作業の効率等を考慮し、その数、開閉機構等を適宜選定すれば良い。例えば図6のように、蓋体6は、一方端に屈曲部を形成した逆さJ字形状を有し、天板4の外側面開口部側に形成された凸部への掛け外しにより開閉を可能としている。
RH供給源9は、重希土類元素RHからなる金属又は重希土類元素RHを25原子%以上含む合金であり、当該重希土類元素RHは、Dy、HoおよびTbのうち少なくとも1種である。例えば、Dyメタル、Tbメタル、Hoメタル、DyFe合金、TbFe合金、HoFe合金などである。Dy、Tb、Ho、Fe以外に他の元素を含んでいても良い。RH供給源9は、塊状(バルク体)、サイコロ状、板状、線状、など任意の形状であって、大きさも特に限定されないが、支持体8を形成する複数の棒状部材7間に形成される空隙から落下しないような大きさにしなければならない。
RH供給源9は、重希土類元素RHを25原子%以上含むことが好ましい。重希土類元素RHの含有量が25原子%よりも少なくなると、RH供給源9からの重希土類元素RHの供給量が少なくなり、所望のHcJ向上効果を得るためには処理時間が非常に長くなる為、好ましくない。
ゲッター11は、蒸着拡散処理中に炉内(図示せず)や蒸着拡散用ケースの搬送台(図示せず)などに付着している酸素や水蒸気などを吸収する役割を持つ。酸素や水蒸気によるR−T−B系焼結磁石体10の磁気特性低下を防止するために用いることが好ましい。
ゲッター11を配置しなくても、蒸着拡散処理を問題なく行うことができるが、好ましくは、図3及び図4のように蒸着拡散処理用ケース内部にゲッター11を配置した方がよい。ゲッター11には、公知のゲッター材を用いればよい。例えば、R−T−B系焼結磁石体の焼結前の成形体くずなどを用いることができる。
本発明では、支持体8に棒状部材7を用いることにより、従来用いられている格子状の網などにくらべて、R−T−B系焼結磁石体10と支持体8との接触面積を大幅に低減することができる。それにより、溶着の発生箇所を減少させることができ、蒸着拡散処理後のR−T−B系焼結磁石の取り外し工数を大幅に削減することができる。
蒸着拡散処理を行う処理条件は公知の方法で行えば良い。好ましい方法の一例を以下に詳述する。
まず、ゲッター、RH供給源およびR−T−B系焼結磁石体が載置された蒸着拡散処理用ケースを蒸着拡散処理装置内(図示せず)に配置する。
その後、前記蒸着拡散処理ケース内の温度を800℃以上950℃以下として蒸着拡散処理を行う。
蒸着拡散処理ケース内の温度が800℃未満であると、重希土類元素RHのR−T−B系焼結磁石体10への供給不足が発生する恐れがある。950℃を超えると前記重希土類元素RHがR−T−B系焼結磁石体10に過剰に供給され、支持体8との溶着箇所が増大してしまう恐れがある。
なお、前記蒸着拡散処理では、蒸着拡散処理ケース内の雰囲気圧力を、0.1Pa以上50Pa以下とするのが好ましい。0.1Pa未満の雰囲気圧力で蒸着拡散処理を行うと、重希土類元素RHが過剰に供給されてしまうことがあり、R−T−B系焼結磁石と支持体8との溶着箇所が大幅に増加してしまう恐れがある。一方、50Pa以上で行うと、前記重希土類元素RHのR−T−B系焼結磁石体10への供給を十分に確保できない恐れがある。
前記蒸着拡散処理後、更に蒸着拡散処理用ケース内の雰囲気圧力を200Pa以上2kPa以下、温度を800℃以上950℃以下として熱処理を行うことが好ましい。200Pa以上2kPa以下の雰囲気圧力とすることで、RH供給源9から重希土類元素RHがR−T−B系焼結磁石の表面に供給されなくなり拡散のみが進行する。また、800℃以上950℃以下の温度範囲にすることで、R−T−B系焼結磁石の内部へより均質に前記重希土類元素RHを拡散することができる。
前記蒸着拡散処理を行う蒸着拡散処理装置が、一室の処理室からなり、当該処理室で前記熱処理を引き続き行う場合、不活性ガスを流気させて、雰囲気圧力を200Pa以上2kPa以下に調整してから前記熱処理を行えばよい。
前記蒸着拡散処理を行う蒸着拡散処理装置が、前記蒸着拡散処理を行う処理室と前記熱処理を行う処理室との2つの処理室を有する場合、当該熱処理を行う処理室を、200Pa以上2kPa以下の雰囲気圧力で800℃以上950℃以下の処理温度にあらかじめ設定しておき、前記蒸着拡散処理を行う処理室にて前記蒸着拡散処理を行った後、前記熱処理を行う処理室に蒸着拡散処理用ケースを搬送台にて搬送させ、前記熱処理を行えばよい。
前記熱処理は、必ずしも前記蒸着拡散処理装置と同じ装置で行う必要はなく、別の装置で行ってもよい。
蒸着拡散処理後のR−T−B系焼結磁石に表面処理を施すことが好ましい。表面処理は、公知の表面処理で良く、例えばAl蒸着や電気Niめっきや樹脂塗装などの表面処理を行うことができる。表面処理を行う前に、サンドブラスト処理、バレル処理、機械研磨等公知の前処理を行っても良い。また、寸法調整のための加工研磨を行ってもよい。寸法調整のための研削量は、1〜300μm、好ましくは、5〜100μm、さらに好ましくは10〜30μmである。これらの表面処理や加工研磨の工程を経ても、HcJ向上効果はほとんど変わらない。
〔実施例1〕
組成がNd19.3Pr5.7Dy4.30.95Co2.0Al0.15Cu0.1Ga0.08残部Fe(mass%)からなり、加工後の寸法形状が、厚み11×横30×縦60(mm)のR−T−B系焼結磁石体10を準備した。そして、図7に示すように、側板3,3間に取り付けられた棒状部材7上にR−T−B系焼結磁石10を配置した。R−T−B系焼結磁石体の磁気特性は、B=1.31T、HcJ=1740kA/mであった。
RH供給源9は、2種類の寸法(厚み11×横155×縦220(mm)と厚み11×横155×縦170(mm))の平板状Dyメタルを準備した。そして、図8に示すように、側板3,3間に取り付けられた棒状部材7上に平板状DyメタルからなるRH供給源9を配置した。ゲッターは、R−T−B系焼結磁石体の成形体くずを集め、Mo製のトレーに乗せて準備した。
支持体8を構成する棒状部材7は、φ6(mm)からなる断面円形状のものを用いた。
支持体8は、2本を一組として、水平方向に7組配置した。前記一組を構成する棒状部材7の2本の空隙(図5のW1)を20mmに、隣接する組同士の空隙(図5のW2)を30mmに設定した。
実験には図1の蒸着拡散処理用ケース1を用いた。蒸着拡散処理用ケース1は、高さ430×幅(互いに対向する一対の側板間の方向)400×長さ500(mm)である。図4に示すように、ゲッター11を支持体8の最上段とケース最下部の底板5の上に2箇所配置した。最下部のゲッター11のすぐ上側にはRH供給源9を、そのすぐ上側には、R−T−B系焼結磁石体10を上下方向へ交互に配置した。このように、下から順にゲッター11/RH供給源9/R−T−B系焼結磁石体10/RH供給源9・・・・ゲッター11とし、合計15段(上下のゲッター11を含む)になるように多段配置した。そして蓋体6で開口部を閉じた。
まず、本発明の蒸着拡散処理用ケース1内を、900℃になるまで昇温した後、圧力10−3Paの真空中で2時間蒸着拡散処理を行った。蒸着拡散処理工程の後、更に、900℃、圧力1.5kPaの真空中で6時間熱処理を行いR−T−B系焼結磁石を作製した。
〔比較例1〕
棒状部材7の代わりに直径2mmのNb製の線材で編んだ網(4メッシュ)を使用し、その上にRH供給源9やR−T−B系焼結磁石体10を載せたことを除き、実施例1と同じ条件でR−T−B系焼結磁石を作製した。
〔実施例2〕
蒸着拡散処理の処理圧力を3.0Paの真空中で行ったことを除き、実施例1と同じ条件でR−T−B系焼結磁石を作製した。
実施例1、比較例1、実施例2の結果を表1に示す。表1において、「圧力」は、蒸着拡散処理時の雰囲気圧力(蒸着拡散処理用ケース内の圧力)を示す。「△HcJ」は、処理前のR−T−B系焼結磁石のHcJ(1740kA/m)と処理後のHcJの差分を示す。「△B」は、処理前のR−T−B系焼結磁石のB(1.31T)と処理後のBの差分を示す。「溶着した磁石」は、R−T−B系焼結磁石を支持体8より取り外した時に溶着発生の有無を確認し、溶着が発生したR−T−B系焼結磁石の数を示す。「処理数」は、実施例1、比較例1、実施例2それぞれに使用した、R−T−B系焼結磁石の数を示す。
Figure 2012209428
比較例1ではR−T−B系焼結磁石に網目状に溶着が発生しており、溶着が発生したR−T−B系焼結磁石の数も多かった。実施例1では、溶着が発生したR−T−B系焼結磁石の数は、比較例1と比べて半分以下となり、大幅に減少した。更に実施例2では、R−T−B系焼結磁石の支持体8との溶着は見られなかった。
以上の様に、実施例1、2によれば、R−T−B系焼結磁石と支持体8との溶着の発生を大幅に減少させることができた。これにより、蒸着拡散処理後の取り外し工数を大幅に削減することができ、量産に適した蒸着拡散処理を行うことが可能となった。
本発明によるR−T−B系焼結磁石は、ハイブリッド自動車用、電気自動車用や家電製品等用の各種モータに好適に利用することができる。
1 蒸着拡散処理用ケース
2 筒状ケース本体
3 側板
4 天板
5 底板
6 蓋体
7 棒状部材
8 支持体
9 RH供給源
10 R−T−B系焼結磁石体
11 ゲッター

Claims (5)

  1. R−T−B系焼結磁石体(Rは希土類元素のうち少なくとも1種、TはFeまたはFe及びCo)とRH供給源(重希土類元素RHからなる金属又は重希土類元素RHを25原子%以上含む合金。ただし、重希土類元素RHは、Dy、HoおよびTbのうち少なくとも1種)を加熱することにより、前記RH供給源から前記重希土類元素RHを前記R−T−B系焼結磁石体の表面に供給しつつ、前記重希土類元素RHを前記R−T−B系焼結磁石体の内部に拡散させる蒸着拡散処理に用いるケースであって、
    四角形の底板と、
    前記底板に取り付けられた、互いに対向する一対の四角形の側板と、
    前記側板を介して前記底板と対向するように前記側板に取り付けられた四角形の天板とを有する筒状ケース本体と、
    前記筒状ケース本体の開口部を開閉可能にする蓋体を有し、
    前記筒状ケース本体内において、前記RH供給源と前記R−T−B系焼結磁石体とを上下方向へ交互に多段配置すべく、前記一対の側板間に取り付けられた複数の棒状部材が水平方向に所定の空隙を形成し並列配置してなる支持体を、上下方向に所定の空隙を形成し多段配置したことを特徴とする、
    蒸着拡散処理用ケース。
  2. 前記筒状ケース本体の開口部の一方が封鎖されている請求項1に記載の蒸着拡散処理用ケース。
  3. 請求項1又は2に記載の蒸着拡散処理用ケースを用い、前記蒸着拡散処理用ケース内に、前記RH供給源と前記R−T−B系焼結磁石体を前記支持体を介して上下方向へ交互に配置する工程と、
    前記蒸着拡散処理用ケース内の温度を、800℃以上950℃以下として前記蒸着拡散処理を行う工程とを含むR−T−B系焼結磁石の製造方法。
  4. 前記蒸着拡散処理用ケース内の圧力を、0.1Pa以上50Pa以下として前記蒸着拡散処理を行う請求項3に記載のR−T−B系焼結磁石の製造方法。
  5. 請求項3又は4に記載の蒸着拡散処理の後、前記蒸着拡散処理用ケース内を、圧力200Pa以上2kPa以下、温度800℃以上950℃以下として熱処理を行うR−T−B系焼結磁石の製造方法。
JP2011074051A 2011-03-30 2011-03-30 蒸着拡散処理用ケース及びr−t−b系焼結磁石の製造方法 Active JP5742012B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011074051A JP5742012B2 (ja) 2011-03-30 2011-03-30 蒸着拡散処理用ケース及びr−t−b系焼結磁石の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011074051A JP5742012B2 (ja) 2011-03-30 2011-03-30 蒸着拡散処理用ケース及びr−t−b系焼結磁石の製造方法

Publications (2)

Publication Number Publication Date
JP2012209428A true JP2012209428A (ja) 2012-10-25
JP5742012B2 JP5742012B2 (ja) 2015-07-01

Family

ID=47188929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011074051A Active JP5742012B2 (ja) 2011-03-30 2011-03-30 蒸着拡散処理用ケース及びr−t−b系焼結磁石の製造方法

Country Status (1)

Country Link
JP (1) JP5742012B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315611A (ja) * 1999-03-03 2000-11-14 Sumitomo Special Metals Co Ltd 希土類磁石の焼結に使用される焼結ケース、および当該焼結ケースを用いて焼結処理を実行する希土類焼結磁石の製造方法
JP2003082406A (ja) * 2001-06-29 2003-03-19 Sumitomo Special Metals Co Ltd 希土類合金の水素化処理装置およびそれを用いた希土類焼結磁石の製造方法
WO2007102391A1 (ja) * 2006-03-03 2007-09-13 Hitachi Metals, Ltd. R-Fe-B系希土類焼結磁石およびその製造方法
WO2009057592A1 (ja) * 2007-10-31 2009-05-07 Ulvac, Inc. 永久磁石の製造方法及び永久磁石
WO2009107397A1 (ja) * 2008-02-28 2009-09-03 日立金属株式会社 R-Fe-B系希土類焼結磁石の製造方法およびその方法によって製造された希土類焼結磁石

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315611A (ja) * 1999-03-03 2000-11-14 Sumitomo Special Metals Co Ltd 希土類磁石の焼結に使用される焼結ケース、および当該焼結ケースを用いて焼結処理を実行する希土類焼結磁石の製造方法
JP2003082406A (ja) * 2001-06-29 2003-03-19 Sumitomo Special Metals Co Ltd 希土類合金の水素化処理装置およびそれを用いた希土類焼結磁石の製造方法
WO2007102391A1 (ja) * 2006-03-03 2007-09-13 Hitachi Metals, Ltd. R-Fe-B系希土類焼結磁石およびその製造方法
WO2009057592A1 (ja) * 2007-10-31 2009-05-07 Ulvac, Inc. 永久磁石の製造方法及び永久磁石
WO2009107397A1 (ja) * 2008-02-28 2009-09-03 日立金属株式会社 R-Fe-B系希土類焼結磁石の製造方法およびその方法によって製造された希土類焼結磁石

Also Published As

Publication number Publication date
JP5742012B2 (ja) 2015-07-01

Similar Documents

Publication Publication Date Title
TWI437583B (zh) Permanent magnet manufacturing method and permanent magnet
JP6248925B2 (ja) R−t−b系焼結磁石の製造方法
TWI433174B (zh) Vacuum steam treatment device
JP5088596B2 (ja) R−t−b系焼結磁石の製造方法
JP5117220B2 (ja) 永久磁石の製造方法
JP5510456B2 (ja) R−Fe−B系希土類焼結磁石の製造方法および蒸気制御部材
KR20090065525A (ko) 영구자석 및 영구자석의 제조방법
EP2879142B1 (en) PROCESS FOR PRODUCING NdFeB-BASED SINTERED MAGNET
KR101373271B1 (ko) 영구자석 및 영구자석의 제조방법
JP5818137B2 (ja) R−t−b系焼結磁石の製造方法
JP5117219B2 (ja) 永久磁石の製造方法
JP5742012B2 (ja) 蒸着拡散処理用ケース及びr−t−b系焼結磁石の製造方法
JP5871172B2 (ja) R−t−b系焼結磁石の製造方法
JP4999661B2 (ja) 永久磁石の製造方法
JP2011204965A (ja) R−t−b系焼結磁石の製造方法およびrh拡散処理用治具
JP2014135441A (ja) 永久磁石の製造方法
JP2007239032A (ja) 焼結容器、希土類磁石の製造方法
JP2014135442A (ja) 永久磁石の製造方法
JP5887705B2 (ja) R−t−b系焼結磁石の製造方法及び製造装置
WO2014108950A1 (ja) 永久磁石の製造方法
JP2016033990A (ja) 永久磁石の製造方法
JP2005285854A (ja) 焼結磁石焼結用セッター及びこれを用いた焼結磁石の製造方法
JP2010245392A (ja) ネオジウム鉄ボロン系の焼結磁石

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150416

R150 Certificate of patent or registration of utility model

Ref document number: 5742012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350