JP2012178911A - 電源装置及び画像形成装置 - Google Patents

電源装置及び画像形成装置 Download PDF

Info

Publication number
JP2012178911A
JP2012178911A JP2011039687A JP2011039687A JP2012178911A JP 2012178911 A JP2012178911 A JP 2012178911A JP 2011039687 A JP2011039687 A JP 2011039687A JP 2011039687 A JP2011039687 A JP 2011039687A JP 2012178911 A JP2012178911 A JP 2012178911A
Authority
JP
Japan
Prior art keywords
output
voltage
frequency
piezoelectric transformer
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011039687A
Other languages
English (en)
Inventor
Osamu Kunimori
修 国森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Data Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Data Corp filed Critical Oki Data Corp
Priority to JP2011039687A priority Critical patent/JP2012178911A/ja
Publication of JP2012178911A publication Critical patent/JP2012178911A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】 周囲温度に影響されない安定した高圧出力を得る。
【解決手段】 クロックを出力する発振器109と、クロックを分周してパルスを出力するパルス出力手段60と、出力パルスにより駆動されるスイッチング手段73と、スイッチング手段により1次側に電圧が印加されると2次側に高圧の交流を出力する圧電トランス74と、交流を直流に変換する整流手段75と、直流高電圧を低電圧にする電圧変換手段77と、目標値を出力する目標設定手段53と、直流低電圧と目標値を比較する比較手段78、79と、周囲の温度を検出する温度検出手段88と、温度検出手段の検出結果に基づいてクロックの分周比を補正する補正情報を記憶する記憶手段を備える。パルス出力手段は、所定時間毎に比較手段の比較結果と温度検出手段の検出結果によりクロックの分周比を変化させ、目標値に到達するようにスイッチング手段の駆動周波数を制御する。
【選択図】 図1

Description

本発明は、圧電トランスを用いた高圧電源装置と、この高圧電源装置を備える画像形成装置に関するものである。
近年、電子写真プリンタ、複合機、ファクシミリ装置等、電子写真式の画像形成装置に用いられる高圧電源装置においては、1次側巻線と2次側巻線との間の電磁誘導を利用して高圧を得る、電力効率の悪い電磁型トランスに替えて、薄型軽量で、且つ電力効率が圧倒的に高い圧電トランスが使用されるようになってきた。
圧電トランスは、セラミック素材で構成され、1次側の電極を断続的に電流駆動することで、1次側の電極間の電界で発生した振動が2次側の電極間に伝搬して高電圧を生じさせるという、巻線を有さないトランスである。
係る圧電トランスを用いた高圧電源装置として、例えば、特許文献1には、圧電トランスの出力電圧を分圧した信号をフィードバックして予め設定されたアナログ電圧と比較し、その比較結果により圧電トランスの駆動周波数をデジタル制御することで目標電圧を得るようにした技術が開示されている。
特開2010−186052号公報
ところが、上記圧電トランスは、周囲温度によって昇圧特性が変化し、高電圧を高速に立ち上げると、オーバーシュートやアンダーシュートが発生するため、該圧電トランスを用いた画像形成装置は、以下のような問題を有していた。
すなわち、電子写真式の画像形成装置においては、感光ドラム上のトナー像を用紙に転写する場合は、転写ローラに対して、通常、約2KV以上の高圧電圧(転写バイアス電圧)を印加するようにしているが、転写部に用紙が存在しない紙間等では、感光ドラムには転写ローラの高電圧が直接印加されることになり、感光ドラムにダメージを与え現像ムラ等を生じさせる。
このため、転写バイアス電圧は、用紙先端部において高速に立ち上げる必要があるが、高速に立ち上げにより、オーバーシュートが発生すると電圧過多による転写トナーの散乱が発生し、逆にアンダーシュートが発生すると電圧不足による転写不足が発生する。
因みに、感光ドラムにダメージを与えない電圧は数百ボルト以下である。
本発明は、上記問題に鑑みなされたもので、温度変化に関わらず、オーバーシュートやアンダーシュートが生じない安定した高圧出力が得られる電源装置及び該電源装置を用いた画像形成装置を提供することを目的としている。
すなわち、本発明は、クロックを出力する発振器と、制御信号に基づき上記クロックを分周してパルスを出力するパルス出力手段と、上記パルス出力手段の出力パルスにより駆動されるスイッチング手段と、上記スイッチング手段により、1次側に断続的に電圧が印加されると2次側に高圧の交流を出力する圧電トランスと、上記高圧の交流を直流に変換する整流手段と、上記直流高電圧を直流低電圧に変換する電圧変換手段と、上記直流高電圧の目標値を設定して出力する目標設定手段と、上記直流低電圧と上記目標値を比較して比較結果を出力する比較手段と、上記圧電トランスの周囲の温度を検出する温度検出手段と、上記温度検出手段の検出結果に基づいて上記パルス出力手段による上記クロックの分周比を補正する補正情報を記憶する記憶手段とを備え、上記パルス出力手段は、所定時間毎に上記比較手段の比較結果と上記温度検出手段の検出結果に基づいて上記クロックの分周比を変化させ、上記目標値に到達するように上記スイッチング手段の駆動周波数を制御することを特徴としている。
本発明の電源装置によれば、圧電トランスの駆動周波数の変更幅を駆動周波数により可変とし、且つ、圧電トランスの周囲の温度に基づいて該駆動周波数の変更幅を変化させるようにしたので、周囲温度に関わらず、高速立ち上げ時にアンダーシュートやオーバーシュートが生じない安定した高圧制御を行うことが可能であり、その結果、画像形成装置にあっては、印刷時の用紙先端での転写安定性が向上する。
また、駆動周波数の変更については、圧電トランスの出力特性が緩やかな周波数領域では、駆動周波数の変更幅を大きくし、圧電トランスの出力特性が急な周波数領域(共振周波数領域)では、駆動周波数の変更幅を小さくするように制御すると良い。
実施例1による電源装置の概略構成を示すブロック図である。 図1の電源装置の詳細な構成を示す回路図である。 実施例1による画像形成装置を示す構成図である。 実施例1による画像形成装置の制御回路の構成を示すブロック図である。 図1の高圧制御部の構成を示すブロック図である。 図1の三角波発生手段の動作波形図である。 図1の電源装置の動作波形図である。 テーブルレジスタAの構成を示す図である。 テーブルレジスタBの構成を示す図である。 テーブルレジスタCの構成を示す図である。 圧電トランスの温度特性を示す図である。 補正値Aテーブルの内容を示す図である。 圧電トランスの周波数特性及び自己発熱特性を示す図である。 実施例2の動作を示すタイムチャートである。 補正値Dテーブルの内容を示す図である。 常温時における高圧立ち上げを示す図である。 低温時における温度補正前の高圧立ち上げを示す図である。 低温時における温度補正後の高圧立ち上げを示す図である。 実施例2による電源装置の概略構成を示すブロック図である。
以下、本発明に係る画像形成装置の実施の形態につき、図1〜図19を用いて説明する。尚、本実施形態では、画像形成装置として電子写真式のカラープリンタを例に説明する。
(画像形成装置の構成説明)
先ず、図3に基づいて、本発明が適用された画像形成装置1の構成を説明する。図3は、本発明の実施例1による画像形成装置を示す構成図である。
本実施例の画像形成装置1には、ブラック現像器2K、イエロー現像器2Y、マゼンタ現像器2M、シアン現像器2Cが着脱可能に設けられている。各現像器2K,2Y,2M,2Cは、各色の感光ドラム32K,32Y,32M,32Cにそれぞれ接するように配設された各色の帯電ローラ36K,36Y,36M,36Cにより、それぞれ一様に帯電される。
帯電された各色の感光ドラム32K,32Y,32M,32Cには、ブラックLED(発光素子)ヘッド3K、イエローLEDヘッド3Y、マゼンタLEDヘッド3M、シアンLEDヘッド3Cの発光により、それぞれ画像データに応じた静電潜像が形成される。
各現像器2K,2Y,2M,2C内の各色の供給ローラ33K,33Y,33M,33Cは、各現像ローラ34K,34Y,34M,34Cにトナーを供給する。各現像ローラ34K,34Y,34M,34Cの表面に供給されたトナーは、各色の現像ブレード35K,35Y,35M,35Cにより、一様なトナー層にされ、該トナー層により各感光ドラム32K,32Y,32M,32C上に形成された静電潜像を現像してトナー像を形成する。
ブラックトナーカートリッジ4K、イエロートナーカートリッジ4Y、マゼンタトナーカートリッジ4M、シアントナーカートリッジ4Cは、各現像器2K,2Y,2M,2Cに着脱可能に装着されており、内部のトナーを各現像器2K,2Y,2M,2Cに供給する構造になっている。
ブラック転写ローラ5K、イエロー転写ローラ5Y、マゼンタ転写ローラ5M、シアン転写ローラ5Cは、転写ベルト8の裏面から各感光ドラム32K,32Y,32M,32Cにバイアス電圧を印加できるように配設されている。転写ベルト駆動ローラ6及び転写ベルト従動ローラ7は、転写ベルト8を張架し、該転写ベルト駆動ローラ6を回転駆動することにより用紙15を搬送する。
用紙カセット13は、画像形成装置1に着脱可能に装着されており、該用紙カセット13内には、転写媒体である用紙15が積載されている。給紙ローラ14は、用紙15を用紙カセット13から取り出す。レジストローラ16,17は、用紙カセット13から取り出した用紙15を所定のタイミングにて転写ベルト8へ搬送する。定着器18は、用紙15のトナー像を熱と加圧によって定着する。用紙ガイド19は、定着を終えた用紙15を排紙トレー20に排出する。
レジストローラ16,17の近傍には、用紙検出センサ40が設けられている。この用紙検出センサ40は、用紙15先端を接触又は非接触にて検出するセンサであり、該用紙検出センサ40によるの用紙15の検出時、用紙検出位置から各転写ニップまでの距離と用紙搬送速度から算出される時間より、転写時の電源装置による転写ローラ5K,5Y,5M,5Cへの転写バイアス電圧の印加タイミングが決定される。
次に、図4に基づいて、図3の画像形成装置1が備える制御回路の構成を説明する。図4は、実施例1による画像形成装置の制御回路の構成を示す図である。
本実施例の制御回路は、図示しない外部装置との間で情報(コマンドや画像データ等の印刷データ)の通信を行うホストインタフェース部50を有し、受信したデータをコマンド/画像処理部51に送信する。
コマンド/画像処理部51は、LEDヘッドインタフェース部52に画像データを出力する。LEDへツドインタフエース部52は、プリンタエンジン制御部53により出力されるヘッド駆動パルスや制御信号に基づいて、LEDヘッド3K,3Y,3M,3Cの発光を制御する。
プリンタエンジン制御部53は、用紙検出センサ40からの検出信号や記憶手段64からの装置情報等を取得し、高圧制御部60に対して帯電バイアス、現像バイアス、転写バイアス等の各バイアス電圧の制御値を送出する。
記憶手段64は、本装置固有の情報(例えば、帯電バイアス電圧、現像バイアス電圧、転写バイアス電圧の出力値等)を保持する。
高圧制御部60は、帯電バイアス発生部61と、現像バイアス発生部62と、転写バイアス発生部63に高圧制御信号を送る。帯電バイアス発生部61、及び現像バイアス発生部62は、ブラック現像器2K、イエロー現像器2Y、マゼンタ現像器2M、シアン現像器2Cの各帯電ローラ36K,36Y,36M,36C及び各現像ローラ34K,34Y,34M,34Cに対して高電圧バイアスを印加する。転写バイアス発生部63は、各転写ローラ5K,5Y,5M,5Cに対して高電圧バイアスを印加する。
プリンタエンジン制御部53は、ホッピングモータ54、レジストモータ55、ベルトモータ56、定着器ヒータモータ57、各色のドラムモータ58K,58Y,58M,58C等をそれぞれ所定のタイミングで駆動すると共に、サーミスタ65の検出温度に基づいて定着器ヒータ59の温度を制御する。サーミスタ65は、定着器18の内部に設置されている。
次に、図1に基づいて、本実施例による電源装置70の構成を説明する。図1は、実施例1による電源装置の概略を示すブロック図である。
本実施例の電源装置70は、各色の転写ローラ5K,5Y,5M,5C毎に設けられており、電源装置70の回路構成は、各色とも同じであり、以下、1回路について説明する。
本実施例の電源装置は、図4中の高圧制御部60と転写バイアス発生部63で構成され、転写バイアス発生部63は、DC電源72、圧電トランス駆動回路73、圧電トランス74、整流回路75、出力電圧変換手段77、第1電圧比較手段78、第2電圧比較手段79、三角波発生手段80、DAC81、温度検出手段88を備えている。
尚、整流回路75と接続される出力負荷76は、図4の転写ローラ5(5K,5Y,5M,5C)に対応している。
DC電源72は、圧電トランス74を駆動するためのDC電源である。圧電トランス駆動回路73は、該DC電源72を駆動電源として圧電トランス74の1次側を駆動する。
整流回路75は、圧電トランス74の2次側から出力される高圧の交流出力を直流に変換する。
出力電圧変換手段77は、整流回路75の直流高電圧出力を直流低電圧に変換する。
DAC(デジタルアナログコンバータ)81は、高圧出力電圧を設定するもので、最大電圧3.3Vのアナログ電圧を8bitの分解能で出力する。
第1電圧比較手段78は、DAC81出力と出力電圧変換手段77の出力を比較し、比較結果(H/L)を高圧制御部60の入力端子IN1に出力する。
三角波発生手段80は、高圧制御部60の出力端子OUT2の出力信号により、DAC81出力の2倍の電圧をピークとする三角波を発生する。
第2電圧比較手段79は、出力電圧変換手段77の出力電圧と三角波発生手段80の出力電圧を比較し、比較結果(H/L)を高圧制御部60の入力端子IN2に出力する。
温度検出手段88は、圧電トランス74の周囲の温度を検出する。
プリンタエンジン制御部53は、シリアル通信手段82を有し、該シリアル通信手段82を介して高圧制御部60と接続されており、出力電圧値の設定や高圧印加のタイミング等の制御を行う。
高圧制御部60は、入力端子RESETを有し、プリンタエンジン制御部53からReset信号のイネーブルを受信すると、内部の各カウンタをリセットする。
本実施例の高圧制御部60は、ASIC(Application Specific Integrated Circuit)、CPUを内蔵したもの、CPUとASICで分離させたもの、FPGA(Field Programmable Gate Array)等にて実現可能である。
尚、本実施例では、高圧制御部60は電源装置70内に設けたが、プリンタエンジン制御部53内に設けても良い。
次に、図2に基づいて図1の電源装置70の詳細な構成を説明する。図2は、電源装置の詳細な構成を示す回路図である。
高圧制御部60内のOSC109は、周波数50MHzの基準クロックを生成する発信部であり、高圧制御部60による制御は、全てこの基準クロックに同期して行われる。
上記高圧制御部60とプリンタエンジン制御部53とは、シリアル通信手段82を介して3本の信号線SCLK1、SDI1、SDO1により接続されており、クロック信号(SCLK1)に同期して、プリンタエンジン制御部53よりSDO1信号を送信し、また、高圧制御部60からは、SDI1信号を送信する。
符号90は、転写高圧出力回路であり、転写バイアス発生部63内のDAC81と温度検出手段88を除いた部分で構成されている。
該転写高圧出力回路90の圧電トランス駆動回路73は、圧電トランス74を駆動する回路で、抵抗116と、MOSFET115と、コンデンサ118及びインダクタ114による共振回路とで構成されている。
高圧制御部60の出力端子OUT1からのパルスがFET115のゲートに印加されると、上記共振回路の共振時に、圧電トランス74の1次側端子Aには100V程度の正弦半波が印加され、圧電トランス74の2次側端子Bに、FET115のスイッチング駆動周波数に応じて0〜数KVの出力電圧が得られる。すなわち、圧電トランス74は、所定の駆動周波数(共振周波数)において、出力が最大となるような特性(図13参照)を示すため、駆動周波数を適宜制御することにより高圧出力の制御が可能である。
整流回路75は、ダイオード95、96とコンデンサ97で構成され、交流電圧を直流電圧に変換すると共に、リップルを低減する。
出力電圧変換手段77は、抵抗99(100KΩ)と抵抗100(47KΩ)による分圧回路と、抵抗101とコンデンサ102による平滑回路とで構成されており、分圧回路により直流高電圧が直流低電圧に変換され、平滑回路によりリップルが低減される。
第1電圧比較手段78は、コンパレータ133で構成されている。該コンパレータ133により出力電圧変換手段77の出力とDAC81の出力電圧が比較され、+入力端子電圧(DAC81の出力電圧)が−入力端子電圧(出力電圧変換手段77の出力電圧)より高い場合に、Hi(High)のオープンコレクタ出力が、その逆の場合は、Lo(Low)出力が高圧制御部60の入力端子IN1に出力される。尚、抵抗112はオープンコレクタのプルアップ抵抗である。
上記DAC81より出力されるアナログ電圧は、高圧制御部60のクロック信号SCLK2に同期して送信されるデータSDO2により設定される。
第2電圧比較手段79は、コンパレータ132で構成されている。該コンパレータ132にて出力電圧変換手段77の出力電圧と三角波発生手段80の出力電圧とが比較され、+入力端子電圧(三角波発生手段80の出力電圧)が−入力端子電圧(出力電圧変換手段77の出力電圧)より高い場合に、Hiのオープンコレクタ出力が、その逆の場合はLo出力が高圧制御部60の入力端子IN2に出力される。尚、抵抗117はオープンコレクタのプルアップ抵抗である。
上記三角波発生手段80は、高圧制御部60の出力端子OUT2の出力信号を入力し、DAC81からのアナログ出力電圧に基づいて、該アナログ出力電圧の2倍の電圧をピークとする三角波を発生する(図6参照)。
温度検出手段88は、サーミスタ120と抵抗119による電源電圧3.3Vの分圧回路で構成されている。電源電圧3.3Vは、該分圧回路にて分圧され、その分圧出力が温度データとして高圧制御部60のアナログ入力ポートIN3に入力されると共に、該温度データは、高圧制御部60内のADC(アナログデジタルコンバータ)121により、デジタルデータに変換される。
次に、図5に基づいて高圧制御部60の詳細な構成を説明する。図5は、高圧制御部の構成を示すブロック図である。
256分周器500は、OSC109(図2)からのクロック(周波数50MHz)を分周して、分周出力(本実施例では、195.3KHz(5.12μS)周期の出力パルス)を5bitカウンタA501と5bitカウンタB504に出力する。
5bitカウンタA501は、出力の最上位1bitを選択信号としてセレクタ503に出力すると共に、下位4bitをセレクタ503の入力端子とNOTゲート502に出力する。また、カウンタフル状態において、オーバーフロー信号Hi(カウント中はLo)をDラッチB505のSET端子及び5bitカウンタB504のCLR端子に出力する。
NOTゲート502は、5bitカウンタA501からの下位4bitを反転してセレクタ503のデータ入力端子に出力する。
セレクタ503は、5bitカウンタA501からの下位4bitと、NOTゲート502からの反転4bitを選択信号に基づいてセレクトし、三角波発生手段80(図2)に出力する(図6(a)参照)。
5bitカウンタB504は、第2電圧比較手段79(図2)の出力Hiの期間をカウントすると共に、5bitカウンタA501のオーバーフロー信号にてクリアされる。
DラッチB505は、5bitカウンタA501のオーバーフロー信号にて、5bitカウンタB504のカウンタ値5bitをラッチする。
テーブルレジスタA510は、DラッチB505の出力5bitとテーブルレジスタC512出力2bitの値に応じた8bitのデータを乗算器513に出力する(テーブルレジスタA510の構成は図8を参照)。
テーブルレジスタC512は、後述する19bitレジスタA521の出力7bitに応じた2bitデータをテーブルレジスタA510の入力情報として出力する(テーブルレジスタC512の構成は図10を参照)。
テーブルレジスタB511は、19bitレジスタA521の出力7bitに応じた8bitデータを乗算器513に出力する(テーブルレジスタB511の構成は図9を参照)。
乗算器513は、テーブルレジスタA510及びテーブルレジスタB511の8bit出力を乗算し、乗算結果16bitを演算器A515に出力すると共に、初期状態において、プリンタエンジン制御部53のREST信号によりクリアされる。
9bitカウンタ506は、OSC109のクロック(50MHz)を入力し、第1電圧比較手段78(図2)の出力Hiの期間をクロック50MHzにてカウントする。また、9bitカウンタ506は、後述する出力セレクタ528出力の立上エッジでクリアされる。
DラッチA507は、出力セレクタ528出力の立上エッジで9bitカウンタ506の出力9bitをラッチする。また、DラッチA507は、初期状態において、プリンタエンジン制御部53のREST信号によりクリアされる。
通信データ処理部508は、3つの信号SCLK1、SDI1、SDO1により、プリンタエンジン制御部53のシリアル通信手段82(図2)とデータ授受を行い、受信データに基づいて、出力セレクタ528の出力の切り替え(高圧出力のON/OFF)やDAC81の出力設定を行う。
比較器A514は、DラッチA507の出力9bitと後述する19bitレジスタB524の出力上位9bitを比較し、該比較結果2bitに基づいて演算器A515の演算処理を制御する。
周期値516は、高圧出力の制御周期を決定する13bitのデータであり、通信データ処理部508にて変更可能である。本実施例では、周期値として1B58hex(140μsに相当)が設定されている。
タイマー517は、内蔵の13bitのカウンタにより、50MHzのクロックをカウントして、周期値516(1B58hex)と一致すると演算器A515にパルスを出力すると共に、該出力パルスにより自身の13bitカウンタをクリアする。従って、タイマー517の出力は、周期140μsのパルスとなる。
演算器A515は、乗算器513の出力16bitデータを入力し、該入力値に対して演算を行い、演算出力19bitを19bitレジスタA521に出力する。すなわち、演算器A515の演算結果により、19bitレジスタA521の出力値は更新される。
演算器A515は、初期時、Rest信号により、下位10bit部を0とした値にカウンタ下限値9bitがセットされ、比較器A514の出力2bitに応じて、乗算器513出力、或いは乗算器513出力に1を加減算する。
加減算結果の上位9bitがカウンタ上限値519を超えた場合は、上位9bitをカウンタ上限値519の値とし、下位10bitを0とする。また、加減算結果の上位9bitがカウンタ下限値520の9bit値を下回る場合は、上位9bitをカウンタ下限値520の値とし、下位10bitを0とする。カウンタ上限値519、カウンタ下限値520は、9bitのレジスタである。
このように、演算器A515は、タイマー517出力のタイミング、すなわち、140μs周期で比較器A514の出力に応じた演算処理を行い、演算結果を19bitレジスタA521に出力する。
補正値A522は、8bitのレジスタにて、図12のデーブル出力値(温度補正値)を保持する。図12は、補正値Aテーブルを示し、図示のように、温度に対する補正値が符号付きで保持されている。本実施例では、図12の補正値につき、最上位bit(8bit部)を符号bitとしており、該8bit部が“1”の場合はマイナス(−)、“0”の場合はプラス(+)としている。すなわち、温度10℃以下でマイナス補正となり、温度10℃以上でプラス補正となる
演算器B523は、補正値A522出力の8bitを19bitレジスタA521のbit13〜7部に加算する。補正値A522出力の8bitがE0hexの場合、−32を加算する。
19bitレジスタB524は、演算器B523出力19bitを保持し、上位9bitは、1加算器525及び分周セレクタ526のデータ入力端子に出力し、下位10bitは、誤差保持レジスタ529に出力する。
誤差保持レジスタ529は、10bitのレジスタと1bitのオーバーフローフラグで構成され、Reset信号により初期値(本実施例では、200hex)に初期化される。また、19bitレジスタB524出力10bitを分周器527の立上エッジでレジスタに保持(初期値200hexに加算)すると共に、該加算時のオーバーフローでフラグを“1”にセットする。オーバーフローでない時、フラグを“0”にリセットする。オーバーフロー信号は、選択信号として分周セレクタ526のセレクト端子に出力される。
1加算器525は、19bitレジスタB524出力に1を加算して分周セレクタ526のデータ入力端子に出力する。
分周セレクタ526は、誤差保持レジスタ529からのオーバーフロー信号により、19bitレジスタB524の出力と、1加算器525の出力を切り替えて分周器527へ出力する。誤差保持レジスタ529のオーバーフロー時は、1加算器525の出力が選択されて分周器527へ出力される。
分周器527は、OSC109の出力(50MHz)をクロック入力とする9bitのカウンタを有し、分周セレクタ526からの出力9bit値に応じた周期のパルスを生成し、約30%デューティ−にて出力セレクタ528に出力する。
出力セレクタ528は、通信データ処理部508のON/OFF信号がHiの時(高圧出力ON時)に分周器527の出力値を出力し、Loの時にLo(GND)を出力する。
(画像形成装置の動作説明)
先ず、図3、図4に基づいて、画像形成装置1の全体の概略動作を説明する。
画像形成装置1は、図示しない外部機器からホストインタフェース部50を介して印刷データ(PDL:Page Description Languageにて記述)を受信すると、印刷データはコマンド/画像処理部51にて当装置で印刷可能なビットマップ形式の画像データに変換され、LEDヘッドインタフェース部52とプリンタエンジン制御部53へ送られる。
プリンタエンジン制御部53では、サーミスタ65の検知出力に基づいて、定着器ヒータ59への通電がON/OFF制御され、定着器18の温度が所定の温度に達すると、印刷動作が開始される。
用紙カセット13にセットされた用紙15は、給紙ローラ14で取り出され、レジストローラ16,17により所定のタイミングで転写ベルト8上に搬送される。画像データに応じて各LEDヘッド3K,3M,3Y,3Cが発光し、各感光ドラム32K,32Y,32M,32Cに静電潜像が形成されると共に、電源装置70より、帯電、現像、転写の各バイアス電圧が印加され、各色の現像器2K,2Y,2M,2Cにおいて、電子写真プロセスにより、トナー像が形成される。
各色の現像器2K,2Y,2M,2Cにより現像されたトナー像は、各転写ローラ5K,5Y,5M,5Cに印加された高電圧のDCバイアスにより、転写ベルト8上を搬送する用紙15に4色のトナー像が転写される。転写後、用紙15上のトナー像は、定着器18にて熱と押圧力により定着され、排紙トレー20に排出される。
次に、図1、図2に基づいて電源装置70の動作を説明する。
図1において、プリンタエンジン制御部53は、シリアル通信手段82を介して高圧制御部60にコマンドデータを送信する。コマンドデータは、高圧出力チャネルを選択するコマンドと高圧出力における目標電圧値を指定するデータである。該目標電圧値データは、DAC81に設定される。
尚、高圧出力チャネルの選択コマンド(高圧出力ONコマンド)を受信するまでは、高圧制御部60の出力端子OUT1出力をLoに保持し、後段の圧電トランス駆動回路73が動作しないようにしている。
シリアル通信手段82から高圧出力ONのコマンドを受信すると、高圧制御部60は、OSC109(図2)の出力クロックを所定の分周比にて分周したパルスを出力端子OUT1より圧電トランス駆動回路73に出力する。
図2において、高圧出力OFFにより、高圧制御部60の出力端子OUT1がLoに保持されている間は、圧電トランス駆動回路73のFET115はOFFしており、圧電トランス74の1次側端子AにはDC24Vが印加された状態となっている。従って、この状態では、1次側端子Aの電流は略0で圧電トランス74は振動しないため、2次側端子Bの出力は0V、後段の出力電圧変換手段77の出力も0Vとなる。
出力電圧変換手段77は、抵抗99と抵抗100の分圧回路により、整流回路75の出力電圧を47/(100000+47)倍に変換する。
例えば、目標電圧が5KVの場合は、プリンタエンジン制御部53からは、目標電圧値としてB5hexの値が送信される。SDO1信号によりDAC81にB5hexの値がセットされると、DAC81より2.35Vのアナログ電圧が出力される。
また、目標電圧が1KVの場合では、プリンタエンジン制御部53からは、目標電圧値24hexの値が送信され、DAC81に24hexの値がセットされて0.47Vが出力される。
この時、コンパレータ133の+入力端子には、DAC81の出力0.47Vが入力され、−入力端子には、出力電圧変換手段77の出力0Vが入力されるため、コンパレータ133の出力はHiとなる。
また、コンパレータ132の−入力端子には、出力電圧変換手段77の出力0Vが入力され、+入力端子には、三角波発生手段80の出力が入力される。三角波発生手段80の出力は、図6(b)に示すように、DAC81出力の2倍のピーク電圧を有する三角波であり、コンパレータ132の出力はHi(デューティーは、略100%)となる。
5bitカウンタ504(図5)は、コンパレータ132の出力(第2電圧比較手段79)のHiを163.8μ周期でサンプリングし、デューティーを32段階に分類するが、上記の場合のデューティーは、1Fhexとなる。
感光ドラム32と転写ベルト8が駆動され、帯電バイアス電圧、現像バイアス電圧が印加されると、用紙15が転写ローラ5と感光ドラム32のニップ部分に到達する前にプリンタエンジン制御部53は、高圧制御部60に対して高圧のONを指示するコマンドを送信する。高圧制御部60は、高圧ONのコマンドを受けて出力端子OUT1よりパルス出力を開始する。
本実施例では、パルスの出力開始時の初期値は384分周(図5のカウンタ下限値520の値)であり、1周期7.6μs、Hiデューティー29%である。高圧制御部60の出力端子OUT1から出力されたパルスにより、圧電トランス駆動回路73のFET115がスイッチング駆動され、インダクタ114とコンデンサ118により圧電トランス74の1次側端子Aに数十ボルト程度の半波正弦波形が印加される。
上記動作につき、図7、図13を用いて説明する。図7は電源装置の動作波形図、図13は、圧電トランスの周波数特性及び自己発熱特性を示す図である。
既述したように、第1電圧比較手段78の出力がHiの状態では、周期140μs毎に初期値の384分周に乗算器513(図5)の値が加算されていく。384分周は、駆動周波数に換算すると130KHzである。
加算の結果、駆動周波数は、初期値の130KHzより低くなり、図13の周波数特性に示すように、圧電トランス74の出力は上昇していく。
圧電トランスの出力が上昇すると、出力電圧変換手段77の電位が上昇し、図7に示すように、第1電圧比較手段78の出力は、Hiデューティーが小さいPWM波形になる。この状態は、目標電圧より低い電圧を維持するもので、その継続時間は、後に実施例2で述べる図14の時間T1に相当する。すなわち、高圧立ち上げまでの間、該高圧より低いバイアス電圧が各転写ローラ35に印加されることになる。
一方、コンパレータ132の+入力端子には、目標電圧設定の2倍のピーク電圧を有する三角波が入力されるので、圧電トランス74の出力が目標電圧に達すると、図7に示すように、第2電圧比較手段79からHiデューティー50%のPWM波形が出力される。
次に、図5に基づいて高圧制御部60の動作を説明する。
プリンタエンジン制御部53よりReset信号のイネーブルを受信すると、高圧制御部60内の各カウンタは初期化される。
演算器A515は、カウンタ下限値520の9bit値を上位9bitに、下位10bitを全て0とした19bit値を初期値として19bitレジスタA521に出力し、19bitレジスタA521に保持させる。
本実施例では、カウンタ下限値520の値は、384に設定されているため、19bitレジスタA521には、6000hexの値が保持されることになる。
演算器B523は、補正値A522の値に80hexを乗算した値と19bitレジスタA521の出力値を加算し、該加算結果を19bitレジスタB524に保持させる。
例えば、補正値A522テーブルの補正値が04hexであれば、19bitレジスタB524には、60200hexが保持され、補正値A522の補正値がF8hexであれば、19bitレジスタB524には、5FFF8hexが保持される。
以下、補正値A522の値が04hexの場合を例に説明する。
分周セレクタ526には、19bitレジスタB524からの上位9bitの値180hexと1加算器525からの181hexの値が入力される。誤差保持レジスタ529も200hexに初期化され、Select信号はLoとなっている。
Select信号がLoの場合、分周セレクタ526は、19bitレジスタB524からの入力を選択し、Select信号がHiの場合は、1加算器525からの入力を選択して分周器527へ出力する。従って、初期化後は180hexの値が分周器527に設定される。分周器527は、OSC109のクロックにて設定値180hexをカウントし、カウンタフル毎に約30%のHiデューティーのパルス(すなわち、周波数130.208KHzのパルス)を出力セレクタ528に出力する。
出力セレクタ528は、通信データ処理部508からのON/OFF信号がONの場合は、分周器527より入力されるパルス(130.208KHz)を出力端子OUT1に出力し、ON/OFF信号がOFFの場合は、出力端子OUT1にLo(GND)を出力する。
誤差保持レジスタ529の初期値は200hexで、分周器527の出力パルスの立上エッジで19bitレジスタB524の下位10bitの値を加算し、保持する。分周器527初期化後の最初のパルスで誤差保持レジスタ529には、200hexの値が保持される。
次に、分周器527よりパルスが出力されると、誤差保持レジスタ529には、19bitレジスタB524出力の下位10bit(すなわち、200hex)が加算されて400hexとなる。これにより、誤差保持レジスタ529は、10bitの最大値3FFhexを超えてオーバーフローし、Select信号をHiにするため、分周器527には、1加算器525の値(181hex)が格納される。
この結果、分周器527から385分周のパルスが出力され、その立上エッジで誤差保持レジスタ529は、19bitレジスタB524の下位10bitの値(200hex)を加算し、保持すると共に、オーバーフローフラグをクリアしてSelect信号をLoにする。
以上のようにして、分周器527からは、384分周(130.208KHz)と385分周(129.870kHz)のパルスが交互に出力され、平均130.039kHzのパルス出力が得られる。尚、19bitレジスタB524の上位9bitは、分周比の整数部、下位10bitは、分周比の小数部に当たる。
256分周器500は、50MHzのクロックを分周して195.3KHzのパルスを出力する。5bitカウンタA501は、256分周器500のパルスをカウントし、最上位ビットを符号反転ビットとしてセレクタ503に出力する。
該符号反転ビットが0の場合、セレクタ503は、5bitカウンタA501の下位4bitを三角波発生手段80に出力し、反転ビットが1の場合は、5bitカウンタA501の下位4ビットを反転して三角波発生手段80に出力する。その結果、図6に示すようなOUT2出力(D0〜D3)及び三角波発生手段出力を得る。図6は、三角波発生手段の動作波形図である。
9bitカウンタ506は、OSC109の出力クロックにて、第1電圧比較手段78(図2)の出力Hiの期間をカウントする。
DラッチA507は、初期状態では、出力セレクタ528出力のLoにより、000hexに保持されている。該保持値は、比較器A514に出力され、比較器A514において、19bitレジスタB524の上位9bitの出力値と比較される。
比較入力に対する比較器A514の出力は、以下の通りである。
(イ)19bitレジスタ上位9bit−5≦DラッチAの時、
比較器Aの出力は00b(b:binary)。
(ロ)19bitレジスタ上位9bit−5>DラッチA≧19bitレジスタ上位9bit×0.5の時、
比較器Aの出力は02bとなる。
(ハ)19bitレジスタ上位9bit×0.5>DラッチA≧5の時、
比較器Aの出力は10bとなる。
(ニ)5≧DラッチAの時、
比較器Aの出力は11bとなる。
従って、初期状態における比較器A514の出力は、11bとなる。
また、比較器A514出力(2bit)に対する演算器A515の演算処理は、以下の通りである。
(イ)比較器A514出力が00bの時、
19bitレジスタA521の出力値に乗算器513の出力値を加算する。
(ロ)比較器A514出力が01bの時、
19bitレジスタA521の出力値に1を加算する。
(ハ)比較器A514出力が10bの時、
19bitレジスタA521の出力値より1を減算する。
(ニ)比較器A514出力が11bの時、
19bitレジスタA521の出力値から乗算器513の出力値を減算する。
従って、初期状態において、演算器A515は、乗算器513の出力値を減算するが、演算結果が、カウンタ下限値520値の60000hexを下回る場合は、下限値の60000hexを保持する。
5bitカウンタB504は、第2電圧比較手段79の出力Hiの期間を256分周器500の出力パルスでカウントし、5bitカウンタA501のオーバーフロー信号によりリセットされる。
出力電圧変換手段77の出力が略0Vとなる初期状態においては、第2電圧比較手段79出力がHiとなるので、5bitカウンタB504は、1Fhexまでカウントした後にクリアされる。カウント値1Fhexは、DラッチB505に保持され、該ラッチデータ(5bit)がテーブルレジスタA510に出力される。
一方、19bitレジスタA521からの出力19bitの内、上位9bitデータの下位7bitはテーブルレジスタB511とテーブルレジスタC512に出力される。
図10は、テーブルレジスタC512の構成(入出力値)を示しており、入力された19bitレジスタA521の下位7bit値に対応する出力値2bitをテーブルレジスタA510に出力する。
図8は、テーブルレジスタA510の構成(入出力値)を示し、テーブルレジスタC512出力2bitと、DラッチB505出力5bitに対応する出力値8bitを乗算器513に出力する。
図9は、テーブルレジスタB511の構成(入出力値)を示し、入力された19bitレジスタA521の下位7bit値に対応する出力値8bitを乗算器513に出力する。
高圧印加開始時、すなわち初期状態において、19bitレジスタA521の値は60000hexで、テーブルレジスタB511及びテーブルレジスタC512に出力される下位7bitのデータは00hexであり、DラッチB505の出力は1Fhexであり、テーブルレジスタC512の出力値は00bであるので、テーブルレジスタA510の出力8bitデータはE0hexであり、テーブルレジスタB511の出力8bitデータは80hexである。
初期状態において、乗算器513は、上記したテーブルレジスタA510の出力E0hexとテーブルレジスタB511の出力80hexを乗算し、乗算結果の7000hexを出力する。
タイマー517は、演算器A515に140μs周期のパルスを出力する。
比較器514の出力は既述の通り11bであり、演算器A515は、初期値60000hexから70000hexを減算した値59000hexとなる。演算結果の59000hexは、カウンタ下限値520の値60000hex以下であるため、タイマー517のパルス出力に同期して60000hexの値を19bitレジスタA521に出力する。
従って、高圧印加開始時には、出力端子OUT1から出力される130.208KHzのパルスにて圧電トランス74が駆動されることになる。
次に、プリンタエンジン制御部53は、シリアル通信手段82を介して高圧制御部60にコマンドを送信し、DAC81の出力を1.88Vに設定して、圧電トランス74の高圧出力を4KVの目標電圧に設定する。
DAC81の出力を1.88Vに設定すると、三角波発生手段80は、3.76Vをピークとする三角波を出力する。この結果、第1電圧比較手段78の出力Hiとなり、比較器A514出力は、00bとなる。
また、第2電圧比較手段79の出力は、デューティーが略100%のHiレベルとなるため、5bitカウンタB504のカウント出力は1Fhexである。
既述したように、初期状態における乗算器513の出力は7000hexであり、比較器A514の出力は00bであるので、演算器A515では、初期値60000hexに7000hexを加算した値67000hexを出力する。
従って、この状態では、初期値130.208KHzより低下した121.359KHZの駆動パルスが出力される。
図13は、圧電トランスの周波数特性及び自己発熱特性を示す図で、図13中の実線は高圧出力特性を示し、破線は温度特性を示す。
図13に示すように、駆動周波数が初期値の130.208KHZから121.359KHzに低下すると、出力電圧は僅かに上昇するが、出力電圧が目標電圧4KVに到達するまでは、第1電圧比較手段78の出力はHiを維持するため、比較器A514の出力は00bのままである。
一方、第2電圧比較手段79の出力は、目標電圧到達付近においてHiレベルのデューティー100%から50%に変化する(図7参照)。出力電圧が目標電圧4KVの50%(2KV)に達したとき、第2電圧比較手段79の出力Hi期間を5bitカウンタB504でカウントした値は、Hiデューティー75%に相当する17hexとなり、該カウント出力値17hexがDラッチB505に保持される。
図13に示すように、2KV出力時の駆動周波数は、約111KHzである。
19bitレジスタA521の値は70000hex、テーブルレジスタB511、テーブルレジスタC512に入力される7bitデータは、70000hexの上位9bitデータ1C0hexの下位7bit(40hex)であり、よって、テーブルレジスタB511の出力は、図9より08hexとなる。
テーブルレジスタC512の出力は、図10より10bとなる。既述したように、DラッチB505の出力は17hexであるので、テーブルレジスタAの出力は、図8より18hexとなる。
乗算器513からは、テーブルレジスタAの出力18hexとテーブルレジスタB511の出力08hexとの乗算結果C0hexの値が出力されると共に、演算器A515において、上記した70000hexに加算され、700C0hexの値が19bitレジスタA521に保持される。これにより、圧電トランス74は、駆動周波数111.595KHzで駆動されることになる。
以上、目標電圧を設定した直後は、1制御周期140μsの間に駆動周波数を130.208KHzから121.359KHzと約9KHz低下させているが、目標電圧の50%到達時においては、1制御周期140μs間で1KHZ未満の周波数変化量にて制御されるように、各テーブルレジスタA、B、Cの出力値が設定されている。
すなわち、図13において、本実施例の制御開始周波数である130KHz付近、換言すれば、駆動周波数の変化に対する高圧出力変化量の小さい領域では、駆動周波数の変化量を大きくし、周波数変化量に対する高圧出力電圧の変化が急な駆動周波数111KHz付近(圧電トランス74の共振周波数付近)では、駆動周波数の変化量を小さくするように制御している。
既述したように、用紙転写時、転写ローラに4KVの高圧バイアス電圧を印加すると、用紙が存在しない紙間において感光ドラム32にダメージを与えることから、転写電圧は用紙先端部において高速に立ち上げる必要がある。尚、転写速度150mm/s程度の装置では、20ms前後で立ち上げることが望ましい。
また、良好な転写が行える印加電圧の変動範囲は、±数100V未満であり、従って、高圧立ち上げ時のオーバーシュートやアンダーシュートが大きい場合には、トナーの飛散やカスレを誘発し、画像劣化を招くことになる。
図16は、常温(25℃)における目標電圧4KVの立ち上げ例を示しており、図示のように、高圧ONから20ms以内においてオーバーシュートすることなく目標電圧の4KVに立ち上がっている。
図17は、周囲温度10℃における目標電圧4KVの立ち上げ例を示しており、図示のように、高圧立ち上げ時に400V程度のオーバーシュートが発生している。
このような高圧立ち上げ時のオーバーシュートやアンダーシュートの発生は、周囲温度により、圧電トランス74の周波数特性(昇圧特性)が変化することに起因するものである。
図11は、常温25℃、低温10℃、高温40℃における圧電トランスの周波数特性を示しており、常温25℃における高圧出力に対して、低温10℃では、同じ駆動周波数において高圧出力は低くなり、高温40℃では、高圧出力は高くなっている。
図12は、補正値A522のテーブルの内容を示している。
高圧制御部60は、温度検出手段88からの検出温度データにより、該補正値A522のテーブルを参照して補正値A522を設定する。例えば、検出温度が10℃であれば、補正値A522としてE0hexを設定する。
既述したように、約2KV出力時は、19bitレジスタA521には70000hexが保持されており、19bitレジスタB524に6F000hexが出力される。この時の駆動周波数は112.613KHzである。
この時、補正値A522が00hexの時と同様に、演算器A515より700C0hexが出力され、次の制御周期140μs後は、駆動周波数が112.601KHzとなり、19bitレジスタA521で設定された周波数より高い駆動周波数にて圧電トランス47は駆動されることになる。
テーブルレジスタA510、テーブルレジスタB511、テーブルレジスタC512は、高い駆動周波数では制御周波数の変化幅を大きくし、共振周波数に近づくにつれて制御周波数の変化幅が小さくなるように出力値が設定されている。
加えて、周囲温度が低い場合は、補正値A522による補正により、19bitレジスタA521で設定された周波数より高い周波数で圧電トランス47を駆動する。これにより、駆動周波数の低い領域で周波数変化幅をより小さくし、高圧立ち上げ時のオーバーシュートを抑えることが可能である。
また、周囲温度が高い場合は、補正値A522により、19bitレジスタA521で設定された周波数より低い周波数で圧電トランス47を駆動し、周波数変化幅を大きくすることで、高圧立ち上げ時のアンダーシュートを抑えることが可能である。
図18は、周囲温度10℃における補正値A522による補正時の高圧立ち上げ例を示しており、図17に示すような、高圧立ち上げ時のオーバーシュートは発生していない。
本実施例では、温度検出手段88は電源装置70内に設けたが、プリンタエンジン制御部53内に設け、検出温度データは、シリアル通信手段82により高圧制御部60に通知するように構成しても良い。
以上、実施例1によれば、圧電トランス74の駆動周波数の可変幅を駆動周波数により可変し、圧電トランス74の出力特性が緩やかな周波数領域では、駆動周波数の変更幅を大きくし、圧電トランス74の出力特性が急な周波数領域では、駆動周波数の変更幅を小さくすると共に、圧電トランス74の周囲の温度に基づいて該駆動周波数を補正するようにしたので、周囲温度に関わらず、高圧速立ち上げ時にアンダーシュートやオーバーシュートが生じない安定した高圧制御を行うことが可能であり、よって、本電源装置70を用いた画像形成装置1にあっては、用紙先端での転写安定性が向上し、温度変化に影響されない高品質の印刷出力を得ることができる。
次に、図19を用いて、実施例2による画像形成装置の制御回路構成を説明する。
本実施例は、プリンタエンジン制御部53が記憶手段200、及びタイマー201を備える点で実施例1(図1)と相違している。
上記記憶手段200は、予め、図15に示す補正値Dテーブルの値を記憶している。
上記タイマー201は、印刷動作開始時のタイミングを計測するもので、具体的には、用紙検出センサ40が用紙15を検出してから転写時の目標電圧を設定するまでの時間や、シリアル通信手段82が高圧制御部60に高圧ONを指示した後の経過時間等の計測等を行う。
上記以外の構成は、実施例1と同様であり説明を省略する。
(画像形成装置の動作説明)
図13において、高圧出力特性(図13中の実線)に示すように、出力電圧が最大となる駆動周波数(共振周波数)は109KHz近傍にあり、また、164KHz近傍には、比較的出力電圧の小さいスプリアス周波数が存在している。図13中の破線は、周囲温度25℃における駆動周波数に対する圧電トランス近傍の飽和温度を示し、本図の特性より、共振周波数及びスプリアス周波数近傍で自己発熱量が大きくなることが分かる。
以下、図14を用いて実施例2の動作を説明する。図14は、実施例2の動作を示すタイムチャートである。
コマンド/画像処理部51より印刷起動の要求を受けると、プリンタエンジン制御部53は、サーミスタ65の検出出力を監視しながら、定着器ヒータ59への通電をON/OFF制御し、定着器18の温度が印刷可能な所定の温度に達すると、ドラムモータ58の駆動を開始する。
ドラムモータ58の駆動開始後、ホッピングモータ54を駆動して用紙カセット13より用紙15を給紙すると共に、該用紙15を給紙レジストローラ16,17により、用紙検出センサ40を経て、所定のタイミングにて転写ベルト8へと搬送する。
尚、用紙15の搬送速度は、ホッピングモータ54、レジストローラ16,17を駆動しているレジストモータ55の駆動速度より既知であり、よって、給紙開始から用紙検出センサ40に到達する迄の時間T3は容易に算出可能である。
タイマー201は、用紙検出センサ40が用紙先端を検出してから、用紙15が感光ドラム32(例えば、感光ドラム32K)と転写ベルト8のニップ部に至るまでに要する時間T2(用紙検出センサ40とニップ部迄の距離と用紙搬送速度より算出可能)をカウントし、時間T2経過後に、シリアル通信手段82により目標電圧設定値を高圧制御部60に送信する。
係る動作は、実施例1の動作と同様であり、時間T2経過後、用紙15は転写部(ニップ部)に到達し、同時に転写バイアス電圧が目標電圧設定値で指定した所望の高電圧(例えば、4KV)に立ち上がる。
ところが、周囲温度が10℃以下の低温下では、装置放置後の印刷時と連続印刷時とで用紙15の非通紙部における電圧立ち上げ時の特性が異なる。これは、図13で示すように、例えば、4KVの高圧出力にて連続印刷している状態では、圧電トランス74の自己発熱量が大きいため、図11の圧電トランスの温度特性における常温に近い特性を示すからである。
また、用紙検出センサ40による用紙15先端の検出から目標電圧設定迄の時間T2より時間T1早く高圧ONを開始する。この時点で、目標電圧設定値は0であるが、実施例1では、カウンタ下限値520(図5)により、圧電トランス74の駆動周波数(開始周波数)は、初期値に固定されている。実施例1では、カウンタ下限値520の初期値が60000hexである。
プリンタエンジン制御部53は、シリアル通信手段82により高圧制御部60を介して温度検出手段88の検出温度を取得すると共に、記憶手段200に記憶された補正値Dテーブル値(図15)を参照して、該取得した温度データに対応する時間をT1に設定し、さらに、実施例2においては、開始周波数を設定する。
尚、開始周波数の設定は、実施例1と同様にプリンタエンジン制御部53がシリアル通信手段82にて高圧制御部60のカウンタ下限値520の値を書き換えることで行う。
例えば、温度検出手段88による検出温度が10℃以下であると、図15より、開始周波数となるカウンタ下限値520の値を4D000hexに設定する。この場合は、DAC81の電圧設定値0Vにおいて、駆動週周波数は162.339KHzとなり、これは図13に示すスプリアス周波数近傍での駆動となる。
この状態では、カウンタ下限値520の値を60000hexとした場合の駆動周波数130.208KHzより自己発熱量が大きいため、圧電トランス74を動作安定な温度(常温)により速く近づけることができ、その分、時間T1を短縮することが可能となる。
すなわち、周囲温度10℃の環境下では、補正値Dデーブル(図15)に示す時間2000msは、実施例1の場合に比べて短く設定されている。このことは、他の温度範囲についても同様である。
感光ドラム32の回転駆動中で、用紙が転写部に達していない最初の印刷の場合、4KVといった高いバイアス電圧を各転写ローラ5に印加すると、感光ドラム32にダメージを与えるが、1KV以下の比較的低いバイアス電圧であれば、感光ドラム32にダメージを与えないことが経験的に明らかになっている。
従って、本実施例では、起動時の圧電トランス74の出力電圧が1KV以下となるスプリアス周波数近傍の駆動周波数が得られるような目標電圧がDAC81に設定される。
上記目標電圧設定後は、カウンタ下限値520の値を60000hexに再設定する。
本実施例では、温度検出手段88は電源装置70内に設けたが、プリンタエンジン制御部53内に設け、検出温度データは、シリアル通信手段82により高圧制御部60に通知するように構成しても良い。また、温度検出手段88を圧電トランス74やその近傍に設置する構成としても良い。
以上、実施例2によれば、高圧印加(ON)から最初の用紙15の先端が転写部に到達するまでの、目標電圧より低い電圧を維持する時間T1を周囲温度に応じて変更することで、周囲温度や圧電トランス74の自己発熱に対する安定した高圧の立ち上げが可能である。
また、目標電圧より低い電圧を維持する駆動周波数をスプリアス周波数近傍に設定することで、高圧立ち上げまでの時間を短縮できる。特に、圧電トランス74の出力電圧が1KV以下となるスプリアス周波数を選択することにより、感光ドラム32にダメージを与えることなく、高圧立ち上げまでの時間T1を短縮することができる。
本発明では、画像形成装置の転写電源について説明したが、帯電、現像等の他の高圧電源にも適用可能である。
53 プリンタエンジン制御部(目標設定手段)
60 高圧制御部(パルス出力手段)
70 電源装置
73 圧電トランス駆動回路(スイッチング手段)
74 圧電トランス
75 整流回路(整流手段)
77 出力電圧変換手段(電圧変換手段)
78 第1電圧比較手段(比較手段)
79 第2電圧比較手段(比較手段)
88 温度検出手段
109 OSC(発振器)
200 記憶手段(補正記憶手段)
201 タイマー(時間設定手段)
522 補正値Aテーブル(記憶手段)

Claims (7)

  1. クロックを出力する発振器と、
    制御信号に基づき前記クロックを分周してパルスを出力するパルス出力手段と、
    前記パルス出力手段の出力パルスにより駆動されるスイッチング手段と、
    前記スイッチング手段により、1次側に断続的に電圧が印加されると2次側に高圧の交流を出力する圧電トランスと、
    前記高圧の交流を直流に変換する整流手段と、
    前記直流高電圧を直流低電圧に変換する電圧変換手段と、
    前記直流高電圧の目標値を設定して出力する目標設定手段と、
    前記直流低電圧と前記目標値を比較して比較結果を出力する比較手段と、
    前記圧電トランスの周囲の温度を検出する温度検出手段と、
    前記温度検出手段の検出結果に基づいて前記パルス出力手段による前記クロックの分周比を補正する補正情報を記憶する記憶手段とを備え、
    前記パルス出力手段は、所定時間毎に前記比較手段の比較結果と前記温度検出手段の検出結果に基づいて前記クロックの分周比を変化させ、前記目標値に到達するように前記スイッチング手段の駆動周波数を制御することを特徴とする電源装置。
  2. 前記パルス出力手段は、前記圧電トランスの共振周波数近傍においては、該共振周波数近傍以外の周波数領域に比べて前記駆動周波数の変更幅を小さくすることを特徴とする請求項1に記載の電源装置。
  3. 前記目標値の電圧を設定する第1の目標設定手段と、
    前記第1の目標設定手段より低い電圧を設定する第2の目標設定手段と、
    前記第2の目標設定手段により設定した電圧を出力した後、前記第1の目標設定手段により設定した電圧を出力するまでの時間を設定する時間設定手段と、
    前記圧電トランスの周囲の温度に対する補正情報を記憶する補正記憶手段とを更に備え、
    前記温度検出手段による検出結果と前記補正記憶手段の補正情報に基づき、前記第1の時間設定手段による設定時間を変更することを特徴とする請求項1又は2に記載の電源装置。
  4. 前記補正記憶手段は、前記圧電トランスの周囲の温度に対する前記駆動周波数の制御開始の周波数情報を記憶しており、
    前記温度検出手段による検出結果と前記補正記憶手段の制御開始の周波数情報に基づき、前記第2の目標電圧手段により設定した電圧出力時の前記制御開始周波数を変更することを特徴とする請求項3に記載の電源装置。
  5. 前記制御開始周波数は、前記圧電トランスのスプリアス周波数に近い周波数であるであることを特徴とする請求項4に記載の電源装置。
  6. 前記スプリアス周波数における前記圧電トランスの出力電圧は1KV以下であることを特徴とする請求項5に記載の電源装置。
  7. 請求項1乃至6の何れかに1項に記載の電源装置を備えることを特徴とする画像形成装置。
JP2011039687A 2011-02-25 2011-02-25 電源装置及び画像形成装置 Withdrawn JP2012178911A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011039687A JP2012178911A (ja) 2011-02-25 2011-02-25 電源装置及び画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011039687A JP2012178911A (ja) 2011-02-25 2011-02-25 電源装置及び画像形成装置

Publications (1)

Publication Number Publication Date
JP2012178911A true JP2012178911A (ja) 2012-09-13

Family

ID=46980391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011039687A Withdrawn JP2012178911A (ja) 2011-02-25 2011-02-25 電源装置及び画像形成装置

Country Status (1)

Country Link
JP (1) JP2012178911A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150063855A1 (en) * 2013-09-04 2015-03-05 Canon Kabushiki Kaisha Voltage generating apparatus for stably controlling voltage
KR20160090275A (ko) * 2016-07-19 2016-07-29 장병규 직기의 제직 시 원단 불량 검출장치

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150063855A1 (en) * 2013-09-04 2015-03-05 Canon Kabushiki Kaisha Voltage generating apparatus for stably controlling voltage
US9450493B2 (en) * 2013-09-04 2016-09-20 Canon Kabushiki Kaisha Voltage generating apparatus for stably controlling voltage
KR20160090275A (ko) * 2016-07-19 2016-07-29 장병규 직기의 제직 시 원단 불량 검출장치
KR102131480B1 (ko) 2016-07-19 2020-07-07 장병규 직기의 제직 시 원단 불량 검출장치

Similar Documents

Publication Publication Date Title
US8174200B2 (en) Piezoelectric transformer driving device, cold-cathode tube inverter, cold-cathode tube driving device, and image forming apparatus
US8350550B2 (en) Power unit using computed frequency ratio and image forming apparatus
US8319395B2 (en) Power supply device and image forming apparatus
US8948642B2 (en) High-voltage power-supply apparatus, and image formation apparatus
JP5735758B2 (ja) 電圧トランス式高圧電源装置、高圧電源装置、及び画像形成装置
JP2012178911A (ja) 電源装置及び画像形成装置
US9024477B2 (en) High voltage power source device and image forming device
JP5711619B2 (ja) 電源装置及び画像形成装置
JP5972683B2 (ja) 高圧電源装置及び画像形成装置
JP4902693B2 (ja) 圧電トランス駆動装置及び画像形成装置
JP5581150B2 (ja) 電源装置、及びこれを用いた画像形成装置
JP5394164B2 (ja) 電源装置及び画像形成装置
US8971751B2 (en) Piezoelectric transducer driver, power supply device, and image formation apparatus
JP5769538B2 (ja) 高圧電源装置及び画像形成装置
JP6031273B2 (ja) 電源装置、及びこれを用いた画像形成装置
JP5147752B2 (ja) 電源装置及び画像形成装置
JP5303633B2 (ja) 電源制御装置及び電源制御方法
JP5977099B2 (ja) 圧電トランス駆動装置、電源装置および画像形成装置
JP5727893B2 (ja) 電源装置、及びこれを用いた画像形成装置
JP2013042595A (ja) 高圧電源装置及び画像形成装置
JP2010107608A (ja) 高圧電源装置及びそれを用いた画像形成装置
JP2010110073A (ja) 圧電トランスインバータとそれを用いた高圧電源装置及び画像形成装置
JP2015070657A (ja) 高圧電源装置および画像形成装置
JP2008301692A (ja) 電源装置及び画像形成装置
US20120323383A1 (en) Power supply apparatus and image formation apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513