JP2012159236A - 排熱回収システムおよび排熱回収方法 - Google Patents
排熱回収システムおよび排熱回収方法 Download PDFInfo
- Publication number
- JP2012159236A JP2012159236A JP2011019089A JP2011019089A JP2012159236A JP 2012159236 A JP2012159236 A JP 2012159236A JP 2011019089 A JP2011019089 A JP 2011019089A JP 2011019089 A JP2011019089 A JP 2011019089A JP 2012159236 A JP2012159236 A JP 2012159236A
- Authority
- JP
- Japan
- Prior art keywords
- heat source
- heat
- cooling water
- cooling
- source water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/52—Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
【課題】冷却塔へ流れる冷却水流量を可及的に少なくするとともに、排熱源へ流入する冷却水温度を所望値に維持して安定的な運転が可能となる排熱回収システムを提供する。
【解決手段】復水器3を冷却した後の冷却水を冷却塔7まで導く冷却水還り配管15から分岐された熱源水往き配管と、熱源水往き配管によって導かれた熱源水から熱回収することによって温熱を出力するヒートポンプ5と、ヒートポンプ5によって熱回収された後の熱源水を、冷却水往き配管13へと合流させる熱源水還り配管33と、冷却塔7に設けられたファン17の発停または回転数を制御する制御部25とを備え、制御部25は、熱源水還り配管33から熱源水が合流し、復水器3へと流入する冷却水入口温度が所望値となるようにファン17を制御する。
【選択図】図1
【解決手段】復水器3を冷却した後の冷却水を冷却塔7まで導く冷却水還り配管15から分岐された熱源水往き配管と、熱源水往き配管によって導かれた熱源水から熱回収することによって温熱を出力するヒートポンプ5と、ヒートポンプ5によって熱回収された後の熱源水を、冷却水往き配管13へと合流させる熱源水還り配管33と、冷却塔7に設けられたファン17の発停または回転数を制御する制御部25とを備え、制御部25は、熱源水還り配管33から熱源水が合流し、復水器3へと流入する冷却水入口温度が所望値となるようにファン17を制御する。
【選択図】図1
Description
本発明は、蒸気タービン設備の復水器や冷凍機の凝縮器といった排熱源を冷却する冷却水から熱回収する排熱回収システムおよび排熱回収方法に関するものである。
蒸気タービン設備の復水器や冷凍機の凝縮器といった排熱源は、冷却水によって冷却されるようになっている。このような排熱源を冷却した後の冷却水温度は、一般に40℃以下の低温水とされており、熱的な利用価値が低いため、冷却水が保有する熱は冷却塔によって大気へと放出されている。
特許文献1では、蒸気タービンの中途位置から抽気した蒸気を用いて再生器に熱を供給し、ボイラ給水を吸収器および凝縮器で加熱する吸収ヒートポンプが開示されている。この吸収ヒートポンプでは、蒸発器によって復水器へ流入する前の蒸気を冷却して液化して復水器へと返送する系統が設けられている。しかし、復水器内の復水の減温は可能となるものの、復水器内を冷却する冷却水系統については何ら変更が加えられていない。すなわち、冷却水系統に接続される冷却塔へ流れる冷却水流量については低減されていない。
冷却塔は、ファンによって導入した外気と冷却水との熱交換によって冷却水を冷却するものなので、ファンの消費動力の低減のためには、冷却塔に流す冷却水流量は少ない方が好ましい。また、冷却水を大気中に散水して冷却する散水方式の場合には、大気中に飛散して消費される水消費量を低減するためにも冷却塔へ流す冷却水流量は少ない方が好ましい。また、大気中に飛散する冷却水と一緒に冷却水中に含まれる薬液も消費されるので、薬液消費量の低減の観点からも冷却塔へ流す冷却水流量は少ない方が好ましい。
冷却塔は、ファンによって導入した外気と冷却水との熱交換によって冷却水を冷却するものなので、ファンの消費動力の低減のためには、冷却塔に流す冷却水流量は少ない方が好ましい。また、冷却水を大気中に散水して冷却する散水方式の場合には、大気中に飛散して消費される水消費量を低減するためにも冷却塔へ流す冷却水流量は少ない方が好ましい。また、大気中に飛散する冷却水と一緒に冷却水中に含まれる薬液も消費されるので、薬液消費量の低減の観点からも冷却塔へ流す冷却水流量は少ない方が好ましい。
特許文献2の図8には、本願の図8に示した構成が開示されている。すなわち、復水器101と冷却塔103との間に、冷却水往き配管105と冷却水還り配管107とが接続されており、復水器101を冷却して昇温した冷却水を冷却塔103にて冷却し、冷却後の冷却水を復水器101へと供給する構成となっている。そして、冷却水還り配管107から分岐した熱源水往き配管109によって熱源水をヒートポンプ111へと導き、この熱源水から熱回収するようになっている。
冷却塔103は、散水ノズル115を備えており、この散水ノズル115から冷却水を大気中に散水し、ファン113から送り込まれる外気によって冷却水を冷却するようになっている。
なお、同図において、符号117は冷却水ポンプ、符号119は熱源水ポンプ、符号121は温熱負荷である。
冷却塔103は、散水ノズル115を備えており、この散水ノズル115から冷却水を大気中に散水し、ファン113から送り込まれる外気によって冷却水を冷却するようになっている。
なお、同図において、符号117は冷却水ポンプ、符号119は熱源水ポンプ、符号121は温熱負荷である。
しかし、図8に示した構成では、ヒートポンプ111にて熱回収された後の熱源水は、熱源水還り配管110を介して再び冷却水還り配管107へと返送されるようになっているため、冷却塔103へと流れる冷却水流量については、ヒートポンプ111を設けない場合に比べて何ら変わりがない。これでは、冷却水が飛散して失われる水消費量を低減することができず、さらには、冷却水中に含まれる薬液の消費量も低減することができない。さらには、冷却塔へ流れ込む冷却水流量が低減されないので、ファン115の動力についても低減することができない。
一方、特許文献1の図1には、本願の図9に示すような構成が開示されている。すなわち、冷却水還り配管107から分岐した熱源水往き配管109によって導いた熱源水からヒートポンプ111によって熱回収し、熱源水還り配管110を介して冷却水往き配管105へと熱源水を導くようになっている。このように、ヒートポンプ111へと導いた熱源水は、冷却塔103をバイパスするようになっているので、冷却水消費量および薬液消費量を低減することができる点で好ましい。
また、図9に示した構成では、熱源水往き配管109に対して、熱源水還り配管110から分岐された分岐熱源水還り配管123と、冷却水往き配管105から分岐された分岐冷却水往き配管125とを接続する構成となっている。これにより、復水器101からの出口冷却水と、冷却塔103からの出口冷却水と、ヒートポンプ111からの出口熱源水とを混合することにより、ヒートポンプ111へ導かれる熱源水の入口温度を所望値に制御するようになっている。
しかし、ヒートポンプ111からの出口熱源水の温度は、温熱負荷121の変動によって変化するため、ヒートポンプ111からの出口熱源水の温度が大きく変化した場合には、復水器101からの出口冷却水と冷却塔103からの出口冷却水と混合させたとしても、ヒートポンプ111へ導かれる熱源水の入口温度を所望値に制御できないおそれがある。また、ヒートポンプ111からの出口熱源水の温度が大きく変化すると、熱源水還り配管110を介して冷却水往き配管105へと熱源水が合流した後の冷却水温度も変動することになり、復水器101の温度(圧力)を安定的に制御することができないという問題がある。
しかし、ヒートポンプ111からの出口熱源水の温度は、温熱負荷121の変動によって変化するため、ヒートポンプ111からの出口熱源水の温度が大きく変化した場合には、復水器101からの出口冷却水と冷却塔103からの出口冷却水と混合させたとしても、ヒートポンプ111へ導かれる熱源水の入口温度を所望値に制御できないおそれがある。また、ヒートポンプ111からの出口熱源水の温度が大きく変化すると、熱源水還り配管110を介して冷却水往き配管105へと熱源水が合流した後の冷却水温度も変動することになり、復水器101の温度(圧力)を安定的に制御することができないという問題がある。
本発明は、このような事情に鑑みてなされたものであって、冷却塔へ流れる冷却水流量を可及的に少なくするとともに、排熱源(復水器、凝縮器等)へ流入する冷却水温度を所望値に維持して安定的な運転が可能となる排熱回収システムおよび排熱回収方法を提供することを目的とする。
上記課題を解決するために、本発明の排熱回収システムおよび排熱回収方法は以下の手段を採用する。
すなわち、本発明にかかる排熱回収システムは、排熱源を冷却した後の冷却水を冷却塔まで導く冷却水還り配管から分岐された熱源水往き配管と、該熱源水往き配管によって導かれた熱源水から熱回収することによって温熱を出力するヒートポンプと、該ヒートポンプによって熱回収された後の熱源水を、冷却塔によって冷却された冷却水を前記排熱源へと供給する冷却水往き配管へと合流させる熱源水還り配管と、前記冷却塔に設けられたファンの発停または回転数を制御する制御部とを備え、前記制御部は、前記熱源水還り配管から熱源水が合流し、前記排熱源へと流入する冷却水入口温度が所望値となるように、前記ファンの発停または回転数を制御することを特徴とする。
すなわち、本発明にかかる排熱回収システムは、排熱源を冷却した後の冷却水を冷却塔まで導く冷却水還り配管から分岐された熱源水往き配管と、該熱源水往き配管によって導かれた熱源水から熱回収することによって温熱を出力するヒートポンプと、該ヒートポンプによって熱回収された後の熱源水を、冷却塔によって冷却された冷却水を前記排熱源へと供給する冷却水往き配管へと合流させる熱源水還り配管と、前記冷却塔に設けられたファンの発停または回転数を制御する制御部とを備え、前記制御部は、前記熱源水還り配管から熱源水が合流し、前記排熱源へと流入する冷却水入口温度が所望値となるように、前記ファンの発停または回転数を制御することを特徴とする。
排熱源(例えば、蒸気タービン設備の復水器や冷凍機の凝縮器)を冷却した後の冷却水を熱源水往き配管によって冷却塔の手前で分岐させて熱源水として用い、この熱源水から熱回収することによってヒートポンプを駆動する。そして、熱回収した後の熱源水は、冷却塔から排熱源へ冷却水を供給する冷却水往き配管へと合流させることとした。このように、排熱源から冷却塔へと向かう冷却水をバイパスさせてヒートポンプへ導くことにより、冷却塔へ流れる冷却水量を減少させることができる。したがって、冷却塔のファン動力を低減することができる。また、冷却塔が冷却水を大気中に散水して冷却する散水方式の場合には、冷却水が飛散して消費される水消費量を低減することができ、これに伴い、冷却水中に含まれる薬液の消費量も低減することができる。
さらに、制御部によって、熱源水還り配管から熱源水が合流し、排熱源へと流入する冷却水入口温度が所望値となるように、冷却塔のファンの発停または回転数を制御することとした。これにより、ヒートポンプの温熱負荷が変動することによって熱源水還り配管から合流する熱源水の温度が変動しても、冷却水入口温度を所望値となるように安定的に制御することができる。
さらに、制御部によって、熱源水還り配管から熱源水が合流し、排熱源へと流入する冷却水入口温度が所望値となるように、冷却塔のファンの発停または回転数を制御することとした。これにより、ヒートポンプの温熱負荷が変動することによって熱源水還り配管から合流する熱源水の温度が変動しても、冷却水入口温度を所望値となるように安定的に制御することができる。
さらに、本発明の排熱回収システムでは、前記冷却水往き配管をバイパスするように前記熱源水還り配管から前記熱源水往き配管へと熱源水を流す熱源水バイパス配管を設け、前記制御部は、前記ヒートポンプへ導かれる熱源水温度が所望値となるように、前記熱源水バイパス配管を流れる熱源水流量を調整することを特徴とする。
熱源水バイパス配管を流れる熱源水流量を調整することによって、ヒートポンプへ導かれる熱源水温度を所望値となるようにした。これにより、ヒートポンプへ導かれる熱源水温度を一定とすることが可能となりヒートポンプを安定的に制御することができる。
さらに、本発明の排熱回収システムでは、前記熱源水還り配管から分岐されて前記冷却水還り配管へと接続された分岐熱源水還り配管が設けられ、前記制御部は、前記冷却水往き配管に合流する熱源水温度が、前記排熱源へと流入する冷却水入口温度の所望値よりも高くなった場合に、前記分岐熱源水還り配管を介して熱源水を前記冷却水還り配管へと流すことを特徴とする。
冷却水往き配管に合流する熱源水温度が、排熱源へと流入する冷却水温度の所望値よりも高くなった場合には、冷却水温度を所望値に制御することができなくなるので、分岐熱源水還り配管を介して熱源水を冷却水還り配管へと戻すこととした。これにより、排熱源へと流入する冷却水温度を所望値に制御することができる。
さらに、本発明の排熱回収システムでは、前記制御部は、前記排熱源に対して流出入する冷却水の温度差と冷却水流量とから排熱源における排熱量を演算し、前記ヒートポンプによって熱源水から熱回収される熱回収量が該排熱量を超える場合には、該ヒートポンプの温熱出力を所定値以下に制限することを特徴とする。
排熱源における排熱量を超えてヒートポンプにて熱回収してしまうと、排熱源に流入する冷却水温度を所望値に制御することが困難となる。そこで、本発明では、ヒートポンプの熱回収量が排熱源の排熱量を超える場合には、ヒートポンプの温熱出力を所定値以下に制御することとした。これにより、ヒートポンプの熱回収量を所定値以下に低減することができるので、ヒートポンプの熱回収量が排熱源の排熱量を超えてしまう事象を回避することができる。
また、本発明の排熱回収方法は、排熱源を冷却した後の冷却水を冷却塔まで導く冷却水還り配管から分岐された熱源水往き配管と、該熱源水往き配管によって導かれた熱源水から熱回収することによって温熱を出力するヒートポンプと、該ヒートポンプによって熱回収された後の熱源水を、冷却塔によって冷却された冷却水を前記排熱源へと供給する冷却水往き配管へと合流させる熱源水還り配管と、前記冷却塔に設けられたファンの発停または回転数を制御する制御部とを備えた排熱回収システムによる排熱回収方法において、前記制御部は、前記熱源水還り配管から熱源水が合流し、前記排熱源へと流入する冷却水入口温度が所望値となるように、前記ファンの発停または回転数を制御することを特徴とする。
排熱源(例えば、蒸気タービン設備の復水器や冷凍機の凝縮器)を冷却した後の冷却水を熱源水往き配管によって冷却塔の手前で分岐させて熱源水として用い、この熱源水から熱回収することによってヒートポンプを駆動する。そして、熱回収した後の熱源水は、冷却塔から排熱源へ冷却水を供給する冷却水往き配管へと合流させることとした。このように、排熱源から冷却塔へと向かう冷却水をバイパスさせてヒートポンプへ導くことにより、冷却塔へ流れる冷却水量を減少させることができる。したがって、冷却塔のファン動力を低減することができる。また、冷却塔が冷却水を大気中に散水して冷却する散水方式の場合には、冷却水が飛散して消費される水消費量を低減することができ、これに伴い、冷却水中に含まれる薬液の消費量も低減することができる。
さらに、制御部によって、熱源水還り配管から熱源水が合流し、排熱源へと流入する冷却水入口温度が所望値となるように、冷却塔のファンの発停または回転数を制御することとした。これにより、ヒートポンプの温熱負荷が変動することによって熱源水還り配管から合流する熱源水の温度が変動しても、冷却水入口温度を所望値となるように安定的に制御することができる。
さらに、制御部によって、熱源水還り配管から熱源水が合流し、排熱源へと流入する冷却水入口温度が所望値となるように、冷却塔のファンの発停または回転数を制御することとした。これにより、ヒートポンプの温熱負荷が変動することによって熱源水還り配管から合流する熱源水の温度が変動しても、冷却水入口温度を所望値となるように安定的に制御することができる。
本発明によれば、排熱源から冷却塔へと向かう冷却水をバイパスさせてヒートポンプへ導くことにより、冷却塔へ流れる冷却水量を減少させることとしたので、冷却塔のファン動力を低減することができる。また、冷却塔が冷却水を大気中に散水して冷却する散水方式の場合には、冷却水が飛散して消費される水消費量を低減することができ、これに伴い、冷却水中に含まれる薬液の消費量も低減することができる。
さらに、熱源水還り配管から熱源水が合流し、排熱源へと流入する冷却水入口温度が所望値となるように、冷却塔のファンの発停または回転数を制御することとしたので、ヒートポンプの温熱負荷が変動することによって熱源水還り配管から合流する熱源水の温度が変動しても、冷却水入口温度を所望値となるように安定的に制御することができる。
さらに、熱源水還り配管から熱源水が合流し、排熱源へと流入する冷却水入口温度が所望値となるように、冷却塔のファンの発停または回転数を制御することとしたので、ヒートポンプの温熱負荷が変動することによって熱源水還り配管から合流する熱源水の温度が変動しても、冷却水入口温度を所望値となるように安定的に制御することができる。
以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
以下、本発明の第1実施形態について、図1を用いて説明する。
本実施形態にかかる排熱回収システム1は、排熱源である復水器3と、復水器3を冷却する冷却塔7とを備えた設備に適用される。
[第1実施形態]
以下、本発明の第1実施形態について、図1を用いて説明する。
本実施形態にかかる排熱回収システム1は、排熱源である復水器3と、復水器3を冷却する冷却塔7とを備えた設備に適用される。
復水器3は、蒸気タービン設備の一構成機器とされており、蒸気タービン(図示せず)にて仕事を終えた蒸気を排気する排気蒸気管9に接続されている。復水器3にて冷却されて凝縮した復水は、給水配管11を介して図示しないボイラへと導かれる。
復水器3と冷却塔7との間には、冷却水往き配管13と冷却水還り配管15とが接続されている。冷却水往き配管13には、冷却水ポンプ17が設けられており、この冷却水ポンプ17によって冷却水が冷却塔7と復水器3との間を循環するようになっている。
復水器3の冷却水入口には、冷却水温度を計測するための復水器入口温度センサ18が設けられている。この復水器入口温度センサ18の出力は、後述する制御部25へと送られる。
復水器3と冷却塔7との間には、冷却水往き配管13と冷却水還り配管15とが接続されている。冷却水往き配管13には、冷却水ポンプ17が設けられており、この冷却水ポンプ17によって冷却水が冷却塔7と復水器3との間を循環するようになっている。
復水器3の冷却水入口には、冷却水温度を計測するための復水器入口温度センサ18が設けられている。この復水器入口温度センサ18の出力は、後述する制御部25へと送られる。
冷却塔7は、ファン17と、散水ヘッダ19と、冷却水貯留タンク21とを備えている。
ファン17は、冷却塔7内に外気を導入するために用いられ、電動モータ23によって駆動される。この電動モータ23としては、一定の周波数にて駆動する定速モータや、インバータ装置によって回転周波数可変とした可変速モータが用いられる。定速モータの場合には、制御部25によって電動モータ23の発停を制御し、可変速モータの場合には、制御部25によって電動モータ23の回転周波数を制御する。
散水ヘッダ19は、上方から冷却水を外気中に散布し、外気と接触させることによって外気の顕熱だけでなく冷却水自身の蒸発潜熱をも用いて冷却水を冷却する。
冷却水貯留タンク21には、散布されて外気によって冷却された冷却後の冷却水が貯留される。冷却水貯留タンク21内に貯留された冷却水は、冷却水往き配管13を介して復水器3へと導かれる。
冷却塔5の冷却水出口には、冷却塔5にて冷却された後の冷却水温度を測定する冷却塔出口温度センサ27が設けられている。この冷却塔出口温度センサ27の出力は、制御部25へと送られる。
ファン17は、冷却塔7内に外気を導入するために用いられ、電動モータ23によって駆動される。この電動モータ23としては、一定の周波数にて駆動する定速モータや、インバータ装置によって回転周波数可変とした可変速モータが用いられる。定速モータの場合には、制御部25によって電動モータ23の発停を制御し、可変速モータの場合には、制御部25によって電動モータ23の回転周波数を制御する。
散水ヘッダ19は、上方から冷却水を外気中に散布し、外気と接触させることによって外気の顕熱だけでなく冷却水自身の蒸発潜熱をも用いて冷却水を冷却する。
冷却水貯留タンク21には、散布されて外気によって冷却された冷却後の冷却水が貯留される。冷却水貯留タンク21内に貯留された冷却水は、冷却水往き配管13を介して復水器3へと導かれる。
冷却塔5の冷却水出口には、冷却塔5にて冷却された後の冷却水温度を測定する冷却塔出口温度センサ27が設けられている。この冷却塔出口温度センサ27の出力は、制御部25へと送られる。
本実施形態にかかる排熱回収システムは、冷却水往き配管13と冷却水還り配管15に接続されたヒートポンプ5と、このヒートポンプ5の運転状態に応じて復水器3へ流入する冷却水の温度(復水器入口温度)が所望値となるように冷却塔7のファン17の回転を制御する制御部25とを備えている。
ヒートポンプ5は、熱回収型のターボ冷凍機とされている。ターボ冷凍機は、図示しないが、冷媒を圧縮するターボ圧縮機と、ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、凝縮された液冷媒を膨張させる膨張弁と、膨張された冷媒を蒸発させる蒸発器とを備えている。ターボ圧縮機としては、インバータ装置から電力供給されて回転周波数可変とされた電動モータによって駆動される電動ターボ圧縮機が好ましい。
なお、ヒートポンプ5としては、典型的には、本実施形態のようにターボ圧縮機を用いたターボ冷凍機が挙げられるが、スクリュー式やスクロール式の圧縮機を用いた他の冷媒圧縮式のヒートポンプでもよい。
なお、ヒートポンプ5としては、典型的には、本実施形態のようにターボ圧縮機を用いたターボ冷凍機が挙げられるが、スクリュー式やスクロール式の圧縮機を用いた他の冷媒圧縮式のヒートポンプでもよい。
ヒートポンプ5と冷却水還り配管15との間には、冷却水還り配管15から冷却水を分岐させてヒートポンプ5へと導く熱源水往き配管31が設けられている。熱源水往き配管31には、熱源水ポンプ32が設けられている。また、ヒートポンプ5と冷却水往き配管13との間には、ヒートポンプ5から流出した熱源水を冷却水往き配管13に合流させる熱源水還り配管33が設けられている。このように、冷却水還り配管15から導いた冷却水を熱源水としてヒートポンプ5にて導き、ヒートポンプ5の蒸発器によって熱回収し、熱回収後の減温された熱源水を冷却水往き配管13へと返送するようになっている。そして、ヒートポンプ5へと導かれた冷却水(熱源水)は、冷却塔7をバイパスするようになっている。
熱源水戻り配管33には、冷却水往き配管13へ合流する前の熱源水温度を測定するためのヒートポンプ出口温度センサ34が設けられている。このヒートポンプ出口温度センサ34の出力は、制御部25へと送られる。
熱源水戻り配管33には、冷却水往き配管13へ合流する前の熱源水温度を測定するためのヒートポンプ出口温度センサ34が設けられている。このヒートポンプ出口温度センサ34の出力は、制御部25へと送られる。
ヒートポンプ5の温熱出力側には、温熱負荷35が接続されている。すなわち、ヒートポンプ5の凝縮器と温熱負荷35との間には、温水往き配管37及び温水還り配管39が接続されており、温水が循環されるようになっている。このように、ヒートポンプ5にて加熱された温水が温熱負荷35に供給され、温熱負荷35にて温熱が利用されて減温された温水がヒートポンプ5に戻り再び加熱されるようになっている。
制御部25は、ヒートポンプ5の運転状態に応じて復水器3へ流入する冷却水の温度(復水器入口温度)が所望値となるように冷却塔7のファン17の回転を制御する。制御部25には、復水器入口温度センサ18によって計測された復水器入口温度Tc_iと、冷却塔出口温度センサ27によって計測された冷却塔出口温度Tct_oと、ヒートポンプ出口温度センサ34によって計測されたヒートポンプ出口温度THP_oとが入力されるようになっている。
また、制御部25には、図2に示すように、復水器3に流入する冷却水温度の目標値(所望値)である復水器入口目標温度Tc_setが入力されるようになっている。この復水器入口目標温度Tc_setは、ユーザが任意に設定できるようになっている。
制御部25は、メモリ等の記憶領域41を有しており、記録データとして、復水器3を流れる冷却水の定格流量である復水器定格流量Fcと、ヒートポンプ5を流れる熱源水の定格流量であるヒートポンプ定格流量FHPとが保存されている。なお、冷却塔7を流れる冷却水流量である冷却塔流量FCTは、復水器定格流量Fcからヒートポンプ定格流量FHPを減じた値(Fc-FHP)が用いられる。
制御部25の演算部43では、復水器入口目標温度Tc_setとなるように、冷却塔出口目標温度TCT_setを下式に基づいて演算する。
TCT_set=(Tc_set×Fc−THP_o×FHP)/FCT ・・・・・(1)
上式は、冷却塔7からの冷却水とヒートポンプ5からの熱源水とが合流して復水器3へ流入する冷却水となるという条件で、熱バランスから導かれるものである。
上式から分かるように、温熱負荷35の負荷が変動してヒートポンプ出口温度THP_oが変化しても、冷却塔出口目標温度TCT_setに制御することにより、復水器入口目標温度Tc_setが得られるようになる。
また、制御部25には、図2に示すように、復水器3に流入する冷却水温度の目標値(所望値)である復水器入口目標温度Tc_setが入力されるようになっている。この復水器入口目標温度Tc_setは、ユーザが任意に設定できるようになっている。
制御部25は、メモリ等の記憶領域41を有しており、記録データとして、復水器3を流れる冷却水の定格流量である復水器定格流量Fcと、ヒートポンプ5を流れる熱源水の定格流量であるヒートポンプ定格流量FHPとが保存されている。なお、冷却塔7を流れる冷却水流量である冷却塔流量FCTは、復水器定格流量Fcからヒートポンプ定格流量FHPを減じた値(Fc-FHP)が用いられる。
制御部25の演算部43では、復水器入口目標温度Tc_setとなるように、冷却塔出口目標温度TCT_setを下式に基づいて演算する。
TCT_set=(Tc_set×Fc−THP_o×FHP)/FCT ・・・・・(1)
上式は、冷却塔7からの冷却水とヒートポンプ5からの熱源水とが合流して復水器3へ流入する冷却水となるという条件で、熱バランスから導かれるものである。
上式から分かるように、温熱負荷35の負荷が変動してヒートポンプ出口温度THP_oが変化しても、冷却塔出口目標温度TCT_setに制御することにより、復水器入口目標温度Tc_setが得られるようになる。
制御部25の制御指示部45では、冷却塔出口温度センサ27によって計測された冷却塔出口温度Tct_oが、上式によって得られた冷却塔出口目標温度TCT_setとなるように、冷却塔7のファン17の回転を制御する。具体的には、ファン17の電動モータ23が定速モータの場合にはモータの発停を制御し、電動モータ23が可変速モータの場合にはモータの回転周波数を制御する。
本実施形態によれば、以下の作用効果を奏する。
復水器3を冷却した後の冷却水を熱源水往き配管31によって冷却塔7の手前で分岐させて熱源水として用い、この熱源水から熱回収することによってヒートポンプ5を駆動することとした。そして、熱回収した後の熱源水は、冷却塔7から復水器3へ冷却水を供給する冷却水還り配管13へと合流させることとした。このように、復水器3から冷却塔7へと向かう冷却水をバイパスさせてヒートポンプ5へ導くことにより、冷却塔7へ流れる冷却水量を減少させることができる。したがって、冷却塔7のファン動力を低減することができる。また、冷却水が飛散して消費される水消費量を低減することができ、これに伴い、冷却水中に含まれる薬液の消費量も低減することができる。
さらに、制御部25によって、熱源水還り配管33から熱源水が合流し、復水器3へと流入する復水器入口温度Tc_iが所望値となるように、冷却塔7のファン17の発停または回転数を制御することとした。これにより、ヒートポンプ5の温熱負荷が変動することによって熱源水還り配管33から合流する熱源水の温度THP_oが変動しても、復水器入口温度を所望値となるように安定的に制御することができる。
復水器3を冷却した後の冷却水を熱源水往き配管31によって冷却塔7の手前で分岐させて熱源水として用い、この熱源水から熱回収することによってヒートポンプ5を駆動することとした。そして、熱回収した後の熱源水は、冷却塔7から復水器3へ冷却水を供給する冷却水還り配管13へと合流させることとした。このように、復水器3から冷却塔7へと向かう冷却水をバイパスさせてヒートポンプ5へ導くことにより、冷却塔7へ流れる冷却水量を減少させることができる。したがって、冷却塔7のファン動力を低減することができる。また、冷却水が飛散して消費される水消費量を低減することができ、これに伴い、冷却水中に含まれる薬液の消費量も低減することができる。
さらに、制御部25によって、熱源水還り配管33から熱源水が合流し、復水器3へと流入する復水器入口温度Tc_iが所望値となるように、冷却塔7のファン17の発停または回転数を制御することとした。これにより、ヒートポンプ5の温熱負荷が変動することによって熱源水還り配管33から合流する熱源水の温度THP_oが変動しても、復水器入口温度を所望値となるように安定的に制御することができる。
図3には、本実施形態の効果を確認するために行ったシミュレーション結果が示されている。同図に示すように、復水器3の定格流量を500m3/h、温度差を5℃(25℃→30℃)とし、ヒートポンプ5へと分岐させて冷却塔7をバイパスする冷却水流量を100m3/h、熱回収温度差を10℃(30℃→20℃)とした場合、冷却塔7へ流れる冷却水流量は400m3/h、冷却水の冷却塔出口温度は26.3℃となる。
これに対して、図8に示したように、ヒートポンプの熱源水をバイパスさせずに冷却水還り配管に戻した場合には、冷却塔へ流れる冷却水流量は500m3/h、冷却水の冷却塔出口温度は25℃となる。
本実施形態と図8の場合とを比べると、冷却塔へ流れる冷却水流量は500m3/hから400m3/hへと20%減少する。この減少量に比例して冷却水の飛散水量(通水量の約0.1%が飛散する)も減少する。さらに、飛散水量の減少に伴い、薬液の消費量も減少し、薬液投入量を抑えることができる。
また、本実施形態と図8の場合とを比べると、冷却塔の出口温度を25℃から26.3℃に上げることができる。これは、図4(出典;「改訂2版 クーリングタワー」,175頁,(財)省エネルギーセンター)から試算すると、ファン風量を約15%低減可能となっており、これに伴いファン動力を低減することができる。
これに対して、図8に示したように、ヒートポンプの熱源水をバイパスさせずに冷却水還り配管に戻した場合には、冷却塔へ流れる冷却水流量は500m3/h、冷却水の冷却塔出口温度は25℃となる。
本実施形態と図8の場合とを比べると、冷却塔へ流れる冷却水流量は500m3/hから400m3/hへと20%減少する。この減少量に比例して冷却水の飛散水量(通水量の約0.1%が飛散する)も減少する。さらに、飛散水量の減少に伴い、薬液の消費量も減少し、薬液投入量を抑えることができる。
また、本実施形態と図8の場合とを比べると、冷却塔の出口温度を25℃から26.3℃に上げることができる。これは、図4(出典;「改訂2版 クーリングタワー」,175頁,(財)省エネルギーセンター)から試算すると、ファン風量を約15%低減可能となっており、これに伴いファン動力を低減することができる。
[第2実施形態]
次に、本発明の第2実施形態について、図5を用いて説明する。
本実施形態は、第1実施形態に加えて、熱源水往き配管31と熱源水還り配管33との間に熱源水バイパス配管51が設けられている点で相違する。第1実施形態と共通する構成については、同一符号を付しその説明を省略する。
次に、本発明の第2実施形態について、図5を用いて説明する。
本実施形態は、第1実施形態に加えて、熱源水往き配管31と熱源水還り配管33との間に熱源水バイパス配管51が設けられている点で相違する。第1実施形態と共通する構成については、同一符号を付しその説明を省略する。
熱源水バイパス配管51には、流量を制御するためのバイパス流量制御弁53が設けられている。このバイパス流量制御弁53の開度は、制御部25によって制御される。
熱源水往き配管31には、熱源水バイパス配管51からの熱源水が合流した後の熱源水温度THP_iを計測する入口熱源水温度センサ55が設けられている。入口熱源水温度センサ55の出力は、制御部25へと送られる。
制御部25は、入口熱源水温度THP_iすなわちヒートポンプ5へ導かれる熱源水温度が所望値となるようにバイパス流量制御弁53の開度を制御する。具体的には、入口熱源水温度よりも出口熱源水温度の方が低いので、入口熱源水温度THP_iが所望値よりも高い場合には、バイパス流量調整弁53の開度を大きくして多くの出口熱源水を熱源水往き配管31へと流す。逆に、入口熱源水温度THP_iが所望値よりも低い場合には、バイパス流量調整弁53の開度を小さくしてより少量の出口熱源水を熱源水往き配管31へと流す。
熱源水往き配管31には、熱源水バイパス配管51からの熱源水が合流した後の熱源水温度THP_iを計測する入口熱源水温度センサ55が設けられている。入口熱源水温度センサ55の出力は、制御部25へと送られる。
制御部25は、入口熱源水温度THP_iすなわちヒートポンプ5へ導かれる熱源水温度が所望値となるようにバイパス流量制御弁53の開度を制御する。具体的には、入口熱源水温度よりも出口熱源水温度の方が低いので、入口熱源水温度THP_iが所望値よりも高い場合には、バイパス流量調整弁53の開度を大きくして多くの出口熱源水を熱源水往き配管31へと流す。逆に、入口熱源水温度THP_iが所望値よりも低い場合には、バイパス流量調整弁53の開度を小さくしてより少量の出口熱源水を熱源水往き配管31へと流す。
このように、本実施形態によれば、熱源水バイパス配管51を流れる熱源水流量を調整することによって、ヒートポンプ5へ導かれる入口熱源水温度を所望値となるようにした。これにより、ヒートポンプ5へ導かれる入口熱源水温度を一定とすることが可能となりヒートポンプを安定的に制御することができる。
[第3実施形態]
次に、本発明の第3実施形態について、図6を用いて説明する。
本実施形態は、第1実施形態に加えて、熱源水還り配管33から分岐して出口熱源水を冷却水還り配管15へと戻す分岐熱源水還り配管57が設けられている点で相違する。第1実施形態と共通する構成については、同一符号を付しその説明を省略する。
次に、本発明の第3実施形態について、図6を用いて説明する。
本実施形態は、第1実施形態に加えて、熱源水還り配管33から分岐して出口熱源水を冷却水還り配管15へと戻す分岐熱源水還り配管57が設けられている点で相違する。第1実施形態と共通する構成については、同一符号を付しその説明を省略する。
分岐熱源水戻り配管57へ流れる流量は、制御部25によってその開度が制御される三方弁59によって調整される。なお、三方弁に代えて、二方弁を2つ組み合わせた構成としても良い。
制御部25は、冷却水往き配管13に合流する出口熱源水温度THP_oが、復水器3へと流入する冷却水温度の目標値である復水器入口目標温度Tc_setよりも高くなった場合に、分岐熱源水還り配管57を介して熱源水を冷却水還り配管57へと流すようになっている。
制御部25は、冷却水往き配管13に合流する出口熱源水温度THP_oが、復水器3へと流入する冷却水温度の目標値である復水器入口目標温度Tc_setよりも高くなった場合に、分岐熱源水還り配管57を介して熱源水を冷却水還り配管57へと流すようになっている。
このように、本実施形態によれば、冷却水往き配管13に合流する出口熱源水温度が、復水器入口目標温度Tc_setよりも高くなった場合には、冷却水温度を目標値に制御することができなくなるので、分岐熱源水還り配管57を介して熱源水を冷却水還り配管15へと戻すこととした。これにより、復水器3へと流入する冷却水温度を目標値に制御することができる。
[第4実施形態]
次に、本発明の第4実施形態について、図7を用いて説明する。
本実施形態は、第1実施形態に加えて、復水器3における排熱量に基づいてヒートポンプ5の温熱出力を制限する点で相違する。第1実施形態と共通する構成については、同一符号を付しその説明を省略する。
次に、本発明の第4実施形態について、図7を用いて説明する。
本実施形態は、第1実施形態に加えて、復水器3における排熱量に基づいてヒートポンプ5の温熱出力を制限する点で相違する。第1実施形態と共通する構成については、同一符号を付しその説明を省略する。
復水器3の冷却水出口には、出口冷却水温度Tc_oを計測する復水器出口温度センサ61が設けられている。復水器出口温度センサ61の出力は、制御部25へと送られる。
制御部25では、復水器3の冷却水の出入口温度(Tc_o−Tc_i)と流量から、復水器3における排熱量Qcを演算するようになっている。また、制御部25は、ヒートポンプ5から熱源水から回収した熱回収量QHPを得るとともに、ヒートポンプ5の温熱出力を制限することができるようになっている。
そして、制御部25は、復水器3における排熱量Qcをヒートポンプ5の熱回収量QHPが超える場合には、ヒートポンプ5の温熱出力を所定値以下に制限する。具体的には、ヒートポンプ5に対してデマンド制限をかけたり、温水負荷35の設定温度を低くする。
制御部25では、復水器3の冷却水の出入口温度(Tc_o−Tc_i)と流量から、復水器3における排熱量Qcを演算するようになっている。また、制御部25は、ヒートポンプ5から熱源水から回収した熱回収量QHPを得るとともに、ヒートポンプ5の温熱出力を制限することができるようになっている。
そして、制御部25は、復水器3における排熱量Qcをヒートポンプ5の熱回収量QHPが超える場合には、ヒートポンプ5の温熱出力を所定値以下に制限する。具体的には、ヒートポンプ5に対してデマンド制限をかけたり、温水負荷35の設定温度を低くする。
このように、本実施形態によれば、復水器3における排熱量Qcを超えてヒートポンプにて熱回収してしまうと、復水器3に流入する冷却水温度を所望値に制御することが困難となるので、ヒートポンプ5の熱回収量QHPが排熱源の排熱量を超える場合には、ヒートポンプ5の温熱出力を所定値以下に制御することとした。これにより、ヒートポンプ5の熱回収量を所定値以下に低減することができるので、ヒートポンプ5の熱回収量が復水器3の排熱量を超えてしまう事象を回避することができる。
なお、上述した各実施形態では、排熱源の一例として復水器を挙げて説明したが、本発明はこれに限定されるものではなく、例えば冷凍機の凝縮器であっても良い。
また、復水器3を流れる冷却水流量やヒートポンプ5に導かれる熱源水流量を定格流量として説明したが、本発明はこれに限定されず、可変流量としても上式(1)は成立するので、冷却水ポンプ17や熱源水ポンプ32を可変流量式としても良い。
また、第2乃至第4実施形態では、第1実施形態に対する組合せとして説明したが、本発明はこれに限定されず、第1乃至第4実施形態は相互に組合せ可能である。
また、復水器3を流れる冷却水流量やヒートポンプ5に導かれる熱源水流量を定格流量として説明したが、本発明はこれに限定されず、可変流量としても上式(1)は成立するので、冷却水ポンプ17や熱源水ポンプ32を可変流量式としても良い。
また、第2乃至第4実施形態では、第1実施形態に対する組合せとして説明したが、本発明はこれに限定されず、第1乃至第4実施形態は相互に組合せ可能である。
1 排熱回収システム
3 復水器
5 ヒートポンプ
7 冷却塔
13 冷却水往き配管
15 冷却水還り配管
17 ファン
25 制御部
31 熱源水往き配管
33 熱源水還り配管
35 温熱負荷
3 復水器
5 ヒートポンプ
7 冷却塔
13 冷却水往き配管
15 冷却水還り配管
17 ファン
25 制御部
31 熱源水往き配管
33 熱源水還り配管
35 温熱負荷
Claims (5)
- 排熱源を冷却した後の冷却水を冷却塔まで導く冷却水還り配管から分岐された熱源水往き配管と、
該熱源水往き配管によって導かれた熱源水から熱回収することによって温熱を出力するヒートポンプと、
該ヒートポンプによって熱回収された後の熱源水を、冷却塔によって冷却された冷却水を前記排熱源へと供給する冷却水往き配管へと合流させる熱源水還り配管と、
前記冷却塔に設けられたファンの発停または回転数を制御する制御部と、
を備え、
前記制御部は、前記熱源水還り配管から熱源水が合流し、前記排熱源へと流入する冷却水入口温度が所望値となるように、前記ファンの発停または回転数を制御することを特徴とする排熱回収システム。 - 前記冷却水往き配管をバイパスするように前記熱源水還り配管から前記熱源水往き配管へと熱源水を流す熱源水バイパス配管を設け、
前記制御部は、前記ヒートポンプへ導かれる熱源水温度が所望値となるように、前記熱源水バイパス配管を流れる熱源水流量を調整することを特徴とする請求項1に記載の排熱回収システム。 - 前記熱源水還り配管から分岐されて前記冷却水還り配管へと接続された分岐熱源水還り配管が設けられ、
前記制御部は、前記冷却水往き配管に合流する熱源水温度が、前記排熱源へと流入する冷却水入口温度の所望値よりも高くなった場合に、前記分岐熱源水還り配管を介して熱源水を前記冷却水還り配管へと流すことを特徴とする請求項1又は2に記載の排熱回収システム。 - 前記制御部は、前記排熱源に対して流出入する冷却水の温度差と冷却水流量とから排熱源における排熱量を演算し、前記ヒートポンプによって熱源水から熱回収される熱回収量が該排熱量を超える場合には、該ヒートポンプの温熱出力を所定値以下に制限することを特徴とする請求項1から3のいずれかに記載の排熱回収システム。
- 排熱源を冷却した後の冷却水を冷却塔まで導く冷却水還り配管から分岐された熱源水往き配管と、
該熱源水往き配管によって導かれた熱源水から熱回収することによって温熱を出力するヒートポンプと、
該ヒートポンプによって熱回収された後の熱源水を、冷却塔によって冷却された冷却水を前記排熱源へと供給する冷却水往き配管へと合流させる熱源水還り配管と、
前記冷却塔に設けられたファンの発停または回転数を制御する制御部と、
を備えた排熱回収システムによる排熱回収方法において、
前記制御部は、前記熱源水還り配管から熱源水が合流し、前記排熱源へと流入する冷却水入口温度が所望値となるように、前記ファンの発停または回転数を制御することを特徴とする排熱回収方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011019089A JP2012159236A (ja) | 2011-01-31 | 2011-01-31 | 排熱回収システムおよび排熱回収方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011019089A JP2012159236A (ja) | 2011-01-31 | 2011-01-31 | 排熱回収システムおよび排熱回収方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012159236A true JP2012159236A (ja) | 2012-08-23 |
Family
ID=46839926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011019089A Pending JP2012159236A (ja) | 2011-01-31 | 2011-01-31 | 排熱回収システムおよび排熱回収方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012159236A (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102980346A (zh) * | 2012-12-10 | 2013-03-20 | 安徽日源环保能源科技有限公司 | 一种工业设备冷却系统及其控制方法 |
CN103454924A (zh) * | 2013-08-20 | 2013-12-18 | 江苏天舒电器有限公司 | 一种热泵热水机在线自诊断控制方法及其控制装置 |
CN104110975A (zh) * | 2014-07-18 | 2014-10-22 | 烟台荏原空调设备有限公司 | 一种工业废水处理装置 |
JP2015117909A (ja) * | 2013-12-19 | 2015-06-25 | 高砂熱学工業株式会社 | 排水利用システム及び排水利用方法 |
CN110216803A (zh) * | 2018-03-01 | 2019-09-10 | 株式会社迪思科 | 恒温水提供装置 |
CN110542331A (zh) * | 2019-09-10 | 2019-12-06 | 广东石湾酒厂集团有限公司 | 一种多级废热回收节水系统 |
JP2020063852A (ja) * | 2018-10-15 | 2020-04-23 | 東京瓦斯株式会社 | 冷却塔システム |
JP2020134128A (ja) * | 2019-02-15 | 2020-08-31 | 株式会社中部プラントサービス | 冷却水系統設備及びその制御装置 |
CN111750596A (zh) * | 2020-07-09 | 2020-10-09 | 山东齐鲁增塑剂股份有限公司 | 一种循环水节能系统及其操作方法 |
JP7515237B2 (ja) | 2019-03-08 | 2024-07-12 | 栗田工業株式会社 | 発電システム |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0275898A (ja) * | 1988-09-12 | 1990-03-15 | Toshiba Corp | 排熱回収装置 |
JPH08145597A (ja) * | 1994-11-22 | 1996-06-07 | Mitsubishi Plastics Ind Ltd | 冷却塔及びその運転方法 |
JP2007064546A (ja) * | 2005-08-31 | 2007-03-15 | Hitachi Eng Co Ltd | 廃熱回収設備 |
JP2010048439A (ja) * | 2008-08-19 | 2010-03-04 | Yazaki Corp | 冷却塔及び熱源機システム |
-
2011
- 2011-01-31 JP JP2011019089A patent/JP2012159236A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0275898A (ja) * | 1988-09-12 | 1990-03-15 | Toshiba Corp | 排熱回収装置 |
JPH08145597A (ja) * | 1994-11-22 | 1996-06-07 | Mitsubishi Plastics Ind Ltd | 冷却塔及びその運転方法 |
JP2007064546A (ja) * | 2005-08-31 | 2007-03-15 | Hitachi Eng Co Ltd | 廃熱回収設備 |
JP2010048439A (ja) * | 2008-08-19 | 2010-03-04 | Yazaki Corp | 冷却塔及び熱源機システム |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102980346A (zh) * | 2012-12-10 | 2013-03-20 | 安徽日源环保能源科技有限公司 | 一种工业设备冷却系统及其控制方法 |
CN103454924A (zh) * | 2013-08-20 | 2013-12-18 | 江苏天舒电器有限公司 | 一种热泵热水机在线自诊断控制方法及其控制装置 |
CN103454924B (zh) * | 2013-08-20 | 2015-09-30 | 江苏天舒电器有限公司 | 一种热泵热水机在线自诊断控制方法及其控制装置 |
JP2015117909A (ja) * | 2013-12-19 | 2015-06-25 | 高砂熱学工業株式会社 | 排水利用システム及び排水利用方法 |
CN104110975A (zh) * | 2014-07-18 | 2014-10-22 | 烟台荏原空调设备有限公司 | 一种工业废水处理装置 |
CN110216803A (zh) * | 2018-03-01 | 2019-09-10 | 株式会社迪思科 | 恒温水提供装置 |
JP7149800B2 (ja) | 2018-10-15 | 2022-10-07 | 東京瓦斯株式会社 | 冷却塔システム |
JP2020063852A (ja) * | 2018-10-15 | 2020-04-23 | 東京瓦斯株式会社 | 冷却塔システム |
JP2020134128A (ja) * | 2019-02-15 | 2020-08-31 | 株式会社中部プラントサービス | 冷却水系統設備及びその制御装置 |
JP2021105516A (ja) * | 2019-02-15 | 2021-07-26 | 株式会社中部プラントサービス | 冷却水系統設備、冷却水系統設備の制御装置、制御方法、制御プログラム、冷却塔の制御装置、制御方法及び制御プログラム |
JP7515237B2 (ja) | 2019-03-08 | 2024-07-12 | 栗田工業株式会社 | 発電システム |
CN110542331A (zh) * | 2019-09-10 | 2019-12-06 | 广东石湾酒厂集团有限公司 | 一种多级废热回收节水系统 |
CN111750596A (zh) * | 2020-07-09 | 2020-10-09 | 山东齐鲁增塑剂股份有限公司 | 一种循环水节能系统及其操作方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012159236A (ja) | 排熱回収システムおよび排熱回収方法 | |
US9175889B2 (en) | Heat source system and control method thereof | |
WO2012132944A1 (ja) | 膨張弁制御装置、熱源機、及び膨張弁制御方法 | |
JP4690935B2 (ja) | 熱源システムおよびその制御方法 | |
CN102016449A (zh) | 冷冻装置 | |
JP3561772B2 (ja) | ガスタービン吸気冷却システム | |
JP6104638B2 (ja) | 熱源システム及びその制御方法 | |
CN110056405A (zh) | 热能回收装置 | |
SG194589A1 (en) | Operation control system for cold generation apparatus | |
JP2010096436A (ja) | エジェクタ式冷凍システム | |
JP4062479B2 (ja) | 吸収式冷暖房装置 | |
JP2008298407A (ja) | 多元ヒートポンプ式蒸気・温水発生装置 | |
JP2015108501A (ja) | 冷凍サイクル装置 | |
KR20190010038A (ko) | 하이브리드 발전 시스템 | |
KR101117032B1 (ko) | 캐스케이드 열교환기를 구비한 히트펌프시스템 | |
JP5707549B2 (ja) | 温水活用システム | |
KR20100063680A (ko) | 흡수 냉각기에서 온도를 제어하기 위한 방법 및 시스템 | |
JP5912558B2 (ja) | コンバインドサイクル発電プラント及びその制御方法 | |
JP5950453B2 (ja) | 冷温水供給システムにおける熱源機運転制御方法 | |
US20190301777A1 (en) | Heat source system, control device, control method, and program | |
JP6814071B2 (ja) | 廃熱利用吸収式冷凍システム及び吸収式冷凍機 | |
JP4152140B2 (ja) | 排熱吸収冷凍機 | |
CN207196987U (zh) | 螺杆式冷水机组 | |
JP2009287805A (ja) | 吸収式冷凍機 | |
JP2006078048A (ja) | ヒートポンプ加熱装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140729 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141224 |